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Boundary singular solutions of a class of
equations with mixed absorption-reaction

Marie-Francoise Bidaut-Véron;
Marta Garcia-Huidobro |
Laurent Véron ¥

Abstract

We study properties of positive functions satisfying (E) —Au + u? — M|Vu|? =0 is a
domain 2 or in Rf when p > 1 and 1 < ¢ < min{p, 2}. We concentrate our research on the
solutions of (E) vanishing on the boundary except at one point. This analysis depends on
the existence of separable solutions in Rf . We consruct various types of positive solutions
with an isolated singularity on the boundary. We also study conditions for the removability
of compact boundary sets and the Dirichlet problem associated to (E) with a measure for
boundary data.
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1 Introduction

The aim of this article is to study some properties of solutions of the following
equation
Lomu = —Au+ |[ulP~tu — M|Vul|? =0 (1.1)

in a bounded domain Q of RN or in the half-space R_]X , where M > 0 and p >
q > 1. We are particularly interested in the analysis of boundary singularities of
such solutions. If M = 0 the boundary singularities problem has been investigated
since thirty years, starting with the work of Gmira and Véron [13] who obtained an
almost complete description of the solutions with isolated boundary singularities.
When M > 0 there is a balance between the absorption term |u[P~!u and the source
term M |Vul?, a confrontation which can create very new effects. Furthermore, the
scalg of the two opposed reaction terms depends upon the position of ¢ with respect
p

to =7 This is due to the fact that (1.1) is equivariant with respect to the scaling

transformation 7y defined for ¢ > 0 by Ty[u](x) = K%u(f:r).
If ¢ < %, the absorption term is dominant and the behaviour of the singular

solutions is modelled by the equation studied in [13]
—Au + |[ulP~tu = 0. (1.2)

If ¢ > 1% , the source term is dominant and the behaviour of the singular solutions

is modelled by positive separable solutions of
u? — M|Vul? = 0. (1.3)

Another associated equation which plays an important role in the construction of
singular solutions since its positive solutions are supersolution of (1.1) is

—Au — M|Vul? = 0. (1.4)

Note that in (1.3) and (1.4), M can be fixed to be 1 by homothety.

If ¢ = [%, the coefficient M > 0 plays a fundamental role in the properties of the



set of solutions, in particular for the existence of singular solutions and removable
singularities. This situation is similar in some sense to what happens for equation

—Au = |ulP~tu + M|Vul? (1.5)

which is studied thoroughfly in [8], [9].

In the present paper we will consider the case where 1 < ¢ < min{2,p}, with
a special emphasis on the case ¢ = 1% which allows to put into light the role of
the value of M. We first analyze the following problem: given a smooth bounded
domain Q C RY such that 0 € 09, under what conditions involving p, ¢ and M is
the point 0 a removable singularity for a solution of (1.1) continuous in Q\ {0} and

vanishing on 9Q \ {0} ? Or first result is the following;:

Theorem 1.1 Assume p > {21, M >0 and
(i) either p = N—fl and 1 < g < 1+W'

N+1
(ii) or p > % and1<q<p+1,
Then any nonnegative weak solution u € C*(Q) N CL(Q\ {0}) of

—Au + [uP~ly — M|Vu|? =0 in Q

u=0 in 002\ {0}. (16)
verifies Vu € L9(2;d), u € LP(2;d) and is a weak solution of
—Au+ |ulP~tu — M|Vu|? =0 in Q (1.7)
u=0 in OS2. '
Furthermore, if we assume either (i) or
(iii) orp > ¥ and 1 < ¢ < p+1
(iv) or p > %, q= 1% and
D
N-1)p—(N+1)\rt
M < m* ::(p+1)<( )p2p( + )>” , (1.8)

then v = 0.

Combining the method used in proving Theorem 1.1 with the result of [16] we
prove the removability of compact boundary sets on 0f2, provided they satisfy some
some zero Bessel capacity property.

Theorem 1.2 Letp >1r > % and
5T
p—r \?
+1) p(r—1)

If one of the following conditions is satisfied:



1- either q = =5 and M < m;~,

2-orq< r S 3 and M 1is arbitrary,

+17
then for any compact set K C 0¥ such that cap‘z%,(K) =0, any solution u of

—Au+ [uP~tu — M|Vu|? =0 in Q

u=20 on 0N\ K, (1.10)

is identically 0.

The capacitary framework allows to consider the Dirichlet problem for (1.1) with
Radon measure as boundary data. When the two exponents are super-critical with
respect to the equations (1.2) and (1.4), the admissibility condition on measure for
(1.1) necessitates the introduction of two different capacities.

Theorem 1.3 Let p > 1, % <q< 1% and p be a nonnegative Radon measure
on 0N such that for some constant ¢; > 0, there holds for any Borel set E C 01,

— p+17
2N (1.11)
(E)> if p={tt and ¢ = 2L

() n(E) < exseap??, (B) N << 2
p?

(i) wFE) <cs <cap27p

There there exists c17 > 0 such that for any 0 < ¢ < c17 there exists a nonnegative
fonction u € L' () N LL(Q) such that |Vu| € L}(Q) solution of

—Au+ uP = M|Vu|? in Q

U =cp in 0N. (1.12)

Furthermore the boundary trace of u is the measure cp.

Since the exponents p and ¢ can be separately super or sub-critical, or even both
sub-critical, we have the following result in this configuration of exponents.

Theorem 1.4 (i) If 1 <p < ¥ and 1 < g < L, then there exists cg > 0 such
that for p € M, (0Q) with HMHzm S co, there emsts a very weak solution to

—Au+ uP = M|Vu|? in Q

U= L in 0N. (1.13)

(i) If 1 <p < %ﬂ and % < q < 2, there exists cg > 0 such that for p € M4 (0N)
satisfying (2.60), problem (1.12) admits a very weak solution if 0 < ¢ < ¢p.
(iii) If p > 841 and 1 < ¢ < M there exists co > 0 such that for p € M (0N)

absolutely continuous with respect to cap p/ and with ||p|lgy < co, there exists a very

p
weak solution to (1.13).

In the sub-critical case (i) and when g is a Dirac mass at 0 on the boundary we
have no restriction on its weight.



Theorem 1.5 Assume 1 < p < N+1 and 1 < ¢ < N+1. Then for any k > 0 there
exists a minimal positive solutwn U of

—Au+ |uP~tu — M|Vul? =0 in RY
. N (1.14)
u=0 in ORY \ {0},
satisfying
ug(x)
= 1.1
W (@) (1.15)
where Py(z) = cyzy|z|™N is the Poisson kernel in RY. This function satisfies

up € L} (RY)YNLP

loc

(RY ;2 dx), Vuy, € L (RY; 2, dz) and

/ (—upAC + (W) — M|Vug|?)¢) d do = k25 for all ¢ € CHYRY).  (1.16)
RY Oz
The proof is completely different from the ones of Theorem 1.3 and Theorem 1.4
and is based upon a delicate construction of supersolutions and subsolutions. A
similar result holds if Rf is replaced by a bounded smooth domain Q2 C Rf such
that 0 € 09).

Theorem 1.6 Assume 1 < p < N‘H and 0 < g < N+1. Then for any M > 0 and
k > 0 there exists a minimal solutzon ur € CHQ\ {0}) of (1.1) satisfying

ug(z)
lim ey = (1.17)

where Pq is the Poisson kernel in Q. Furthermore uy, € LY(Q) N LP(Q; pdx), Vuy, €
L9(Q; pdx) where where p(z) = dist (z, 0N2), and
%
On
In order to study the behaviour of these solutions uy when k — oo we have to
introduce separable solutions of (1.1) in the model case RY. They are solutions of

/ (—urAC + (uf, — M|Vug|)¢) do = —k for all ¢ € CH(Q). (1.18)
Q

2p
—Au+ |ulP~tu — M|Vu|»+T =0 in RY (1.19)
u=0 in ORY \ {0},
which have the following expression in spherical coordinates
u(r,o) = riﬁw(a) for all (r,0) € (0,00) x Siv_l.
Put
2
=TT

and denote by A’ and V' the Laplace-Beltrami operator and the spherical gradient,
then w satisfies
~ANw+a(N-2-a)w+ |wfPlw—-M(c?w? + |[V'w|? )T 0 in SV
=0 in 95Vt
(1.20)



Theorem 1.7 There exists a positive solution w to problem (1.20) if one of the
following conditions is satisfied:

(i) either 1 <p < NH and M >0,
(ii) or p = {+1 andM>0
(iii) or p > % and M > M, = for some explicit value M > 0.

The positive solutions of (1.20) allow to characterize the limit u, of the solutions
uy, constructed in Theorem 1.5.

Theorem 1.8 Letl<p<NJrl 1<q <NJrl and M > 0, then

Furthermore
(i) If1<q<p_~_1

}nl_I)I(I)T Uso(Ty.) =1 uniformly on Siv_l, (1.22)
where ¥ is the unique positive solution of

A+ a(N -2 —a)yp+ [P~ =0 m Sivj;l_l (1.23)
P=0 in 05, .

(ii) If g = 24

}LI\I(I]T Uso(T,.) =w  uniformly on S_]X*l, (1.24)

where w is the minimal positive solution of (1.20).

A similar result holds if ]Rf is replaced by a bounded smooth domain Q ¢ RY, which
boundary contains 0 provided some flatness condition near 0 is satisfied. When
Z% < ¢ < min{2,p}, the situation is completely changed and the solutions with
strong boundary blow-up are modelized by equation (1.3). We prove the following
result.

Theorem 1.9 Assume M > 0 and p+1 < ¢ < min{2,p}. Then there ezists a
positive solution u of (1.1) in RY, which vanishes on ORY \ {0} such that

L -
maoi(o)r™7 <wu(r,o) < ¢z max {r_a,Mﬁr_V} for all (r,o) € (0,r*) x SV,
(1.25)
for some m > 0, r* € (0,00| and where ¢ = ¢5(N,p,q) > 0. If Ng > (N — 1)p,
r* = oo.

Note that our construction which is made by mean of supersolutions and subso-
lutions does not imply that in the case m <qg< ¥ +1 , the solution u, obtained
in Theorem 1.8 satisfies (1.25). Again a similar result holds if Rﬁ\_f is replaced by
a bounded smooth domain  C Rf , such that 0 € 99 under a flatness flatness
condition near 0.

Aknowledgements



2 Singular boundary value problems

2.1 A priori estimates

We give two series of estimates for solutions of (1.1) with a boundary singularity
according the sign of M.

Theorem 2.1 Let Q be a domain such that 0 € 02, M € R and 1 < ¢ < min{p, 2}.
Ifue CHQ\ {0}) is a solution of (1.1) vanishing on O\ {0}, there holds

1- If M > 0, there exists c5 = c5(N,p,q) > 0 such that
ug () SC5maX{MTL1|x|_ﬁ,|x|_%} for all xz € Q. (2.1)
2- If M <0, there exist c¢ = c6(N,q) > 0 and c¢; = ¢7(N,p) > 0 such that
_1 2 _ 2
tu4(z) < min {66’M| a—1|z| =1, c7|x| P—l} for all x € Q. (2.2)

Proof. We first assume that Q C Bp, for some Ry > 0. Let € > 0, we set

0 if r<0
je(r)y =3 = if0<r<e
r—35 if r>e

If we extend w by 0 in Q° N Bsp, and set ve = je(u) we have
—Ave + ¢ — M|Vl = —ji(u) Au — 2 (w)[Vul* + (je(u))P — M (5(u))?|Vul?

< Mjl(u) (1= ()™ 1) [Vul? + (Je(w)? — je(u)ul,
U ud!
S M; <1 - eqil > ‘V’U€|qX{()<u<e}'

Letting ¢ — 0, we deduce from the dominated convergence theorem that vy = lin% Ve
€—

is nonnegative and satisfies
Lvg := —Avg + v — M|Vuo|? <0 in D'(Bag, \ {0}). (2.3)

The case M > 0. Following the method of Keller [14] and Osserman [20], we fix
a € B, \ {0}, and introduce U(x) = A(|a|* — |z — al?)~P for some B > 0. Then
putting p = |z — a| and U(p) = U(x), we have

. - N—1- - .
LU =-U" — TU’ — MU'+ OP

= Mlal* = p?) 7P [W1(|jal? = p?)> 07 £ 2B(N — 2(8 +1))p* — 2NBla/?

—M29BINT pt(|a|? — p2)2+/3—q(6+1)] .



If M > 0, the two necessary conditions on 5 > 0 to be fulfilled is order U be a
supersolution in By, (a) are

() 2-Bp-1)<0<=B(p-1)>2,

(i2) 24B8-q(B+1)=22-B(p—-1) <= Bp—q =¢
The above inequalities are satisfied if
2 q
£ = max { , } . 2.4
p—1p—gq (24)

If ¢ > then 8 = and

p+1

2p—q(p+1)

LU >\ (|a\2 - p2)7% {)\q_l (AP=9 — M293%p7) (|a\2 - p2) =1 — (364 1)N|al?|.

There exists ¢; > 0 dependings on N, p and ¢ such that if we choose
1 _a _2p(g=1)
A = cymax < Mr=a|a|r=a,|a|e-DE-a) 5

there holds

LU > 0. 2.5

—
~—

Since U(x) — 0o when |z| — |a|, we derive by the maximum principle that vy < U
in By (a). In particular

~ _2q 1 _a __2_
uy(x) =vo(a) < U(a) = Aa|” P=¢ = ¢; max {MP*Q la| ?=a,|a| P—1 } . (2.6)

If ¢ < < o 7 then 8 = ~=; and

. 2 2(p + 1 N
LU > X(|a|* = p?) 71 [/\p1+p_1<]\7—;_1)>ﬂ2—p_1’a‘2
q _
— M?24 (21) N1 pa (]a|2 — p2) = pq—<pl+l):|
p_

4p— q(p+3) :|

2p
A(la]? = p?) 1 | AP —ylal? — esATT I M |a
P

Hence, if ¢ = 2.5) holds if for some ¢4 > 0 depending on N, p, ¢,

+17 (
_pHl 2
A = cq max {MP(P—U , 1} la|P-T,

which yields

- +1 _2
uy(x) =vp(a) <Ula) = )\\a\_ﬁ = max{Mp(pp—l) , 1} |al =y (2.7)

8



J 2p
While if ¢ < o1 We choose

1 4p—q(p+3) 2
A = csmax < Mr—a ‘a’ r=Dr-a) ’a’ 1 5
where ¢5 > 0 = ¢5(N, p, q), which yields

~ __4 _1 __q __2
uy(a) = vola) < U(a) = Aa| 77 = c5 max{Mp—q|a| 4, |al p—l}. (2.8)

The case M < 0. We first assume that M < 0. By [19, Lemma 3.3] vy satisfies

—Avg + |[M||Vup|? <0 in D'(Bag, \ {0}). (2.9)
Therefore L 2 q
uy(a) =wvo(a) < cg|M| a-T|a| a1. (2.10)

If M <0 there also holds
—Avy + v <0 in D'(Bag, \ {0}). (2.11)

Therefore )
us(a) =vo(a) < crlal” P-1. (2.12)

In the above inequalities ¢g = ¢g(q, N) > 0 and ¢7 = ¢7(p, N) > 0. Combining these
estimates we derive

2 _ 1 2=
u+(a)§min{07]a\ p=1 cg| M| =T |al qfl}. (2.13)

Since the estimate is independent of Ry, the assumption that Q C Bp, is easily ruled
out. This ends the proof. O

The equation is not invariant by u — —u hence the lower and upper estimates
are not symmetric.

Corollary 2.2 Under the assumptions of Theorem 2.1, there holds
1-If M >0

12 _ 2
{=eol M7 77, —erlo| T} < —u(2) <0
< ui(x) §05maX{Mﬁ|x\_ﬁ,|x\_ﬁ} for all z € Q.
(2.14)
2- If M <0, there exist cg = c(N,q) > 0 and c¢; = c7(N,p) > 0 such that

1 2
—c5 maX{MﬁM_P%Q, ‘$|_Pj} < —u_(x) <0

2
< uy(z) < min {CG\M]_rll\x]_ﬁ,cﬂx\_P%} for all x € Q.
(2.15)



We infer from Theorem 2.1 and estimate of the gradient of w near 0.

Theorem 2.3 Let € be a smooth bounded domain such that 0 € 92, M >0, p > 1
and1 < ¢ < min{2,p}. Ifu € CY(Q\{0}) is a nonnegative solution of (1.1) vanishing
on O\ {0}, for any ro > 0 there holds there exists cs = c5(N,p,q,2,1r0) > 0 such
that

1 __p _ptl
|Vu(x)| < cg max {Mﬂ*q |z| P, |x| P*l} for all x € QN By,. (2.16)

2p

The restriction that |x| <1 is not needed if ¢ = ot

Proof. We assume ﬁrst that B+ C Q.

Case 1: 1<q< . For 0 <r <1 we set

2 2

u(x) =r rTu () =r rTu.(y) with y= 2.
If £ < |z| < 2r, then 3 < |y| < 2 and u, > 0 satisfies

2p— q(p+

—Aup +uf — Mr~ 71 |Vu,|?=0 in B+\B ,

2p—q(p+1)
and vanishes on 9(By \ BY). Since 0 < Mr~ »1T < M as2p—q(p+1) >0, it
follows that i
max {|Vu,(z)| : 2 < [z < 3} < comax {Ju,(2)] : 3 < |2| < 2}, (2.17)

where ¢g depends on N, p,q and M. Now it follows that

2p—q(p+1)
max {|u,(2)] : 3 < [2] <2} < c5maX{MP ar p=Dr—0) 1}

by (2.1) where ¢f = 9271 ¢5. Therefore

_p+l 1 21"17(1’4'1)
max {|Vu(y)| : § < |z] < 2r} < cochr™ r= T max { Maar G060 ,1

} (2.18)

_ptl
<cgmaX{MP 7|z| 7o, |z }

which is (2.16).
Case 2: I%<q<2. For 0 < r < 1 we set

u(z) =r lu. (%) = r_quur(y) with y =

38

If £ < |z| < 2r, then § < |y| < 2 and u, > 0 satisfies

a(p+1)—2p

—Au,+7r T ul — M|Vu,|?=0 in B;\Bg’

10



We notice that g(p + 1) — 2p > 0. Then inequality (2.17) holds. Now
1 2-g 2 __q
max {|uy(2)| : 5 <|z] <2} < cgrret max {r p—1 p—q}7

thus

2— 2
max {|Vu,(2)] : 2 <|z| < 3} < coor a1 max {T'_Pj,T‘ PzQ}, (2.19)
which implies

max {|Vu(z)| : & < |z] < 3} < cgpmax {riﬁ,rfﬂ}. (2.20)

The general case; If 9 is not flat near 0 we proceed as in the proof of [19, Lemma
3.4], using the same scaling as in the flat case which transform the domain B\ B;")
into (B2 \ B1) N 1Q, the curvature of which is bounded when 0 < r < 1. The
same estimates holds, up to the value of the constant cg and we derive (2.16).

O

As a consequence we have the following.

Corollary 2.4 Under the assumptions of Theorem 2.3 the function w satisfies
1 __p _p+l
u(z) < cgd(r) max {M:v—q |x| P=a,|z] P—l} forall z€ Qe QNBy, (2.21)

where d(x) = dist (x,0Q). The restriction that |x| <1 is not needed if ¢ = 1%'
2.2 Removable singularities

Proof of Theorem 1.1. If M < 0, u is a nonnegative subsolution of —Awu + vP =0
which vanishes on 9 \ {0}, hence it is identically zero by [13].

Step 1. We assume M > 0 and we prove first that under condition (i) or (ii),
|Vul|? € L1(Q;d) and vP € L'(Q;d), and that there holds

/ (—uAC+uPC — MIVuliC)dz =0 ¥Ce W2o(Q)nCL@).  (2.22)
Q
For any € > 0 we denote by w, the solution of
—Aw + wP = M|Vul? in Q.:=QNB;
w=20 in 00N Ei (2.23)
|li‘m w(z) = 00 on 0B NQ,
T|—€

which exists since |Vu|? € L'(€;d) by [17]. Then u < w, in .. Let z be the
solution of

—Az+2P=0 in Q,
z=0 in 0Q) ﬁgi (2_24)
Ili‘m z(x) = 00 on 0B.N Q.
T|—€

11



Since z. + MGql|Vul|?]|q, is a supersolution of (2.23) in 2 we deduce
u < ze + MGql[|Vul?|q, in Q.. (2.25)

When € — 0, w, decreases to wg which satisfies

—Aw+wP =0 in Q
2.2
w=0  in 90\ {0} (2.26)
Since p > {4 it is proved in[13] that any solution of (2.26) extends as a continuous

solution in Q with boundary value 0, hence wg = 0 by the maximum principle.
Therefore u < MGq[|Vul?] in © and the boundary trace Traq[u] of u is zero. By
[18] the fact that |Vu|? € L'(Q;d) jointly with Troq[u] = 0 implies in turn that
uP € LY(Q;d) and u is a weak solution of

—Au+uP = M|Vul? in Q

u=20 on 0f), (2.27)

in the sense that (2.22) holds.
Step 2. Let us assume that p > & +1 If u is nonnegative and not identically zero,

then by the maximum principle 1t is posmve in Q. We set u =" with 0 < b < 1.
Then

A -V iz;(p‘”b“ — M=y =DV gy) = o, (2.28)
v
For e > 0,
2 1)q—2(b—
=D 7 ‘q< |Vv| 2qq}%'
v 274
Therefore
q—1.2 2
NI v L A e e B e e )
2 v b 2€2—q
(2.29)
We notice that the following relation is independent of b
(2b—1)g —2(b— 1) 2p
b+l<—=q¢< —
- <(p-1b+ 1<
with simultaneous equality. We take
N+1 2
-+ l1l=——<—=b="—"""—""— 2.30
hence p > NJ_rl if and only if 0 < b < 1. Next we impose

ghiles (1—1b) AN —1p—N—1) \?
T R0 <quq 1) (quql(Nl)(p1)>' 231

12



This transforms (2.29) into

q

(N-Dp-1) v @bl [ ¢ \% o e
—A ~ /v T JyN-1 — M 2= 2— <0
v 2 v 2 2(1 — b) v o=
(2.32)
We first assume that 0 < g < [%. Then
(2b-1)g-20-1) _N+1
2—q N -1
There exists A > 0, depending on M, such that
N-1)(p—-1
—Av+ (i(p)v%fi < A (2.33)
1

N+1 N+1

Since v vanishes on 99 \ {0}, v = (v — clA%)? with ¢; = (U\,_lz)lw) -

satisfies

[u

(N—li(p—l)f)%ﬂ <0. (2.34)

—AD +
— 2
By [13], o = 0 which implies v < clA% and therefore u(x) < cgA@FDHE-1 in Q.
Since u vanishes on 90\ {0} we extend in a neighborhood of 0 by odd reflexion true
0%} and denote by % the new function defined in B, where it satisfies

—divA(z,Va) +a? + B(z,Va) =0 in B,{0}. (2.35)

In this expression the operator A : (z;€) € By x RY — A(z,£) € RY is smooth in
x and linear in ¢, it and satisfies for all (z;&) € B, x R,

Ax,€).€ > 2|¢? and |A(x, )| < 4[¢] for all (7;€) € By x RY.

Since we can write |B(., Va)| < 2|Val? = 2|Va|?7 Y Va| = C(x)|Val in By, then
B (z;€) € By x RY s B(x,€) € R verifies

1 B(z, (&) < C(=)[¢],

and C(x) < 208|l‘|_(p+;’)—<? = by Theorem 2.3. Since g < 2%’ % < 1. Hence
C € LN*7 for some 7 > 0. By Serrin’s theorem [21, Theorem 10] the singularity at
0 is removable and @ can be extended as a regular solution of (2.35) in B,. Hence
e Ct (B%), and as a consequence u € C1(Q). Since If u is not zero, it is positive
in © and achieves its maximum at some zg € ) where Au(zp) < 0 and Vu(zg) = 0.

Contradiction.

Then we assume that ¢ = pipl. By the choice of b in (2.30), inequality (2.29) becomes

Mpbres \ Vo2 (1 Mbsa
o (1 T ) ( . ) o < 0. (236)
P

v b (p+1)ert!
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Notice that

p—1 1
1 Mbr+t M \p+1 _2p
L (e = —— b+1)2 2.37
b (p+ 1)ert! ‘ <p+1> T (2.37)
and therefore
Mpbries M\
1-b—-———=1-b—pb| —— . 2.38
p+1 P (p ¥ 1> (2.38)
This coefficient vanishes if
P+l
M\ 7» pN-1)—(N+1)
P p+1 N 2 '
Therefore, if M satisfies
M\ p(N—1)—(N+1)
P P — —
p <p+1> = B ) (2.39)

we can choose € > 0 so that the coefficient of v®P~1*+1 in (2.39) is equal to some
7 > 0. Therefore v satisfies

—AU—FTU% <0 in Q

(2.40)
v=20 on 90\ {0}.
By [13], v = 0 and the same holds for u. This ends the case p > %
Step 3. Finally we assume p = {+1 and 1 < ¢ < 1% = NH then

q —q —qN
M|Vu(z)|? < crolz| 7= = ciplz|™ = c10Q(2).

Hence u < up = ¢10Gq[Q]. At this point we need the following intermediate result:
Claim Assume w,, = Go[Q,] where Q4 (x) = |x|™* with @ < N + 1, then

wa(z) < colz>~@ for all x € Q. (2.41)

If this holds true, then u(x) < cjocon|2[>79V. By the scaling method of Theorem 2.3,
it implies in turn

[Vu(z)| < cscrocgn o'~ = |[Vu(@)|? < c11]x]107) = e11Qqyg—1) (2),

(2.42)
and thus
wq(qul)(x) = 11Gq [Qq(qul)](x) < Cl1cq(Nq,1)’JJ|27q(Nq71) for all =z € Q.
(2.43)
Since ¢ < 1 + %, q(Ng—1) —2 < Nq — 2. Iterating this process, we finally obtain
that u is bounded and we end the proof as in Step 2. O
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Remark. It is noticeable that the equation exhibits a phenomenon which is charac-
teristic of Emden-Folwer type equations

Au=u?P in B\ {0} (2.44)
If w is nonnegative then there exists a > 0 such that
Au=uP +ady in D'(B). (2.45)

Ifl<p< % then « can be positive, but if p > NL—? then a = 0. This means that

the singularity cannont be seen in the sense of distributions, however there truly
exist singular solutions, e.g. if p > %,

us(x) = cN,p\:E|_p%1. (2.46)

A similar phenomenon exists for solutions of

Au=uP In Bf'

4
u=0 in 9B; \{0}. (2.47)
In such a case the critical value is % since for p > % the boundary value is
achieved in D'(0B;).
2.3 Proof of Theorem 1.2
As in the proof of Theorem 1.1, we distinguish according 0 < g < z% or q = ]%,

and we first assume that u > 0. We perform the same change of unknown as in the
previous theorem putting u = v°, but now we choose b as follows

r—1
p—1

(p—Db+1=r<b= (2.48)

and we first assume that

2 q q
qb?lea 2(1—-10)\2 2(p—r) 2
b 2 0=e (quq—l Maq(p — 1)ba-1 (249)

Hence (2.32) becomes

9
p—1 (2 —q)b? ! q 3¢ 2 (r-p-1)¢+2(p-r)
S\ r_ M¥=iy GDea - <0. (250

U+T—1v 2 2(1-0) o ’ ( )

The condition r > (2T_(Z:};‘g;3(§§’_r) is equivalent to 2p —q(p+1) < r(2p —q(p+1)),
and 0 < r < 1since 1 <71 < p.

Assuming first that ¢ < }%, we obtain from (2.50)

1

p_
A+ LT r<a 2.51
BT (251)
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for some constant A > 0. Since capggfn/(K ) = 0 and v vanishes on 00 \ K, it

follows from [16] that v < cAr for some ¢ > 0, hence v is also uniformly upper
bounded in €2 by some constant a. Next we have to show that Vu € Lz(Q) where

p(z) = dist (z,09). We also denote by ®; the first eigenfunction of —A in Wol’z(ﬂ)

normalized by sup®; = 1 and by A\; the corresponding eigenvalue. Since % <

1
r < 3 we infer from [1, Theorem 5.5.1], that

1

(capg%(K)) N2 <B (capgi, (K)> Nfli% .

Therefore capg%,(K ) = 0 implies capalgz(K ) = 0 and there exists a decreasing se-
r? 27

quence {(,} C C2(09) such that ¢, = 1 in a neighborhood of K, 0 < ¢, < 1
and ||Cnllyyr2 = 0 when n — oo, furthermore (, — 0 quasi everywhere. Let
Pg : C?(99Q) — C%(Q) be the Poisson operator. It is an admissible lifting in the
sense of [16, Section 1] in the sense that

Pa[nllaa=n and n > 0= Pqly] > 0.

Put 7, = 1 — (,. Then, multiplying equation (1.10) by u(Pq[n,])? and integrating,
we obtain

/]Vu|2(IP’Q[nn])2dac + 2/ uPq[nn|Vu.VPq[n,]dx
Q Q
+ [t @ofn e = M [ [Vultu(Boln, )P = o

which implies

i Eaimlyas -2 ( [ |Vu12(1@9[nn]>2dm>é ([Iveaimipias)’

+ /up+1(IP’Q[77n])2dz — M/ |Vu\qu(IP’Q[77n])2d:E <0.
Q Q
It is standard that

2. 2 _
[ I9PalmRds < curlimaly o, = An

Set X, = [||Vu|Pq[ny]] 2, then
X2 — 24, X, — Ma|Q| 2" X1 < 0.

Hence there exist two positive real numbers a; and ay depending only on ¢, |2 and
a = ||ul| ;o such that

Xn < a1An + asM 7. (2.52)
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Now A, — 0 and X, to ||Vu\|%2, therefore by Fatou
1-2 2 2 1
Q"0 [Vullf, < [Vulfs < aaM7 < oo,

Let ¢ € C}(Q) and 7, as above. Since 7,, vanishes in a neighborhood of K and ¢
vanishes on 05,

/]P’Q[nn]Vu.VCd:L‘+/CVU.VPQ[nn]de‘+/upCIP’Q[nn]d:L‘ :/|Vu|qGP’Q[77n}da:.
Q 0 0 0

Letting n to infty and using the fact that Vu € L?(Q) and VPq[n,] — 0 in L2(Q),

we derive
/Vu.VCdx—i—/up(dx:/]Vu|qg“dx.
Q Q Q

Hence u is a nonnegative weak solution of

—Au+ [uP~lu — M|Vu|? =0 in Q

u=20 on Of). (2:53)

It is therefore C2. Again, by the maximum principle we see that u cannot achieve a
positive maximum in €2, contradiction.
Next we assume g = —2-. We choose with b = =1 and (2.36) becomes

pH1- p—
Mpbirie s \ (Vo2 (1 Mpir
T
_AU—F(l—b— p+1 > v +<b_(p—|-1>6p+1>v SO. (2.54)
If (2.37) holds with this choice of b, (2.38) becomes
Mpbrtes M\
p P p
b : b Y\ (2.55)
D
=——|p—r—pr—-1)(—— .
p—1 p+1
If M < m>* defined by (1.9) we can choose € such that
Mpbrtes
P
|y M
p+1
and
1 Mbre
- = 0.
b et 9>
Then v satisfies
—Av+710" <0 in Q
v=20 in 00\ K.
Since capggr,(K) = 0 it follows from [16] that v = 0. Hence u = 0, which ends the
proof. ’ O
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2.4 Measure boundary data

Let p be a nonnegative Radon measure on 9€2. The results concerning the following
two types of equations

—Av+vP =0 in Q
v=U in 09, (2.56)
and A | |
—Aw = M|Vw|? in Q
w = cl in 09, (2.57)

allows us to consider the measure boundary data for equation (1.1). We recall the
results concerning (2.56) and (2.57).
1- Assume p > 1. If y satisfies

For all E C 99, E Borel, capg%,(E) =0= u(E)=0, (2.58)
p7
then problem (2.56) admits a necessarily unique very weak solution v := vy, see [16],

i.e. v, € LY (Q)NLL(Q) and for any function ¢ € X(Q) := {n € C§(Q) s.t. Ane L>=(Q)},
there holds

0
/ (—vA¢ +vP(Q) dox = — —Cd,u. (2.59)
0 [¢) on
Notice that there is no condition on p if 1 < p < %

2- Assume 1 < g < 2. If there exists C7 > 0 such that p satisfies

For all E C 09, E Borel, u(E) < Cicapd?, ,(E), (2.60)

2—q
el

then problem (2.57) admits at least a positive solution w for ¢ > 0 small enough, see
[4, Theorem 1.3], in the sense that w € L}(Q), Vw € L}(Q) and for any ¢ € X(2),
there holds

9¢

/Q(—wAC — M|Vw|%) dx = — Qa—ndu. (2.61)

Notice that if 1 < ¢ < % there is no condition on .

We use also the following result

Lemma 2.5 Let p > 8 and p € M, (09). Then p € W‘%’p(m) if and only if
there exists ¢ > 0 such that

w(E) < ci3 cap‘z%,(E) for all Borel set EE C 0f). (2.62)
p7

Proof. Assume p € WP (0Q) N M, (092). If E is a compact subset of 92 and let
¢ € C?(09) with 0 < ¢ <1, with ¢ = 1 on E, then

WE) < [ = 10 <l 3, 1€0, 0
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Therefore, by the definition of the capacity,
2,9}
w(E) < llully, -2, capz , (B).

Conversely, we consider the problem

—Az=2P in
Z = ciafb in 0N. (2.63)
It is proved in [4, Theorem 1.2] that if u satisfies
For all E C 09, E Borel, u(E) < C’capg%,(E)7 (2.64)
2,

for some constant C' > 0, then there exists ¢ > 0 such that for 0 < ¢ < ¢ there exists
a very weak solution z € LY(Q)N L5(9) to (2.63) in the sense that for any ¢ € X(£2),
there holds

9]
/ (—wA¢ — uP() dx = —014/ —Cdu. (2.65)
[¢) Qan
Furthermore 0 < cPq[u] < z. Since z € LE(Q), Polu] € LE(2). By [16], this implies
2
that u € W~ »?(09Q). O

Those very weak solutions are characterized by their boundary trace. Let ¥, =
{r € Q:p(x) =€>0} and Xy = 90. For 0 < € < ¢y the hypersurfaces X5 defines
a foliation of the set Q¢, = {z € Q: 0 < p(z) < €}. Let m(x) be the orthogonal
projection of x € Q. Then |z — 7(z)| = p(z) and n, = (p(z)) " (r(x) — x). The
mapping
z = (z) = (p(z), (z)),

from Q¢, onto (0, €p] X X is a C? diffeomorphism and the restriction II. of I to X, is
a C? diffeomorphism from ¥, onto Xg. Let dS, be the surface measure on ¥, then

a continuous function u defined in €2 has boundary trace the Radon measure y on
N if

e—0

lim [ wZdS. = /Zd,u for all Z € C(Q). (2.66)
e P

Equivalently, if ¢ € C(9f2) and (. = (o II_! € C(Z,), then

e—0

lim [ u(dS. = /(d,u, for all ¢ € C(09). (2.67)
T b

The functions v, solution of (2.56) and w solution of (2.57) admit for respective
boundary trace p and cu. Furthermore, for the equations in (2.56) and (2.57), the
existence of a boundary trace of a positive solution is equivalent to the fact that
v, € LYQ) N LH(Q) and w € LY() with Vw € LE(R).
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Proof of Theorem 1.3. We recall the formulation of [1, Theorem 5.5.1] in our frame-
work. There exists a constant A > 0 such that if £ C Q) is a Borel set, then

p—1 q—1
(N-1)(p—1)—-2 (N-1)(¢—1)+g—2
. ¢ N+1 2
i (e, ) <4 (awf, ,(£) it Ml << 2
q7

D’

2 1
(i) (C@p@%,(E)) - <A <capgﬂq7q/(E)> " if p= % and ¢ = %
’ ' (2.68)
The condition % < (resp 2 = 3 1) is equivalent to ¢ < +1 (resp. ¢ = fl)
As for % <N—-1(r esp = = N 1), it is equivalent to 25 < ¢ (resp. H =¢q).

Furthermore, if ¢ = 2—1 and p>XN +1 , the exponent in condltlon (1.11)- () is equal
to 1.
If we assume that (1.11) holds, the measure p is absoluteley continuous with

respect to capgg, and Lipschitz continuous with respect to capggq o Therefore, for

p’ et
anyc > 0 there exists a unique solution to (2.56). Furthermore, if % <q< Z%,
there holds

(=D ((N=1)(p—1)~2)
>(,, DN-D(g-D+q-2)

I

u(E) < crscan®, () < e’ (carl, (E)
p . 9

q

which holds since ¢ < therefore there exists c1g such that

+17
u(E) < cigcap??, (B
q b

By [4, Theorem 1.3] there exists ¢}, > 0 such that for any 0 < ¢ << ¢}, there exists
a very weak solution w = we, to (2.57) and there holds

wey < c19Po(p). (2.69)

Furthermore any very weak solution of (2.57) is a supersolution of (2.56) with cp.
Therefore 0 < v, < w. Hence there exists a nonnegative solution u = u, of (1.1)
and there holds

0 < ey < ey < Wep (2.70)

Because v, and w,, have boundary trace cu in the sense of (2.66) and (2 67), the

function u., has the same property. By Lemma 2.5 and (2.56)-(i), p € W~ R (09)),
hence Po(p) € LH(2) by [16]. It follows from (2.69) and (2.70) that u., € LH(1).
Let ¢ = Gq[uk,], then ¢ > 0 and

—A(tey + @) = [Vueul?.
The function u., + ¢ is a nonnegative superharmonic function in 2. By Doob’s

theorem [6, Chapter IT], —A(uc, + ¢) € L} (). Hence [Vu,| € L3(2). This implies
that uc, is a very weak solution of (1.12).
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Next we assume that p = N+1 and ¢ = % By (2.68)-(ii) u satisfies

2
u(E) < A" (carly () < cscartl, (B,
q "’ q ’

Hence there exists a very weak solution we, to problem (2.57) for ¢ € (0, cp] and wy,
satisfies (2.69). Since p satisfies (1.11)-(ii), it is Lipschitz continuous with respect
to capg%/. Hence there exists a unique solution v, to (2.56), thus a unique solution

Uey ofp(l.l), and there holds
Vep < Uep < wep < eaPo(p) € Lﬁ(ﬂ),

by Lemma 2.5 and the results of [16] and [4, Theorem 1.3]. We end the proof as in

the first case. O
Remark. If % =q< p2+p1 then [1, Theorem 5.5.1] yields
A ~
h—e—-| <A @2 (B)) . 2.71
e e B G V) &

p7
Therefore, if we assume that

-N

A
w(E) <epr [ In—— : 2.72
) cap?® (E) 272)

D’

then 1 is absolutely continuous with respect to capd®, and Lipschitz continuous

p?
with respect to capd® 2 g Consequently there exist v, and w,, very weak solutions
q
of (2.56) and (2.57) respectively, and they satisfy 0 < v., < we,. Consequently
there exists u., which satisfies (1.1) such that Vep < Uey < Wey. Therefore ug, has
the same boundary trace cu. However we do not know if u., belongs to LH(€).
Therefore it is not clear wether u., is a very weak solution of (1.12).

The proof in the partially sub-critical case is simpler.
Proof of Theorem 1.4. If 1 <p < +1 for any p € M (0NQ) problem (2.56) admits

a unique solution v, (see [13]). If 1 < q< N]QH, then there exists ag > 0 such that
for any non-empty Borel set E C 99, capd®, q/(E) > ag. Therefore
q I’

< el
u(E) < pllon Om apl?, ,(B).

q

It follows from [4, Theorem 1.3] that problem (2.57) admits a solution w,, whenever
| tllo is small enough. By [5] problem (2.63) admits a solution z, with cu replaced
by g provided ||pt]|gy is small enough. Furthermore

wy, < Polp] < 2. (2.73)
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Since z, € LL(Q), w, € LH(2). Hence by the same arument as in Theorem 1.3,
there exists a solution w, of (1.1) which satisfies v, < u, < w,. Hence u, € L5(Q)
and by the previous argument Vu, € L}(€2). This implies again that u, is a very
weak solution of (1.13).

Ifl<p< % and % < ¢ < 2, then problem (2.56) is uniquely solvable for
any p € M, (09Q), while problem (2.63) admits a solution z, with cu replaced by p
provided ||zt]|gy is small enough and since (2.60) holds, problem (2.57) admits a very
weak solution provided 0 < ¢ < ¢g. Since (2.73) holds with z, € L(f2), the result

follows as above.

If p > %, 1<qg< % and p € M, (09Q) absolutely continuous with respect to

capgfﬁy,, there exists u, solution of (2.56) and w,, solution of (2.57) provided c ||| oy
p7

is small enough. Since |Vw,|? € L,(2) the function w,, belongs to the Marcinkiewicz
N41 N+1

space M, ~1(Q) (see eg. [25]). Since M, ' () C LH(Q) as 1 < p < XEL, it implies
that w, and therefore u,,, belongs to L5(€2). The end of the proof is as above. O

3 Separable solutions

Separable solutions of (1.1) in R™ \ {0} are solutions which have the form

K

u(z) =u(r,o) =r "w(o) for (r,0) € Ry x SN~L

This forces g to be equal to ;z%’ K to 1% (recall that this defines ) and w satisfies

—ANw+a(N-2-a)w+ [wflw—M(c?w? + \V/wP)# =0 in SN7L
(3.1)
Constant positive solutions are solutions of

XPl - Masti X i 2 _q)=
ar P+ (N —-2—a)=0. (3.2)

This existence of solutions to (3.2) and their stability properties will be detailled in
a forthcoming article [10]. The understanding of boundary singularities of solutions
of (1.1) is conditioned by the knowledge of separable solutions in Rf vanishing on
ORN \ {0}. Then w is a solution of

p

~Aw+a(N-2-a)w+ |[wPlw—M(a?w? +|Vw?)rT =0 in SV
w=0 in 85571.

(3.3)

3.1 Existence of singular solutions

We recall the following result due to Boccardo-Murat-Puel dealing with the quasi-
linear equation in a domain G c RV

Qu) := —Au+ B(.,,u,Vu) =0 in D'(G), (3.4)
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where B € C(G x R x RY) satisfies, for some continuous increasing function I from
Rt to RT,

|B(z,r, )| <T(r))(1+1£)?) forall (z,7,&) € G xR xRN, (3.5)

Theorem 3.1 Let G be a bounded domain in RN . If there exist a supersolution ¢
and a subsolution 1) of the equation Qu = 0 belonging to WH°(G) and such that
Y < ¢, then for any x € WH(G) satisfying v < x < ¢ there exists a function
u € WH2(G) solution of Qu = 0 such that Y <u < ¢ and u—x € Wol’z(G).

Remark. Mutatis mutandi, the same result holds if RY is replaced by a Riemannian
manifold.

Their result is actually more general since the Laplacian can be replaced by
a quasilinear p-laplacian-type operator and B by a perturbation with the natural
p-growth. This theorem has direct applications in the construction of solution on
Sf ~L. but aslo for the construction of singular solutions in several configurations

Proposition 3.2 Let 2 be a bounded smooth domain containing 0, p > 1,1 <q <2
and M € R. Assume that equation

—Au~+uP — M|Vul? =0, (3.6)
admits a radial positive and decreasing solution v in RN \ {0} satisfying

lim v(z) = oo. (3.7)
|z|—=0
Then there exists a positive function u satisfying (3.6) in Q\ {0}, vanishing on 0
and such that

(v(z) —max{v(2) : 2] = do}), <u(z) <wv(x) forall z €\ {0} (3.8)
where §y = dist (0, 0).

Proof. Put m = max{v(z) : |z| = d}. The function v,, = (v — m)4 is a radial
subsolution of (3.6) in 2, positive in Bs, \ {0} and vanishing in Q \ Bj,. For € > 0
set Qc = Q\ B.. The function v, is a subsolution and it is dominated by the
supersolution v. Hence there exists a solution u, of (3.6) in Q¢ such that v, < u <wv
and ue — vy, € H&(QE). By standard regularity estimates, u, is C2, hence it solves

—Aue +uf — M|Vue|? =0 in Q.
Ue = U on 0B (3.9)
U =0 on Of.

Notice that u, is unique by the comparison principle. If 0 < ¢’ < € the function
ue solution of (3.9 ) in Q¢ with the corresponding boundary data is larger than vy,
and in particular ue |gp,> vm|oB.= Uelop.. Hence ug > ue in Q.. When € | 0,
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U increase and converges in the Cllo’f(ﬁ\ {0})-topology to some function u which
satisfies (3.6) in © \ {0}, is larger that v,, and smaller than v, vanishes on 9 and
such that (3.9) holds. O

The previous result admits can be adapted to the study of solutions with a
boundary singularity in bounded domains which are flat enough near the singular
point or in Rf .

Proposition 3.3 Letp >1,1<¢ <2 and M € R. Assume that the equation (3.6)
admits a positive solution w in RY belonging to C(RY \ {0}), radially decreasing in
Rf and satisfying

%in% w(to) = oo uniformly on compact sets K C Siv_l. (3.10)
%

Assume also

(i) either wLaRf\{o} is bounded,

(i) or Q@ C RY is a bounded smooth domain such that 0 € 9§ starshapped with
respect to 0 and such that w|ao\ 0y s bounded.

Then there exists a positive function u satisfying (3.6) in RY in case (i), or Q in
case (ii) , vanishing on ORY \ {0} in case (i), or OQ\ {0} in case (ii), and such that

(w(z) —sup {w(z) : z € IR\ {O}})Jr <wu(z) <w(z) forall zeRY, (3.11)

where K = sup {lim sup w(z),sup {w(z) : z € IR\ {0}}} in case (i) or

|z| =00
(w(x) —sup{w(z) : z € 92\ {0}}), <wu(x) <w(x) forall x €. (3.12)
in case (ii).

Proof. The proof is a variant of the preceding one, only the geometry of the domains
is changed.
In case (i) set m = sup{w(z):z € 92\ {0}}. Then the function z +— w,, =
(w(z) —m)4 is a subsolution of (3.6) in €. It vanishes on 02\ {0} and is dominated
by w. For € < &, let Q. denote QN B.". We consider the problem of finding u.
solution of

—Aue +uf — M|Vuel? =0 in Q.
Ue = Wy, on 0B. NN (3.13)
ue =0 on B¢ N oS

Again since ue — wy, € H3 () and since w,, is smaller than w|gq,, the solution u.
exists and it satisfies wy, < u, < win Q.. If0 < € < €, ue |90, > ue| o0, = vm. Hence
ue > € in Q.. As in the proof of Proposition 3.2 the sequence {u.} is relatively
compact in the € (2\ {0})-topology, which ends the proof.

loc
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In case (i), for n > 0 set K, = sup{w(z):z € 0B, \ {0}} where, we recall it,
B} = B, NRY. The function wg, = (w — K,)+ is a subsolution of (3.6) in B,
which vanishes on 9B, \ {0} and is smaller than w. For 0 < € < n we denote by
Ue,, the unique function satisfying

—Auey +uby — M|Vuenel? =0 in T¢, =B, \E:
Uen = Wiy on dB.NRY (3.14)
Ue =0 on (0B;F NRY)U (T, NORY).

For ¢ < e < n < n' there holds wg, < tuen < ue,y < w in I'cpy. Letting n — oo
and € — 0 there exists a subsequence still denoted by {uey} which converges to a
solution of u of (3.6) in RY vanishing on ORY \ {0} and satisfying (3.11). O

Remark. The assumption that wLaQ\{O} is bounded is restricctive. For example if

w(to) = t™%w(o) the flatness assumption means that dist (z,RY) = O(|z|*™!) for
all z € 0 near 0. It can be avoided in case of the existence of a subsolution.

Proposition 3.4 Letp >1,1<¢q <2 and M € R. Assume that the equation (3.6)
admits a positive supersolution w in RY belonging to C(RY \ {0}) satisfying (3.10).
Assume also

(i) either there ezists a positive subsolution Z € C(RY\{0}) vanishing on ORY \ {0},
smaller than w and satisfying (3.10),

(ii) or Q C RY is a bounded smooth domain such that 0 € 9Q and there ezists a
positive subsolution Z € C(Q\ {0}), vanishing on 0Q \ {0} such that Z < w|q and
satisfying (3.10).

Then there ezists a positive function u satisfying (3.6) in RJX (resp. §2), vanishing
on ORY \ {0} (resp. 00\ {0}) and such that

Z(z) <u(z) <w(z) forall z € RY 4+ (resp. z € Q). (3.15)

Example. If 1 < p < % it is proved in [13] that if Q C Rf is a smooth bounded

domain such that 0 € 9, there exists a nonnegative function Z,, € C(Q\ {0}) N
C?(9) satisfying the equation

—-AZ+27ZP =0 in
Z=0 on 00\ {0}, (3.16)
and such that t7-1 Zoo(ta) — (o) uniformly on compact sets K ¢ S¥ ' ast —0
where 9 is the unique a positive solution of

—A’¢—2<2+2—N>¢+¢ﬂ’:0 in S
p—1\p—1
(3.17)

=0 on aSiV*l.

Furthermore, for any k > 0 there exists a nonnegative function Z € C(Q\ {0}) N
C?(Q) satisfying (3.16) and such that ¢V =1 Z,(to) — k¢y (o) uniformly on compact
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subsets of S’iv ~! where ¢, is the first eigenfunction of —A’ in VVO1 ’2(Siv ~1). Further-
more Zy T Zs when k — oo. If the equation (3.6) admits a positive supersolution

w in RY belonging to C(RY \ {0}) and such that Zj, < w in § for some 0 < k < oo,
then there exists a positive function u satisfying (3.6) in €2, vanishing on 09 \ {0}
and such that

Zi(z) <wu(x) <w(z) forall z €. (3.18)

The same result holds if €2 is replaced by Rf .

3.2 Existence or non-existence of separable solutions

Since any large enough constant is a supersolution of (3.1), it follows by Theo-
rem 3.1 that if there exists a nonnegative subsolution z € I/VO1 ’OO(SiV ~1), there exists
a solution in between.

3.2.1 Proof of Theorem 1.7

We recall that ¢, is the first eigenfunction of —A’ in VVO1 ’2(5 i\f ~1) with corresponding
eigenvalue Ay = N — 1. Put

H(w) = ~Aw+a(N =2 = a)u + o]~ = M (a%? +[V'ef?) 77

then
H(é1) = (N =1+ a(N =2 - a)) 61 + 6} — M (0263 + V' [2) 77

If ¢y is small enough, there holds ¢} — M (a?¢? + |V’¢)1|2)# < 0, hence ¢ is a
subsolution. However the condition N — 1 + a(N —2 — «a) < 0 is too stringent.
We can use the fact that, up to a good choice of coordinates, ¢ = ¢1(0) = coso
with o € [0, 5]. Furthermore the statement ”¢; is small enough” can be replaced by
¢1 = 6 coso with § > 0 small enough. Then

(5*1H(5% cos o)

=(N—-1+a(N-2—-a))coso+ 6PTlcosPo — Mé(a200s20+sin20)ﬁ.

The problem is to find § > 0 such that for all o € [0, 7] we have H((S% coso) < 0.
Put Z = coso and 5_1H((51€%ri coso) = 5‘1H(5%Z) = K(Z), then

p

Ks(Z)=(N—-1+4+a(N—-2-a))Z+6"T12P — M§((a® —1)Z% + 1)1

where 0 < Z < 1. We use the fact that
o? cos? o 4 sin® 0 > min{a?, 1}(cos® o 4 sin® o) := K2 > 0,
hence

p+1

2
6 YH(671 coso) < (N —1+a(N —2—a))coso + 6* tcos? o — Mokt
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2
K5(Z) < K5(Z) = (N =1+ a(N —2—q)) Z+ 6122 — Mokott,  (3.19)
and .
Ki(Z)=N—-1+a(N—-2—a)+psPTtzr L (3.20)
IfN—-1+a(N—-2—-a)>0,equivalently p > %, then f((’; > 0 on [0, 1], hence

Ks(Z) < Ks(1) = N =1+ a(N =2 — a) + 6"*! — Mokvtr.

1
The function § — Kg(l) achieves its minimum for § = §y := 3 el <M> " and

P+l
M pt+l
~ P
Ks;(1) =N —1+a(N -2 —a) —pr? [ —— :
W)=V = 1ta(v -2 - pe (A1)
Therefore, Whenpz%, K5, <0on [0,1] if
(M)p;l><MN’p)le':N—l+a(N—2—a)
p+1 =\ ptl ’ pmin{l, a2}

(3.21)
(P+1) (N -1) - (N+1))

pmin{(p — 1) 4}

IfN —1+a(N —2—a) <0, equivalently p < ¥+ it is clear from (3.19 ) that

N—1°
Ks(Z) <0 for any Z € [0,1] as soon as § < k71 M#. This ends the proof. O
Remark. Introducing m** defined in (1.8), inequality (3.21) endows the form
p
2(p+1) o
M > . 3.22
> (st m) 522

3.2.2 Non-existence

Theorem 3.5 Let p > X1 and M < m**, defined by (1.8). Then problem (3.1)
admits no positive solution.

Proof. If w is a positive solution of (3.1), uy(r,.) = r_P%lw(.) is a positive solution
of (1.1) in RY vanishing on ORY \ {0}. Let @ C RY be any smooth domain such
that 0 € 902 and 912 is flat near 0. Then u, < K on 01 for some K > 0. Put
v = (uy, — K)4, then it is a nonnegative subsolution of (3.1). For any € > 0 small
enough there exists a solution u,. of

2 —
—Au+uP — M|V|#T =0 in Q :=QnB

u="v on dB.NQ (3.23)

u=20 on B¢ N oS

Then v < ue < u,. Furthermore, for 0 < € < €, ue < ueg in Q.. Hence {u.}
converges, when € — 0 to a solution ug of (1.7), which satisfies v < uy < w,, and
therefore vanishes on 092 \ {0}, contradiction. O

27



4 Solutions with an isolated boundary singularity

4.1 Construction of fundamental solutions

Let 2 be either RY or a bounded domain with 0 € 9. A function u satisfying (1.6)
is a fundamental solution if it has a singularity of potential type, that is

N
lim 2 0@) (4.24)
x—0 p(l’)
for some k£ > 0. We call . The function u can also be looked for as a solution of

—Au+uP — M|Vu|? =0 in

w=kS  inD(6Q), (4.25)

in the sense that u € LP(QN By, pdzx), Vu € L (N By, pdz) for any r > 0, where

p(x) = dist (z,09Q), and for any ¢ € C}(Q) N W?>(Q2) there holds

/( uA¢ + uP¢ — M|Vul|i() dx = —kaC( 0). (4.26)
Q on

We first consider the problem in RN .

Theorem 4.1 Assume 1 < p < NH and 1 < g < NH. Then for any M > 0 and

any k > 0 there exists a mmzmal solutzon u = ug to (1.6) in RY such that (4.24)
holds.

Proof The scheme of the proof is surprising since we first show that, in the case

q= p+1’ there exists M7 > 0 such that for any £ > 0 and any 0 < M < M there
exists a solution. Using this result we prove that if 1 < ¢ < +1, then for any M > 0
and k£ > 0 there exists a solution. Finally we return to the case g = m and using
the result in the previous case, we prove that when ¢ = z% we can get rid of the
restriction on M > O and k£ > 0 for the existence of solutions.
I- The case q = =5 and M upper bounded.
For ¢ > 0 the transformatlon Ty defined by

Tyfu(z)] = (7T u(le), (4.27)

leaves the operator £ ,  invariant. We can therefore write
Eag

Tylux) = u

2
Lop—T +1-N

in the sense that if uy satisfies (4.24) then Ty[uy| satisfies the same limit with &
replaced by kfr-1 SRR N This observation will take its complete value as we will
prove later on than u; can be the minimal solution for this k. Therefore if there
exists a solution to (1.6) in RY, vanishing on ORY \ {0} satisfying (4.29) for some

k > 0, then there exists such a solution for any k& > 0.
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Step 1- Construction of a subsolution. For k > 0 we denote by v; the solution of

—Av+vP =0 in Rﬂy
v=ks,  on ORY\ {0}. (4.28)
Such a solution exists thanks to Gmira-Véron if RJX is replaced by a bounded domain
Q. If case of a half-space the problem is first solved in B, and by letting n — oo,
we obtain the solution in Rf . Clearly vy, is a subsolution of problem (1.6), and it

satisfies ()
o ulx
I )

= cnk, (4.29)
for some cy > 0, where R(z) = c’N% is the Poisson kernel in RY.
Step 2- Construction of a supersolution. It is known that

IVR(2)]? = || *(x), (4.30)
where ¢(.) is smooth and verifies

0<m <c(x) <.

We construct w = wy, in Rf under the form

wp = kR + w, (4.31)
where w satisfies -
_siNp
—Aw +wP = aylz| » in RY (4.32)
w=0 on 8RJ+V,

for some a > 0 to be chosen later on. Then

L, wp=-Aw+ (kR+w)” — M (kVR+ Vuw|?) 71

P
P M

2N D
— (kR +w)? — wP + avfa] 7+ — M (kYR + Vuwl?) 71
_2Np 2p 22 2Np 2
> pkRuP™ + ayle| v —2M (’“’*w;+ ]~ +|wrp“).

Now it is easy to check using Osserman’s type construction as in [23, Lemma 2.1]
and scaling techniques that

1 2N N
w(z) < y3min {aﬂx’_pﬁ’ a]x‘Q(l_prﬁ} ,

. L 2N 2Np
|Vw(x)‘ S Y4 min {a;‘x|7ﬁ*1’a’x‘17m}
—

2p_ 2 _2p(N+4p+1))  2p 2p(p+1—2Np)
|Vw(z)|7+T < 5 min {ap+1\x| eI2 gptl |z D2 }
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Therefore, if we put
p* -1
2p(N +1—p(N - 1))’
then 7 > 0 since N +1 > p(N — 1) and

T =

2Np 2p 2=l 2p  2p(N+1-p(N-1))
[#H1 L, w272 (a— 2MEPHIygT ) = 2Mysartt]z]  @rD?
P . (4.33)

2p o . +
>y |a—2Mkr+iyg —2M~sa in Bj;.
Thus, by the definition of 7,

2Np 2p 2
lz| P L LWk =2 <a — 2Mkp+ig™ > —2M~sain (B5)C. (4.34)
mv
Replacing 7 by its value, we obtain a very simple expression from (4.33) and (4.34),
valid both in B} and (B};)¢, namely
2Np

’x|m£27p
p+1°

ap Pl
W > 2 (a - 2M/<:1’+p172p+1) —2M~ysa in RY. (4.35)

M

Since k can be changed by scaling, we conclude that if

72
M < My = —, 4.36
S (4.36)

there exists kg > 0 such that for any 0 < k < kg, wy, is a supersolution.
Step 3-FEuxistence. For 0 < k < kg wy, is a supersolution which dominates the subso-
lution vy,. Hence, by [26, Theorem 1-4-6] there exists a solution uy, to (1.6) in RY,
vanishing on ORY \ {0} and such that vy < uj, < wy. Since

ok(x) . we(7)

I Ry ~ I Ry T vk

it follows that wug inherits the same asymptotic behaviour. Since k < kg can be

replaced by any k > 0, the existence of a solution follows.

1I- The case 1 < g < ]%. Assume M < My, k > 0 and @ is the minimal solution

of (1.6) in RY with ¢ = ]%, vanishing on ORY \ {0} and such that (4.29). Since
2

V|2 > |V|? — 1, there holds

—Aﬂk —|—1~J,Z + M — M|Vﬂk’q > 0.

Hence u;, = uy, + M7 is a supersolution (1.6) in RY and it dominates vy defined
in (4.28). By [26, Theorem 1-4-6] there exists a solution wuy of (1.6), vanishing on
ORY \ {0} and satisfying (4.29) under the following weaker form

im Uk (t:v)
t—0 R(tx)

= cyk uniformly on compact subsets of Rf . (4.37)
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Since |z|N ~lug(z) is uniformly bounded and vanishes on ORY \ {0}, it is bounded in
the C C(Rﬂ\_] )-topology. Hence (4.29) holds. This proves the result when M < Mj.

Next let M > 0 arbitrary and k& > 0. In order to find a solution u := uy to (1.6),
2
we set u(x) = £ »-1Uy(%). Then Ly pu = 0 is equivalent to

2p— q(p 2p—g(p+1)

SIVU =0 with M, = M

L Uy := —AUg—l—Up MY

q,My
and (4.29) is equivalent to

im Us(z)
z—0 R(:]?)

2
— eyl 1N

2p—q(p+1)
Since 2p — q(p + 1) > 0 it is enough to choose ¢ > 0 such that M/ ST < My,

and we end the proof using the result when M < M;.

N+1
1II- The case q = ﬁ revisited. Let p < p < Then s p+1

that for any M > 0 and k& > 0 there exists a posmve solution uy to

This implies

5 2p_ N
—Aﬂk+ﬂi—M|Vka|P+l =0 in R,
vanishing on ORY \ {0} and such that

im i (z)
z—0 R(ZL‘)

=cnk.

Since p > p we have 1112 > ﬂz — 1 and therefore
2
—Adiy, + i — M|Viig|7+T >1>0  in RY. (4.38)
The function ¥ solution of

—Av+vP =0 in ]Rf

v =k on ORY \ {0}, (4.39)

is a subsolution of (4.38), hence the exists a solution wuy of such that oy < ug < g
of (1.6) in RY, vanishing on 9RY \ {0} and such that (4.24) holds.

1V- The case 1% < q < % We follow the ideas of Case I. We look for a

supersolution wy under the form (4.31) where wy, satisfies

—Aw + wP = aryg|z| N in RY

w =70 on 8Rf, (4.40)

for some a > 0. Then

L, wi = —Aw+ (kR +w)? — M (JkVR + Vuw[?)?
= (kR + w)? — wP + ayala| N — M ([kVR + Vuw[?)
> pkRwP™! + aya|z| N — 2M (k9yd|z| N 4+ |Vw|?) .
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As in Case I, by scaling techniques,

1 N
w(z) < vy min {a¥ |z, alzf2~ N1}

and 1 .
Vw(x)| < y4min§ar|z _T_I,a z=Nal
-
Hence
' g —NE 1-N
\Vw(z)|? < ysmin{ar|z| P qjaq|x|q(— o\
We set

1 _ p—1
20~ Nq  2p—Ng(p—1)
Then, by the definition of 7,

T =

‘$|Nq£q,ka; > Y2 (a — 2M/-cqyg*1) — 2M75QQ|x‘q(N+1—Nq)
14N -p(N-1) (4.41)

a™»

and

1+N—p(N—1
2Np +N—p( )

(2L 4, k=7 (0= 2MRI9§TH) = 2Maga TN i (B (442)
p+I

We obtain a very simple expression from (4.41) and (4.42), valid both in B, and
(B)¢, hence
1+ N—p(N—-1)

2N
|$’T££%’ka > v (a — 2qu7§1—1> — 2M~sa TNG-D gy Rf (4.43)

Using the scaling transformation 7p defined in (4.27), the problem of finding uy
solution of (4.25) is equivalent to looking for a solution of

2p—q(p+1)

—Au+uP — Ml 1 |Vul?=0 in RY
w=ktr 1 Ng,  in D/(ORY).

(4.44)

2p—q(p+1)

+1
If we replace M by My := M{™ »-T  and k by ky := M%_N, the inequality (4.35)
turns into

1+N—p(N—1
2Np p( )

2P L, LWk =2 (a - 2Mgk:§fyg_1> — 2Myysa P-Ne-) gy RY,  (4.45)

P+

2
where wy = w + k¢R instead of (4.31). Notice that Mk = M1 N We

choose ¢ > 0 such that Mgk:g'yg*l = ¢, hence

. 14+ N—p(N—1)

2Np a”y? g — 2p _ _ .

| PFTL ,,  whe > % (1 — v5vy Ik ~9q TN ) in RY. (4.46)
T
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It is now sufficient to choose a > 0 such that the right-hand side of (4.46) is nonneg-
ative and thus wy ¢ is a supersolution. Since ¥y ¢ is a subsolution smaller that wy, g,
we end the proof as in Case 1.

V- Existence of a minimal solution. Next, if u/,lc and uz are solutions they dominate

v, and the function u,{:’Q = inf{uy 1, ur 2} is a supersolution which dominates vy.
Hence there exists a solution 4y such that

~ 1,2
v < up < uy”.

Let & be the set of nonnegative solutions of (1.6) in RY, vanishing on ORY \ {0}
and such that (4.24) and put

up = inf{v : v € &}

Then there exists a decreasing sequence {v;} such that v; converges to uj on a
countable dense subset of Rf . By standard elliptic equation regularity theory, v;

converges to uj on any compact subset of @f \ {0}. Hence uy, is a solution of (1.6)
in RY, it vanishes on ORY \ {0} and (4.29) since uy, > vj. Hence uy is the minimal
solution. N

Next of we consider the same problem in a bounded domain 2.

Theorem 4.2 Let Q2 be a bounded smooth domain such that0 € 9Q. If1 < p < %
and1l < q < %, then for any M > 0 and any k > 0 there exists a minimal positive
solution u := uy, to (1.6) in Q vanishing on 02\ {0} and satisfying

vg ()

where P is the Martin kernel in Q with a singularity at 0.

Proof. We give first proof when Q2 C ]Rf . We adapt the proof of Theorem 4.1. The
solution vy of
—Av+0vP =0 in Q
v = kdy on 0f2,

is a subsolution for (1.6) in Q and satisfies (4.47 ). The solution uy, of (1.6) in RY
vanishing on IRY \ {0} and satisfying (4.24) dominates vj, in Q. Hence the result
follows by Proposition 3.4.

(4.48)

When Q is not included in RY, estimates (4.30 ) is valid with the same type

of bounds on ¢. We also consider separately the cases ¢ = % and M upper
bounded, ¢ < ]% and M > 0 arbitrary and ¢ = 1% andM > 0 arbitrary and
finally ]% <qg< % For supersolution we consider the function wy, := kP + w
where w satisfies
_2Np
—Aw + wP = ayg|x|” P in (4.49)
w=20 on 0},
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for some a > 0. The estimates on w endow the form
1 N
w(x) < yzar |z

and L
V(@) < yaar |z 7

where 73 and 4 depend on 2. Hence (4.35) holds in €2 instead of RY, and we have
existence for M < Mj, where M; is defined by (4.36). Then we prove existence for
any M > 0 and k£ > 0 when ¢ <o 7 then for any M > 0 when q = —1 and finally

When 71 <q< N'H as in Theorem 4.1. O

4.2 Solutions with a strong singularity

4.2.1 Thecase1<q<erl

pr—@aund1<q<N'H aund1fp>N+1 atndelther1<q<pJrl and M > 0 or

q= pzfl and M > m** defined in (1.8), the singularity is removable by Theorem 1.1.

Thus the ranges of exponents that we consider are the following,
() 1<q< and 1<p< {4
. _ (N+1 N+1
(”) (p7Q)_ (N,p N )

If (4.50)-(i) holds, ¢ < 231, and in this range the limit of the fundamental solutions
up when k — oo is a solutlon with a strong singularity with an explicit blow-up rate.
In the case of a bounded domain oir construction necessitates a geometric flatness
condition of 02 near 0. We consider first the case 2 = RJX .

(4.50)

Theorem 4.3 Assume (4.50)-(i) holds, then for any M > 0 there exists a positive
solution u of (1.1) in RY wvanishing on ORY \ {0} such that

lim z((“;)) = o0 (4.51)
Furthermore,
(i) If 1< q <25,
lim r%u(r,.) = 9 uniformly in Siv_l, (4.52)

r—0

where 1 is the unique positive solution of (3.17).

(’L’l) Ifq = p+1’

lim r%u(r,.) = w uniformly in Siv_l, (4.53)
r—0

where w is the minimal positive solution of (1.20).
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Proof. If k > 0, we denote by u = uy ps the solution of

—Au +uP = M|Vul? in RY
U = /650 in 8Rf (4.54)

The mapping k — uy is increasing. We set Ty[u| = up, where Ty is defined in (4.27).

. 2p
Since 1 < q < L

Té[uk,M] =u 2p—q(q+l) .
=

2 4 q_
ker—T TN app

It follows from Theorem 2.1 and Theorem 2.3 that the sequences {uy as} and {Vug ar}
converge locally uniformly in Rﬂ\_f , when k& — oo, to a function us s which satisfies
(1.1) in RY. Furthermore

To[too,m] =u 2p—a(p+1) forall ¢ > 0. (4.55)
oco,M{¢ p-1
In the case ¢ = 1% the function us s is self-similar, hence

Uso M (1, 0) =17 @ (0),

where @ is a nonnegative solution of (1.20). Inasmuch w s > upo = vy (already
defined by (4.28)), it follows that

Uoo, M (T, 0) > U o(r,0) =17 “Y(0) =0 > in Siv_l. (4.56)

Since uy pr is dominated by any self-similar solution of (1.1), it implies that @ is the
minimal positive solution of (1.20) that we denote by w hereafter. Up to a subse-

quence, {1y, [too, 1]} converges locally uniformly in @\ {0} t0 oo, pr. Consequently

ehmo (%Uso 1 (Uny0) = w(o) uniformly in ST,
n—r

Because of uniqueness, the whole sequence converges, which implies 4.53.

In the case ¢ = using the a priori estimates from Theorem 2.1 and Theorem 2.3,

2p_
p+1’
we obtain that Ty, [teo,m](1, 0) = (3o 11 (€n, o) converges locally uniformly in S&
t0 Uso,0(1,0). Since uso(1,.) > 1, it follows that

ehmo Ctioo 0 (Uny o) =1p(o) uniformly in Siv_l.
n—>
Hence 4.53 follows by uniqueness.

As a consequence of Theorem 1.7-(ii) we have

Theorem 4.4 Assume (4.50)-(ii) holds, then for any M > 0 there exists a positive
separable solution u of (1.1) in RY vanishing on ORY \ {0}

When Rf is replaced by a bounded domain there holds.
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Theorem 4.5 Assume ) C ]Rf is a bounded smooth domain such that 0 € 092, and
(p, q) satisfies (4.50)-(ii). Then for any M > 0 there exists a positive solution u of
(1.1) in Q vanishing on 0L\ {0} such that

P ;Q(Zg) = (4:57)
where Pq is the Poisson kernel in ). Furthermore
(i) If1 <q< z%’ then
;gi%) ru(r,.) = ¢ locally uniformly in Sj_v_l, (4.58)

where 1) is the unique positive solution of (3.17).
.. 2
(i) If ¢ = 7, then

¥ < liminf r®u(r,.) < limsup r®u(r,.) < w locally uniformly in Sivfl. (4.59)
r—0 r—0

Proof. As in the proof of Theorem 4.3, the sequence {uy} of the solution of (1.6)
which satisfy (4.24) is increasing. Since it is bounded from above by the restriction to
Q of the solutions of the same equation in }Rf , vanishing on 8]1%1 \ {0} and satisfying
(4.51), it admits a limit us, which is a solution of 1.6 which vanishes on 99 \ {0}
and satisfies (4.57). In order to have an estimate of the blow-up rate, we recall that
the solution vy of (4.48) is a subsolution of (1.1) and wy > v Furthermore {vy}
converges to {vs} which is a positive solution of (1.1) in €, vanishing on 9Q \ {0}
and such that

lin% r®Voo(r,0) = 1(c)  locally uniformly in S 1. (4.60)
r—

Combined with (4.52) and (4.53) it implies (4.58) and (4.59) since the solution wug
in € is bounded from above by the solution in Rf .

lim iélf T Uoo(r,0) > (o) locally uniformly in Sffl. (4.61)
r—

O
Theorem 4.6 Assume ) C Rf is a bounded smooth domain such that 0 € 052,
2p _ N+l If
p+1 N -

2|~ Ndist (z, RY) < ea for all x € 09, (4.62)

p=n7 andq=

for some constant cog > 0, there exists a positive solution u of (1.1) in Q, vanishing
on 0\ {0} such that

liII(l) ru(r,o) = w(o) locally uniformly in Sf_l. (4.63)
r—

Proof. The function u,(r,.) = r'~Nw satisfies (1.1) in RY and vanishes on ORY \ {0}.
Since Vw is bounded, it satisfies

u(z) < eg for all z € 90\ {0},

for some constant co; > 0. Then the rsult follows from Proposition 3.3. O
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4.2.2 Thecase—<q<p

If
Nt1 2 N+1
* P < (4.64)

l<p< , — <
PSN—1 p+1°7° N

there exists fundamental solutions uy, in Rf by Theorem 4.1, or in 2 by Theorem 4.2.
Since the mapping k — uy, is increasing and uy is bounded from above the function
Uoo = hm uy, is a solution of (1.1) in RY (resp. ) vanishing on RY \ {0} (resp.

O\ {0}) Wthh satisfies (4.51) (resp. (4.57)). However the blow-up rate of u is
not easy to obtain from scaling methods since the transformation 7y transform (1.1)
into (4.44) Where M is replaced by M¢?~4P+1) which is not bounded when £ — 0.
When g > +1’ the natural exponent is v defined by
q
= —. 4.65
=0 (4.65)
The transformation S, defined for £ > 0 by
Selul(z) = Ou(lx), (4.66)

transforms (1.1) into

p+1) 2p

e Au + |ulP~ru — M|Vul? = 0. (4.67)
When ¢ to 0, the limit equation is of eikonal type (up to change of unknown) (4.68).

lu[P~ 1y — M|Vul? = 0. (4.68)
Separable solution of (1.3) in RY are under the form wu,(r,.) = r~7n and 7 satisfies

P~y = M(Pn? + V)% =0 in S (4.69)

Clearly this equation admits no C' solution but for the constant ones. For avoiding
the study the use of viscosity solutions it is better to look directly for solutions with
strong blow-up by the method of supersolutions and subsolutions. Note that (1.3)
admits an explicit radial singular solution namely

U(z) = wolz| ™" 1= 1" M|z 7. (4.70)
Proof of Theorem 1.9. For n. > 0 set U, = nr—"
n 2Ly Up = —y(y +2 = N) + 0 Y (nP~9 — A9 M )2~ (=17,

Since q >
that

+1’ then 2 — (p — 1)y < 0 and for any n > wy there exists r, > 0 such

n?H (P — I = 5 (y + 2 N) > 0.
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It implies that U, is a super solution of (1.1) in B, \ {0}. Furthermore
1
)T o) wh @)
=\ —F7——< +o0 when n — oo. .
" \y(v+2-N)

For a subsolution we set
W (r,o) = mr~7¢1(0), (4.72)

where ¢; is the first eigenfunction of —A’ in I/VO1 2(S iv ~1yand m > 0. Then

a(pt+1)—2p

L, Wy = —mr =1 (72— (N =2)y+1-N)é )
+ (mPah — Mm? (1263 + [V'n[*) ).
Set P(X)=X?-(N—-2)X+1—-N=(X+1)(X+1~-N). Then

Ng— (N -1
P(V):p( q(p_(q)2 )

We first give the proof when Nq > (N — 1)p. In such a case P(y) > 0. Hence there
exists mg > 0 such that for any 0 < m < mg, W,, is a subsolution in Rﬂy , smaller
than U,, and it is bounded on dB;" \ {0}. When m < myg, the function W, defined
in (4.72) is a subsolution of (1.1) in RY. Since W;, is bounded on 0B, \ {0} there
exists a nonnegative solution u, of (1.1) in B, which vanishes on B; \ {0} and
there holds

(Win(z) —mry, ")y < up(z) < Up(z) forall z € B . (4.74)

The fact that B, is just a Lipschitz domain is easily bypassed by smoothing it in a
neighborhood of dB,,, NRY. Furthermore, by (2.1) and (2.16),

un(z) < cs max{|xra,Mﬁ|xw}. (4.75)
and for any rg > 0, there exists cg > 0 depending on ry such that
[Vu,(x)] < CBmaX{\az|_a_1,MTif1|az|_7_l}. (4.76)

By standard local regularity theory, there exists a subsequence {u,,} which con-

verges in the C'(K)-topology for any compact set K C ]Rﬂ\r/ \ {0} to a positive
solution u of (1.1) in RY which vanishes on ORY \ {0} and satisfies (1.25).

Next we assume Nq < (N — 1)p. Observe that v2¢2 + |V/¢1]? > §2 > 0, then

q
2

mP@l — Mm? (v + [V'¢1|?)? <mP — Mm%59.

Thus, from (4.73) we obtain

q(p+1)—2p

L Wi < —mr pma P(y) +mP — Mm%, (4.77)
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and P(vy) < 0. If we choose

then M mage
mP — Mmi? > — m .

Therefore £, Wy, <0 on B, where

i} ( Mmq—15Q> s En
= —————
—2P(7)

If a = mr*=7, then W, < a in 83;';, thus W, o = (W, — a)+ is nonnegative in
B and it is a subsolution of (1.1) in B which vanishes on 9B} \ {0}. If we
extend it by 0 in R¥Y, the new function is a a subsolution of (1.1) which belongs

to Wl’oo(@ \ {0}). We end the proof using Proposition 3.4 as in the previous

loc
case. O

If Rf is replaced by a bounded domain we have the following result.

Theorem 4.7 Let M > 0 and ]% <qg<wp IfQ C Rf is a bounded smooth
domain such that 0 € 0). If

dist (z, ORY) < 023|x|ﬁ for all x € 09, (4.78)

for some constant cog > 0. Then there exists a positive solution u of (1.1) in
vanishing on O\ {0} satisfying, for some m > 0,

me1(o) < liminfru(r,o) < limsupr’u(r,o) < wo, (4.79)
=0 r—0

uniformly on any compact set K C Siv_l.

Proof. Let R > 0 and B := Bpg(a) C € be an open ball tangent to 92 at 0. Up
to rescaling and since the result does not depend on the value of M we can assume
that R = 1. We set wy,(z) = m|z|"?Pg(z) where # = v+ 1 — N and Pg is the
Poisson kernel in B expressed by

1—|z—al?
PB(as):i‘ |

Y

onlz|Y
where oy is the volume of the unit sphere in RY. Then

-1
m= L, W

= —(0?+ (2 — N)O)|z|072Pg(z) + 20|z| V"1 (VPp(x), &) + mP~|z| PP P (z)

1
— Mt~ (6%[a] 20D PR (x) + |o| 2|V Pp () 2 - 20|21V Pa(), )

(4.80)
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Since

1 (NA—|z—a®>) 2 2(z—a)
VP, = —-— Bl 7
pio) == (M e i+
then )
_ 2 2
(VPo(@). 27) = = gy (V= )1 = fo = ) + o)
N -1 1
—___"°p _
T T
which implies in particular
N -1 1
VP >—0P _.
’ B(LU)| = ’(L‘| B(‘T) + O'N|1?’N71

If ¢ > %p, equivalently # > 0, we have

Vwm|* = 0| 2OV PE(2) + |2| 7|V Pp(2)* — 20|27~ (V Pp(2), (&)

||

2
> 02]a] 20D P2 (z) + |a] 2 (N ! 1)

]

o1 (N —1 1
e (S ete) + )

> (07 + (N = 1)) |z 2OV PR ().

Hence
m L wm < — (02 + NO)|z|~972Pg(z) + mP~ x| P/ Ph(x)
—mIT M (0% + (N —1)2)2 |z ~90+D) Pl ()

< mi o | PPy (@) (mP 1P (w) = M(6% + (N = 1)) ] -07-1)
(4.82)
Now

2 p—q

2
P, <
B(T) p

- O'N|CC|N71

Since (1 — N)(p — q) = (p — q)8 — q, we obtain finally that,

2 pP—q
mL W < mATH |7 PR (x) (mp_q <UN> — M(6? + (N — 1)2)> .

Choosing m small enough we deduce that w is a subsolution in B. If we extend
it by 0 in Q \ B, the new function denoted by @ is a nonnegative subsolution of
(1.1) in © which vanishes on 02 \ {0} and satisfies (4.79). The proof follows from
Proposition 3.4.

40



If ¢ < %p, then 6 < 0. Since (VPp(x), %) <0, (4.81) is replaced by

||

|V |* = 0222V PR (2) + |2| 7|V Pp(2)* — 20127~V Pp(2), 57)

|]

2
> 92\x|*2(9+1)P§(x) + |x]*29 <N 1 1 >

|z
+ 29\36]*29*1 <N _ 1PB($) + _ — >

E e
> (0% 4+ (V= 1P)el 2P0 + (e + e
0% |z PNHID) T ][N0
+2(N—1)( L, 0 )PB(x).
on|zVH20 T |22

(4.83)

7 = min {2, <2011WI> Nl_z} : (4.84)

If x € BN By(0), the two last terms in (4.83) are nonnegative, hence

Set

IVw|? > (62 + (N — 1)?)|z|20+DPE(x)  for all 2 € BN By (0). (4.85)

Note that BN Bz(0) = B if 7 = 2. Choosing m > 0 small enough we infer that
W, is a subsolution of (1.1) in B N B(0). Denoting by 7 the maximum of w, on
d(BN Bi(0))\ {0}, then (wy, — )4 is a subsolution in €. Since the restriction to 2
of the solution constructed in Theorem 1.9 dominates w,, — m), the proof follows
as in the first case. 0

4.2.3 Open problems

Problem 1. Under what conditions are the posiitive solutions of problem (1.20)
unique ? If instead of separable solutions in RY vanishing on ORY \ {0} one looks
for separable radial solutions of (1.1) in RV \ {0} (with ¢ = 22) | then they are

pt1
under the form
U(x) = Alx|™@ (4.86)
and A is a positive root of the polynomial
2 —1
P(X)=XP~! — Map T X1 +a(N -2 — a). (4.87)

A complete study of the radial solutions of (1.1) is provided in [10], however it is
straightforward to check that if 1 < p%, there exists a unique positive root, hence
a unique positive separable solution, while if p > %, there exists a unique positive
root (resp. two positive roots) if

p

M=(p+1) (W) o m*, (4.88)
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(resp. M > m*). Uniqueness of solution plays a fundamental role in the description
and classification of all the positive solutions with an isolated singularity at 0.

Problem 2. It is proved in [10] that if max{", Z%} < ¢ <min{2,p} and M > 0,
there exist infinitely many local radial solutions of of (1.1) in RY \ {0} which satisfies

u(r) = &Eyr=P(1+0o(1)) as r—0 (4.89)
where )
2-g 1 [((N=1)g—N\r1

Pt e (StT) .

These solutions present the property that there blow-up is smaller than the one
of the explicit radial separable solution. It would be interesting to construct such
solutions of (1.1) in RY (or more likely Bj,), vanishing on OR™ \ {0}.

Problem 3. Is it possible to define a boundary trace for any positive solution of (1.1)
in RJI , noting the fact such a result holds separately for positive solutions of (1.2)
and (1.4) 7 A related problem would be to define an initial trace for any positive
solution of the parabolic equation

Oru — Au+uP — M|Vul|? =0, (4.91)

in (0,T) x RY. Initial trace of semilinear parabolic equations (M = 0 in (4.91)) are
studied in [15], [12].
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