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Abstract

We study properties of positive functions satisfying (E) −∆u + up −M |∇u|q = 0 is a

domain Ω or in RN
+ when p > 1 and 1 < q < min{p, 2}. We concentrate our research on the

solutions of (E) vanishing on the boundary except at one point. This analysis depends on

the existence of separable solutions in RN
+. We construct various types of positive solutions

with an isolated singularity on the boundary. We also study conditions for the removability

of compact boundary sets and the Dirichlet problem associated to (E) with a measure as

boundary data.
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1 Introduction

The aim of this article is to study some properties of solutions of the following
equation

Lq,Mu := −∆u+ |u|p−1u−M |∇u|q = 0 (1.1)

in a bounded domain Ω of RN or in the half-space RN+ , where M > 0 and p >
q > 1. We are particularly interested in the analysis of boundary singularities of
such solutions. If M = 0 the boundary singularities problem has been investigated
since thirty years, starting with the work of Gmira and Véron [15] who obtained an
almost complete description of the solutions with isolated boundary singularities.
When M > 0 there is a balance between the absorption term |u|p−1u and the source
term M |∇u|q, a confrontation which can create very new effects. Furthermore, the
scale of the two opposed reaction terms depends upon the position of q with respect
to 2p

p+1 . This is due to the fact that (1.1) is equivariant with respect to the scaling

transformation T` defined for ` > 0 by T`[u](x) = `
2
p−1u(`x).

If q < 2p
p+1 , the absorption term is dominant and the behaviour of the singular

solutions is modelled by the equation studied in [15]

−∆u+ |u|p−1u = 0. (1.2)

If q > 2p
p+1 , the source term is dominant and the behaviour of the singular solutions

is modelled by positive separable solutions of the equation without diffusion

up −M |∇u|q = 0. (1.3)

Another associated equation which plays an important role in the construction of
singular solutions since its positive solutions are supersolutions of (1.1) is

−∆u−M |∇u|q = 0. (1.4)
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Note that in (1.3) and (1.4), M can be fixed to be 1 by replacing u by `u.
If q = 2p

p+1 , the coefficient M > 0 plays a fundamental role in the properties of the
set of solutions, in particular for the existence of singular solutions and removable
singularities. This situation is similar in some sense to what happens for equation

−∆u = |u|p−1u+M |∇u|q (1.5)

which is studied thoroughfly in [5], [6] in the case M > 0 and in [26] in the case
M < 0. In this last article the opposition of a forcing term |u|p−1u and an absorption
term M |∇u|q creates a very rich configuration of unexpected phenomena and new
effects.

In the present paper we will consider the case where 1 < q < 2, with a special
emphasis on the case q = 2p

p+1 which allows to put into light the role of the value
of M . We first analyze the following problem: given a smooth bounded domain
Ω ⊂ RN such that 0 ∈ ∂Ω, under what conditions involving p, q and M is the point
0 a removable singularity for a solution of (1.1) continuous in Ω \ {0} and vanishing
on ∂Ω \ {0} ? In the sequel we denote ρ(x) = dist (x, ∂Ω) and for 1 ≤ s < ∞,
Lsρ(Ω) := Ls(Ω; ρdx) and the space of test functions in Ω is defined by

X(Ω) =
{
ζ ∈ C1(Ω) : ζ = 0 on ∂Ω, ∆ζ ∈ L∞(Ω)

}
. (1.6)

If Ω is replaced by RN
+, then

X(RN
+) =

{
ζ ∈ C1(RN

+) with compact support in RN

+, ∆ζ ∈ L∞(RN
+)
}
. (1.7)

Our first result is the following:

Theorem 1.1 Assume p ≥ N+1
N−1 , M > 0 and

(i) either p = N+1
N−1 and 1 < q < 1 + 1

N .

(ii) or p > N+1
N−1 and 1 < q ≤ 2p

p+1 .

Then any nonnegative solution u ∈ C2(Ω) ∩ C1(Ω \ {0}) of

−∆u+ |u|p−1u−M |∇u|q = 0 in Ω
u = 0 in ∂Ω \ {0} (1.8)

verifies ∇u ∈ Lqρ(Ω), u ∈ LpρΩ) and is a weak solution of

−∆u+ |u|p−1u−M |∇u|q = 0 in Ω
u = 0 in ∂Ω,

(1.9)

in the sense that∫
Ω

(
−u∆ζ + (|u|p−1u−M |∇u|q)ζ

)
dx = 0 for all ζ ∈ X(Ω). (1.10)

Furthermore, if we assume either (i), or

3



(iii) p > N+1
N−1 and 1 < q < 2p

p+1 or

(iv) p > N+1
N−1 , q = 2p

p+1 and

M < m∗∗ := (p+ 1)

(
(N − 1)p− (N + 1)

2p

) p
p+1

, (1.11)

then u = 0.

This result is optimal in the case p = N+1
N−1 , q = 2p

p+1 as we will see in Section 4.
Combining the method used in proving Theorem 1.1 with the result of [18] we prove
the removability of compact boundary sets on ∂Ω, provided they satisfy some zero
Bessel capacity property.

Theorem 1.2 Assume p > N+1
N−1 and N+1

N−1 < r < p. If one of the following condi-
tions is satisfied:
(i)- either q = 2p

p+1 and

M < m∗∗r := (p+ 1)

(
p− r
p(r − 1)

) p
p+1

(1.12)

(ii)- or 1 < q < 2p
p+1 , r ≤ 3 and M is arbitrary.

Then if K ⊂ ∂Ω is a compact set such that cap∂Ω
2
r
,r′

(K) = 0, any solution u of

−∆u+ |u|p−1u−M |∇u|q = 0 in Ω
u = 0 on ∂Ω \K, (1.13)

is identically 0.

Note that m∗∗N+1
N−1

= m∗∗. The capacitary framework allows to consider the Dirich-

let problem for (1.1)

−∆u+ |u|p−1u−M |∇u|q = 0 in Ω
u = µ in ∂Ω,

(1.14)

where µ is a Radon measure on ∂Ω. By a weak solution of (1.14) we understand a
function u ∈ L1(Ω) ∩ Lpρ(Ω) such that |∇u| ∈ Lqρ(Ω), which satisfies∫

Ω

(
−u∆ζ + (|u|p−1u−M |∇u|q)ζ

)
dx = −

∫
∂Ω

∂ζ

∂n
dµ for all ζ ∈ X(Ω). (1.15)

When the two exponents are super-critical with respect to the equations (1.2) and
(1.4), the admissibility condition on the measure for (1.1) requires the introduction
of two different Bessel capacities defined on Borel subsets of ∂Ω.
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Theorem 1.3 Let p > 1, 1 < q < 2 and µ be a nonnegative Radon measure on ∂Ω
which satisfies

µ(E) ≤ C inf

{
cap∂Ω

2−q
q
,q′

(E), cap∂Ω
2
p
,p′

(E)

}
for all Borel set E ⊂ ∂Ω, (1.16)

for some C > 0. Then there exists c0 > 0 such that for any 0 < c ≤ c0 there
exists a nonnegative weak solution of (1.14) with boundary data cµ. Furthermore the
boundary trace of u is the measure cµ.

The proof is based upon a non-standard application of the sub and supersolutions
technique since it relies of the dynamical (and more natural) aspect of the boundary
trace as it is exposed in [20]. Another surprising fact is the use of the equation

−∆u = up in Ω
u = µ in ∂Ω,

which yields key estimates for our construction. The theorem admits several variants
the proof of which is based either on imbedding theorems or on properties of Bessel
capacities.

Corollary 1.4 Assume 1 < p ≤ 2N+1
N−1 and (N+1)p

N+1+p ≤ q < 2 with q ≤ p. If µ is a
nonnegative Radon measure on ∂Ω which satisfies, for some C > 0,

µ(E) ≤ Ccap∂Ω
2−q
q
,q′

(E) for all Borel set E ⊂ ∂Ω, (1.17)

there the conclusions of Theorem 1.3 hold.

The condition on the measure is also fulfilled under the following conditions.

Corollary 1.5 Let p > N+1
N−1 and N+1

N < q < 2p
p+1 . If µ is a nonnegative Radon

measure on ∂Ω such that for some constant C > 0, there holds for any Borel set
E ⊂ ∂Ω,

µ(E) ≤ Ccap∂Ω
2
p
,p′

(E), (1.18)

then the conclusions of Theorem 1.3 hold.

Since the exponents p and q can be separately super or sub-critical, or even both
sub-critical, we have the following result in different configurations of exponents.

Corollary 1.6 Let p > 1, 1 < q < 2 and µ ∈ M+(∂Ω). There exists a function
u ∈ L1(Ω) ∩ Lpρ(Ω) such that ∇u ∈ Lqρ(Ω) which is a weak solution to (1.14) in the
following cases:

(i) When p < N+1
N−1 , q < N+1

N and there exists some c1 > 0 such that ‖µ‖M ≤ c2.

(ii) When p < N+1
N−1 , N+1

N ≤ q < 2 and µ satisfies (1.17); in that case µ has to be
replaced by cµ with 0 < c ≤ c2, for some c2 > 0, in problem (1.14).

(iii) When p ≥ N+1
N−1 , q < N+1

N , and µ satisfies ‖µ‖M ≤ c3 for some c3 > 0 and

µ(E) = 0 for all Borel set E ⊂ ∂Ω such that cap∂Ω
2
p
,p′

(E) = 0. (1.19)
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In [7] the same authors study the problem

−∆u+ |u|p−1u−M |∇u|q = µ in Ω
u = 0 in ∂Ω,

(1.20)

where µ is a bounded Borel measure in Ω. There too sufficient conditions for solving
the problem involves Bessel capacities, but since the boundary trace argument is no
longer valid, an intensive utilization of potential theory with various kernels has to
be used.

In the sub-critical case (i) and when µ is a Dirac mass at 0 on the boundary we
have no restriction on its weight.

Theorem 1.7 Assume 1 < p < N+1
N−1 and 1 < q < N+1

N . Then for any k ≥ 0 there
exists a minimal positive solution uk of

−∆u+ |u|p−1u−M |∇u|q = 0 in RN
+

u = 0 in ∂RN
+ \ {0},

(1.21)

satisfying

lim
x→0

uk(x)

PN (x)
= k (1.22)

where PN (x) = cNxN |x|−N is the Poisson kernel in RN
+. Furthermore this solution

is unique among the positve solutions of (1.21)-(1.22) if q ≤ 2p
p+1 . This function

satisfies uk ∈ L1
loc(RN

+) ∩ Lploc(RN
+;xNdx), ∇uk ∈ Lqloc(RN

+;xNdx) and∫
RN+

(
−uk∆ζ + (upk −M |∇uk|

q)ζ
)
dx = k

∂ζ

∂xN
(0) for all ζ ∈ X(RN

+). (1.23)

The proof is completely different from the ones of Theorem 1.3 and Corollary 1.6
and is based upon a delicate construction of supersolutions and subsolutions. A
similar result holds if RN

+ is replaced by a bounded smooth domain Ω ⊂ RN
+ such

that 0 ∈ ∂Ω.

Theorem 1.8 Assume 1 < p < N+1
N−1 and 0 < q < N+1

N . Then for any M > 0 and

k > 0 there exists a minimal solution uk ∈ C1(Ω \ {0}) of (1.8) satisfying

lim
x→0

uk(x)

PΩ(x)
= k, (1.24)

where PΩ is the Poisson kernel in Ω. Furthermore uk ∈ L1(Ω)∩Lpρ(Ω), ∇uk ∈ Lqρ(Ω),
and ∫

Ω

(
−uk∆ζ + (upk −M |∇uk|

q)ζ
)
dx = −k ∂ζ

∂n
(0) for all ζ ∈ X(Ω). (1.25)
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In order to study the behaviour of these solutions uk when k → ∞ we have to
introduce separable solutions of (1.1) in the model case RN

+. They are solutions of

−∆u+ |u|p−1u−M |∇u|
2p
p+1 = 0 in RN

+

u = 0 on ∂RN
+ \ {0},

(1.26)

which have the following expression in spherical coordinates

u(r, σ) = r
− 2
p−1ω(σ) for all (r, σ) ∈ (0,∞)× SN−1

+ .

Put

α =
2

p− 1
, (1.27)

and denote by ∆′ and ∇′ the Laplace-Beltrami operator and the spherical gradient,
then ω satisfies

−∆′ω + α(N − 2− α)ω + |ω|p−1ω −M
(
α2ω2 + |∇′ω|2

) p
p+1 = 0 in SN−1

+

ω = 0 in ∂SN−1
+ .
(1.28)

Theorem 1.9 There exists a positive solution ω to problem (1.28) if one of the
following conditions is satisfied:

(i) either 1 < p < N+1
N−1 and M ≥ 0,

(ii) or p = N+1
N−1 and M > 0,

(iii) or 1 < p < 3 or p > N+1
N−1 , and M ≥MN,p for some explicit value MN,p > 0.

The positive solutions of (1.28) allow to characterize the limit u∞ of the solutions
uk constructed in Theorem 1.7.

Theorem 1.10 Let 1 < p < N+1
N−1 , 1 < q < N+1

N and M > 0, then

lim
x→0

u∞(x)

PN (x)
=∞. (1.29)

Furthermore

(i) If 1 < q < 2p
p+1

lim
r→0

rαu∞(r, .) = ψ uniformly on SN−1
+ , (1.30)

where ψ is the unique positive solution of

−∆′ψ + α(N − 2− α)ψ + |ψ|p−1ψ = 0 in SN−1
+

ψ = 0 in ∂SN−1
+ ,

(1.31)

and u∞ is the unique positive function solution of (1.21) and satisfying (1.29).

(ii) If q = 2p
p+1

lim
r→0

rαu∞(r, .) = ω uniformly on SN−1
+ , (1.32)

where ω is the minimal positive solution of (1.28).
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A similar result holds if RN
+ is replaced by a bounded smooth domain Ω ⊂ RN

+,
which boundary contains 0. In that case we assume that T∂Ω(0) = ∂RN+ (i.e. ∂RN+
is the tangent hyperplane to ∂Ω at 0 in order to use the spherical coordinates (r, σ)

as above. Finally, if (p, q) =
(
N+1
N−1 ,

N+1
N

)
and ∂Ω is ”very flat” near 0 in the sense

that dist (x, T∂Ω(0)) ≤ c|x|N for all x ∈ ∂Ω close to 0, we prove that the function u∞
defined in the previous theorem still satisfies (1.32). Note that the above flatness
condition is always satisfied if N = 2 since ∂Ω is locally the graph of a Ck real
valued function (k ≥ 2) defined on T∂Ω(0) ∩Bδ and degenerate at 0.

When 2p
p+1 < q < min{2, p}, the situation is completely changed and the solutions

with strong boundary blow-up are modelized by equation (1.3). If 1 < q < 2 we set

β =
2− q
q − 1

, (1.33)

and if 1 < q < p

γ =
q

p− q
. (1.34)

We prove the following result in the statement of which φ1 denotes the first
eigenfunction of −∆′ in W 1,2

0 (SN−1
+ ).

Theorem 1.11 Assume M > 0 and 2p
p+1 < q < min{2, p}. Then there exists a

positive solution u of (1.1) in RN
+, which vanishes on ∂RN

+ \ {0} such that

mφ1(σ)r−γ ≤ u(r, σ) ≤ c4 max
{
r−α,M

1
p−q r−γ

}
for all (r, σ) ∈ (0, r∗)× SN−1

+ .

(1.35)
for some m > 0, r∗ ∈ (0,∞] and where c4 = c4(N, p, q) > 0. If Nq ≥ (N − 1)p,
r∗ =∞.

Note that our construction which is made by mean of supersolutions and subso-
lutions does not imply that in the case 2p

p+1 < q < N+1
N , the solution u∞ obtained

in Theorem 1.10 satisfies (1.35). A similar result holds if RN
+ is replaced by a

bounded smooth domain Ω ⊂ RN
+, such that 0 ∈ ∂Ω, under the flatness condition

dist (x, T∂Ω(0)) ≤ c|x|γ+1 for x ∈ ∂Ω near 0.

In the sequel C > 0 denotes a constant the value of which can change from one
occurence to another and cj (j = 0, 1, 2, ...) a more specific positive constant the
value of which depends of more precise elements such as p, q,N or other previous
constants ci.

In a forthcomming article [8] we study the isolated singularities of positive so-
lution in a domains. Due to the number of parameters even the radial solutions
present an amazing rich complexity.

Aknowledgements The authors are grateful to the anonymous referee for his care-
ful checking of the work and his pertinent observations. This article has been pre-
pared with the support FONDECYT grants 1160540 and 1190102 for the three
authors.
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2 Singular boundary value problems

2.1 A priori estimates

We give two series of estimates for solutions of (1.1) with a boundary singularity
according to the sign of M .

Theorem 2.1 Let Ω be a domain such that 0 ∈ ∂Ω, M ∈ R and 1 < q < min{p, 2}.
If u ∈ C1(Ω \ {0}) is a solution of (1.1) vanishing on ∂Ω \ {0}, there holds

1- If M > 0, there exists = c5(N, p, q) > 0 such that

u+(x) ≤ c5 max
{
M

1
p−q |x|−

q
p−q , |x|−

2
p−1

}
for all x ∈ Ω. (2.1)

2- If M ≤ 0, there exist c6 = c6(N, q) > 0 and c7 = c7(N, p) > 0 such that

u+(x) ≤ min
{
c6|M |−

1
q−1 |x|−

2−q
q−1 , c7|x|−

2
p−1

}
for all x ∈ Ω. (2.2)

Proof. We first assume that Ω ⊂ BR0 for some R0 > 0. Let ε > 0, we set

jε(r) =


0 if r ≤ 0
r2

2ε if 0 ≤ r ≤ ε
r − ε

2 if r ≥ ε.

If we extend u by 0 in Ω
c ∩B2R0 and set vε = jε(u) we have

−∆vε + vpε −M |∇vε|q = −j′ε(u)∆u− j′′ε (u)|∇u|2 + (jε(u))p −M(j′ε(u))q|∇u|q

≤Mj′ε(u)
(
1− (j′ε(u))q−1

)
|∇u|q + (jε(u))p − j′ε(u)up+

≤Mu

ε

(
1− uq−1

εq−1

)
|∇vε|qχ{0<u<ε} .

Letting ε→ 0, we deduce from the dominated convergence theorem that v0 = lim
ε→0

vε

is nonnegative (actually it is the extension of u+ by 0 outside Ω \ {0}) and satisfies

Lv0 := −∆v0 + vp0 −M |∇v0|q ≤ 0 in D′(B2R0 \ {0}). (2.3)

The case M > 0. Following the method of Keller [16] and Osserman [23], we fix
a ∈ BR0 \ {0}, and introduce U(x− a) = λ(|a|2 − |x− a|2)−b for some b > 0. Then
putting r = |x− a| and Ũ(r) = U(x− a), we have

LŨ = −Ũ ′′ − N − 1

r
Ũ ′ −M |Ũ ′|q + Ũp

= λ(|a|2 − r2)−2−b [λp−1(|a|2 − r2)2−b(p−1) + 2b(N − 2(b+ 1))r2 − 2Nb|a|2

−M2qbqλq−1rq(|a|2 − r2)2+b−q(b+1)
]
.
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If M > 0, the two necessary conditions on b to be fulfilled in order Ũ be a superso-
lution in B|a|(a) are

(i) 2− b(p− 1) ≤ 0⇐⇒ b(p− 1) ≥ 2,

(ii) 2 + b− q(b+ 1) ≥ 2− b(p− 1)⇐⇒ b(p− q) ≥ q.

The above inequalities are satisfied if

b = max

{
2

p− 1
,

q

p− q

}
= max {α, γ} . (2.4)

If q > 2p
p+1 then b = q

p−q and

LŨ ≥ λ
(
|a|2 − r2

)− 2p−q
p−q

[
λq−1

(
λp−q −M2qbqrq

) (
|a|2 − r2

) 2p−q(p+1)
p−q − (3b+ 1)N |a|2

]
.

There exists c5 > 0 depending on N , p and q such that if we choose

λ = c5 max

{
M

1
p−q |a|

q
p−q , |a|

2p(q−1)
(p−1)(p−q)

}
,

there holds
LŨ ≥ 0. (2.5)

Since Ũ(x)→∞ when |x| → |a|, we obtain by the maximum principle (see [24] for
a ) that v0 ≤ Ũ in B|a|(a). In particular

u+(a) = v0(a) ≤ Ũ(a) = λ|a|−
2q
p−q = c5 max

{
M

1
p−q |a|−

q
p−q , |a|−

2
p−1

}
. (2.6)

If q ≤ 2p
p+1 then b = 2

p−1 and

LŨ ≥ λ
(
|a|2 − r2

)− 2p
p−1

[
λp−1 +

2

p− 1

(
N − 2(p+ 1)

p− 1

)
r2 − 2N

p− 1
|a|2

−M2q
(

2

p− 1

)q
λq−1rq

(
|a|2 − r2

) 2p−q(p+1)
p−1

]
≥ λ

(
|a|2 − r2

)− 2p
p−1

[
λp−1 − C|a|2 − C ′λq−1M |a|

4p−q(p+3)
p−1

]
.

Hence, if q = 2p
p+1 , (2.5) holds if for some c5 = c5(N, p, q) > 0,

λ = c5 max
{
M

p+1
p(p−1) , 1

}
|a|

2
p−1 ,

which yields

u+(a) = v0(a) ≤ Ũ(a) = λ|a|−
4
p−1 = c5 max

{
M

p+1
p(p−1) , 1

}
|a|−

2
p−1 . (2.7)
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While if q < 2p
p+1 , we choose

λ = c5 max

{
M

1
p−q |a|

4p−q(p+3)
(p−1)(p−q) , |a|

2
p−1

}
,

where c5 > 0 = c5(N, p, q), which yields

u+(a) = v0(a) ≤ Ũ(a) = λ|a|−
4
p−1 = c5 max

{
M

1
p−q |a|−

q
p−q , |a|−

2
p−1

}
. (2.8)

The case M ≤ 0. We first assume that M < 0. By [22, Lemma 3.3] v0 satisfies

−∆v0 + |M ||∇v0|q ≤ 0 in D′(B2R0 \ {0}). (2.9)

Therefore, since 1 < q < 2,

u+(a) = v0(a) ≤ c6|M |−
1
q−1 |a|−

2−q
q−1 . (2.10)

If M ≤ 0 there also holds

−∆v0 + vp0 ≤ 0 in D′(B2R0 \ {0}). (2.11)

Hence
u+(a) = v0(a) ≤ c7|a|−

2
p−1 . (2.12)

In the above inequalities c6 = c6(q,N) > 0 and c7 = c7(p,N) > 0. Combining these
estimates we derive

u+(a) ≤ min
{
c7|a|−

2
p−1 , c6|M |−

1
q−1 |a|−

2−q
q−1

}
. (2.13)

Since the estimate is independent of R0, the assumption that Ω ⊂ BR0 is easily ruled
out. This ends the proof. �

Remark. If M = 0, estimate (2.1) is just

u+(x) ≤ c7|x|−
2
p−1 . (2.14)

If M < 0, (2.14) is valid what ever is the value of q. Furthermore there also holds

u+(x) ≤ c6|M ||x|−
2−q
q−1 , (2.15)

whatever is the value of p, provided 1 < q < 2.

The equation is not invariant by u 7→ −u, hence the lower and upper estimates
are not symmetric.
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Corollary 2.2 Under the assumptions of Theorem 2.1, there holds

1- If M > 0

−min
{
c6|M |−

1
q−1 |x|−

2−q
q−1 , c7|x|−

2
p−1

}
≤ u(x)

≤ c5 max
{
M

1
p−q |x|−

q
p−q , |x|−

2
p−1

}
for all x ∈ Ω.

(2.16)

2- If M ≤ 0, there exist c6 = c6(N, q) > 0 and c7 = c7(N, p) > 0 such that

−c5 max
{
M

1
p−q |x|−

q
p−q , |x|−

2
p−1

}
≤ u(x)

≤ min
{
c6|M |−

1
q−1 |x|−

2−q
q−1 , c7|x|−

2
p−1

}
for all x ∈ Ω.

(2.17)

We infer from Theorem 2.1 an estimate of the gradient of u near 0.

Theorem 2.3 Let Ω be a smooth bounded domain such that 0 ∈ ∂Ω and T∂Ω(0) =
∂RN+ , M > 0, p > 1 and 1 < q < min{2, p}. If u ∈ C1(Ω \ {0}) is a nonnegative
solution of (1.1) vanishing on ∂Ω \ {0}, for any r0 > 0 there holds there exists
c8 = c8(N, p, q,Ω, r0,M) > 0 such that

|∇u(x)| ≤ c8 max
{
|x|−

p
p−q , |x|−

p+1
p−1

}
for all x ∈ Ω ∩Br0 . (2.18)

The restriction that |x| ≤ 1 is not needed if q = 2p
p+1 .

Proof. We assume first that B+
2 ⊂ Ω.

Case 1: 1 < q ≤ 2p
p+1 . For 0 < r < 1 we set

u(x) = r
− 2
p−1ur(

x
r ) = r

− 2
p−1ur(y) with y = x

r .

If r
2 < |x| < 2r, then 1

2 < |y| < 2 and ur > 0 satisfies

−∆ur + upr −Mr
2p−q(p+1)

p−1 |∇ur|q = 0 in B+
2 \B

+
1
2

,

and vanishes on ∂(B+
2 \ B

+
1
2

). Since 0 < Mr
2p−q(p+1)

p−1 ≤ M as 2p − q(p + 1) ≥ 0, by

the standard regularity theory we have the estimate

max
{
|∇ur(z)| : 2

3 < |z| <
3
2

}
≤ c9 max

{
|ur(z)| : 1

2 < |z| < 2
}
, (2.19)

where c9 depends on N, p, q and M . Now it follows that

max
{
|ur(z)| : 1

2 < |z| < 2
}
≤ 2

2
p−1 c5 max

{
M

1
p−q r

2p−q(p+1)
(p−1)(p−q) , 1

}
,

by (2.1). Therefore

max
{
|∇u(y)| : r2 < |y| < 2r

}
≤ 2

2
p−1 c5c9r

− p+1
p−1 max

{
M

1
p−q r

2p−q(p+1)
(p−1)(p−q) , 1

}
≤ c8 max

{
|x|−

p
p−q , |x|−

p+1
p−1

}
,

(2.20)
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which is (2.18).

Case 2: 2p
p+1 < q < 2. For 0 < r < 1 we set

u(x) = r
− 2−q
q−1ur(

x
r ) = r

− 2−q
q−1ur(y) with y = x

r .

If r
2 < |x| < 2r, then 1

2 < |y| < 2 and ur > 0 satisfies

−∆ur + r
q(p+1)−2p

q−1 upr −M |∇ur|q = 0 in B+
2 \B

+
1
2

,

We notice that q(p+ 1)− 2p > 0. Then inequality (2.19) holds. Now

max
{
|ur(z)| : 1

2 < |z| < 2
}
≤ c′9r

2−q
q−1 max

{
r
− 2
p−1 , r

− q
p−q
}
,

thus

max
{
|∇ur(z)| : 2

3 < |z| <
3
2

}
≤ c′′9r

2−q
q−1
−1

max
{
r
− 2
p−1 , r

− q
p−q
}
, (2.21)

which implies

max
{
|∇u(x)| : 2r

3 < |x| < 3r
2

}
≤ c8 max

{
r
− p+1
p−1 , r

− p
p−q
}
. (2.22)

The general case; If ∂Ω is not flat near 0 we proceed as in the proof of [22, Lemma
3.4], using the same scaling as in the flat case which transform the domain B+

2 \B
+
1 )

into (B2 \ B1) ∩ 1
rΩ, the curvature of which is bounded when 0 < r < 1. The

same estimates holds, up to the value of the constant c8 and we derive (2.18).
�

As a consequence we have the following.

Corollary 2.4 Under the assumptions of Theorem 2.3 the function u satisfies

u(x) ≤ c8ρ(x) max
{
M

1
p−q |x|−

p
p−q , |x|−

p+1
p−1

}
for all x ∈ Ω ∩B1. (2.23)

The restriction that |x| ≤ 1 is not needed if q = 2p
p+1 .

2.2 Removable singularities

Proof of Theorem 1.1. If M ≤ 0, u is a nonnegative subsolution of −∆u + vp = 0
which vanishes on ∂Ω \ {0}, hence it is identically zero by [15].

Step 1. We assume M > 0. It is straightforward to verify from estimates (2.18) that
under conditions (i) or (ii), |∇u(x)| ≤ c8|x|−a with a ≤ N . Since these conditions
imply q < N+1

N , it follows that |∇u|q ∈ L1
ρ(Ω).
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For any ε > 0 we denote by wε the solution of

−∆w + wp = M |∇u|q in Ωε := Ω ∩Bc
ε

w = 0 in ∂Ω ∩Bc
ε

lim
|x|→ε

w(x) =∞ on ∂Bε ∩ Ω,
(2.24)

which exists since |∇u|q ∈ L1
ρ(Ω), see [19]. Then u ≤ wε in Ωε. Let zε be the solution

of
−∆z + zp = 0 in Ωε

z = 0 in ∂Ω ∩Bc
ε

lim
|x|→ε

z(x) =∞ on ∂Bε ∩ Ω.
(2.25)

Denote by GΩ[.] the Green operator in Ω. Since zε +MGΩ[|∇u|q]bΩε is a supersolu-
tion of (2.24) in Ωε we deduce

u ≤ zε +MGΩ[|∇u|q]bΩε in Ωε. (2.26)

When ε→ 0, zε decreases to z0 which satisfies

−∆w + wp = 0 in Ω
w = 0 in ∂Ω \ {0}. (2.27)

Since p ≥ N+1
N−1 it is proved in[15] that any solution of (2.27) extends as a continuous

solution in Ω with boundary value 0, hence z0 = 0 by the maximum principle.
Therefore u ≤ MGΩ[|∇u|q] in Ω and the boundary trace Tr∂Ω[u] of u is zero. By
[20] the fact that |∇u|q ∈ L1

ρ(Ω) jointly with Tr∂Ω[u] = 0 implies in turn that
up ∈ L1

ρ(Ω) and u is a weak solution of

−∆u+ up = M |∇u|q in Ω
u = 0 on ∂Ω,

(2.28)

in the sense that there holds∫
Ω

(−u∆ζ + upζ −M |∇u|qζ) dx = 0 ∀ζ ∈W 2,∞(Ω) ∩ C1
c (Ω). (2.29)

Step 2. Let us assume that p > N+1
N−1 . If u is nonnegative and not identically zero,

then by the maximum principle it is positive in Ω. We set u = vb with 0 < b ≤ 1.
Then

−∆v − (b− 1)
|∇v|2

v
+

1

b
v(p−1)b+1 −Mbq−1v(b−1)(q−1)|∇v|q = 0. (2.30)

For ε > 0,

v(b−1)(q−1)|∇v|q ≤ qε
2
q

2

|∇v|2

v
+

2− q

2ε
2

2−q
v

(2b−1)q−2(b−1)
2−q .
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Therefore

−∆v +

(
1− b−M qbq−1ε

2
q

2

)
|∇v|2

v
+

1

b
v(p−1)b+1 −Mbq−1 2− q

2ε
2

2−q
v

(2b−1)q−2(b−1)
2−q = 0.

(2.31)
We notice that the following relation is independent of b

(2b− 1)q − 2(b− 1)

2− q
≤ (p− 1)b+ 1⇐⇒ q ≤ 2p

p+ 1
,

with simultaneous equality. We take

(p− 1)b+ 1 =
N + 1

N − 1
⇐⇒ b =

2

(N − 1)(p− 1)
, (2.32)

hence p > N+1
N−1 if and only if 0 < b < 1.

We first assume that 0 < q < 2p
p+1 and choose ε > 0 such that

1− b−M qbq−1ε
2
q

2
= 0⇐⇒ ε =

(
2(1− b)
Mqbq−1

) q
2

=

(
2((N − 1)p−N − 1)

Mqbq−1(N − 1)(p− 1)

) q
2

. (2.33)

This transforms (2.31) into

−∆v+
(N − 1)(p− 1)

2
v
N+1
N−1 − (2− q)b

2(q−1)
2−q

2

(
q

2(1− b)

) q
2−q

M
2

2−q v
(2b−1)q−2(b−1)

2−q ≤ 0.

(2.34)
Then, as

(2b− 1)q − 2(b− 1)

2− q
<
N + 1

N − 1
,

there exists A > 0, depending on M and b, such that

−∆v +
(N − 1)(p− 1)

4
v
N+1
N−1 ≤ A. (2.35)

Since v vanishes on ∂Ω \ {0}, ṽ = (v − c10A
N−1
N+1 )

N+1
N−1
+ with c10 =

(
4

(N−1)(p−1)

)N+1
N−1

satisfies

−∆ṽ +
(N − 1)(p− 1)

4
ṽ
N+1
N−1 ≤ 0. (2.36)

By [15], ṽ = 0 which implies v ≤ c10A
N−1
N+1 and therefore u(x) ≤ c11A

2
(N+1)(p−1) in Ω.

Since u vanishes on ∂Ω \ {0} we extend it in a neighborhood of 0 by odd reflection
trough ∂Ω and denote by ũ the new function defined in Bα where it satisfies

−divA(x,∇ũ) + ũp +B(x,∇ũ) = 0 in Bα \ {0}. (2.37)
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In this expression the operator A : (x; ξ) ∈ Bα × RN 7→ A(x, ξ) ∈ RN is smooth in
x in Bα and linear in ξ (see e.g. [4, Lemma 2.5] in a more general setting), it and
satisfies for all (x; ξ) ∈ Bα × RN ,

A(x, ξ).ξ ≥ 2|ξ|2 and |A(x, ξ)| ≤ 4|ξ| for all (x; ξ) ∈ Bα × RN .

Since we can write |B(.,∇ũ)| ≤ 2|∇ũ|q = 2|∇ũ|q−1|∇ũ| = C(x)|∇ũ| in Bα, then
B : (x, ξ) ∈ Bα × RN 7→ B(x, ξ) ∈ R verifies

|B(x, ξ)| ≤ C(x)|ξ|,

and C(x) ≤ 2c8|x|−
(p+1)(q−1)

p−1 by Theorem 2.3. Since q < 2p
p+1 , (p+1)(q−1)

p−1 < 1. Hence

C ∈ LN+τ for some τ > 0. By Serrin’s theorem [25, Theorem 10] the singularity at
0 is removable and ũ can be extended as a regular solution of (2.37) in Bα. Hence
ũ ∈ C1(Bα

2
), and as a consequence u ∈ C1(Ω). If u is not zero, it is positive in

Ω and achieves its maximum at some x0 ∈ Ω where ∆u(x0) ≤ 0 and ∇u(x0) = 0.
Contradiction.

Next we assume that q = 2p
p+1 . By the choice of b in (2.32), inequality (2.31) becomes

−∆v +

(
1− b− Mpb

p−1
p+1 ε

p+1
p

p+ 1

)
|∇v|2

v
+

(
1

b
− Mb

p−1
p+1

(p+ 1)εp+1

)
v(p−1)b+1 ≤ 0. (2.38)

We need to make both coefficients positive so that we obtain

−∆v + τv
N+1
N−1 ≤ 0 in Ω

v = 0 on ∂Ω \ {0}.
(2.39)

We first choose

ε
p+1
p >

(
M

p+ 1

) 1
p

b
2
p+1 ,

say

ε
p+1
p =

(
M

p+ 1

) 1
p

b
2
p+1 + ε̃, (2.40)

with ε̃ > 0 so that the coefficient of v
N+1
N−1 is positive, and we can choose ε̃ thanks to

the assumption m∗∗ > M : we have

1− b− Mpb
p−1
p+1

p+ 1

((
M

p+ 1

) 1
p

b
2
p+1 + ε̃

)
= 1− b−

(
M

p+ 1

) p+1
p

pb− Mpb
p+1
p−1

p+ 1
ε̃

= b

(
1− b
b
−
(

M

p+ 1

) p+1
p

p

)
− Mpb

p+1
p−1

p+ 1
ε̃

= pb

(
(N − 1)p− (N + 1)

2p
−
(

M

p+ 1

) p+1
p

)
− Mpb

p+1
p−1

p+ 1
ε̃

= pb

((
m∗∗

p+ 1

) p+1
p

−
(

M

p+ 1

) p+1
p

)
− Mpb

p+1
p−1

p+ 1
ε̃

(2.41)

16



and the right-hand side is positive if ε̃ small enough. Hence we obtain (2.39). By
[15], v = 0 and the same holds for u. This ends the case p > N+1

N−1 .

Step 3. Finally we assume p = N+1
N−1 and 1 < q < 2p

p+1 = N+1
N , then

M |∇u(x)|q ≤ c12|x|−q
p+1
p−1 = c12|x|−qN := c13Q(x).

Hence u ≤ u1 := c13GΩ[Q]. At this point we need the following intermediate result:

Claim. Assume wα = GΩ[Qα] where Qα(x) = |x|−α with α < N + 1, then

wα(x) ≤ cα|x|2−α for all x ∈ Ω. (2.42)

If this holds true, then u(x) ≤ c13cqN |x|2−qN . By the scaling method of Theorem 2.3,
we obtain

|∇u(x)| ≤ c8c13cqN |x|1−qN =⇒ |∇u(x)|q ≤ c14|x|q(1−qN) := c14Qq(Nq−1)(x),
(2.43)

and thus

wq(Nq−1)(x) = c14GΩ[Qq(Nq−1)](x) ≤ c14cq(Nq−1)|x|2−q(Nq−1) for all x ∈ Ω.
(2.44)

Since q < 1 + 1
N , q(Nq − 1)− 2 < Nq − 2. Iterating this process, we finally obtain

that u is bounded and we end the proof as in Step 2. �

Remark. It is noticeable that the equation exhibits a phenomenon which is charac-
teristic of Emden-Folwer type equations

∆u = up in B1 \ {0}. (2.45)

If u is nonnegative then there exists a ≥ 0 such that

∆u = up + aδ0 in D′(B1). (2.46)

If 1 < p < N
N−2 then a can be positive, but if p ≥ N

N−2 , then a = 0. This means that
the singularity cannont be seen in the sense of distributions, however there truly
exist singular solutions, e.g. if p > N

N−2 ,

us(x) = cN,p|x|−
2
p−1 . (2.47)

A similar phenomenon exists for solutions of

−∆u = up in B+
1

u = 0 in ∂B+
1 \ {0}.

(2.48)

In such a case the critical value is N+1
N−1 since for p ≥ N+1

N−1 the boundary value is

achieved in the sense of distributions in ∂B+
1 .
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2.3 Proof of Theorem 1.2

As in Theorem 1.1, the proof differs according to whether 0 < q < 2p
p+1 or q = 2p

p+1 ,
and we first assume that u > 0. We perform the same change of unknown as in the
previous theorem putting u = vb, but now we choose b as follows

(p− 1)b+ 1 = r ⇐⇒ b =
r − 1

p− 1
, (2.49)

and we first assume that

1− b−M qbq−1ε
2
q

2
= 0⇐⇒ ε =

(
2(1− b)
Mqbq−1

) q
2

=

(
2(p− r)

Mq(p− 1)bq−1

) q
2

. (2.50)

Hence (2.34) becomes

−∆v +
p− 1

r − 1
vr − (2− q)bq−1

2

(
q

2(1− b)

) q
2−q

M
2

2−q v
(2r−p−1)q+2(p−r)

(p−1)(2−q) ≤ 0. (2.51)

The condition r ≥ (2r−p−1)q+2(p−r)
(p−1)(2−q) is equivalent to 2p− q(p+ 1) ≤ r(2p− q(p+ 1))

since 1 < r < p.
Assuming first that q < 2p

p+1 , we obtain from (2.51)

−∆v +
p− 1

2(r − 1)
vr ≤ A. (2.52)

for some constant A ≥ 0. Since cap∂Ω
2
r
,r′

(K) = 0 and v vanishes on ∂Ω \K, it follows

from [18] that v ≤ cA
1
r for some c > 0, hence u is also uniformly bounded above in

Ω by some constant a. Next we have to show that ∇u ∈ L2(Ω). We also denote by
Φ1 the first eigenfunction of −∆ in W 1,2

0 (Ω) normalized by sup Φ1 = 1 and by λ1

the corresponding eigenvalue. Since N+1
N−1 < r ≤ 3 we infer from [1, Theorem 5.5.1],

that (
cap∂Ω

1
2
,2

(K)
) 1
N−2 ≤ B

(
cap∂Ω

2
r
,r′

(K)
) 1

N−1− 2
r−1 .

Therefore cap∂Ω
2
r
,r′

(K) = 0 implies cap∂Ω
1
2
,2

(K) = 0 and there exists a decreasing se-

quence {ζn} ⊂ C2
0 (∂Ω) such that ζn = 1 in a neighborhood of K, 0 ≤ ζn ≤ 1

and ‖ζn‖W 1,2(∂Ω) → 0 when n → ∞, furthermore ζn → 0 quasi everywhere. Let

PΩ : C2(∂Ω) 7→ C2(Ω) be the Poisson operator. It is an admissible lifting in the
sense of [18, Section 1] in the sense that

PΩ[η]b∂Ω= η and η ≥ 0 =⇒ PΩ[η] ≥ 0.

Put ηn = 1− ζn. Then, multiplying equation (1.13) by u(PΩ[ηn])2 and integrating,
we obtain∫

Ω
|∇u|2(PΩ[ηn])2dx+ 2

∫
Ω
uPΩ[ηn]∇u.∇PΩ[ηn]dx

+

∫
Ω
up+1(PΩ[ηn])2dx−M

∫
Ω
|∇u|qu(PΩ[ηn])2dx = 0,
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which implies∫
Ω
|∇u|2(PΩ[ηn])2dx− 2

(∫
Ω
|∇u|2(PΩ[ηn])2dx

) 1
2
(∫

Ω
|∇PΩ[ηn]|2u2dx

) 1
2

+

∫
Ω
up+1(PΩ[ηn])2dx−M

∫
Ω
|∇u|qu(PΩ[ηn])2dx ≤ 0.

It is standard that ∫
Ω
|∇PΩ[ηn]|2dx ≤ c12 ‖ηn‖2

W
1
2 ,2(∂Ω)

= An.

Set Xn = ‖PΩ[ηn]|∇u|‖L2 , then

X2
n − 2AnXn −Ma|Ω|

2−q
2 Xq

n ≤ 0.

Hence there exist two positive real numbers a1 and a2 depending only on q, |Ω| and
a = ‖u‖L∞ such that

Xn ≤ a1A
1
q−1
n + a2M

1
2−q . (2.53)

Now An → 0 and Xn → ‖∇u‖2L2 , therefore by Fatou’s Lemma

|Ω|1−
2
q ‖∇u‖2Lq ≤ ‖∇u‖

2
L2 ≤ a2M

1
2−q <∞.

Let ζ ∈ C1
0 (Ω) and ηn as above. Since ηn vanishes in a neighborhood of K and ζ

vanishes on ∂Ω,∫
Ω
PΩ[ηn]∇u.∇ζdx+

∫
Ω
ζ∇u.∇PΩ[ηn]dx+

∫
Ω
upζPΩ[ηn]dx = M

∫
Ω
|∇u|qζPΩ[ηn]dx.

Letting n to infty and using the fact that ∇u ∈ L2(Ω) and ∇PΩ[ηn] → 0 in L2(Ω),
we derive ∫

Ω
∇u.∇ζdx+

∫
Ω
upζdx = M

∫
Ω
|∇u|qζdx.

Hence u is a nonnegative bounded weak solution of

−∆u+ |u|p−1u−M |∇u|q = 0 in Ω
u = 0 on ∂Ω.

(2.54)

It is therefore C2. Again, by the maximum principle we see that u cannot achieve a
positive maximum in Ω, this yields a contradiction.
Next we assume q = 2p

p+1 . We choose b = r−1
p−1 and (2.38) becomes

−∆v +

(
1− b− Mpb

p−1
p+1 ε

p+1
p

p+ 1

)
|∇v|2

v
+

(
1

b
− Mb

p−1
p+1

(p+ 1)εp+1

)
vr ≤ 0. (2.55)

19



From there the argument is similar to the one of Step 2-Case q = 2p
p+1 in the proof

of Theorem 1.1: we claim that for some suitable choices the function v satisfies

−∆v + τvr ≤ 0 in Ω

v = 0 in ∂Ω \K.

We first choose ε > 0 so that (2.40) holds, hence the coefficient of v, say τ is positive.
Then the expression

1− b− Mpb
p−1
p+1 ε

p+1
p

p+ 1
=
p(r − 1)

p− 1

((
m∗∗r
p+ 1

) p+1
p

−
(

M

p+ 1

) p+1
p

)
− Mpb

p+1
p−1

p+ 1
ε̃

(2.56)
is positive provided ε̃ > 0 is small enough. Since cap∂Ω

2
r
,r′

(K) = 0 it follows from [18]

that v = 0. Hence u = 0, which ends the proof. �

2.4 Measure boundary data

Let µ be a nonnegative Radon measure on ∂Ω. The results concerning the following
two types of equations

−∆v + vp = 0 in Ω
v = µ in ∂Ω,

(2.57)

and
−∆w = M |∇w|q in Ω

w = cµ in ∂Ω,
(2.58)

allow us to consider the measure boundary data for equation (1.1). We recall the
results concerning (2.57) and (2.58).
1- Assume p > 1. If µ satisfies

For all Borel set E ⊂ ∂Ω, cap∂Ω
2
p
,p′

(E) = 0 =⇒ µ(E) = 0, (2.59)

then problem (2.57) admits a necessarily unique weak solution v := vµ, see [18], i.e.
vµ ∈ L1(Ω)∩Lpρ(Ω) and for any function ζ ∈ X(Ω) :=

{
η ∈ C1

0 (Ω) s.t. ∆η ∈ L∞(Ω)
}

,
there holds ∫

Ω
(−v∆ζ + vpζ) dx = −

∫
Ω

∂ζ

∂n
dµ. (2.60)

Notice that there is no condition on µ if 1 < p < N+1
N−1 .

2- Assume 1 < q < 2. If there exists C > 0 such that µ satisfies

For all Borel set E ⊂ ∂Ω, µ(E) ≤ Ccap∂Ω
2−q
q
,q′

(E), (2.61)

then problem (2.58) admits at least a positive solution w for c > 0 small enough, see
[9, Theorem 1.3], in the sense that w ∈ L1(Ω), ∇w ∈ Lqρ(Ω) and for any ζ ∈ X(Ω),
there holds ∫

Ω
(−w∆ζ −M |∇w|qζ) dx = −

∫
Ω

∂ζ

∂n
dµ. (2.62)
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Notice that if 1 < q < N+1
N there is no capacitary condition on µ.

We use also the following result.

Lemma 2.5 Let p > N+1
N−1 and µ ∈ M+(∂Ω). If µ ∈ W−

2
p
,p

(∂Ω), then there exists
C > 0 such that

µ(E) ≤ C
(
cap∂Ω

2
p
,p′

(E)

) 1
p′

for all Borel set E ⊂ ∂Ω. (2.63)

Conversely, if µ satisfies

µ(E) ≤ Ccap∂Ω
2
p
,p′

(E) for all Borel set E ⊂ ∂Ω, (2.64)

for some C > 0, then µ ∈W−
2
p
,p

(∂Ω).

Proof. Assume µ ∈ W
− 2
p
,p

(∂Ω) ∩M+(∂Ω). If E is a compact subset of ∂Ω and
ζ ∈ C2(∂Ω) with 0 ≤ ζ ≤ 1, with ζ = 1 on E, then

µ(E) ≤
∫
∂Ω
ζdµ = 〈µ, ζ〉 ≤ ‖µ‖

W
− 2
p ,p
‖ζ‖

W
2
p ,p
′ .

Therefore, by the definition of the capacity,

µ(E) ≤ ‖µ‖
W
− 2
p ,p

(
cap∂Ω

2
p
,p′

(E)

) 1
p′

.

Conversely, if (2.64) holds, then there exists c16 such that for any 0 < c ≤ c16 there
exists a zcµ to

−∆z = zp in Ω
z = cµ in ∂Ω,

(2.65)

(see [9, Theorem 1.5]) in the sense that zcµ ∈ L1(Ω) ∩ Lpρ(Ω) and cPΩ[µ] ≤ zcµ.

Hence PΩ[µ] ∈ Lpρ(Ω), which implies µ ∈W−
2
p
,p

(Ω) by [18]. �

Those weak solutions are characterized by their boundary trace. Let Σε = {x ∈
Ω : ρ(x) = ε > 0} and Σ0 = ∂Ω. For 0 < ε ≤ ε0 the hypersurfaces Σδ defines a
foliation of the set Ωε0 = {x ∈ Ω : 0 < ρ(x) ≤ ε0}. Let π(x) be the orthogonal
projection of x ∈ Ωε0 on ∂Ω. Then |x− π(x)| = ρ(x) and nx = (ρ(x))−1(π(x)− x).
The mapping

x 7→ Π(x) = (ρ(x), π(x)),

from Ωε0 onto (0, ε0]×Σ0 is a C2 diffeomorphism and the restriction Πε of Π to Σε is
a C2 diffeomorphism from Σε onto Σ0. Let dSε be the surface measure on Σε, then
a continuous function u defined in Ω has boundary trace the Radon measure µ on
∂Ω if

lim
ε→0

∫
Σε

uZdSε =

∫
Σ
Zdµ for all Z ∈ C(Ω). (2.66)
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Equivalently, if ζ ∈ C(∂Ω) and ζε = ζ ◦Π−1
ε ∈ C(Σε), then

lim
ε→0

∫
Σε

uζεdSε =

∫
Σ
ζdµ for all ζ ∈ C(∂Ω). (2.67)

The functions vµ solution of (2.57) and w solution of (2.58) admit for respective
boundary trace µ and cµ. Furthermore, for the equations in (2.57) and (2.58), the
existence of a boundary trace of a positive solution is equivalent to the fact that
vµ ∈ L1(Ω) ∩ Lpρ(Ω) and w ∈ L1(Ω) with ∇w ∈ Lqρ(Ω) respectively.

Proof of Theorem 1.3. If we assume that (1.16) holds, the measure µ is Lipschitz
continuous with respect to cap∂Ω

2
p
,p′

and cap∂Ω
2−q
q
,q′

. By [9, Theorem 1.3] there exists

c17 > 0 such that for any 0 < c ≤ c17 there exists a weak solution w = wcµ to (2.58)
and there holds for some positive constant c18 depending on q and Ω

wcµ ≤ c18cPΩ[µ]. (2.68)

By [18] there exists a unique solution vcµ to (2.57) with µ replaced by cµ. The
functions wcµ and vcµ are respectively supersolution and subsolution of (2.57) with
boundary data cµ and there holds,

vcµ ≤ cPΩ[µ] ≤ wcµ (2.69)

Hence there exists a nonnegative function u satisfying (1.1) and such that

0 ≤ vcµ ≤ u ≤ wcµ ≤ c18cPΩ[µ]. (2.70)

Moreover vcµ ∈ Lpρ(Ω) and ∇wcµ ∈ Lqρ(Ω). Because vcµ and wcµ have boundary
trace cµ in the sense of (2.66) and (2.67), the function u has the same property and
we denote it by ucµ. Assuming that c ≤ min{c16, c17}, there exists also zcµ solution
of (2.65) which satisfies zcµ ∈ Lpρ(Ω) and cPΩ[µ] ≤ zcµ by the maximum principle.
Therefore wcµ ∈ Lpρ(Ω) and finally ucµ ∈ Lpρ(Ω).

Let φ = GΩ[upcµ], then φ ≥ 0 and

−∆(ucµ + φ) = |∇ucµ|q.

The function ucµ + φ is a nonnegative superharmonic function in Ω. By Doob’s
theorem [12, Chapter II], −∆(ucµ + φ) ∈ L1

ρ(Ω). Hence |∇ucµ| ∈ Lqρ(Ω). This
implies that ucµ is a weak solution of (1.15). �

Proof of Corollary 1.4. We give two proofs, both interesting, the first one based on
the theory of Bessel capacities and the second one on harmonic analysis.

First proof. Since inequality p(N+1)
N+1+p >

2p
p+2 always holds as N ≥ 2, and 2

p >
2−q
q is

equivalent q > 2p
p+2 , we note that q ≥ p(N+1)

N+1+p implies 2
p >

2−q
q . Therefore the Bessel

space L 2
p
,p′(∂Ω) (constructed by using local charts on ∂Ω as it is indicated in [9, p.
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3]) is continuously imbedded into the Bessel space L 2−q
q
,q′(∂Ω) (see e.g. [1], [27]),

since
1

q′
≥ 1

p′
− 1

N − 1

(
2

p
− 2− q

q

)
⇐⇒ q ≥ p(N + 1)

N + 1 + p
(2.71)

‖ζ‖L 2−q
q ,q′

≤ c20 ‖ζ‖L 2
p ,p
′

for all ζ ∈ C2
0 (∂Ω). (2.72)

Let K ( ∂Ω be a compact set and ζn a sequence of nonnegative functions in C2
0 (∂Ω)

such that 0 ≤ ζn ≤ 1, ζn ≥ 1 on K and such that

‖ζn‖p
′

L 2
p ,p
′
↓ cap∂Ω

2
p
,p′

(K) as n→∞.

Then (
cap∂Ω

2−q
q
,q′

(K)

) p′
q′

≤ lim inf
n→∞

‖ζn‖p
′

L 2−q
q ,q′

≤ cp
′

20cap
∂Ω
2
p
,p′

(K).

Since q ≤ p, we deduce

(
cap∂Ω

2−q
q
,q′

(∂Ω)

) p′
q′−1

cap∂Ω
2−q
q
,q′

(K) ≤
(
cap∂Ω

2−q
q
,q′

(K)

) p′
q′

≤ cp
′

20cap
∂Ω
2
p
,p′

(K).

Hence
cap∂Ω

2−q
q
,q′

(K) ≤ c21cap
∂Ω
2
p
,p′

(K). (2.73)

Combining (2.73) and (1.17) we infer

µ(E) ≤ Ccap∂Ω
2−q
q
,q′

(K) = C min

{
cap∂Ω

2−q
q
,q′

(K), c21cap
∂Ω
2
p
,p′

(K)

}
≤ C max{1, c21}min

{
cap∂Ω

2−q
q
,q′

(K), cap∂Ω
2
p
,p′

(K)

}
then (1.16) holds. The proof follows by Theorem 1.3.

Second proof. Under the assumption (1.17) there exists a weak solution wcµ of (2.58)
which satisfies PΩ[µ] ≤ wcµ and ∇wcµ ∈ Lqρ(Ω). By classical imbedding theorems
between weighted Sobolev spaces (see e.g. [27])(∫

Ω
|wcµ|pρdx

) 1
p

≤ C
(∫

Ω
|∇wcµ|qρdx

) 1
q

+

∫
Ω
|wcµ|ρdx, (2.74)

for all r > 1 such that

1

p
≥ 1

q
− 1

N + 1
> 0⇐⇒ q >

p(N + 1)

N + 1 + p
.

Furthermore the condition q < 2 yields p < 2(N+1)
N−1 . Under this condition, PΩ[µ] ∈

Lpρ(Ω). By [18] µ ∈W−
2
p
,p

(∂Ω). Again by [18] there exists a solution vcµ to problem
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(2.57) and inequality (2.69) holds. The end of the proof is similar to the one of
Theorem 1.3. �

Proof of Corollary 1.5. We recall the formulation of [1, Theorem 5.5.1] in our
framework. There exists a constant A > 0 such that if E ⊂ ∂Ω is a Borel set, then(
cap∂Ω

2
p
,p′

(E)

) p−1
(N−1)(p−1)−2

≤ A
(
cap∂Ω

2−q
q
,q′

(E)

) q−1
(N−1)(q−1)+q−2

if 2p′

p ≤
(2−q)q′

q < N − 1.

(2.75)
Now

2p′

p
≤ (2− q)q′

q
< N − 1⇐⇒ N + 1

N
< q ≤ 2p

p+ 1
and p >

N + 1

N − 1
.

Since (q−1)((N−1)(p−1)−2)
(p−1)((N−1)(q−1)+q−2) ≥ 1 as q ≤ 2p

p+1 , we infer

cap∂Ω
2
p
,p′

(E) ≤ A′
(
cap∂Ω

2−q
q
,q′

(E)

) (q−1)((N−1)(p−1)−2)
(p−1)((N−1)(q−1)+q−2)

≤ c22cap
∂Ω
2−q
q
,q′

(E). (2.76)

Then

µ(E) ≤ Ccap∂Ω
2
p
,p′

(K) = C min

{
cap∂Ω

2
p
,p′

(K), c22cap
∂Ω
2−q
q
,q′

(K)

}
≤ C max{1, c22}min

{
cap∂Ω

2−q
q
,q′

(K), cap∂Ω
2
p
,p′

(K)

}
.

This implies the claim. �

Remark. If N+1
N = q < 2p

p+1 then [1, Theorem 5.5.1] yieldsln
A

cap∂Ω
2
p
,p′

(E)

−1

≤ A
(
cap∂Ω

2−q
q
,q′

(E)

) 1
N

. (2.77)

Therefore, if we assume that

µ(E) ≤ c17

ln
A

cap∂Ω
2
p
,p′

(E)

−N , (2.78)

then µ is absolutely continuous with respect to cap∂Ω
2
p
,p′

and Lipschitz continuous with

respect to cap∂Ω
2−q
q
,q′

. Consequently there exist vcµ and wcµ weak solutions of (2.57)

and (2.58) respectively, and they satisfy 0 ≤ vcµ ≤ wcµ. Consequently there exists
ucµ which satisfies (1.1) such that vcµ ≤ ucµ ≤ wcµ. Therefore ucµ has the same
boundary trace cµ. However we do not know if ucµ belongs to Lpρ(Ω). Therefore it
is not clear wether ucµ is a weak solution of (1.15).
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The proof in the partially sub-critical case is simpler.

Proof of Corollary 1.6. If 1 < p < N+1
N−1 for any µ ∈M+(∂Ω) problem (2.57) admits

a unique solution vµ (see [15]). If 1 < q < N+1
N , then there exists a0 > 0 such that

for any non-empty Borel set E ⊂ ∂Ω, cap∂Ω
2−q
q
,q′

(E) ≥ a0. Therefore

µ(E) ≤ ‖µ‖M ≤
‖µ‖M
a0

cap∂Ω
2−q
q
,q′

(E).

It follows from [9, Theorem 1.3] that problem (2.58) admits a solution wµ whenever
‖µ‖M is small enough. By [10] problem (2.65) admits a solution zµ with cµ replaced
by µ provided ‖µ‖M is small enough. Furthermore

wµ ≤ PΩ[µ] ≤ zµ. (2.79)

Since zµ ∈ Lpρ(Ω), wµ ∈ Lpρ(Ω). Hence by the same arument as in Theorem 1.3,
there exists a solution uµ of (1.1) which satisfies vµ ≤ uµ ≤ wµ. Hence uµ ∈ Lpρ(Ω)
and by the previous argument ∇uµ ∈ Lqρ(Ω). This implies again that uµ is a weak
solution of (1.15).

If 1 < p < N+1
N−1 and N+1

N ≤ q < 2, then problem (2.57) is uniquely solvable for
any µ ∈ M+(∂Ω), while problem (2.65) admits a solution zµ with cµ replaced by
µ provided ‖µ‖M is small enough and since (2.61) holds, problem (2.58) admits a
weak solution provided 0 < c ≤ c0. Since (2.79) holds with zµ ∈ Lpρ(Ω), the result
follows as above.

If p ≥ N+1
N−1 , 1 < q < N+1

N and µ ∈ M+(∂Ω) absolutely continuous with respect to

cap∂Ω
2
p
,p′

, there exists uµ solution of (2.57) and wµ solution of (2.58) provided c ‖µ‖M is

small enough. Since |∇wµ|q ∈ L1
ρ(Ω) the function wµ belongs to the Marcinkiewicz

space M
N+1
N−1
ρ (Ω) (see eg. [31]). Since M

N+1
N−1
ρ (Ω) ⊂ Lpρ(Ω) as 1 < p < N+1

N−1 , it
implies that wµ and therefore uµ, belongs to Lpρ(Ω). The end of the proof is as
before. �

3 Separable solutions

Separable solutions of (1.1) in RN \ {0} are solutions which have the form

u(x) = u(r, σ) = r−κω(σ) for (r, σ) ∈ R+ × SN−1 .

This forces q to be equal to 2p
p+1 , κ to 2

p−1 (recall that this defines α) and ω satisfies

−∆′ω + α(N − 2− α)ω + |ω|p−1ω −M
(
α2ω2 + |∇′ω|2

) p
p+1 = 0 in SN−1 .

(3.1)
Constant positive solutions are solutions of

Xp−1 −Mα
2p
p+1X

p−1
p+1 + α(N − 2− α) = 0. (3.2)
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This existence of solutions to (3.2) and their stability properties will be detailled in
a forthcoming article [8]. The understanding of boundary singularities of solutions
of (1.1) is conditioned by the knowledge of separable solutions in RN

+ vanishing on
∂RN \ {0}. Then ω is a solution of

−∆′ω + α(N − 2− α)ω + |ω|p−1ω −M
(
α2ω2 + |∇′ω|2

) p
p+1 = 0 in SN−1

+

ω = 0 in ∂SN−1
+ .

(3.3)

3.1 Existence of singular solutions

We recall the following result proved in [32, Corollary 1.4.5] is a variant of Boccardo-
Murat-Puel’s result [11, Theorem 2.1] dealing with the quasilinear equation in a
domain G ⊂ RN .

Q(u) := −∆u+B(., u,∇u) = 0 in D′(G), (3.4)

where B ∈ C(G×R×RN ) satisfies, for some continuous increasing function Γ from
R+ to R+,

|B(x, r, ξ)| ≤ Γ(|r|)(1 + |ξ|2) for all (x, r, ξ) ∈ G× R× RN . (3.5)

Theorem 3.1 Let G be a bounded domain in RN . If there exist a supersolution φ
and a subsolution ψ of the equation Qv = 0 belonging to W 1,∞(G) and such that
ψ ≤ φ, then for any χ ∈ W 1,∞(G) satisfying ψ ≤ χ ≤ φ there exists a function
u ∈W 1,2(G) solution of Qu = 0 such that ψ ≤ u ≤ φ and u− χ ∈W 1,2

0 (G).

Remark. Mutatis mutandi, the same result holds if RN is replaced by a Riemannian
manifold.

Their result is actually more general since the Laplacian can be replaced by a
quasilinear p-Laplacian-type operator and B by a perturbation with the natural p-
growth. This theorem has direct applications in the construction of solutions on
SN−1

+ , but also for the construction of singular solutions in several configurations.

Proposition 3.2 Let Ω be a bounded smooth domain containing 0, p > 1, 1 ≤ q ≤ 2
and M ∈ R. Assume that equation

−∆u+ up −M |∇u|q = 0, (3.6)

admits a radial positive and decreasing solution v in RN \ {0} satisfying

lim
|x|→0

v(x) =∞. (3.7)

Then there exists a positive function u satisfying (3.6) in Ω \ {0}, vanishing on ∂Ω
and such that

(v(x)−max {v(z) : |z| = δ0})+ ≤ u(x) ≤ v(x) for all x ∈ Ω \ {0}. (3.8)

where δ0 = dist (0, ∂Ω).
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Proof. Put m = max {v(z) : |z| = δ0} = v(δ0). The function vm = (v − m)+ is a
radial subsolution of (3.6) in Ω, positive in Bδ0 \ {0} and vanishing in Ω \Bδ0 . For
ε > 0 set Ωε = Ω \Bε. Since vm is dominated by the supersolution v, there exists a
solution uε of (3.6) in Ωε such that vm ≤ uε ≤ v and uε−vm ∈ H1

0 (Ωε). By standard
regularity estimates, uε is C2, hence it solves

−∆uε + upε −M |∇uε|q = 0 in Ωε

uε = vm on ∂Bε
uε = 0 on ∂Ω.

(3.9)

Notice that uε is unique by the comparison principle. If 0 < ε′ < ε the function
uε′ solution of (3.9 ) in Ωε′ with the corresponding boundary data is larger than vm
and in particular uε′b∂Bε≥ vmb∂Bε= uεb∂Bε . Hence uε′ ≥ uε in Ωε. When ε ↓ 0, uε
increase and converges in the C1,θ

loc (Ω \ {0})-topology toward some function u which
satisfies (3.6) in Ω \ {0}, is larger that vm and smaller than v, vanishes on ∂Ω and
such that (3.9) holds. �

The previous result can be adapted to the study of solutions with a boundary
singularity in bounded domains which are flat enough near the singular point or in
RN

+.

Proposition 3.3 Let p > 1, 1 ≤ q ≤ 2 and M ∈ R. Assume that the equation (3.6)
admits a positive solution w in RN

+ belonging to C(RN
+ \ {0}), radially decreasing in

RN
+ and satisfying

lim
t→0

w(tσ) =∞ uniformly on compact sets K ⊂ SN−1
+ . (3.10)

Assume also

(i) either wb∂RN+ \{0} is bounded,

(ii) or Ω ⊂ RN
+ is a bounded smooth domain such that 0 ∈ ∂Ω starshapped with

respect to 0 and such that wb∂Ω\{0} is bounded.

Then there exists a positive function u satisfying (3.6) in RN
+ in case (i), or Ω in

case (ii) , vanishing on ∂RN
+ \{0} in case (i), or ∂Ω\{0} in case (ii), and such that(

w(x)− sup
{
w(z) : z ∈ ∂RN

+ \ {0}
})

+
≤ u(x) ≤ w(x) for all x ∈ RN

+, (3.11)

where K = sup

{
lim sup
|z|→∞

w(z), sup
{
w(z) : z ∈ ∂RN

+ \ {0}
}}

in case (i) or

(w(x)− sup {w(z) : z ∈ ∂Ω \ {0}})+ ≤ u(x) ≤ w(x) for all x ∈ Ω. (3.12)

in case (ii).

Proof. The proof is a variant of the preceding one, only the geometry of the domains
is changed.
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In case (ii) set m = sup {w(z) : z ∈ ∂Ω \ {0}}. Then the function z 7→ wm :=
(w(z)−m)+ is a subsolution of (3.6) in Ω. It vanishes on ∂Ω\{0} and is dominated
by w. For ε < δ0, let Ωε denote Ω ∩ Bε

c
. We consider the problem of finding uε

solution of
−∆uε + upε −M |∇uε|q = 0 in Ωε

uε = wm on ∂Bε ∩ Ω
uε = 0 on Bc

ε ∩ ∂Ω.
(3.13)

Again since uε − wm ∈ H1
0 (Ωε) and since wm is smaller than wbΩε , the solution uε

exists and it satisfies wm ≤ uε ≤ w in Ωε. If 0 < ε′ < ε, uε′b∂Ωε≥ uεb∂Ωε= vm. Hence
uε′ ≥ ε in Ωε. As in the proof of Proposition 3.2 the sequence {uε} is relatively

compact in the C1,θ
loc (Ω \ {0})-topology, which ends the proof.

In case (i), for n > 0 set Kn = sup {w(z) : z ∈ ∂B+
n \ {0}} where, we recall it,

B+
n = Bn ∩ RN

+. The function wKn = (w − Kn)+ is a subsolution of (3.6) in B+
n

which vanishes on ∂B+
n \ {0} and is smaller than w. For 0 < ε < n we denote by

uε,n the unique function satisfying

−∆uε,n + upε,n −M |∇uε,ne|q = 0 in Γε,n := B+
n \B

+
ε

uε,n = wm on ∂Bε ∩ RN
+

uε,n = 0 on (∂B+
n ∩ RN

+) ∪ (Γε,n ∩ ∂RN
+).

(3.14)

For ε′ ≤ ε < n ≤ n′ there holds wKn ≤ uε,n ≤ uε′,n′ ≤ w in Γε,n. Letting n → ∞
and ε → 0 there exists a subsequence still denoted by {uε,n} which converges to a
solution of u of (3.6) in RN

+ vanishing on ∂RN
+ \ {0} and satisfying (3.11). �

Remark. The assumption that wb∂Ω\{0} is bounded is restrictive. For example if
w(tσ) = t−aω(σ) the flatness assumption means that dist (x,RN

+) = O(|x|α+1) for
all x ∈ ∂Ω near 0 (remember that T∂Ω(0) = ∂RN

+). This assumption is always
satisfied if p ≥ 3 since α ≤ 1, and it can be avoided if there exists a subsolution.

Proposition 3.4 Let p > 1, 1 ≤ q ≤ 2 and M ∈ R. Assume that the equation (3.6)
admits a positive supersolution w in RN

+ belonging to C(RN
+ \ {0}) satisfying (3.10).

Assume also

(i) either there exists a positive subsolution Z ∈ C(RN
+ \{0}) vanishing on ∂RN

+ \{0},
smaller than w and satisfying (3.10),

(ii) or Ω ⊂ RN
+ is a bounded smooth domain such that 0 ∈ ∂Ω and there exists a

positive subsolution Z ∈ C(Ω \ {0}), vanishing on ∂Ω \ {0} such that Z ≤ wbΩ and
satisfying (3.10).

Then there exists a positive function u satisfying (3.6) in RN
+ (resp. Ω), vanishing

on ∂RN
+ \ {0} (resp. ∂Ω \ {0}) and such that

Z(x) ≤ u(x) ≤ w(x) for all x ∈ RN + (resp. x ∈ Ω). (3.15)

Example. If 1 < p < N+1
N−1 it is proved in [15] that if Ω ⊂ RN

+ is a smooth bounded

domain such that 0 ∈ ∂Ω, there exists a nonnegative function Z∞ ∈ C(Ω \ {0}) ∩

28



C2(Ω) satisfying the equation

−∆Z + Zp = 0 in Ω
Z = 0 on ∂Ω \ {0}, (3.16)

and such that t
2
p−1Z∞(tσ) → ψ(σ) uniformly on compact sets K ⊂ SN−1

+ as t → 0
where ψ is the unique a positive solution of

−∆′ψ + α (N − 2− α)ψ + ψp = 0 in SN−1
+

ψ = 0 on ∂SN−1
+ .

(3.17)

Furthermore, for any k > 0 there exists a nonnegative function Zk ∈ C(Ω \ {0}) ∩
C2(Ω) satisfying (3.16) and such that tN−1Zk(tσ) → kφ1(σ) where φ1 has been
introduced in Theorem 1.11, uniformly on compact subsets of SN−1

+ . Furthermore
Zk ↑ Z∞ when k → ∞. If the equation (3.6) admits a positive supersolution w in
RN

+ belonging to C(RN
+ \ {0}) and such that Zk ≤ w in Ω for some 0 < k ≤ ∞, then

there exists a positive function u satisfying (3.6) in Ω, vanishing on ∂Ω \ {0} and
such that

Zk(x) ≤ u(x) ≤ w(x) for all x ∈ Ω. (3.18)

The same result holds if Ω is replaced by RN
+.

3.2 Existence or non-existence of separable solutions

Since any large enough constant is a supersolution of (3.1), it follows by Theorem 3.1
that if there exists a nonnegative subsolution z ∈W 1,∞

0 (SN−1
+ ), there exists a solution

in between.

3.2.1 Proof of Theorem 1.9

We recall that φ1 is the first eigenfunction of −∆′ in W 1,2
0 (SN−1

+ ) with corresponding
eigenvalue λ1 = N − 1. Put

H(ω) = −∆′ω + α(N − 2− α)ω + |φ|p−1ω −M
(
α2ω2 + |∇′ω|2

) p
p+1 ,

then

H(φ1) = (N − 1 + α(N − 2− α))φ1 + φp1 −M
(
α2φ2

1 + |∇′φ1|2
) p
p+1 .

If φ1 is small enough, there holds φp1 −M
(
α2φ2

1 + |∇′φ1|2
) p
p+1 < 0, hence φ1 is a

subsolution. However the condition N − 1 + α(N − 2 − α) ≤ 0 is too stringent.
We can use the fact that, up to a good choice of coordinates, φ1 = φ1(σ) = cosσ
with σ ∈ [0, π2 ]. Furthermore the statement ”φ1 is small enough” can be achieved
by φ1 = δ cosσ with δ > 0 small enough. Then

δ−1H(δ
p+1
p−1 cosσ)

= (N − 1 + α(N − 2− α)) cosσ + δp+1 cosp σ −Mδ(α2 cos2 σ + sin2 σ)
p
p+1 .
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The problem is to find δ > 0 such that for all σ ∈ [0, π2 ] we have H(δ
p+1
p−1 cosσ) ≤ 0.

Put Z = cosσ and δ−1H(δ
p+1
p−1 cosσ) = δ−1H(δ

p+1
p−1Z) = Kδ(Z), then

Kδ(Z) = (N − 1 + α(N − 2− α))Z + δp+1Zp −Mδ((α2 − 1)Z2 + 1)
p
p+1 ,

where 0 ≤ Z ≤ 1. We use the fact that

α2 cos2 σ + sin2 σ ≥ min{α2, 1}(cos2 σ + sin2 σ) := κ2 > 0,

hence

δ−1H(δ
p+1
p−1 cosσ) ≤ (N − 1 + α(N − 2− α)) cosσ + δp+1 cosp σ −Mδκ

2p
p+1 .

Then

Kδ(Z) ≤ K̃δ(Z) := (N − 1 + α(N − 2− α))Z + δp+1Zp −Mδκ
2p
p+1 , (3.19)

and
K̃ ′δ(Z) = N − 1 + α(N − 2− α) + pδp+1Zp−1. (3.20)

If N − 1 + α(N − 2− α) ≥ 0, equivalently p ≥ N+1
N−1 , then K̃ ′δ ≥ 0 on [0, 1], hence

K̃δ(Z) ≤ K̃δ(1) = N − 1 + α(N − 2− α) + δp+1 −Mδκ
2p
p+1 .

The function δ 7→ K̃δ(1) achieves its minimum for δ = δ0 := β
2
p+1

(
M
p+1

) 1
p

and

K̃δ0(1) = N − 1 + α(N − 2− α)− pκ2

(
M

p+ 1

) p+1
p

.

Therefore, when p ≥ N+1
N−1 , Kδ0 ≤ 0 on [0, 1] if

(
M
p+1

) p+1
p ≥

(
M
N,p

p+1

) p+1
p

:=
N − 1 + α(N − 2− α)

pmin{1, α2}

=
(p+ 1) (p(N − 1)− (N + 1))

pmin{(p− 1)2, 4}
.

(3.21)

If N − 1 + α(N − 2 − α) ≤ 0, equivalently p ≤ N+1
N−1 , it is clear from (3.19 ) that

K̃δ(Z) ≤ 0 for any Z ∈ [0, 1] as soon as δ ≤ κ
1
p+1M

1
p .

Improvement in the case α > 1, equivalently 1 < p < 3 . We set

F (Z) =
(α2 − 1)Z2 + 1

Z
p+1
p

.

Then
F ′(Z)

F (Z)
=

(p− 1)(α2 − 1)Z2 − (p+ 1)

p((α2 − 1)Z2 + 1)Z
.
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Since

Kδ(Z) ≤ 0⇐⇒ (N − 1 + α(N − 2− α)) + δp+1Zp−1 ≤MδF
p
p+1 (Z) (3.22)

for all Z ∈ (0, 1], it is sufficient to prove

(N − 1 + α(N − 2− α)) + δp+1 ≤Mδ min
Z∈(0,1]

F
p
p+1 (Z) (3.23)

The function F is minimal on (0, 1] at Z = Z0 =
√
α2 − 1 (remember that α = 2

p−1)

and F (Z0) = (α+ 2)(α− 1)
α+1
α+2 .

If Z0 ≤ 1, equivalently α ≥ 2, inequality (3.23) is satisfied if one find δ such that

(N − 1 + α(N − 2− α)) + δp+1 ≤MδF
p
p+1 (Z0),

and a sufficient condition is

p

(
M

p+ 1

) p+1
p

≥ p
(
MN,p

p+ 1

) p+1
p

:=
N − 1 + α(N − 2− α)

F (Z0)
(3.24)

If Z0 > 1, equivalently 1 < α < 2, the minimum of F on (0, 1] is achieved at Z = 1
with value F (1) = α2, hence a sufficient condition is

(N − 1 + α(N − 2− α)) + δp+1 ≤Mδα
2p
p+1 ),

and we obtain the desired inequality as soon as

p

(
M

p+ 1

) p+1
p

≥ p
(
MN,p

p+ 1

) p+1
p

:=
N − 1 + α(N − 2− α)

α2
. (3.25)

This ends the proof. �

Remark. Introducing m∗∗ defined in (1.11), inequality (3.21) takes the form

M ≥
(

2(p+ 1)

min{(p− 1)2, 4}

) p
p+1

m∗∗, (3.26)

in the general case and a more complicated expression in the case α > 1.

3.2.2 Non-existence

Theorem 3.5 Let p > N+1
N−1 and M ≤ m∗∗, defined by (1.11). Then equation (3.1)

admits no positive solution.

Proof. If ω is a positive solution of (3.1) the function η defined by ω = ηb for some
b > 0 satisfies

−∆′η + (1− b) |∇
′η|2

η
+
α(N − 2− α)

b
η +

1

b
η1+(p−1)b

− Mη
(b−1)(p−1)

p+1

b

(
α2η2 + b2|∇′η|2

) p
p+1 = 0.
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Since for any ε > 0 we have by Hölder’s inequality,∫
SN−1
+

η
1+

(b−1)(p−1)
p+1

(
α2η2 + b2|∇′η|2

) p
p+1 dS

≤ ε
p+1
p p

p+ 1

∫
SN−1
+

(α2η2 + b2|∇′η|2) +
1

(p+ 1)εp+1

∫
SN−1
+

η2+(p−1)bdS,

it follows that(
2− b−M ε

p+1
p pb

p+ 1

)∫
SN−1
+

|∇′η|2dS +
α

b

(
N − 2− α−M ε

p+1
p αp

p+ 1

)∫
SN−1
+

η2dS

+
1

b

(
1− M

(p+ 1)εp+1

)∫
SN−1
+

η2+(p−1)bdS ≤ 0.

(3.27)
If b ∈ (0, 2), ε > 0 and M > 0 are linked by the relation

2− b−M ε
p+1
p pb

p+ 1
≥ 0⇐⇒Mε

p+1
p ≤ (2− b)(p+ 1)

bp
, (3.28)

inequality (3.27) turns into(
(2− b)(N − 1) +

α(N − 2− α)

b
− Mε

p+1
p p

p+ 1

(
(N − 1)b+

α2

b

))∫
SN−1
+

η2dS

+
1

b

(
1− M

(p+ 1)εp+1

)∫
SN−1
+

η2+(p−1)bdS ≤ 0.

(3.29)
Next we choose

εp+1 =
M

p+ 1
, (3.30)

and we define the function b 7→ L(b) by

L(b) := (2− b)(N − 1) +
α(N − 2− α)

b
− p

(
M

p+ 1

) p+1
p
(

(N − 1)b+
α2

b

)
. (3.31)

Because N − 1 is the first eigenvalue of −∆′ in W 1,2
0 (S

N−1
), (3.29) combined with

(3.30) yields

L(b)

∫
SN−1
+

η2dS ≤ 0. (3.32)

Furthermore, if inequality (3.28) is strict, and since η is not a first eigenfunction,
inequality (3.32) is also strict. Then L(b) ≥ 0 if

p

(
M

p+ 1

) p+1
p

≤ f(b) :=
b(2− b)(N − 1) + α(N − 2− α)

(N − 1)b2 + α2
. (3.33)
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Now

f ′(b) =
−2(N − 1)2

((N − 1)b2 + α2)2 (b+ α)

(
b− α

N − 1

)
.

Notice that
α

N − 1
≤ 1⇐⇒ p ≥ N + 1

N − 1
.

If 1 < p ≤ N+1
N−1 , then f ′ ≥ 0 and in such a case the maximum of f over (0, 1] is

achieved at b = 1 and for such a value L(b) ≤ 0.

If p > N+1
N−1 , then f is increasing on [0, α

N−1) and decreasing on ( α
N−1 , 1], hence the

maximum is achieved at b = α
N−1 , which gives

f

(
α

N − 1

)
=
N − 1− α

α
=

(N − 1)p− (N + 1)

2
. (3.34)

Therefore there exists no solution if p ≥ N + 1

N − 1
and

(
M

p+ 1

) p+1
p

≤
(
m∗∗

p+ 1

) p+1
p

:=
(N − 1)p− (N + 1)

2p
. (3.35)

�

Remark. Using Theorem 1.1 we can prove the previous result in the case M < m∗∗ .

Indeed, if ω is a positive solution of (3.1), uω(r, .) = r
− 2
p−1ω(.) is a positive solution

of (1.1) in RN
+ vanishing on ∂RN

+ \ {0}. Let Ω ⊂ RN
+ be any smooth domain such

that 0 ∈ ∂Ω and ∂Ω is flat near 0. Then uω ≤ K on ∂Ω for some K > 0. Put
v = (uω −K)+, then it is a nonnegative subsolution of (3.1). For any ε > 0 small
enough there exists a solution uε of

−∆u+ up −M |∇u|
2p
p+1 = 0 in Ωε := Ω ∩Bc

ε

u = v on ∂Bε ∩ Ω

u = 0 on Bc
ε ∩ ∂Ω.

(3.36)

Then v ≤ uε ≤ uω. Furthermore, for 0 < ε′ < ε, uε ≤ uε′ in Ωε. Hence {uε}
converges, when ε → 0 to a solution u0 of (1.9), which satisfies v ≤ u0 ≤ uω and
therefore vanishes on ∂Ω \ {0}, which is a contradiction.

4 Solutions with an isolated boundary singularity

4.1 Uniqueness of singular solutions

In this section we use scaling transormations to prove uniqueness of singular solu-
tions.
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Theorem 4.1 Assume N ≥ 2, p > 1, 1 < q < 2 and M > 0. Let a such that

(i) 0 ≤ a < β if q ≤ 2p
p+1

(ii) β < a if q > 2p
p+1 .

(4.37)

Let θ ∈ C1(SN−1
+ ) be a nonnegative function, positive in SN−1

+ , vanishing on ∂SN−1
+ ,

and ã be a real number. Then there exists at most one nonnegative solution of (1.21)
satisfying

u(r, σ) = r−a| ln r|ãθ(σ)(1 + o(1)) as r → 0. (4.38)

Proof. The proof is an adaptation to the configuration where the singularity lies on
the boundary of [8, Theorem 1.15]. If u is a solution of (1.1) in RN+ , ` > 0 and b > 0,
define u`,b by

u`,b(x) = `bu(`).

Then
−∆u`,b + `2−b(p−1)up`,b −M`2−q−b(q−1)|∇u`,b|q = 0 in RN+ .

If ` > 1, u`,b is a supersolution of (1.1) in RN+ if and only if

α ≤ b ≤ β.

These conditions are compatible if and only if 1 < q ≤ 2p
p+1 . Then we take b ∈

(a,∞) ∩ [α, β], then

u`,b(r, σ) = `b−ar−a| ln r|ãθ(σ)(1 + o(1)) as r → 0.

By (2.1) all u(x) tends to 0 when |x| → ∞. Hence, for any ε > 0 the super solution
u`,b + ε which is larger than u for |x| small enough and large enough is larger than
another solution ũ in RN+ . Letting ` ↓ 1 and ε → 0 yields u ≥ ũ. In the same way
ũ ≥ u.
If ` < 1, u`,b is a supersolution of (1.1) in 1

`G if and only if

β ≤ b ≤ α,

and these conditions are compatible if and only if 2p
p+1 ≤ q < 2. If α > β we choose

b ∈ (0, a) ∩ [β, α] and we conclude as in the first case. �

Remark. In the case a = β a more precise expansion of the singular solution u at
x = 0 yields uniqueness as it is proved in [8] in the case of an internal singularity.
Since the proof of the next result is based upon a easy adaptation of the ideas in [8,
Theorem 4.4], we omit it.

Theorem 4.2 Assume N ≥ 2, p > 1, 1 < q ≤ 2p
p+1 , M > 0 and a ∈ [0, β]. Assume

θ and θ̃ are C1(SN−1
+ ) functions positive in SN−1

+ and vanishing on ∂SN−1
+ and ã is

a real smaller than a. Then there exists at most one nonnegative solution of (1.21)
satisfying

u(r, σ) = r−aθ(σ) + r−ãθ̃(σ)(1 + o(1)) as r → 0. (4.39)
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When problem (1.21) is replaced by (1.8) the scaling method becomes much
more delicate to apply. However we give below an easy extension when ∂Ω is flat
near x = 0.

Theorem 4.3 Assume N ≥ 2, p > 1, 1 < q < 2, M > 0 and Ω is a bounded smooth
domain such that 0 ∈ ∂Ω and there exists δ > 0 such that ∂Ω ∩ Bδ = T∂Ω(0) ∩ Bδ.
Let a such that

(i) 0 ≤ a < β if q ≤ 2p
p+1

(ii) β < a if q > 2p
p+1 .

(4.40)

Let θ ∈ C1(SN−1
+ ) be a nonnegative function, positive in SN−1

+ , vanishing on ∂SN−1
+ ,

and ã be a real number. If Ω is starshaped with respect to 0, then there exists at
most one nonnegative solution of (1.21) satisfying

u(r, σ) = r−a| ln r|ãθ(σ)(1 + o(1)) as r → 0. (4.41)

Proof. We use the same change of scale as in Theorem 4.1. In case (i) with ` > 1
and b ∈ (a,∞) ∩ [α, β] , u`,b is a supersolution in Ω` = 1

`Ω ⊂ Ω and ∂Ω` ∩ Bδ/` =
T∂Ω(0) ∩ Bδ/`. If ũ is another solution, ũb∂Ω`= h` and h` → 0 uniformly as ` ↓ 1

since u ∈ C1(Ω∩Bc
ε ) for any ε > 0. The function u`,b + max

∂Ω`
h` is a supersolution of

1.1 in Ω` larger than ũ on ∂Ω` \ {0} and near x = 0, hence it is larger than ũ in Ω`.
Letting ` ↓ 1 yields u ≥ ũ.
In case (ii), for ` < 1, Ω ⊂ Ω` and with b ∈ (0, a) ∩ [β, α], u`,b is a supersolution in
Ω larger that ũ on ∂Ω \ {0} and near x = 0 it is larger than ũ in Ω. We conclude as
in case (i). �

4.2 Construction of fundamental solutions

Let Ω be either RN
+ or a bounded domain with 0 ∈ ∂Ω. A function u satisfying (1.8)

is a fundamental solution if it has a singularity of potential type, that is

lim
x→0

|x|Nu(x)

ρ(x)
= cNk, (4.42)

for some k > 0. The function u can also be looked for as a solution of

−∆u+ up −M |∇u|q = 0 in Ω
u = kδ0 in ∂Ω,

(4.43)

in the sense that u ∈ Lpρ(Ω ∩ Br), ∇u ∈ Lqρ,loc(Ω ∩ Br, ) for any r > 0, and for any

ζ ∈ C1
c (Ω) ∩W 2,∞(Ω) there holds∫

Ω
(−u∆ζ + upζ −M |∇u|qζ) dx = −k ∂ζ

∂n
(0). (4.44)

We first consider the problem in RN
+.
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Proof of Theorem 1.7. The scheme of the proof is surprising since we first show
that, in the case q = 2p

p+1 , there exists M1 > 0 such that for any k > 0 and any

0 < M < M1 there exists a solution. Using this result we prove that if 1 < q < 2p
p+1 ,

then for any M > 0 and k > 0 there exists a solution. Then we return to the case
q = 2p

p+1 and using the result in the previous case, we prove that when q = 2p
p+1 we

can get rid of the restriction on M > 0 and k > 0 for the existence of solutions.

I- The case q = 2p
p+1 and M upper bounded.

For ` > 0 the transformation T` defined by

T`[u(x)] = `
2
p−1u(`x), (4.45)

leaves the operator L 2p
p+1 ,M

invariant. We can therefore write

T`[uk] = u
k`

2
p−1+1−N ,

in the sense that if uk satisfies (4.42) then T`[uk] satisfies the same limit with k

replaced by k`
2
p−1

+1−N
. However this identity to hold needs some uniqueness for the

solutions under consideration satisfying (4.42). This is achieved if uk is the minimal
solution satisfying (4.42) in which case T`[uk] is the minimal solution satisfying (4.42)

with k replaced by k`
2
p−1

+1−N
. Therefore if there exists a solution to (1.8) in RN

+,
vanishing on ∂RN

+ \ {0} satisfying (4.47) for some k > 0, then there exists such a
solution for any k > 0.

Step 1- Construction of a subsolution. For k > 0 we denote by vk the solution of

−∆v + vp = 0 in RN
+

v = kδ0 on ∂RN
+ \ {0}.

(4.46)

Such a solution exists thanks to [15] if RN
+ is replaced by a bounded domain Ω.

If case of a half-space the problem is first solved in B+
n and by letting n → ∞,

we obtain the solution in RN
+. Clearly vk is a subsolution of problem (1.8), and it

satisfies

lim
x→0

u(x)

PN (x)
= k, (4.47)

for some c′
N
> 0, where PN (x) = cN

x
N

|x|N is the Poisson kernel in RN
+.

Step 2- Construction of a supersolution. It is known that

|∇PN (x)|2 = |x|−2Nc2(x), (4.48)

where c(.) is smooth and verifies

0 < c̃1 ≤ c(x) ≤ c̃2 for some c̃1, c̃2 > 0.

We construct wk in RN
+ of the form

wk = kPN + w, (4.49)
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where w satisfies

−∆w + wp = aγ2|x|−
2Np
p+1 in RN

+

w = 0 on ∂RN
+,

(4.50)

for some a > 0 to be chosen later on. Then

L 2p
p+1 ,M

wk = −∆w + (kPN + w)p −M
(
|k∇PN +∇w|2

) p
p+1

= (kPN + w)p − wp + aγ2|x|−
2Np
p+1 −M

(
|k∇PN +∇w|2

) p
p+1

≥ pkPNwp−1 + aγ2|x|−
2Np
p+1 − 2M

(
k

2p
p+1γ

2p
p+1

2 |x|−
2Np
p+1 + |∇w|

2p
p+1

)
.

Now it is easy to check using Osserman’s type construction as in [29, Lemma 2.1]
and scaling techniques that

w(x) ≤ γ3 min
{
a

1
p |x|−

2N
p+1 , a|x|2(1− Np

p+1
)
}
,

and

|∇w(x)| ≤ γ4 min
{
a

1
p |x|−

2N
p+1
−1
, a|x|1−

2Np
p+1

}
=⇒

|∇w(x)|
2p
p+1 ≤ γ5 min

{
a

2
p+1 |x|−

2p(2N+p+1))

(p+1)2 , a
2p
p+1 |x|

2p(p+1−2Np)

(p+1)2

}
.

Therefore, if we put

τ =
p2 − 1

2p(N + 1− p(N − 1))
,

then τ > 0 since N + 1 > p(N − 1) and

|x|
2Np
p+1L 2p

p+1 ,M
wk ≥ γ2

(
a− 2Mk

2p
p+1γ

p−1
p+1

2

)
− 2Mγ5a

2p
p+1 |x|

2p(N+1−p(N−1))

(p+1)2

≥ γ2

(
a− 2Mk

2p
p+1γ

p−1
p+1

2

)
− 2Mγ5a in B+

aτ ,
(4.51)

and similarly,

|x|
2Np
p+1L 2p

p+1 ,M
wk ≥ γ2

(
a− 2Mk

2p
p+1γ

p−1
p+1

2

)
− 2Mγ5a in (B+

aτ )c. (4.52)

Replacing τ by its value, we obtain a very simple expression from (4.51) and (4.52),
valid both in B+

aτ and (B+
aτ )c, namely

|x|
2Np
p+1L 2p

p+1 ,M
wk ≥ γ2

(
a− 2Mk

2p
p+1γ

p−1
p+1

2

)
− 2Mγ5a in RN

+. (4.53)

When
M < M1 :=

γ2

2γ5
, (4.54)

37



then for fixed k, if we take

a >
2M1γ

2p
p+1

2 k
2p
p+1

γ2 − 2Mγ5
,

we infer that the right-hand side of (4.53) is nonnegative, hence wk is a supersolution.

Step 3-Existence. For 0 < k ≤ k0 wk is a supersolution which dominates the subso-
lution vk. Hence, by [32, Theorem 1-4-6] there exists a solution uk to (1.8) in RN

+,
vanishing on ∂RN

+ \ {0} and such that vk ≤ uk ≤ wk. Since

lim
x→0

vk(x)

PN (x)
= lim

x→0

wk(x)

PN (x)
= k,

it follows that uk inherits the same asymptotic behaviour. Since k < k0 can be
replaced by any k > 0, the existence of a solution follows.

II- The case 1 < q < 2p
p+1 . Assume M < M1, k > 0 and ũk is the minimal solution

of (1.8) in RN
+ with q = 2p

p+1 , vanishing on ∂RN
+ \ {0} and such that (4.47). Since

|∇φ|
2p2p ≥ |∇φ|q − 1, there holds

−∆ũk + ũpk +M −M |∇ũk|q ≥ 0.

Hence ũ∗k = ũk + M
1
p is a supersolution (1.8) in RN

+ and it dominates vk defined
in (4.46). By [32, Theorem 1-4-6] there exists a solution uk of (1.8), vanishing on
∂RN

+ \ {0} and satisfying (4.47) under the following weaker form

lim
t→0

uk(tx)

PN (tx)
= k uniformly on compact subsets of RN

+. (4.55)

Since |x|N−1uk(x) is uniformly bounded and vanishes on ∂RN
+ \{0}, it is bounded in

the C1
loc(RN

+)-topology. Hence (4.47) holds. This proves the result when M < M1.

Next let M > 0 arbitrary and k > 0. In order to find a solution u := uk to (1.8),

we set u(x) = `
− 2
p−1U`(

x
` ). Then Lq,Mu = 0 is equivalent to

Lq,M`U` := −∆U` + Up` −M`|∇U |q = 0 with M` = M`
2p−q(p+1)

p−1 ,

and (4.47) is equivalent to

lim
x→0

U`(x)

PN (x)
= `

2
p−1

+1−N
k.

Since 2p − q(p + 1) > 0 it is enough to choose ` > 0 such that M`
2p−q(p+1)

p−1 < M1,
and we end the proof using the result when M < M1.

III- The case q = 2p
p+1 revisited. Let p < p̃ < N+1

N−1 . Then 2p
p+1 <

2p̃
p̃+1 . This implies

that for any M > 0 and k > 0 there exists a positive solution ũk to

−∆ũk + ũp̃k −M |∇ũk|
2p
p+1 = 0 in RN

+,
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vanishing on ∂RN
+ \ {0} and such that

lim
x→0

ũk(x)

PN (x)
= k.

Since p̃ > p we have ũp̃k > ũpk − 1 and therefore

−∆ũk + ũpk −M |∇ũk|
2p
p+1 ≥ 1 > 0 in RN

+. (4.56)

The function ṽk solution of

−∆v + vp = 0 in RN
+

v = kδ0 on ∂RN
+ \ {0},

(4.57)

is a subsolution of (4.56), hence the exists a solution uk of such that ṽk < uk < ũk
of (1.8) in RN

+, vanishing on ∂RN
+ \ {0} and such that (4.42) holds.

IV- The case 2p
p+1 < q < 1+N

N . We follow the ideas of Case I. We look for a
supersolution wk of the form (4.49) where wk satisfies

−∆w + wp = aγ2|x|−Nq in RN
+

w = 0 on ∂RN
+,

(4.58)

for some a > 0. Then

Lq,Mwk = −∆w + (kPN + w)p −M
(
|k∇PN +∇w|2

) q
2

= (kPN + w)p − wp + aγ2|x|−Nq −M
(
|k∇PN +∇w|2

) q
2

≥ pkPNwp−1 + aγ2|x|−Nq − 2M
(
kqγq2 |x|−Nq + |∇w|q

)
.

As in Case I, by scaling techniques,

w(x) ≤ γ3 min
{
a

1
p |x|−

Nq
p , a|x|2−Nq

}
and

|∇w(x)| ≤ γ4 min
{
a

1
p |x|−

Nq
p
−1
, a|x|1−Nq

}
.

Hence

|∇w(x)|q ≤ γ5 min

{
a
q
p |x|−

Nq2

p
−q
, aq|x|q(1−Nq)

}
.

We set

τ = − 1

2p′ −Nq
= − p− 1

2p−Nq(p− 1)
.

Then, by the definition of τ ,

|x|NqLq,Mwk ≥ γ2

(
a− 2Mkqγq−1

2

)
− 2Mγ5a

q|x|q(N+1−Nq)

≥ γ2

(
a− 2Mkqγq−1

2

)
− 2Mγ5a

1+N−p(N−1)
2p
q −N(p−1) in B+

aτ ,

(4.59)
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and

|x|
2Np
p+1L 2p

p+1 ,M
wk ≥ γ2

(
a− 2Mkqγq−1

2

)
− 2Mγ5a

1+N−p(N−1)
2p
q −N(p−1) in (B+

aτ )c. (4.60)

We obtain a very simple expression from (4.59) and (4.60), valid both in B+
aτ and

(B+
aτ )c, hence

|x|
2Np
p+1L 2p

p+1 ,M
wk ≥ γ2

(
a− 2Mkqγq−1

2

)
− 2Mγ5a

1+N−p(N−1)
2p
q −N(p−1) in RN

+. (4.61)

Using the scaling transformation T` defined in (4.45), the problem of finding uk
solution of (4.43) is equivalent to looking for a solution of

−∆u+ up −M`
2p−q(p+1)

p−1 |∇u|q = 0 in RN
+

u = k`
p+1
p−1
−N

δ0 in ∂RN
+.

(4.62)

If we replace M by M` := M`
2p−q(p+1)

p−1 and k by k` := k`
p+1
p−1
−N

, the inequality (4.53)
turns into

|x|
2Np
p+1L 2p

p+1 ,M
wk,` ≥ γ2

(
a− 2M`k

q
`γ

q−1
2

)
− 2M`γ5a

1+N−p(N−1)
2p
q −N(p−1) in RN

+, (4.63)

where wk,` = w + k`R instead of (4.49). Notice that M`k
q
` = M`

2p
p−1
−Nq

kq. We

choose ` > 0 such that M`k
q
`γ

q−1
2 = a

4 , hence

|x|
2Np
p+1L 2p

p+1 ,M
wk,` ≥

aγ2

2

(
1− γ5γ

−q
2 k−qa

1+N−p(N−1)
2p
q −N(p−1)

)
in RN

+. (4.64)

It is now sufficient to choose a > 0 such that the right-hand side of (4.64) is nonneg-
ative and thus wk,` is a supersolution. Since ṽk,` is a subsolution smaller that wk,`,
we end the proof as in Case I.

V- Uniqueness or existence of a minimal solution. If 1 < q ≤ 2p
p+1 , uniqueness follows

from Theorem 4.1 applied with a = N − 1 < β = 2−q
q−1 . If 2p

p+1 < q < N+1
N and if uk,1

and uk,2 are solutions, they are larger than vk and the function uk,1,2 = inf{uk,1, uk,2}
is a supersolution larger than vk. Hence there exists a solution ũk such that

vk ≤ ũk ≤ uk,1,2.

Let Ek be the set of nonnegative solutions of (1.8) in RN
+, vanishing on ∂RN

+ \ {0}
and such that (4.42) and put

uk = inf{υ : υ ∈ Ek}.

Then there exists a decreasing sequence {υj} such that υj converges to uk on a
countable dense subset of RN

+. By standard elliptic equation regularity theory, υj
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converges to uk on any compact subset of RN

+ \ {0}. Hence uk is a solution of (1.8)
in RN

+, it vanishes on ∂RN
+ \ {0} and (4.47) since uk ≥ vk. Hence uk is the minimal

solution. �

Next of we consider the same problem in a bounded domain Ω.

Proof of Theorem 1.8. We give first proof when Ω ⊂ RN
+. We adapt the proof of

Theorem 1.7. The solution vk of

−∆v + vp = 0 in Ω
v = kδ0 on ∂Ω,

(4.65)

is a subsolution for (1.8) in Ω and satisfies (1.24 ). The solution uk of (1.8) in RN
+

vanishing on ∂RN
+ \{0} and satisfying (4.42) is larger than vk in Ω. Hence the result

follows by Proposition 3.4.

When Ω is not included in RN
+, estimates (4.48 ) is valid with the same type of

bounds on c. We also consider separately the cases q = 2p
p+1 and M upper bounded,

q < 2p
p+1 and M > 0 arbitrary and q = 2p

p+1 and M > 0 arbitrary and finally
2p
p+1 < q < N+1

N . As supersolution we consider the function wk := kPΩ +w where w
satisfies

−∆w + wp = aγ2|x|−
2Np
p+1 in Ω

w = 0 on ∂Ω,
(4.66)

for some a > 0. The estimates on w endow the form

w(x) ≤ γ3a
1
p |x|2(1− Np

p+1
)
,

and
|∇w(x)| ≤ γ4a

1
p |x|1−

2Np
p+1 ,

where γ3 and γ4 depend on Ω. Hence (4.53) holds in Ω instead of RN
+, and we have

existence for M < M1, where M1 is defined by (4.54). Then we prove existence for
any M > 0 and k > 0 when q < 2p

p+1 then for any M > 0 when q = 2p
p+1 and finally

when 2p
p+1 < q < N+1

N as in Theorem 1.7. �

4.3 Solutions with a strong singularity

4.3.1 The case 1 < q ≤ 2p
p+1

If p = N+1
N−1 and 1 < q < N+1

N and if p > N+1
N−1 and either 1 < q < 2p

p+1 and M > 0 or

q = 2p
p+1 and M > m∗∗ defined in (1.11), the singularity is removable by Theorem 1.1.

Thus the ranges of exponents that we consider are the following,

(i) 1 < q ≤ 2p
p+1 and 1 < p < N+1

N−1 ,

(ii) (p, q) =
(
N+1
N−1 ,

N+1
N

)
.

(4.67)
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If (4.67)-(i) holds, q < N+1
N , and in this range the limit of the fundamental solutions

uk when k → ∞ is a solution with a strong singularity with an explicit blow-up
rate. In the case of a bounded domain our construction requires a geometric flatness
condition of ∂Ω near 0. We consider first the case Ω = RN

+.

Theorem 4.4 Assume (4.67)-(i) holds, then for any M ≥ 0 there exists a positive
solution u of (1.1) in RN

+ vanishing on ∂RN
+ \ {0} such that

lim
x→0

u(x)

PN (x)
=∞. (4.68)

Furthermore,

(i) If 1 < q < 2p
p+1 ,

lim
r→0

r
2
p−1u(r, .) = ψ uniformly in SN−1

+ , (4.69)

where ψ is the unique positive solution of (3.17).

(ii) If q = 2p
p+1 ,

lim
r→0

r
2
p−1u(r, .) = ω uniformly in SN−1

+ , (4.70)

where ω is the minimal positive solution of (1.28).

Proof. If k > 0, we denote by u = uk,M the solution of

−∆u+ up = M |∇u|q in RN
+

u = kδ0 in ∂RN
+.

(4.71)

The mapping k 7→ uk is increasing. We set T`[u] = u`, where T` is defined in (4.45).

Since 1 < q ≤ 2p
p+1 ,

T`[uk,M ] = u
k`

2
p−1+1−N

,M`
2p−q(p+1)

p−1
.

It follows from Theorem 2.1 and Theorem 2.3 that the sequences {uk,M} and {∇uk,M}
converge locally uniformly in RN

+, when k →∞, to a function u∞,M which satisfies
(1.1) in RN

+. Furthermore

T`[u∞,M ] = u
∞,M`

2p−q(p+1)
p−1

for all ` > 0. (4.72)

In the case q = 2p
p+1 the function u∞,M is self-similar, hence

u∞,M (r, σ) = r−αω̃(σ),

where ω̃ is a nonnegative solution of (1.28). Inasmuch uk,M ≥ uk,0 = vk (already
defined by (4.46)), it follows that

u∞,M (r, σ) ≥ u∞,0(r, σ) = r−αψ(σ) =⇒ ω̃ ≥ ψ in SN−1
+ . (4.73)
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Since uk,M is dominated by any self-similar solution of (1.1), it implies that ω̃ is the
minimal positive solution of (1.28) that we denote by ω hereafter. Up to a subse-
quence, {T`n [u∞,M ]} converges locally uniformly in RN

+ \{0} to u∞,M . Consequently

lim
`n→0

`αnu∞,M (`n, σ) = ω(σ) uniformly in SN−1
+ .

Because of uniqueness, the whole sequence converges, which implies (4.70).

In the case q < 2p
p+1 , using the a priori estimates from Theorem 2.1 and Theorem 2.3,

we obtain that T`n [u∞,M ](1, σ) = `αnu∞,M (`n, σ) converges locally uniformly in SN−1
+

to u∞,0(1, σ). Since u∞,0(1, .) ≥ ψ, it follows that

lim
`n→0

`αnu∞,M (`n, σ) = ψ(σ) uniformly in SN−1
+ .

Hence (4.70) follows by uniqueness of the function ψ.
Uniqueness of positive solution of (1.21) satisfying (4.68) follows from Theorem 4.1
applied with a = α = 2

p−1 <
2−q
q−1 = β.

�

As a consequence of Theorem 1.9-(ii) we have

Theorem 4.5 Assume (4.67)-(ii) holds, then for any M > 0 there exists a positive
separable solution u of (1.1) in RN

+ vanishing on ∂RN
+ \ {0}

When RN
+ is replaced by a bounded domain there holds.

Theorem 4.6 Assume Ω ⊂ RN
+ is a bounded smooth domain such that 0 ∈ ∂Ω and

T∂Ω(0) = ∂RN+ , and (p, q) satisfies (4.67)-(i). Then for any M ≥ 0 there exists a
positive solution u of (1.1) in Ω vanishing on ∂Ω \ {0} such that

lim
x→0

u(x)

PΩ(x)
=∞, (4.74)

where PΩ is the Poisson kernel in Ω. Furthermore

(i) If 1 < q < 2p
p+1 , then

lim
r→0

rαu(r, .) = ψ locally uniformly in SN−1
+ , (4.75)

where ψ is the unique positive solution of

−∆′ψ + α(N − 2− α)ψ + ψp = 0 in SN−1
+

ψ = 0 in ∂SN−1
+ .

(ii) If q = 2p
p+1 , then

ψ ≤ lim inf
r→0

rαu(r, .) ≤ lim sup
r→0

rαu(r, .) ≤ ω locally uniformly in SN−1
+ . (4.76)
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Proof. As in the proof of Theorem 4.4, the sequence {uk} of the solution of (1.8)
which satisfy (4.42) is increasing. Since it is bounded from above by the restriction to
Ω of the solutions of the same equation in RN

+, vanishing on ∂RN
+ \{0} and satisfying

(4.68), it admits a limit u∞ which is a solution of 1.8 which vanishes on ∂Ω \ {0}
and satisfies (4.74). In order to have an estimate of the blow-up rate, we recall that
the solution vk of (4.65) is a subsolution of (1.1) and uk ≥ vk Furthermore {vk}
converges to {v∞} which is a positive solution of (1.1) in Ω, vanishing on ∂Ω \ {0}
and such that

lim
r→0

rαv∞(r, σ) = ψ(σ) locally uniformly in SN−1
+ . (4.77)

Combined with (4.69) and (4.70) it implies (4.75) and (4.76) since the solution uk
in Ω is bounded from above by the solution in RN

+.

lim inf
r→0

rαu∞(r, σ) ≥ ψ(σ) locally uniformly in SN−1
+ . (4.78)

�

Theorem 4.7 Assume Ω ⊂ RN
+ is a bounded smooth domain such that 0 ∈ ∂Ω and

T∂Ω(0) = ∂RN+ , p = N+1
N−1 and q = 2p

p+1 = N+1
N . If

dist (x,RN
+) ≤ c21|x|N for all x ∈ ∂Ω ∩Bδ, (4.79)

for some constants δ, c21 > 0, then there exists a positive solution u of (1.1) in Ω,
vanishing on ∂Ω \ {0} such that

lim
r→0

rαu(r, σ) = ω(σ) locally uniformly in SN−1
+ . (4.80)

Proof. The function uω(r, .) = r1−Nω satisfies (1.1) in RN
+ and vanishes on ∂RN

+\{0}.
Since ∇ω is bounded, it satisfies

u(x) ≤ c22 for all x ∈ ∂Ω \ {0},

for some constant c22 > 0. Then the result follows from Proposition 3.3. �

4.3.2 The case 2p
p+1 < q < p

If

1 < p <
N + 1

N − 1
and

2p

p+ 1
< q <

N + 1

N
, (4.81)

there exists fundamental solutions uk in RN
+ by Theorem 1.7, or in Ω by Theorem 1.8.

Since the mapping k 7→ uk is increasing and uk is bounded from above the function
u∞ = lim

k→∞
uk is a solution of (1.1) in RN

+ (resp. Ω) vanishing on RN
+ \ {0} (resp.

Ω \ {0}) which satisfies (4.68) (resp. (4.74)). However the blow-up rate of u∞ is
not easy to obtain from scaling methods since the transformation T` transform (1.1)

into (4.62) where M is replaced by M`
2p−q(p+1)

p−1 which is not bounded when ` → 0.
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When q > 2p
p+1 , the natural exponent is γ defined by (1.34) The transformation S`

defined for ` > 0 by
S`[u](x) = `γu(`x), (4.82)

transforms (1.1) into

−`
q(p+1)−2p

p−q ∆u+ |u|p−1u−M |∇u|q = 0. (4.83)

When `→ 0, the limit equation is an eikonal equation (up to change of unknown),

|u|p−1u−M |∇u|q = 0. (4.84)

Separable solutions of (1.3) in RN
+ are under the form uη(r, .) = r−γη and η satisfies

|η|p−1η −M(γ2η2 + |∇′η|2)
q
2 = 0 in SN−1

+ . (4.85)

Clearly this equation admits no C1 solution but for the constant ones. As limit of
solutions with vanishing viscosity, the solutions that we obtain are viscosity solutions
outside the origin. We will look for solutions having a strong singularity by the
method of sub and supersolutions. Note that (1.3) admits an explicit radial singular
solution, namely

U(x) = ω0|x|−γ := γγM
1
p−q |x|−γ . (4.86)

Proof of Theorem 1.11. For n > 0 set Un(r) = nr−γ . As

γ(p− 1) + 2 = −q(p+ 1) + γ + 2 =
2p− q(p+ 1)

p− q
,

we have

n−1r−2−γLq,MUn = −γ(γ + 2−N) + nq−1(np−q − γqM)r2−(p−1)γ .

Since γ + 2 − N > 0 because q > 2p
p+1 and p < N+1

N−1 , for any n > ω0 there exists
rn > 0 such that

nq−1(np−q − γqM)r2−(p−1)γ
n = γ(γ + 2−N).

It implies that Un is a super solution of (1.1) in Brn \ {0}. Furthermore

rn =

(
np−1

γ(γ + 2−N)

) 1
(p−1)γ−2

(1 + o(1)) when n→∞. (4.87)

For a subsolution we set
Wm(r, σ) = mr−γφ1(σ), (4.88)

where m > 0. Then

rpγLq,MWm = −mr
q(p+1)−2p

p−q
(
γ2 − (N − 2)γ + 1−N

)
φ1

+mq
(
mp−qφp1 −M

(
γ2φ2

1 + |∇′φ1|2
) q

2

)
,

(4.89)
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and this expression is negative for m > 0 small enough. Set

P (X) = X2 − (N − 2)X + 1−N = (X + 1)(X + 1−N).

Then

P (γ) =
p (Nq − (N − 1)p)

(p− q)2
.

We first give the proof when Nq ≥ (N − 1)p. In such case P (γ) ≥ 0. Hence there
exists m0 > 0 such that for any 0 < m ≤ m0, Wm is a subsolution in RN

+, smaller
than Un and it is bounded on ∂B+

rn \ {0}. When m ≤ m0, the function Wm defined
in (4.88) is a subsolution of (1.1) in RN

+. Since Wm is bounded on ∂B+
rn \ {0} there

exists a nonnegative solution un of (1.1) in B+
rn which vanishes on B+

rn \ {0} and
there holds

(Wm(x)−mr−γn )+ ≤ un(x) ≤ Un(x) for all x ∈ B+
rn . (4.90)

The fact that B+
rn is just a Lipschitz domain is easily bypassed by smoothing it in a

neighborhood of ∂Brn ∩ RN
+. Furthermore, by (2.1) and (2.18),

un(x) ≤ c5 max
{
|x|−α,M

1
p−q |x|−γ

}
. (4.91)

and for any r0 > 0, there exists c8 > 0 depending on r0 such that

|∇un(x)| ≤ c8 max
{
|x|−α−1,M

1
p−q |x|−γ−1

}
. (4.92)

By standard local regularity theory, there exists a subsequence {unj} which con-

verges in the C1(K)-topology for any compact set K ⊂ RN
+ \ {0} to a positive

solution u of (1.1) in RN
+ which vanishes on ∂RN

+ \ {0} and satisfies (1.35).

Next we assume Nq < (N − 1)p. Observe that γ2φ2
1 + |∇′φ1|2 ≥ δ2 > 0, then

mpφp1 −Mmq
(
γ2φ2

1 + |∇′φ1|2
) q

2 ≤ mp −Mmqδq.

Thus, from (4.89) we obtain

rpγLq,MWm ≤ −mr
q(p+1)−2p

p−q P (γ) +mp −Mmqδq, (4.93)

and P (γ) < 0. If we choose

m = δγ
(
M

2

) 1
p−q

,

then

mp −Mmqδq = −Mmqδq

2
.

Therefore Lq,MWm ≤ 0 on B+
r∗ where

r∗ =

(
Mmq−1δq

−2P (γ)

) p−q
q(p+1)−2p

.
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If a = mr−γ∗ , then Wm ≤ a in ∂B+
r∗ , thus Wm,a = (Wm − a)+ is nonnegative in

B+
r∗ and it is a subsolution of (1.1) in B+

r∗ which vanishes on ∂B+
r∗ \ {0}. If we

extend it by 0 in RN
+, the new function is a a subsolution of (1.1) which belongs

to W 1,∞
loc (RN

+ \ {0}). We end the proof using Proposition 3.4 as in the previous
case. �

If RN
+ is replaced by a bounded domain we have the following result.

Theorem 4.8 Let M > 0 and 2p
p+1 < q < p. If Ω ⊂ RN

+ is a bounded smooth domain

such that 0 ∈ ∂Ω and T∂Ω(0) = ∂RN+ . If

dist (x, ∂RN
+) ≤ c23|x|

p
p−q for all x ∈ ∂Ω near 0, (4.94)

for some constant c23 > 0. Then there exists a positive solution u of (1.1) in Ω
vanishing on ∂Ω \ {0} satisfying, for some m > 0,

mφ1(σ) ≤ lim inf
r→0

rγu(r, σ) ≤ lim sup
r→0

rγu(r, σ) ≤ ω0, (4.95)

uniformly on any compact set K ⊂ SN−1
+ .

Proof. We recall that φ1 is the first eigenfunction of −∆′ in W 1,2
0 (SN−1). Let R > 0

and B := BR(a) ⊂ Ω be an open ball tangent to ∂Ω at 0. Up to rescaling and since
the result does not depend on the value of M we can assume that R = 1. We set
wm(x) = m|x|−θPB(x) where θ = γ + 1 − N and PB is the Poisson kernel in B
expressed by

PB(x) =
1− |x− a|2

σN |x|N
,

where σN is the volume of the unit sphere in RN . Then

m−1Lq,Mwm
= −(θ2 + (2−N)θ)|x|−θ−2PB(x) + 2θ|x|−θ−1〈∇PB(x), x|x|〉+mp−1|x|−pθP pB(x)

−Mmq−1
(
θ2|x|−2(θ−1)P 2

B(x) + |x|−2θ|∇PB(x)|2 − 2θ|x|−2θ−1〈∇PB(x), x|x|〉
) q

2
.

(4.96)
Since

∇PB(x) = − 1

σN

(
N(1− |x− a|2)

|x|N+1

x

|x|
+

2(x− a)

|x|N

)
,

then

〈∇PB(x), x|x|〉 = − 1

σN |x|N+1

(
(N − 1)(1− |x− a|2) + |x|2

)
= −N − 1

|x|
PB(x)− 1

σN |x|N−1
,

which implies in particular

|∇PB(x)| ≥ N − 1

|x|
PB(x) +

1

σN |x|N−1
.
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If q ≥ N−1
N p, equivalently θ ≥ 0, we have

|∇wm|2 = θ2|x|−2(θ+1)P 2
B(x) + |x|−2θ|∇PB(x)|2 − 2θ|x|−2θ−1〈∇PB(x), x|x|〉

≥ θ2|x|−2(θ+1)P 2
B(x) + |x|−2θ

(
N − 1

|x|
PB(x) +

1

σN |x|N−1

)2

+ 2θ|x|−2θ−1

(
N − 1

|x|
PB(x) +

1

σN |x|N−1

)
≥ (θ2 + (N − 1)2)|x|−2(θ+1)P 2

B(x).
(4.97)

Hence

m−1Lq,Mwm ≤ −(θ2 +Nθ)|x|−θ−2PB(x) +mp−1|x|−pθP pB(x)

−mq−1M(θ2 + (N − 1)2)
q
2 |x|−q(θ+1)P qB(x)

≤ mq−1|x|−pθP qB(x)
(
mp−qP p−qB (x)−M(θ2 + (N − 1)2)|x|(p−q)θ−q

)
.

(4.98)
Now

PB(x) ≤ 2

σN |x|N−1
=⇒ P p−qB (x) ≤

(
2

σN

)p−q
|x|(1−N)(p−q).

Since (1−N)(p− q) = (p− q)θ − q, we obtain finally that,

m−1Lq,Mwm ≤ mq−1|x|−qθP qB(x)

(
mp−q

(
2

σN

)p−q
−M(θ2 + (N − 1)2)

)
.

Choosing m small enough we deduce that wm is a subsolution in B. If we extend
it by 0 in Ω \ B, the new function denoted by w̃ is a nonnegative subsolution of
(1.1) in Ω which vanishes on ∂Ω \ {0} and satisfies (4.95). The proof follows from
Proposition 3.4.

If q < N−1
N p, then θ < 0. Since 〈∇PB(x), x|x|〉 ≤ 0, (4.97) is replaced by

|∇wm|2 = θ2|x|−2(θ+1)P 2
B(x) + |x|−2θ|∇PB(x)|2 − 2θ|x|−2θ−1〈∇PB(x), x|x|〉

≥ θ2|x|−2(θ+1)P 2
B(x) + |x|−2θ

(
N − 1

|x|
PB(x) +

1

σN |x|N−1

)2

+ 2θ|x|−2θ−1

(
N − 1

|x|
PB(x) +

1

σN |x|N−1

)
≥ (θ2 + (N − 1)2)|x|−2(θ+1)P 2

B(x) +

(
1

σ2
N |x|2(N+θ−1)

+
2θ

σN |x|N+2θ

)
+ 2(N − 1)

(
1

σN |x|N+2θ
+

θ

|x|2θ+2

)
PB(x).

(4.99)
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Set

r̃ = min

{
2,

(
1

2σN |θ|

) 1
N−2

}
. (4.100)

If x ∈ B ∩Br̃(0), the two last terms in (4.99) are nonnegative, hence

|∇w|2 ≥ (θ2 + (N − 1)2)|x|−2(θ+1)P 2
B(x) for all x ∈ B ∩Br̃(0). (4.101)

Note that B ∩ Br̃(0) = B if r̃ = 2. Choosing m > 0 small enough we infer that
wm is a subsolution of (1.1) in B ∩ Br̃(0). Denoting by m̂ the maximum of wm on
∂(B ∩Br̃(0)) \ {0}, then (wm− m̂)+ is a subsolution in Ω. Since the restriction to Ω
of the solution constructed in Theorem 1.11 dominates (wm−m̂)+, the proof follows
as in the first case. �

4.3.3 Open problems

Problem 1. Under what conditions are the positive solutions of problem (1.28)
unique ? If instead of separable solutions in RN

+ vanishing on ∂RN
+ \ {0} one looks

for separable radial solutions of (1.1) in RN \ {0} (with q = 2p
p+1) , then they are

under the form
U(x) = A|x|−α (4.102)

and A is a positive root of the polynomial

P (X) = Xp−1 −Mα
2p
p+1X

p−1
p+1 + α(N − 2− α). (4.103)

A complete study of the radial solutions of (1.1) is provided in [7], however it is
straightforward to check that if 1 < p < N

N−2 , there exists a unique positive root,

hence a unique positive separable solution, while if p > N
N−2 , there exists a unique

positive root (resp. two positive roots) if

M = (p+ 1)

(
p(N − 2)−N

2p

) p
p+1

:= m∗, (4.104)

(resp. M > m∗). Uniqueness of solution plays a fundamental role in the description
and classification of all the positive solutions with an isolated singularity at 0.

Problem 2. It is proved in [7] that if max{ N
N−1 ,

2p
p+1} < q < min{2, p} and M > 0,

there exist infinitely many local radial solutions of of (1.1) in RN \{0} which satisfies

u(r) = ξMr
−β(1 + o(1)) as r → 0 (4.105)

where

β =
2− q
q − 1

and ξM =
1

β

(
(N − 1)q −N
M(p− 1)

) 1
p−1

. (4.106)

These solutions present the property that there blow-up is smaller than the one
of the explicit radial separable solution. It would be interesting to construct such
solutions of (1.1) in RN

+ (or more likely B+
R), vanishing on ∂RN \ {0}.
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Problem 3. Is it possible to define a boundary trace for any positive solution of (1.1)
in RN

+, noting the fact such a result holds separately for positive solutions of (1.2)
and (1.4) ? A related problem would be to define an initial trace for any positive
solution of the parabolic equation

∂tu−∆u+ up −M |∇u|q = 0, (4.107)

in (0, T ) × RN . Initial trace of semilinear parabolic equations (M = 0 in (4.107))
are studied in [17], [14].

Problem 4. Are the positive solutions of 1.8 satisfying (1.24) or (4.75) unique without
the flatness and the starshapedness assumptions of Theorem 4.2. More generaly, are
the weak solutions of the Dirichlet problem with measure boundary data (1.14)
unique ?
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of some elliptic equations involving mixed absorption-reaction, submitted,
arXiv:2107.13399v2.
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