
HAL Id: hal-02909839
https://hal.science/hal-02909839v1

Submitted on 24 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effect of parametric uncertainties on vibration
mitigation with periodically distributed and

interconnected piezoelectric patches
Marcelo Trindade, Boris Lossouarn, Jean-François Deü

To cite this version:
Marcelo Trindade, Boris Lossouarn, Jean-François Deü. Effect of parametric uncertainties on vi-
bration mitigation with periodically distributed and interconnected piezoelectric patches. Journal of
Intelligent Material Systems and Structures, 2021, 32 (9), pp.971-985. �10.1177/1045389X20942847�.
�hal-02909839�

https://hal.science/hal-02909839v1
https://hal.archives-ouvertes.fr


Effect of parametric uncertainties on
vibration mitigation with periodically
distributed and interconnected
piezoelectric patches

Journal Title
XX(X):1–12
c©The Author(s) 2020

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Marcelo A. Trindade1, Boris Lossouarn2 and Jean-François Deü2

Abstract
This work presents an analysis of the effect of parametric uncertainties on the vibration control performance of a
rod with periodically distributed piezoelectric patches that can be either independently connected to electrical shunt
circuits or interconnected through an electrical line of inductors. In both cases, the capacitance of the piezoelectric
patches is considered as stochastic parameters following a known probability density function distribution. Then,
Monte Carlo simulations are performed to evaluate mean values and confidence intervals of the frequency response
functions to assess the robustness of each solution and to compare different solutions in terms of nominal and robust
performances. Results have shown that vibration amplitude reduction worsen significantly due to the mistuning between
structural natural frequency and circuit resonance frequency. Yet, interconnected circuits are more robust to these
uncertainties than independent shunts because they ensure a mean response that is closer to the nominal one. It was
then proposed to assess the effect of modifying the circuits’ resistance. Results have shown that increased resistance
decreases variability when considering both environmental and manufacturing variabilities. This also favors the use of
interconnected circuits that require increased resistance for robust vibration mitigation.
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Introduction

Piezoelectric materials have been widely used as distributed
sensors and actuators to control structural vibrations of
flexible structures. They are normally bonded to a host
structure and connected to an electrical circuit. Therefore,
they provide an electromechanical coupling to the host
structure that, depending on electrical connections, can be
used for several purposes such as passive, semi-passive,
active or active-passive vibration control (Hagood and
von Flotow 1991; Ahmadian and DeGuilio 2001). When
distributed periodically, it was shown that they can also be
used to provide stop bands for wave propagation applications
(Thorp, Ruzzene and Baz 2001, 2005), to design acoustic
metamaterials (Airoldi and Ruzzene 2011; Celli and Gonella

2015) or to create electromechanical phononic crystals
(Bergamini et al. 2015; Flores Parra et al. 2017).

In the case of passive vibration control applications,
most studies focused on shunt circuits that connect the two
electrodes of each piezoelectric patch. The most common
circuits are resistive and resonant (resistive-inductive) ones
but several research works proposed more sophisticated
circuits using, for instance, switch or negative capacitance
circuits (Hollkamp 1994; Reza Moheimani 2003). More
recently, Maurini, Dell’Isola and Del Vescovo (2004)
and Lossouarn, Aucejo and Deü (2015) considered the
interconnection of a network of piezoelectric patches through
resonant electrical circuits in a way that good multimodal
vibration attenuation performance can be obtained with

much smaller inductance values, compared to resonant shunt
circuits.

However, as for the shunted case, the vibration control
performance is dependent on the adequate tuning between
electrical circuit components and structure’s mechanical
properties (Valis, von Flotow and Hagood 1994). Thus,
variabilities and/or uncertainties on material properties,
boundary conditions, and environmental conditions can
have a major effect on reducing the expected or predicted
performance of such devices. Nevertheless, few studies
attempted to analyze the effect of parametric uncertainties on
passive vibration control using shunted piezoelectric patches
(Andreaus and Porfiri 2007; Santos and Trindade 2011;
Berardengo et al. 2015) and none considering interconnected
networks.

This paper begins with the description of the considered
problem involving a rod covered with an array of
piezoelectric patches, whose electrodes are connected to
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an electrical network made of inductors and resistors. A
second section describes the methodology used in this study,
where the objective is to evaluate the effect of parametric
uncertainties at local or global levels. The results are then
analyzed in the third section that shows the variability
induced in the frequency response functions. A fourth
section investigates the effect of the circuits’ resistance on
the robustness of vibration mitigation solutions. This leads
to potential conclusions regarding the choice of optimal
independent shunts or interconnected piezoelectric networks
in the fifth section. Finally, a last section is presented
with some perspectives on the effect of uncertainties
in multimodal vibration mitigation using interconnected
circuits.

Problem description
A free-free AU4G duraluminum rod in longitudinal vibration
with length ls = 1000 mm, width b = 20 mm and thickness
hs = 20 mm is considered. The rod has mass density ρs =
2780 kg m−3 and Young modulus Ys = 73.9 GPa. A loss
factor of 0.5% is considered for the rod. 20 pairs of PIC151
piezoelectric patches are bonded to the rod following the
layout in Figure 1 which only shows 10 unit cells. Each patch
has the following dimensions: length lp = 30 mm, width
b = 20 mm and thickness hp = 0.5 mm. The piezoelectric
patches are considered to be equal and all have mass
density ρp = 7800 kg m−3, Young modulus at zero electric
field Y Ep = 66.7 GPa, piezoelectric charge constant d31 =
−210 pC N−1 and dielectric permittivity εσ33 = 21.2 nF m−1.

For the modeling of the rod with periodically bonded
piezoelectric patches, the transfer matrix approach was used.
For that, 20 electromechanical unit cells that periodically
repeat all along the structure were considered, following
the layout in Figure 1 which only shows 10 unit cells. The
unit cell is composed of a portion of the rod with length
a = 50 mm, two entire piezoelectric patches bonded onto
the upper and lower surfaces of the rod, centered along the
length and poled in opposite through-thickness directions,
one (independent) shunt circuit that connects directly the
electrodes of these patches and two circuits that connect the
pair of patches to left and right neighboring unit cells circuits.

The obtained model using the transfer matrix approach
is presented in detail in Lossouarn, Aucejo and Deü (2015)
and is not repeated here for the sake of brevity. The model
is based on a homogenized electromechanical unit cell with
mechanical and electrical degrees of freedom that is able to
account for both shunted and interconnected circuits cases.
It is assumed that the rod is excited by a point longitudinal
force applied at its left end and that the longitudinal velocity
at the right end of the rod is measured. Then, the vibration
control performance is assessed using the mobility frequency
response function around the first vibration mode of the rod.

Methodology
In order to evaluate the effect of parametric uncertainties
in the performance of independent resonant shunt circuits
and interconnected circuits for vibration mitigation, the two
cases were analyzed separately. To obtain only the first
case (shunted patches), the resistance of the interconnected

Table 1. Inductance and resistance values for the independent
and interconnected circuits used for the nominal model.

Independent circuit Interconnected circuit
Inductance (mH) 113.5 2.795
Resistance (Ω) 142.3 3.503

circuits (Rs) is set to a very large value to represent
opening these interconnection circuits. Contrarily, to obtain
the second case (interconnected patches), the resistance
of the shunt circuits (Rsh) is set to a very large value
to represent opening the shunt circuits. The use of both
independent and interconnected circuits simultaneously was
not considered.

Then, the vibration mitigation performance, focusing
mainly on the first vibration mode, using the two solutions
was evaluated and compared. First, the nominal case was
defined using the optimal values for the circuit components.
Then, the parameters to be considered uncertain were
defined. For these, stochastic models were constructed and
used for Monte Carlo simulations. Finally, the results are
used to assess the robustness of the two solutions.

Nominal case
Initial values for the resistance and inductance of the
independent and interconnected circuits were taken from
(Lossouarn, Aucejo and Deü, 2015) and, then, fine-tuned
using a Nelder-Mead simplex algorithm (fminsearch) to
minimize the H∞ norm of the FRF (Table 1). Notice that
for experimental implementation, inductance and resistance
values can only approximate the optimal ones. As proposed
by Lossouarn, Aucejo and Deü (2015), whenever measured
inductance of actual inductors is smaller than expected, the
tuning can be corrected by adding capacitors in parallel to
the piezoelectric patches. In the case of the resistance, the
optimal values also account for the internal resistance of the
inductors. Whenever the optimal resistance is larger than the
internal resistance of the inductors, resistors can be added to
the circuit.

The nominal mobility frequency responses of the rod
with independent and interconnected circuits, compared
to the open circuit case (all circuits opened), are shown
in Figure 2. It is noticeable that the independent circuits
are only effective in reducing the vibration amplitude
around the first resonance frequency, since all circuits
(for all patches) were tuned to that frequency. On the
other hand, the interconnected circuits are able to reduce
the vibration amplitude over the entire frequency range
considered, although they seem to be more effective around
the first resonance frequency. This is because their nominal
resistance was tuned aiming preferentially at the first mode.
An increase in resistance could better reduce the peaks
clearly observed for the second to fourth resonances, but at
the cost of worsening the performance for the first mode.
When considering only the response around the first mode,
both independent and interconnected circuits lead to the
same performance, with around 20 dB amplitude reduction
when compared to the open circuit case. In the present work,
the focus will be first put on the response around the first
mode to allow a fair comparison between independent and
interconnected circuits.
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Figure 1. Example of a rod with 10 pairs of periodically bonded piezoelectric patches connected to independent (Lsh and Rsh)
and interconnected (Ls and Rs) circuits with detailed unit cell.
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Figure 1. Example of a rod with 10 pairs of periodically bonded piezoelectric patches connected to independent (Lsh and Rsh)
and interconnected (Ls and Rs) circuits with detailed unit cell.
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Figure 2. Nominal frequency response of rod considering a wider frequency range: open-circuit (dot), independent circuits (solid),
interconnected circuits (dash).

different actual performances. There are a number of factors
that may lead to variability of theoretical performance
prediction. Here, it is assumed that the model used is
accurate enough for the present analysis. However, the model
parameters may be subjected to variability (uncertainty).
This work focuses on the proper tuning between resonance
frequencies of structure and circuits.

The parameters that most affect the resonance frequency
tuning are the piezoelectric effective capacitance and the
circuits’ inductance. Preliminary analyses have shown that,
as expected, capacitance and inductance variations are
highly correlated. Also, experimental tests have shown
that even homemade inductances can have very small
tolerances and can be adapted if needed (Darleux, Lossouarn
and Deü 2018). On the other hand, the capacitance of
piezoelectric patches is more difficult to control and could

present significant variability when subjected, for instance,
to temperature variations. They may also present variability
due to manufacturing tolerances (in both material properties,
such as the dielectric coefficient, and geometrical properties,
electrode area and patch thickness). For these reasons, in the
present work, the piezoelectric patches capacitances will be
considered as subjected to variability.

In a tentative to separate two potential sources of
uncertainty of capacitance values, one related to the
variability of the patches themselves (e.g. material and
geometrical properties) and one related to environmental
conditions that could affect all the patches (e.g. temperature),
two multiplicative stochastic parameters were defined, fi

and fg . One (fg) that varies the capacitance of all patches
simultaneously and another (fi) that varies the capacitance of
each patch relative to the global value. Their effects may be
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Figure 2. Nominal frequency response of the rod: open-circuit (dot), independent circuits (solid), interconnected circuits (dash).

The predicted vibration amplitude reduction performance
is very much dependent on a proper tuning between
structure’s targeted natural frequency, piezoelectric coupling,
piezoelectric effective capacitance and circuit’s inductance
and resistance. Thus, if any of these parameters are different
from the nominal ones, one should expect to observe
different actual performances. Figure 3a first investigates
the effect of capacitance variations on the H∞ norm of the
mobility function. Once the inductance is fixed, capacitance
variations have a strong influence as a 10% variation can
increase by more than 150% the maximum value of the FRF.
Moreover, inductance variations lead to similar observations.
This confirms that classical results, obtained with a one-
degree-of-freedom mechanical system (Preumont 2018),
apply to both the interconnected and independent multi-
shunt rods. The numerical analysis gives similar results for
both circuits, which shows that they are equivalent around

the first mode of the rod. Resistance variations are also
investigated to confirm that they have a weaker influence on
the results: around 30% increase of the H∞ norm for a 50%
variation of the resistance, as seen in Figure 3b.

The considered nominal resistance is the one that
minimizes the H∞ norm after optimal tuning of the
capacitance and inductance values. Yet, it is possible to
focus on another optimization method based on maximum
damping. This corresponds to maximizing the minimum
damping ratio of the considered electromechanical system
that is equivalent to a two-degrees-of-freedom system over
the frequency range of interest. To do so, one can extract
the modal parameters of the FRF subjected to variation of
the capacitance or resistance values. The two close modes of
the tuned-mass-damper-type system are associated with two
eigenfrequencies and two damping ratios. Figure 4a shows
that the optimum in terms of maximum damping is obtained
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Figure 3. Effect of circuits’ capacitance and resistance on the
H∞ norm of the mobility function: independent circuits (solid),
interconnected circuits (dash).
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Figure 4. Effect of circuits’ capacitance and resistance on the
damping ratios: independent circuits (solid), interconnected
circuits (dash).

with a capacitance value close to the one considered during
the previous optimization. However, Figure 4b leads to an
optimal resistance about

√
8/3 ≈ 1.63 times the previous

nominal value. This is fully consistent with results obtained
with classical resonant shunts when the two loops of the root
locus plot crosses at a single point of maximum damping
(Preumont 2018).

Uncertain parameters
There are a number of factors that lead to variability
of theoretical performance prediction. Here, it is assumed
that the model used is accurate enough for the present
analysis. However, the model parameters can be subjected
to variability (uncertainty). The parameters that most affect
the resonance frequency tuning are the piezoelectric effective
capacitance and the circuits’ inductance. Also, experimental
tests have shown that even homemade inductances can have

very small tolerances and can be adapted if needed (Darleux,
Lossouarn and Deü 2018). On the other hand, the capacitance
of piezoelectric patches is more difficult to control and could
present significant variability when subjected, for instance,
to temperature variations. They also present variability due
to manufacturing tolerances (in both material properties,
such as the dielectric coefficient, and geometrical properties,
electrode area and patch thickness). For these reasons, in the
present work, the piezoelectric patches capacitances will be
considered as subjected to variability.

In a tentative to separate two potential sources of
uncertainty of capacitance values, one related to the
variability of the patches themselves (e.g. material and
geometrical properties) and one related to environmental
conditions that could affect all the patches (e.g. temperature),
two multiplicative stochastic parameters were defined, fi
and fg . One (fg) that varies the capacitance of all patches
simultaneously and another (fi) that varies the capacitance
of each patch relative to the global value. Their effects can be
combined to generate the overall capacitance of each patch,
such that the capacitance of the i-th patch would be

Ĉpi = C̄pf̂g f̂i, (1)

where C̄p is the nominal (expected) value for the patch
capacitance, f̂g is a stochastic variable related to the
environmental (global) variability and f̂i is a stochastic
variable related to the manufacturing (individual) variability.
Notice that only f̂i may be different from one patch to
another.

Stochastic modeling
The probability density function (p.d.f.) for the stochastic
variables are not known a priori, although it is expected
that a mean (or nominal) value could be known and,
also, that the variables should be positive. The Maximum
Entropy Principle (Jaynes 1957; Soize 2001) states that one
should consider a probability distribution that maximizes
the uncertainties using only the available information on the
random variable. It also guarantees that mathematical and
statistical properties of the random variable are respected.

In the present case, the capacitance has to be a positive-
valued random variable, which is a mathematical property
that defines the support for the p.d.f. as ]0, +∞[. It also
has to be a second-order random variable, such that the
expectation of the squared variable is finite, E{X2} <
+∞. This translates into a p.d.f. for which the probability
diminishes as the variable tends to infinity. The inverse of
the capacitance is also used for the problem solution and,
thus, it has to be also a second-order random variable, such
that the expectation of the inverse squared variable is also
finite, E{X−2} < +∞. This translates into a p.d.f. for the
which the probability diminishes as the variable tends to
zero. Finally, the mean value E{X} = X̄ is considered to
be known and equal to be the nominal value.

Using this information, the Maximum Entropy Principle
leads to a Gamma probability density function, such that

pX(X) = I]0,+∞[

(
1

δ2XX̄

)δ−2
X Xδ−2

X −1

Γ(δ−2X )
exp

(
− X

δ2XX̄

)
,

(2)
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in which δX = σX/X̄ is the relative dispersion of the
stochastic parameter and σX is its standard deviation. The
Gamma function is defined as Γ(x) =

∫∞
0
tx−1e−tdt. In the

present case, X assumes the multiplicative parameters fi
and fg . The deterministic optimal value for the capacitance
is assumed as its nominal and mean values. Thus, the
nominal values for both f̂g and f̂i are considered to be
unitary. The relative dispersion for both manufacturing and
environmental causes is actually unknown a priori. Previous
observation (Darleux, Lossouarn and Deü 2018) has shown
that capacitance values can vary up to 12% for a 38◦C
temperature variation. However, since there might be several
different sources for both manufacturing and environmental
uncertainties, the actual relative dispersions should be
estimated for a given application condition. Therefore, in
the present case, a parametric analysis will be carried out
considering two arbitrary, but representative, values for the
relative dispersion, 5% and 10%, to better understand their
effect on the vibration mitigation performance.
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Figure 5. Histogram of capacitance with 5% global relative
dispersion: (a) all patches, (b) first patch, (c) second patch.

Figures 5 and 6 show histograms for the relative
capacitances (relative to the nominal value). In Figure 5, a
5% relative dispersion is considered only for environmental
uncertainties (that is, fg has 5% relative dispersion and fi is
unitary and constant). On the other hand, in Figure 6, a 5%
relative dispersion is considered for both manufacturing and
environmental uncertainties (that is, both fi and fg have 5%
relative dispersions). In both figures, the histograms of the
capacitances of the two first patches are also shown. Notice
that, in the second case (Figure 6), the capacitance values of
first and second patches may be different, although following
the same probability density function. This does not happen
for the first case (Figure 5), which involves no individual
variability.

Monte Carlo simulations
Considering the stochastic model presented previously
for the two parameters affecting the piezoelectric patch
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Figure 6. Histogram of capacitance with 5% individual and
global relative dispersions: (a) all patches, (b) first patch, (c)
second patch.

capacitance, fi and fg , random realizations of the
corresponding stochastic variables, f̂i and f̂g , were then
generated using MATLAB function gamrnd. In all cases, two
values for the relative dispersions were considered, 5% and
10%. Some combinations of parametric uncertainties were
performed for the two parameters considered.
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Evaluation of mean
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Figure 7. Schematic representation of Monte Carlo
simulations.

Then, Monte Carlo simulations were performed for the
studied cases by varying the relative dispersions and sample
size. The procedure is schematically shown in Figure 7.
The first step is to generate N realizations (samples), θj ,
of the stochastic variables, f̂i(θj) and f̂g(θj), using the
Gamma probability density function presented previously.
The mobility frequency response function, G(θj , ωk) with
j = 1, . . . , N , is evaluated for each set of parameters, which
include the realizations of the stochastic variables, f̂i(θj)
and f̂g(θj), using the same model and procedure considered
for the nominal case. All other material and geometrical
properties of the rod and patches as well as the circuits’
resistance and inductance are kept unchanged. Thus, only
the patches’ capacitances are varied from one analysis to
another.
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Next, in order to quantify the uncertainty of the
frequency response due to the uncertainty of the patches’
capacitances (or how the parametric uncertainty propagates
to the frequency response), the N realizations of the
frequency response, G(θj , ωk) with j = 1, . . . , N , at any
given frequency point ωk, were used to evaluate their mean
values GM (ωk) and their 2.5% and 97.5% percentiles,
Ginf (ωk) and Gsup(ωk), respectively.

The maximum, Gsup(ωk), and minimum, Ginf (ωk),
values for all frequency points define curves that represent,
respectively, the upper and lower bounds of the 95%
confidence interval. This means that, provided the assumed
stochastic model is satisfactory, the actual frequency
response curve, for a given value of the capacitance, must
be inside the confidence interval. Notice that the mean FRF
curve does not necessarily represent an attainable actual
response but, assuming a Gaussian-like posterior probability
distribution, most actual FRF curves should be closer to the
mean FRF curve than to the lower or upper bounds. The
nominal FRF, GN (ωk), is obtained considering the nominal
values for the stochastic variables (capacitance).

Some preliminary convergence tests were carried out
to determine a reasonable sample size for the Monte
Carlo simulations. For that, the Euclidean norm of the
mobility frequency response function, around the first
resonance frequency ([2000, 3000] Hz), was evaluated for
each realization of the stochastic parameters considering
simultaneously 5% relative dispersion for fi and 10%
relative dispersion for fg . Figure 8 shows the normalized
response versus the Monte Carlo simulations performed. It
indicates that N = 500 samples seem to be enough even for
a case with high dispersions.
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Figure 8. Convergence of Monte Carlo simulation for the norm
of the frequency response of a rod with independent circuits for
uncertain capacitance (5% individual plus 10% global
dispersion).

Uncertainty quantification results

In this section, the effects of global (e.g. environmental)
and individual (e.g. manufacturing) uncertainties of the
piezoelectric patches’ capacitance values on the frequency
response of the rod, and ultimately on the vibration
amplitude, are analyzed. The analyses are performed for both
independent and interconnected circuits.

First, the cases were capacitance variabilities are mainly
due to environmental conditions that could affect the
ensemble of patches (e.g. temperature) are analyzed. For
that, fi is assumed to be unitary and constant (deterministic),
while fg assumes different values according to the stochastic
model presented previously. Thus, δfi = 0 and δfg 6= 0.
Then, the frequency responses of the rod with independent
and interconnected circuits were evaluated for two values
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Figure 9. Frequency response of rod with independent circuits
for uncertain patch capacitance (5% (left) and 10% (right) global
dispersion): open-circuit (short dash), RL nominal (dash), RL
mean (solid), 95% confidence interval (fill).
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Figure 10. Frequency response of rod with interconnected
circuits for uncertain patch capacitance (5% (left) and 10%
(right) global dispersion): open-circuit (short dash), RL nominal
(dash), RL mean (solid), 95% confidence interval (fill).

of relative dispersion δfg , 5% and 10%, and are shown in
Figures 9 and 10.

In this case, it is possible to observe that the frequency
responses for both independent and interconnected circuits
are very close, from mean values and confidence intervals
perspectives. In terms of the maximum responses, for the
independent circuit, the difference between the maximum
values of the nominal frequency response and the superior of
the 95% confidence interval is 8.1 dB and 13.4 dB for δfg =
5% and δfg = 10%, respectively. For the interconnected
circuit, these values are 8.7 dB and 13.0 dB for δfg =
5% and δfg = 10%, respectively. Therefore, these results
suggest that, under global capacitance variabilities, the
performance of independent and interconnected circuits are
equivalent.

Next, only the capacitance variabilities due to patches
individual properties are considered. For that, fg is assumed
to be unitary and constant (deterministic), while fi may
assume different values according to the stochastic model
presented previously. Thus, δfi 6= 0 and δfg = 0. Then,
the frequency responses of the rod with independent and
interconnected circuits were evaluated for the same values
of relative dispersion δfi, 5% and 10%. They are shown in
Figures 11 and 12.

It is noticeable that, for the interconnected circuit, the
mean response and the superior of the confidence interval
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Figure 11. Frequency response of rod with independent
circuits for uncertain patch capacitance (5% (left) and 10%
(right) individual dispersion): open-circuit (short dash), RL
nominal (dash), RL mean (solid), 95% confidence interval (fill).
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Figure 12. Frequency response of rod with interconnected
circuits for uncertain patch capacitance (5% (left) and 10%
(right) individual dispersion): open-circuit (short dash), RL
nominal (dash), RL mean (solid), 95% confidence interval (fill).

follows the shape of the nominal response with two peaks,
while this is not the case for the independent circuit.
In terms of the maximum responses, for the independent
circuit, the difference between the maximum values of the
nominal frequency response and the superior of the 95%
confidence interval is 2.2 dB and 5.4 dB for δfi = 5%
and δfi = 10%, respectively. For the interconnected circuit,
these values are 2.5 dB and 4.5 dB for δfi = 5% and δfi =
10%, respectively. These results suggest that, for the case
of capacitance individual variabilities, the interconnected
circuit is slightly more robust for large individual dispersion.
But the main thing is that the nominal performance can be
achieved with the interconnected circuit, while it cannot with
the independent shunts (with a 95% confidence interval). The
independent circuit leads to a mean FRF that is similar to
the result of a resonant shunt with a resistance above its
nominal value. This suggests that the circuits’ resistance have
a significant influence on the comparison between the robust
performance of the interconnected and independent circuits.

Effect of circuits’ resistance on FRF
variability
Since the vibration amplitude reduction performance seems
to be significantly affected by the patches’ capacitance
uncertainties, it is worthwhile to seek for solutions to

mitigate the performance uncertainties. Previous results have
shown that most of the uncertainty in the frequency response
is due to the mistuning between structural natural frequency
and circuit resonance frequency. That is because mistuning
leads to the increase of one peak accompanied by the
reduction of the other one (Santos and Trindade 2011).
Therefore, it is expected that an increase of the circuits’
resistance would reduce the increasing peak in mistuned
cases and, thus, increase overall robustness to the considered
parametric (capacitance) uncertainties.

Therefore, additional simulations were performed to
evaluate the effect of increasing and reducing the circuits’
resistance values. To assess the effect of circuit resistance
on the nominal and robust vibration control performances
of independent and interconnected circuits, the circuit
resistance was varied from -50% to +100%, with 10%
steps, of its nominal value. The frequency responses of the
rod with independent and interconnected circuits were then
evaluated considering either individual or global capacitance
variabilities and are shown in Figures 13, 14, 15 and 16.

It is noticeable that, in the case of individual variability
in the capacitances and for decreased resistance values, the
independent circuit leads to a mean response that is much
smoother than the nominal one (Figure 13), whereas, for the
interconnected circuit, the mean and nominal responses are
quite similar (Figure 14).

To quantify the effect of the resistance on the variability or
robustness of the frequency response, it is possible to analyze
the difference between the superior and inferior curves of
the confidence interval. Smaller differences indicate smaller
overall variability of the response for a given stochastic
parameter and vice-versa. Although different metrics could
be considered for such an analysis, here the mean differences
between the superior and inferior curves over the frequency
range of larger variability (2300 to 2700 Hz) are used. For
the smallest resistance considered, these reach up to around
3.7 dB, for the independent circuit (Figure 13a), and around
4.0 dB (Figure 14a), for the interconnected circuit. On the
other hand, these differences can be reduced to around 0.8 dB
(Figure 13e) and 0.9 dB (Figure 14e), respectively, for the
largest resistance considered.

As shown previously, global capacitance uncertainties
lead to much larger frequency response variability. Hence,
in these cases, the effect of increasing the resistance is even
more important since it reduces this difference. Also, the
mean difference between the superior and inferior values of
the confidence interval can reach up to 10.8 dB (Figures
15a and 16a) for both circuits and the smallest resistance
considered. This difference is reduced to around 2.7 dB for
the largest resistance considered (Figures 15e and 16e).

These analyses can also be performed by combining both
individual and global variability. This was done considering
5% relative dispersions for both fi and fg . Figures 17 and
18 shows the nominal, mean and 95% confidence intervals
for the FRF when considering five different values for the
circuit resistance. It is noticeable that the results combine
the features observed due to the separate dispersions. For the
interconnected circuit and smallest resistance, the difference
between the maximum of 95% confidence interval and the
maximum nominal response is increased when considering
both individual and global dispersions, compared to the
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Figure 13. Frequency response of rod with independent circuits for uncertain patch capacitance (5% individual dispersion) for
decreased ((a): -50%, (b): -30%), nominal (c) and increased ((d): +40%, (e): +100%) resistances: open-circuit (short dash), RL
nominal (dash), RL mean (solid), 95% confidence interval (fill).
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Figure 14. Frequency response of rod with interconnected circuits for uncertain patch capacitance (5% individual dispersion) for
decreased ((a): -50%, (b): -30%), nominal (c) and increased ((d): +40%, (e): +100%) resistances: open-circuit (short dash), RL
nominal (dash), RL mean (solid), 95% confidence interval (fill).
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Figure 15. Frequency response of rod with independent circuits for uncertain patch capacitance (5% global dispersion) for
decreased ((a): -50%, (b): -30%), nominal (c) and increased ((d): +40%, (e): +100%) resistances: open-circuit (short dash), RL
nominal (dash), RL mean (solid), 95% confidence interval (fill).
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Figure 16. Frequency response of rod with interconnected circuits for uncertain patch capacitance (5% global dispersion) for
decreased ((a): -50%, (b): -30%), nominal (c) and increased ((d): +40%, (e): +100%) resistances: open-circuit (short dash), RL
nominal (dash), RL mean (solid), 95% confidence interval (fill).

case of global dispersion alone. On the other hand, for the
independent circuit, this difference is actually decreased.
However, for both circuits, the overall behavior indicates that
increasing the resistance diminishes the variability, although
not necessarily improving the robust performance. In the

next section, two robust vibration mitigation performance
criteria are proposed to provide a more direct way to quantify
the effect of circuits’ resistance for analysis and design for
robustness.
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Figure 17. Frequency response of rod with independent circuits for uncertain patch capacitance (5% individual dispersion and 5%
global dispersion) for decreased ((a): -50%, (b): -30%), nominal (c) and increased ((d): +40%, (e): +100%) resistances: open-circuit
(short dash), RL nominal (dash), RL mean (solid), 95% confidence interval (fill).
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Figure 18. Frequency response of rod with interconnected circuits for uncertain patch capacitance (5% individual dispersion and
5% global dispersion) for decreased ((a): -50%, (b): -30%), nominal (c) and increased ((d): +40%, (e): +100%) resistances:
open-circuit (short dash), RL nominal (dash), RL mean (solid), 95% confidence interval (fill).

Effect of circuits’ resistance on vibration
mitigation performance

Based on previous Monte Carlo simulation results, it was
possible to conclude that, generally, increasing the circuits’
resistance could lead to less variability in the frequency
responses, which is in agreement with Andreaus and Porfiri
(2007) and Berardengo et al. (2015). On the other hand, it is
also worthwhile to analyze the effect of circuit resistance on
the maximum response and, thus, on the potential vibration
amplitude reduction under capacitance uncertainties. For
that, the H∞ norms of each realization of the FRF responses
were evaluated. Their distributions, nominal values and 95%
confidence intervals were then assessed. The statistics of
a second criteria, common to the design of resonant shunt
circuits, based on the minimum damping factor is also
analyzed. This was done by fitting the responses to a two
degrees-of-freedom transfer function to extract the modal
parameters from the FRFs.

From Figure 19a, it is possible to observe that for the
independent circuit, from both FRF H∞ norm mean and
maximum perspectives, the best resistance value (from
those analyzed) is the one decreased by 30% from the
nominal value. On the contrary, for the interconnected
circuit, mean and maximum values of the FRF H∞ norm
follow the behavior of its nominal value, as shown in
Figure 20a. Thus, for the interconnected circuit, the nominal
resistance value is also the best from both FRF norm
mean and maximum perspectives. In terms of the minimum
damping factor criteria, a resistance increased by around
60% is nominally the best solution. When considering
the uncertainties, however, for the independent circuit, a
resistance increased by 20% and 30% is the best choice from

mean and minimum perspectives, respectively, although
the variability diminishes for increasing resistance. For the
interconnect circuit, the resistance increased by 60% is the
best choice from nominal and mean perspectives, whereas
the one increased by 50% should be the choice to maximize
the minimum damping (Figures 19b and 20b).

This result has a strong consequence on practical design
of physical inductors because, in order to satisfy the
previous optima, the quality factor of the independent
circuits has to be substantially larger than the quality factor
of the interconnected circuits. Yet, in applications involving
passive resonant shunts, the quality factor of a circuit is
usually limited by the quality factor of the inductor itself,
which already includes a non-negligible internal resistance
(Lossouarn, Aucejo, Deü and Multon 2017). This does
not promote the use of the independent circuits because
designing inductors with a larger quality factor together with
a larger inductance (see Table 1) would require larger coils
and thus heavier electrical components.

On the other hand, in the case of capacitance global
variability, both independent and interconnected circuits
present the same overall behavior, in which larger resistance
values are beneficial from both mean and maximum
perspectives (Figures 21a and 22a). It is observed that the
optimum in terms of mean value is obtained for a resistance
increased by up to 40% from the nominal value for the
independent case and by 20% for the interconnected case. In
terms of minimum damping factor, the resistance increased
by 60% is the best choice in all cases but the one to maximize
the minimum interval for the independent circuit, in which
case the performance can be marginally improved by further
increasing the resistance (Figures 21b and 22b).

Prepared using sagej.cls



10 Journal Title XX(X)

(a)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Resistance relative to deterministic optimal value

1

2

3

4
F

R
F

 n
o
rm

(b)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Resistance relative to deterministic optimal value

0

1

2

3

4

M
in

im
u
m

 ξ
 (

%
)

Figure 19. Statistics of the (a) norm of frequency response and
(b) minimum damping of rod with independent circuits for
uncertain patch capacitance (5% individual dispersion) with
modified resistance: nominal (dash), mean (solid), 95%
confidence interval (fill).
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Figure 20. Statistics of the (a) norm of frequency response and
(b) minimum damping of rod with interconnected circuits for
uncertain patch capacitance (5% individual dispersion) with
modified resistance: nominal (dash), mean (solid), 95%
confidence interval (fill).

These results are decisive because it is shown that the only
circuit for which resistance values larger than the nominal
one lead to better robust performances considering both
individual and global variabilities is the interconnected one.

These analyses were also performed for combined
individual and global variability. As shown in Figure 23a,
since the robustness behaviors for individual and global
variabilities are somewhat contradictory, the mean FRF norm
is almost constant for the resistance values considered while
the maximum FRF norm improves for larger resistance
values. On the other hand, for the interconnected circuit, 10%
and 40% increased resistance values improve robustness
using mean and maximum criteria, respectively (Figure
24a). In terms of minimum damping factor, for the
independent circuit, resistance values closer to the nominal
one provide higher minimum damping from the mean
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Figure 21. Statistics of the (a) norm of frequency response and
(b) minimum damping of rod with independent circuits for
uncertain patch capacitance (5% global dispersion) with
modified resistance: nominal (dash), mean (solid), 95%
confidence interval (fill).
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Figure 22. Statistics of the (a) norm of frequency response and
(b) minimum damping of rod with interconnected circuits for
uncertain patch capacitance (5% global dispersion) with
modified resistance: nominal (dash), mean (solid), 95%
confidence interval (fill).

perspective, although higher resistances marginally improve
the minimum interval (Figure 23b). For the interconnected
circuit, from nominal, mean and maximum perspectives,
resistances increased by 60%, 50% and 100% are the best
choices, respectively (Figure 24b).

Effect of uncertainties on multimodal
vibration mitigation

While the interest of interconnected circuits has been proven
for single-mode vibration mitigation, one can remember that
the main advantage of those circuits is to provide damping on
several modes simultaneously. A perspective of the present
work is thus to investigate the effect of uncertainties on
multimodal vibration mitigation.
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Figure 23. Statistics of the (a) norm of frequency response and
(b) minimum damping of rod with independent circuits for
uncertain patch capacitance (5% individual dispersion and 5%
global dispersion) with modified resistance: nominal (dash),
mean (solid), 95% confidence interval (fill).
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Figure 24. Statistics of the (a) norm of frequency response and
(b) minimum damping of rod with interconnected circuits for
uncertain patch capacitance (5% individual dispersion and 5%
global dispersion) with modified resistance: nominal (dash),
mean (solid), 95% confidence interval (fill).

Preliminary results, as shown in Figure 25, indicate that
the vibration mitigation performance for all modes is affected
by the capacitance uncertainties. It is first noticed the
increasing detuning on the nominal and mean FRF curves
where the pairs of local maxima do not have the exact same
amplitude. This effect is actually not related to uncertainties
but to the number of unit cells in the electrical network
(Lossouarn, Aucejo and Deü 2015). Increasing the number
of components would better tune simultaneously both mean
and nominal responses.

Yet, the difference between the nominal response and
the mean or maximum responses strongly increases for the
highest modes. This is mainly due to the lower damping
of the highest modes. Indeed, damping is introduced with
a resistance in series with the inductance, as seen in
Figure 1. Impedance calculation shows that the resulting

quality factor Lsω/Rs increases with the frequency leading
to underdamped highest mode when the first mode is
correctly tuned. Lower damping then amplifies the effect of
capacitance variabilities, as seen from Figure 18c to Figure
18a.

While broadband tuning of damping coefficients is out of
the scope of the present paper, those results highlight the
need of an optimized damping thanks to adequate resistors
placed at different positions of the electrical network. This
makes a direct perspective of the present work in order to
propose an interconnected network for both multimodal and
robust vibration mitigation.

Conclusions

This work has presented an analysis of the effect of para-
metric uncertainties on the vibration control performance
of a rod with periodically distributed piezoelectric patches
that are either independently connected to electrical shunt
circuits or interconnected through an electrical line of
inductors. In both cases, the capacitances of piezoelectric
patches were considered as stochastic parameters following
a known probability density function distribution. Then,
Monte Carlo simulations were performed to evaluate mean
values and confidence intervals of the frequency response
functions to assess the robustness of each solution and to
compare different solutions in terms of nominal and robust
performances. Results have shown that vibration amplitude
reduction worsen significantly (with loss in reduction of up
to 13 dB in the proposed example) due to the mistuning
between structural natural frequency and circuit resonance
frequency. Yet, interconnected circuits are more robust to
individual capacitance variabilities than independent shunt
ones because they are able to maintain a mean response that
is very close to the nominal one.

Considering the clearly different responses between
independent and interconnected circuits subjected to
individual variabilities, it was proposed to assess the effect
of modifying the circuits’ resistance on the vibration
reduction performance robustness. Results have shown that,
for the interconnected case, the optimal resistance for robust
performance is the same as the nominal one. On the
other hand, for independent shunt circuits and individual
variabilities, decreasing the resistance has shown to be
a better compromise solution. This induces a practical
limitation for those independent shunts because they require
both larger inductance and quality factors that could lead
to bulky physical component when considering a passive
realization.

Another issue concerns the robust optimum when
considering global variation of the circuits’ capacitance. In
this case, the resistance always has to be larger than its
deterministic optimal one, which is in contradiction with the
previous results. In the end, even without considering its
broadband capabilities, all of this make the interconnected
circuit the best candidate for a robust design of a resonant
piezoelectric array intended for vibration mitigation. Future
works will be directed to the extension of this approach to
assess the effect of parametric uncertainties on multimodal
vibration mitigation.
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Figure 25. Wideband frequency response of rod with interconnected circuits for uncertain patch capacitance considering 5%
individual and global dispersions: open-circuit (short dash), RL nominal (dash), RL mean (solid), 95% confidence interval (fill).
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