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ABSTRACT

(U-Th)/He ages on apatite obtained in the vicinity of the Têt fault hydrothermal system show a 

large variability. In the inner damage zone adjacent to the fault core, where fluid flows are 

concentrated, AHe ages display a large scatter (3 to 41 Ma) and apatite ageing. Samples from the 

outer damage zone show young ages with less dispersion (0.9 to 21.1 Ma) and apatite rejuvenation. 

Outside the damage zone, ages are consistent with the regional exhumation history between 20 and 12 

Ma. The important age dispersion found in the damage zone is interpreted as the result of 4He 

mobility during fluid infiltration. Our results show that thermochronological data close to a fault 

should be interpreted with caution, but may offer a new tool for geothermal exploration.

INTRODUCTION

Low temperature (U-Th)/He thermochronology is commonly used to investigate exhumation 

and thermal evolution of mountain belts. Few studies have so far been dedicated to the impact of 

hydrothermal activity on thermochronology (e.g. Forster and Smith, 1989; Deming, 1994) and more 

particularly on the behaviour of apatite in geothermal systems (Duddy et al., 1998; Whipp and Ehlers, 

2007; Wölfler et al., 2010; Luijendijk, 2012; Gorynski et al., 2014; Hickey et al., 2014; Valla et al., 

2016). Meteoric fluids infiltrated from reliefs adjacent to faults generate subsurface thermal anomalies 

along the fault during their upflow (McKenna and Blackwell, 2004). Significant geothermal 

anomalies (up to 90°C/km) are interpreted as resulting from the combination of three main factors, (1) 

high rock permeability, (2) substantial adjacent topography and (3) prolonged fault activity, which 

may transport rock and heat from depth and also generate frictional heat (Saffer et al., 2003; 

Sutherland et al., 2017, Jordan et al., 2018). Even for a weakly active fault but adjacent to high relief 

(about 1.5 km escarpment), a geothermal loop can be active over a period >106 year (Taillefer et al., 

2018).

In this study, we evaluate the impact of hydrothermal flow on apatite (U-Th)/He (AHe) ages 

from the Têt Fault damage zone (DZ) which presently undergoes important hydrothermal activity. We 

mapped the fracture frequency distribution near the Têt fault and measured He ages of apatites from 
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both in and outside the DZ. We discuss the impact of fluid-rock interaction and a localized thermal 

anomaly on AHe age dispersion. 

GEOLOGICAL SETTING

The Têt normal fault is a 100 km long, north dipping crustal-scale structure striking WSW-

ENE (Fig. 1). In the study area, the fault crosscuts Palaeozoic magmatic and metamorphic rocks of 

the Mont Louis, Canigou and Carança massifs. Periods of tectonic activity resulted in ~2000 m of 

footwall uplift of the Canigou massif between 21 and 18 Ma (Maurel et al., 2008) in response to the 

Gulf of Lion rifting (Séranne et al., 1995). Late Miocene to Pliocene tectonic activity is limited to a 

maximum of 300 m footwall uplift and moderate dextral strike-slip (e.g. Cabrera et al., 1988; 

Mauffret et al., 2001). The amplitude of Pliocene to Quaternary activity is minor and still debated (see 

discussion in e.g. Carozza and Baize, 2004; Lacan and Ortuño, 2012; Petit and Mouthereau, 2012)

In the Canigou massif, erosion is constrained by low temperature thermochronology showing 

erosion rates of about 100 m/m.y. and a mean cooling rate of 3°C/m.y. during the Middle-Late 

Miocene (Maurel et al. 2008). For the Têt valley low incision rates between 1 and 25 m/m.y. since 6 

Ma have been estimated by cosmogenic nuclides (Delmas et al., 2018; Sartégou et al., 2018) indicate 

lower incision rates between 1 and 25m/m.y. 

29 hot springs distributed in 4 main clusters are localised along the weakly active Têt fault 

(Souriau and Pauchet, 1998) (Appendix 1.1). These springs are essentially located in the highly 

permeable DZ (Taillefer et al., 2017). Due to the presence of low-permeable metasediments in the 

hanging wall, fluid infiltration is mainly concentrated in the DZ of the footwall. Taillefer et al. (2017) 

proposed that the present-day hydrothermal disturbance of the geotherm vanishes at about 300m away 

from the fault. In this study, we focused on the main hot spring cluster near Thuès-les-Bains (Fig. 1) 

showing water temperatures up to 75°C.

SAMPLING AND ANALYTICAL METHODS

First, we studied the fracture distribution in the Têt fault footwall by measuring the frequency 

and the strike orientation of silica and carbonate colloids filled fractures, attributed to combined 
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tectonic and hydrothermal activity (Taillefer et al., 2017), along a 500 m long profile perpendicular to 

the fault (Fig. 1).

To study the influence of hydrothermal springs on AHe thermochronometer, nine Palaeozoic 

gneisses were sampled (Appendix 1.2) and yielded 48 AHe ages. Samples TET1 to TET4 are located 

along a profile nearly perpendicular to the Têt fault, TET5 is located to the southwest and TET6 and 

TET7 to the east of the profile. TET1, adjacent to the fault core, is highly fractured, chloritised and 

hydrothermalised. TET6 occupies the same structural setting as TET1 while TET7 belongs to a 

subsidiary branch of the main fault. Sampling covers an elevation range of 1100 m.

Single apatite crystals have been analysed for AHe dating following the procedure described 

in Wu et al., (2016). For each sample, three to ten inclusion- and fracture-free crystals were dated 

(Appendix 1.3). REE concentrations have additionally been determined for the grains of four dated 

samples (TET1, TET1.1, TET2.1 and TET5) following the procedure described in Bruguier et al. 

(2003). Microprobe analyses were also performed to evaluate the chlorine content of apatite grains 

(Appendix 2.1).

RESULTS

The frequency of fractures crosscutting the Palaeozoic foliation shows an approximate 

logarithmic decrease, formed of small modes due to secondary faults, similarly to the classic fracture 

patterns observed in fault DZ elsewhere. Fault zone domains (Fig. 2) are defined according to the 

Choi et al. (2016) cumulative fracture method (Appendix 1.4). Silica filled fractures are mainly sub-

vertical (i.e. some of them dip slightly to the North) and their strike is mainly NE-SW, i.e. consistent 

with the regional extension, and oblique to the Têt fault in the study area (red star in Fig. 2b). 

Carbonate filled fractures often crosscut silica filled ones. They show more variable orientations but 

also a well expressed cluster of trend kinematically consistent with the local trend of the Têt fault 

(Taillefer et al., 2017). 

All dated samples are shown on a cross section in Figure 3. Single grain AHe ages are reported 

on Figure 4a with respect to fault distance and to the defined fault (Appendix 2.2). Samples TET1 and 

TET6 from the inner DZ display a large scatter of single grain ages between 41 Ma and 3 Ma, with 11 

ages among 14 in the range of 22-41 Ma and with eU values <25 ppm (Appendix 2.3). In the outer A
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DZ, samples TET1.1, TET2 and TET2.1 show less dispersion between 0.9 Ma to 21.1 Ma with 10 

among 16 apatites younger than 6 Ma. Outside the DZ, three samples (TET3, TET4 and TET7) give 

mean AHe ages respectively of 11.7±0.8 Ma, 13.7±0.5 Ma and 13.4±0.8 Ma. At 3700 m from the 

fault, AHe ages from site TET5 (mean: 20.4±1.2 Ma) are in the range of AHe ages obtained by 

Maurel et al. (2008) in the Canigou massif. An age-elevation relationship can be defined only with 

samples outside the DZ that indicate a mean exhumation rate of about 65 m/m.y. between 12 and 20 

Ma (Fig. 4b). With respect to this age-elevation relationship, samples from the outer DZ show 

anomalously young and dispersed ages, whereas in the inner DZ, samples show mostly anomalously 

old and even more dispersed ages, with the exception of two grains at 4.0±0.2 Ma and 2.7±0.3 Ma. 

Microprobe and SEM analyses indicate that all analysed apatites are fluorapatites homogeneous in 

composition and poor in chlorine (Appendix 1.3 and 2.1) suggesting no compositional influence on 

this age dispersion (Gautheron et al., 2013). 

We measured the REE content of the dated apatite grains from the DZ samples TET1, TET1.1 

and TET2.1, and also from sample TET5 far from the fault zone as a reference for the protolith 

unaffected by hydrothermal circulation (Fig. 4c). All REE patterns (normalised to chondrite values, 

Sun and McDonough, 1989) display the common profile of granitic lithologies (Sha and Chappell, 

1999), indicating that the analysed apatites are cogenetic (Fig. 4c). Note that apatites from the outer 

DZ (TET1.1 and TET2.1) that mainly display young ages show low REE contents with respect to 

TET5, whereas apatites from the inner DZ mainly displaying old ages (TET1) have slightly higher 

REE contents

DISCUSSION

AHe ages reflect the time at which a rock passes through the partial retention zone (PRZ), 

which lies between 90°C and 30°C (Gautheron et al., 2009; Shuster and Farley, 2009). Thermal 

numerical modelling using QTQt (Gallagher, 2012) for samples outside the DZ points to a rapid 

cooling of ~24°C/m.y. between 30 and 24 Ma followed by constant cooling of 3°C/m.y. since 24 Ma 

(Fig. 5; Appendix 3.1 for inputs in the model). This thermal history is consistent with that obtained for 

the Canigou massif by Maurel et al. (2008) for the same period.
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In the DZ, apatites show a larger scatter of AHe ages (1 to 41 Ma) and an important variability 

of their REE content with respect to the reference sample TET5. Young apatites are depleted in REE, 

whereas old apatites have slightly enriched REE patterns. Such REE mobility in apatite has already 

been mentioned by Harlov (2015) and it is likely that U and Th behave similarly due to related 

theoretical solubilities with REE (Cramer and Nesbitt, 1983; Gieré, 1990). This REE depletion 

therefore suggests that apatites from the DZ may behave as open systems during interaction with 

hydrothermal fluids.

Young ages <6 Ma, mainly from the outer DZ, might be explained by different effects. A 

renewed recent footwall uplift and progressive crossing of the PRZ cannot explain these young ages 

that do not fit with predicted ages using QTQt thermal modelling (Appendix 3.2). Rejuvenation of the 

AHe ages can result only from thermal resetting and coeval He loss triggered by hydrothermal heat 

advection within the DZ. As a first proxy, the conditions of this resetting have been estimated with 

HeFty models using the diffusion model of Farley (2000) (Appendix 3.3). The favoured thermal 

models suggest that temperatures needed to rejuvenate apatites lie between 60°C and 90°C assuming 

a stable heating duration of less than 6 Ma in accordance with the proposal by Taillefer et al. (2017). 

However, since apatites in the outer DZ show REE mobility, it is likely that thermal diffusion was not 

the only cause of apatite rejuvenation. We cannot exclude that this REE behaviour was coupled with 

some uranium and thorium mobility, as suggested by the isotopic data in a ternary U-Th-He plot (Fig. 

6). Although in such ternary plot the data might be interpreted as U gain, the hypothesis would imply 

that U mobility behaved in the opposite way than the REE, which is inconsistent with their close 

theoretical solubilities. Therefore, we propose that the He loss enhanced by thermal diffusion mainly 

account for the observed AHe ages rejuvenation. 

Old AHe ages, mainly from the highly hydrothermalised inner DZ, show a large age 

dispersion between 22 and 41 Ma and are older than AHe ages outside the damage zone even at 

higher elevations. Such old and scattered ages cannot be reproduced by any diffusion model (Flowers 

et al., 2009; Gautheron et al., 2009; Appendix 3.2) thus another mechanism for apatite ageing has 

been suggested (Green and Duddy, 2018). U and Th mobility cannot account for the old AHe ages 

(Fig. 6) as we observed slightly enriched REE patterns (Fig. 4c) that could lead to a gain of parent 

isotopes and thus a rejuvenation of ages. The alternative process would be an excess of He that may A
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be related to either He implantation from grain boundary phases (oxides, Murray et al., 2014) or 

neighbouring U-rich grains (e.g. zircon, Gautheron et al., 2012), or grain shape effects (broken grains, 

Brown et al., 2013) or He trapping within lattice defects (Zeitler et al., 2017) or U-rich inclusions 

(Vermeesch et al., 2007). Because of the lack of oxides covering the surfaces of the dated apatite 

grains and the scarcity of U-rich minerals within the studied gneisses, direct He implantation seems 

unlikely (Appendix 1.3). In the same way, broken grain effects cannot account for the observed 

magnitude of age dispersion (400%) and U-rich inclusions have not been detected by SEM imaging 

(Appendix 1.3), even if this effect cannot be completely ruled out as the polished apatite used for 

imaging cannot be used for AHe dating. We propose that old (22-41 Ma) apatite grains were 

contaminated by He released at higher depth and carried by hydrothermal fluids, which also induce 

REE mobility. This is supported by the occurrence of 4He rich hydrothermal fluids circulating along 

fault systems within granitic basement geothermal fields (Paternoster et al., 2017; Jiang et al., 2018). 

In such a setting, the 3He/4He ratio is much lower than in air-saturated waters or in the mantle thus 

indicating that 4He is mainly radiogenic and derived from the decay of U and Th in the granitic crust. 

Such excess He may be hosted by fluid inclusions or by micro- to nanovoids filling within the apatite 

lattice following the mechanism proposed by Zeitler et al. (2017). 

In the DZ, the dispersion of AHe ages may reflect the heterogeneous impact of fluid flow into 

naturally fractured rocks (Bense et al., 2013) at outcrop or hand specimen scale. In the same sample, 

apatite along fractures may exchange chemical elements with hydrothermal fluids (taking up He), 

while those in textural domains preserved from fracturing and fluid flow may lose radiogenic He by 

thermal diffusion due to heat advected by external fluids. Channelized fluid upflow through the DZ 

may also account for the observed difference between the outer and inner DZ, as 4He rich fluids may 

have been restricted to the inner DZ, in the vicinity of paleo-hot springs. We propose that the mobility 

of 4He (Fig. 6) associated to hydrothermal fluid circulations may drastically impact AHe 

thermochronometry around faults.

CONCLUSION

The Têt normal fault hydrothermal system shows a large dispersion of AHe ages within the 

DZ and allows demonstrating the effects of an actual geothermal system on thermochronological A
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records. AHe ages away from the DZ are consistent with the regional cooling and tectonic uplift in 

Miocene times. Two domains are distinguished within the DZ based on fracture analysis. In both 

domains apatites seem to behave as open systems in response to interactions with hydrothermal fluids, 

which is supported by REE mobility and AHe dispersion. Differences between the outer and inner DZ 

(Fig. 6) are likely caused by an increase of fluid flow toward the inner DZ. In the outer DZ, apatites 

may be affected by heterogeneous degrees of He loss triggering a partial rejuvenation of AHe ages. In 

the inner DZ, apatites may be mostly affected by He trapping responsible for an increase of the AHe 

ages. Consequently, AHe ages from these two domains within the DZ of the Têt fault cannot be used 

to constrain tectonic uplift.

These conclusions suggest that AHe ages provided by samples collected next to large fault 

damage zones must be interpreted with caution, since actual or paleo-hydrothermal activity, or fluid 

flow in general, might have taken place and modified the He content in apatite. In contrast, however, 

these results open new perspectives for geothermal exploration along faults adjacent to high relief.
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FIGURE CAPTIONS

Figure 1. a) Location of the study area at the scale of the Mediterranean Sea and a regional map with 

outline of study area and location of sample profile by Maurel et al. (2008). b) Geologic map of the 

hydrothermally active Têt fault near Thuès-Entre-Valls, southern France. Hot springs are indicated by 

dots with colours referring to spring water temperatures (modified from Taillefer et al., 2017). 

Sampling sites are indicated by stars. Black line near Thuès-Entre-Valls shows scan line location of 

figure 3.

Figure 2. a) Histogram showing the number of mineralised fractures as a function of normal distance 

from the Têt fault (for location, see figure 1). Black dashed lines are secondary faults. Inner DZ 

(yellow area) adjacent to the fault and outer DZ (grey area) boundary are estimated with cumulative 

frequency curve (see Appendix 1.4 for more details). b) Stereonet of silica filled fractures and all 

mineralized fractures (lower hemisphere projections). Red line: plane of the Têt fault; red star: pole of 

the Têt fault plane. 

Figure 3. Synthetic cross section with sample location (stars). Samples TET5, TET6 and TET7 are 

projected (red stars) according to the normal fault distance. Near the fault, in the fault zone domain, 

the extent of the inner (yellow) and outer DZ (grey) is indicated.

Figure 4. a) Graph of AHe ages as a function of the distance from the Têt fault. Circles are single 

grain AHe ages outside the DZ, squares for apatite grains in the outer DZ and triangles for apatite 

grains in the inner DZ (samples TET1 and TET6 are both adjacent to the fault). Fault zone domains 

are derived from Figure 2. b) Graph of elevation as a function of AHe ages with estimated denudation 

rate (dashed line). c) Chondrite normalized REE patterns for dated apatite grains. Black lines and 

circles correspond to the TET5 reference sample, squares represent samples in the outer DZ and 

triangles one sample in the inner DZ. Apatite single grains from the inner DZ show increased REE 

content compared to grains from the outer DZ that display reduced REE content according to 

reference sample TET5 from the Carança massif (for sample location, see Fig. 1).
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Figure 5. a) QTQt thermal modelling results (Gallagher, 2012) for the Têt fault footwall using AHe 

ages of samples TET3, TET4, TET5 and TET7 outside the damage zone, computed with the 

Gautheron et al. (2009) diffusion parameters. b) Graph of predicted AHe ages vs. observed AHe ages. 

1:1 diagonal line corresponds to an ideal fit.

Figure 6. Isotopic data reported in a ternary U-Th-He diagram using HelioPlot (Vermeesch, 2010). 

Ellipses correspond to single grain analyses with associated errors. Three AHe age domains are 

distinguished imaging the various domains of fracturing, fluid activity and He mobility in the Têt fault 

footwall. 
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