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Abstract

Several solutions for multimodal vibration damping of thin mechanical structures based on piezoelectric
coupling have been developed over the years. Among them, piezoelectric network damping consists in using
piezoelectric transducers to couple a structure to an electrical network, where the transferred electrical
energy can be dissipated. In particular, the effectiveness of coupling rods, beams and plates to their analogous
electrical networks has been proven. This work is the first step going towards more complex structures. After
defining and experimentally validating a fully passive electrical analogous network of a simply-supported
plate, the study is extended to the damping of a non-periodic plate. The non-periodicities here studied
include the addition of a local mass and a variable thickness. Numerical simulations and experiments show
that in these cases, a broadband damping is achieved once the piezoelectric transducers are coupled to an
adequate analogous network. A finite element model of the structure coupled to a 2D non-periodic electrical
network is concurrently developed and validated, which is another contribution of the present work.

Keywords: Vibration mitigation, Multimodal damping, Piezoelectric coupling, Direct electromechanical
analogy, Finite element model, Passive network

1. Introduction

Damping of mechanical vibrations using piezoelectric coupling goes back to the 1990s, when the resonant
shunt was described by Hagood and Von Flotow [1]. The efficiency of the resonant shunt to control a single
mode of vibration has been extensively studied [2, 3]. The concept of piezoelectric shunt damping has then
been extended to multimodal damping. Some passive solutions consider connecting a multi-branch shunt
to a single piezoelectric transducer [4–7]. While adding only one piezoelectric transducer to the structure is
barely intrusive, its position and dimensions cannot simultaneously maximize the electromechanical coupling
for all modes [8]. As a result, the damping performance might be limited. Moreover, the required inductive
components could be difficult to produce [9], and the number of involved electrical components may greatly
increase with the number of modes to be controlled [7]. Another solution could use several independent
piezoelectric transducers, each one being shunted in order to damp one particular mode of the structure [10,
11]. However, the resulting electromechanical coupling coefficients are inferior to the ones that would be
induced by interconnecting all piezoelectric transducers.

Hence, the principle of piezoelectric network damping emerged in the early 2000s [12–15]. Broadband
damping is achieved by bounding piezoelectric patches on a vibrating structure and interconnecting them
with electrical components [16]. This way, the inductance requirements are reduced [13]. Besides, the
topology of the network to be connected to the plate has a significant impact on the attainable damping
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performance. It has been shown that connecting the vibrating structure to a network that has the same
modal characteristics ensures that there is as much electrical energy as mechanical energy involved in the
coupled system [12]. For this reason, the electrical analogues of mechanical structures have been revived for
vibration mitigation purposes [17].

One way to define electrical analogues is to use an electromechanical analogy [18, 19]. Electrical analogues
of beams and plates have been defined dating back to the early 1950s [20–22]. More recently, piezoelectric
network damping of beams [23–25] and plates [26, 27] has been studied. Most of these works are based
on the application of the force-current and velocity-voltage analogy, also called indirect analogy. In the
present article, the force-voltage and velocity-current analogy, also called direct electromechanical analogy,
is applied. Indeed, this analogy allows representing the electromechanical converter of a coupled system with
passive electrical components when this converter uses the action of electrostatic forces [18]. Therefore, it is a
convenient analogy to use to passively represent the piezoelectric coupling. As a consequence, one can derive
a fully passive representation of a mechanical structure being coupled to an electrical network via piezoelectric
transducers. The resulting electrical analogues have been implemented recently for the vibration mitigation
of beams [28] and plates [29, 30]. Based on these recent articles, a plate electrical analogue is defined in
section 2 of the present work, and a new network is produced for further measurements. The validation of
the network is made by comparing measurements to simulations and by conducting an experimental modal
analysis, which has not been done in the previous articles.

The main objective is to investigate the multimodal damping of complex structures coupled to their
electrical analogues. This begins with the study of non-periodic plates. Since experimental setups will not
be developed for all future numerical examples, having a predictive model of the behavior of a structure
being coupled to an electrical network becomes necessary. Such a model could be used to find out the limits
of the analogy between the structure and its electrical analogue. It could also be used to design the optimal
dissipative components to insert in the network to obtain an optimized damping performance. The dynamics
of complex 3D structures at low frequencies can adequately be forecast by the finite element method, on
which the scientific literature is abundant [31, 32]. Our bibliography on the subject is not exhaustive, as it is
not the aim of this article. The work of Thomas et al. [33] concerning a structure covered by thin piezoelectric
patches is taken as the starting point. The main originality of their work is to consider only one electrical
degree of freedom by piezoelectric patch, as they impose the equipotentiality in the electrodes. Thus, it
is convenient to couple this finite element formulation to lumped electrical models, such as a network. In
section 3, the main hypotheses to obtain this finite element formulation are recalled. The coupling of the
vibrating structure to a 2D electrical network is then taken into account which is another contribution of
this work. The resulting coupled model is validated by comparison with experimental results on a plate
coupled to the previously produced electrical network.

The broadband damping of a periodic plate is addressed in section 4. The network is validated by
comparing its electrical current mode shapes to velocity mode shapes of the plate. The coupled model
developed in the previous section is then validated by comparing experimental results to simulated ones.
Finally, two cases of non-periodic plates are highlighted in section 5. A mass is added on the first non-periodic
plate to break its symmetry, while the second example is a plate of variable thickness. In both cases, the
designed electrical analogues are validated by comparison of electrical and mechanical mode shapes, and
passive broadband damping is achieved. These promising results extend the concept of passive vibration
control by piezoelectric network damping to complex structures.

2. Plate electrical analogue

In this section, the electrical analogue of a square plate is assembled to produce a plate electrical analogue.
A network model is then developed and validated. The validation is conducted by comparing the numerical
and experimental frequency response functions (FRFs) and mode shapes of the analogous electrical network.

2.1. Design of a plate electrical analogue

The first step in defining a plate electrical analogue is to develop a discrete model of the mechanical
structure. This model can be obtained by applying a finite difference scheme to the dynamics equation of a
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Table 1: Direct electromechanical analogy.

Mechanical quantities Electrical quantities
Force -Q Voltage Vw

Moment -M Voltage Vθ
Linear velocity ẇ Electrical current q̇w
Angular velocity θ̇ ←→ Electrical current q̇θ
Compliance 1/Kθ Capacitance C

Mass m Inductance L
Lever arm a/2 Transformer ratio â/2

VθI

VθB

VθL VθR

VθT

VwB

VwL

VwR

VwT

q̇θB

q̇θL

q̇θR

q̇θT

q̇wI

q̇wB

q̇wL q̇wR

q̇wT

1:
1

â/2:1

â/2:1

â/
2
:1 L

C

VL
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Figure 1: (a) Scheme and (b) picture of the electrical analogue of a square plate, which highlight the central transformer in
red, a side transformer in blue, the inductance in green, and the capacitance connection in yellow.

square plate. For a Kirchhoff-Love plate of thickness h, mass density ρ and bending stiffness Kθ in harmonic
motion at angular frequency Ω, the considered equation is

Kθ

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= ρhΩ2w, (1)

where w is the displacement in the direction normal to the plate, while x and y are the in-plane directions.
The derivation of a discrete square plate model from equation (1) is detailed in [29, 30].

An electromechanical analogy [18, 19] is then applied to the resulting set of discrete mechanical equations.
The indirect analogy, which states that velocities are analog to voltages and forces are analog to electrical
currents, is considered in some works [20, 26]. In the present work, the direct electromechanical analogy
is preferred, since it allows the fully passive representation of piezoelectric transducers [18]. Hence, the
electrical analogue of a square plate is defined by replacing mechanical quantities in the developed discrete
model by electrical quantities, according to the analogy in table 1. Therefore, figure 1a shows a scheme of
the unit cell of the plate electrical analogue, which has already been exhibited in [29, 30]. The I, B, L, R and
T subscripts on the electrical scheme in figure 1a refer to the central, bottom, left, right and top positions
of the discretization grid, respectively. The electrical analogue of a rectangle plate can then be defined by
assembling this unit cell along the x and y directions.

Besides, the boundary conditions of the plate should be reproduced in the electrical network. This
network topology allows for direct equivalent electrical connections for the simply-supported and clamped
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edges. Indeed, if for example the left edge of the unit cell is a boundary, then the simply-supported condition
is equivalent to command that VθL = 0 and q̇wL = 0, while the clamped condition is equivalent to command
q̇θL = 0 and q̇wL = 0 [30].

Finally, the electrical components should be tuned so that the natural frequencies of the network are
equal to the natural frequencies of the plate. This ensures identical bending wave propagation properties in
the two media [29]. In this case, the frequential coherence condition is

1

a2
Kθ

m
=

1

â2
1

LC
. (2)

2.2. Model of the electrical network

Since the plate electrical analogue should be tested alone for validation, a lumped model of the entire
network is developed. Using the notations in figure 1a, the values of the electrical charges and the voltages
in one unit cell are denoted qN and vN:

qN =
[
qwB qθB qwL qθL qwR qθR qwT qθT

]T
, (3a)

vN =
[
VwB VθB VwL VθL VwR VθR VwT VθT

]T
. (3b)

These vectors are related by
vN = Melmq̈N + Delmq̇N + KelmqN, (4)

with Melm, Delm and Kelm being respectively the elementary matrices of electrical “mass”, electrical damp-
ing and electrical “stiffness”. The full derivation of these matrices is not detailed, as more information is
available in [30]. Let us just precise that all matrices depend on the transformer ratio â. Moreover, Melm is a
function of the inductance value L, Delm is a function of the series resistance of the inductors and the series
resistance of the transformers, and Kelm is a function of the capacitance C. Then, following an assembly
process, the vectors QN and VN which contain the values of electrical charges and external voltages in the
entire network are related to each other by

VN = MNQ̈N + DNQ̇N + KNQN, (5)

with MN, DN and KN being respectively the assembled matrices of electrical “mass”, electrical damping
and electrical “stiffness”.

The objective is to develop the electrical analogue of an aluminum plate of dimensions 420×360×3 mm3.
It is periodically covered with 42 square piezoelectric patches of dimensions 50 × 50 × 0.5 mm3. Hence, a
network made of 42 identical unit cells has been assembled. The structure and its analogous network are
pictured in figures 2a and 2b, respectively. A closer look at a unit cell is shown in figure 1b. The design
method of the analogous network is the same as in [29, 30]. However, the present plate is simply-supported,
while it was fully clamped in the previous articles. Besides, more piezoelectric patches are used to cover the
plate surface in the present work. For this reason, the structure and its analogous network share the same
modal properties over a wider frequency range.

Following the method suggested in [34], the inductors are made by winding 610 turns of 0.2 mm thick
copper wire around a core of N48 ferrite material from Epcos TDK, whose nominal permeance is 630 nH.
Then, the inductance of the produced components can be set from 240 mH to 270 mH thanks to an adjusting
screw. The network testing is made with a nominal inductance of L = 244 mH. The nominal series resistance
of the inductors is 13.7 Ω. Furthermore, the ratio of the transformers is â = 4, and their nominal series
resistance is 16.8 Ω when used with a 1:1 ratio. An inductor and several transformers are pictured in
figure 1b. Finally, ceramic capacitors which have a nominal capacitance of 145 nF are used.

By analogy with an exciting external force, an external voltage is applied between two unit cells of the
network. The voltage Vex is applied through an isolation transformer of ratio k. This isolation transformer
is circled in blue in figure 2b. At the same time, the voltage drop VL across each inductor of the network is
measured. The numerical FRFs VL/kVex obtained using the model of equation (5) can thus be compared
to measurements. As an example, a comparison is plotted in figure 3 for VL measured in the framed unit
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Figure 2: (a) Plate covered with 42 piezoelectric patches and (b) its assembled analogous electrical network made of 42 unit
cells. The isolation transformer for modal testing is circled in blue, while the unit cell on which the measurement in figure 3 is
made is framed in red.

Figure 3: (· · · ) Experimental and (—) simulated FRFs with VL measured across the inductor of the unit cell framed in red in
figure 2b. The operational electrical current shapes at the first two FRF peaks are highlighted.

cell in figure 2b. The simulated FRFs are in good agreement with the the measured ones. The remaining
differences can be reduced by taking other parasitic elements of the transformers into account, such as the
magnetizing branch and the winding capacitance. These kinds of refined models are not described here
because the correlation between the proposed model and experiments is considered good enough to validate
the network model from 50 Hz to 900 Hz.

Another validation of the developed model is to check if it has the same modal properties as the measure-
ments. Visualizing the operational electrical current shapes is a first step in doing so. A couple of shapes
at fixed frequencies are highlighted in figure 3, and one can attest they look like mode shapes of a simply-
supported plate. To go further in the analysis, comparing the modeled electrical current mode shapes to the
ones identified from measurements can be done using the modal assurance criterion (MAC) [35]. If the MAC
matrix contains values close to 1, this means that the associated mode shapes are similar. On the other
hand, low values in the MAC matrix are attained for two nearly orthogonal mode shapes. An experimental
modal analysis of the network is performed by comparing the mode shapes of a mechanical structure and
an electrical network using the MAC, which is an originality of the present work. The experimental mode
shapes are extracted using the least-squares rational function estimation method suggested in [36]. The first
fourteen experimental modes are identified between 50 Hz and 800 Hz, and therefore can be compared to
simulated modes in figure 4. This MAC matrix shows that experimental and numerical modes are mutually
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Figure 4: MAC matrix between experimental and simulated electrical current modes of the network.

consistent. The only problem is that the eleventh identified mode is a complex mode, whose real part is
similar to the eleventh modeled mode, and whose imaginary part is similar to the twelfth modeled mode.
This is due to significant and not purely proportional damping in the network. To conduct a complete ex-
perimental modal analysis would require refining the extraction of modes as well as the estimation of modal
parameters. However, the developed model is deemed sufficiently precise to forecast the modal behavior of
the electrical networks studied in the following sections.

3. Finite element model of a structure coupled to an electrical network

The main hypotheses to model the dynamics of a mechanical structure covered by piezoelectric patches
are recalled. Then, the effect of the interconnections between patches via an electrical network is accounted
for. The simulated results in the case of short-circuited piezoelectric patches are finally compared to exper-
iments in order to validate the approach.

3.1. Finite element formulation

As stated in the introduction, the literature is abundant on finite element modeling of vibration damping
by piezoelectric coupling [31, 32]. For the case of the plate covered with piezoelectric patches here studied,
we chose to follow the method described by Thomas et al. in [33]. The main originality of this work is to
include the voltage on the upper electrode of each piezoelectric patch as a global variable. Implementing
the connection of the structure to lumped-element models of electronic circuits is then convenient. Though
all equations are not detailed in the present paper, the main hypotheses to develop a finite element model
of the structure are recalled.

The structure is modeled as an isotropic homogeneous linear elastic medium in which the piezoelectric
coefficients vanish. The piezoelectric transducers exhibit transverse isotropic properties, and are polarized in
their transverse directions. The patches thickness’s are considered small when compared to their longitudinal
dimensions. Under these assumptions, the derived equations of the variational formulation in terms of
displacement and electric potential are then discretized. Following an assembly process, one obtains a finite
element formulation of the coupled problem:[

Mm 0
0 0

] [
Ü

V̈

]
+

[
Dm 0
0 0

] [
U̇

V̇

]
+

[
Km Kc

−Kc
T Ke

−1

] [
U
V

]
=

[
F
Q

]
, (6)
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Another equivalent formulation is to write the electrical equation with the electrical charges as state variables.
Hence the equation (6) becomes[

Mm 0
0 0

] [
Ü

Q̈

]
+

[
Dm 0
0 0

] [
U̇

Q̇

]
+

[
Km + KcKeKc

T KcKe

(KcKe)
T

Ke

] [
U
Q

]
=

[
F
V

]
, (7)

where U contains the nodal values of the displacement field u and V contains the voltage values (V (1), ... , V (p))
on the upper electrodes of the piezoelectric patches. In F are the external mechanical forces applied to the
structure, while in Q are the electrical charges (Q(1), ... , Q(p)) on the upper electrodes of the piezoelectric
patches. Kc is the coupling matrix. Mm, Dm and Km are the mechanical mass, damping and stiffness ma-
trices, respectively. Ke is a diagonal matrix in which the j-th term is the inverse of the blocked piezoelectric
capacitance Cε(j) of the j-th patch, which is

Cε(j) =
ε33

εS(j)

h(j)
, (8)

where S(j) is the j-th patch surface area and εε33 is the transverse permittivity of a piezoelectric medium
with no strain. It represents the capacitance when no bending displacement is allowed.

3.2. Coupling of a structure to an electrical network

The piezoelectric patches bound to the structure are interconnected via the plate electrical analogue.
The network can be considered as a passive electrical controller that commands a relationship between V
and Q. The goal is to relate V and Q to VN and QN in order to take the influence of the network on the
structure dynamics into account.

On one hand, the j-th element of Q is equal to the charge q
(j)
θB − q

(j)
θT + q

(j)
θL − q

(j)
θR flowing through the

capacitance Cε(j). This means that a matrix P can be assembled so that

Q = PQN. (9)

On the other hand, the voltage vector VN is generated by the electrical currents flowing in the network
and by the piezoelectric coupling with the vibrating structure. Firstly, let’s consider that U 6= 0 and
QN = 0, leading to Q = 0 and qN = 0 for every unit cell. Then the scheme in figure 1a shows that
VwB = VwL = VwR = VwT = 0 and that VθB = VθL = VθR = VθT = VθI. After an assembly process, one can
show that VN and V are related by the same matrix P as in equation (9):

VN = PTV. (10)

Then, the electrical equation of the finite element formulation (7) with Q = 0 is used to relate the voltage
vector VN to the displacement field U:

VN = (KcKeP)
T
U. (11)

Let us then consider that U = 0 while QN 6= 0. In the case of no piezoelectric coupling with the struc-
ture, it has been shown that the voltages and currents in the network are related by equation (5). The
resulting expression of VN when U 6= 0 and QN 6= 0 is derived by applying the superposition theorem with
equations (5) and (11):

VN = MNQ̈N + DNQ̇N + KNQN + (KcKeP)
T
U. (12)

Combining equations (7), (9) and (12) leads to a finite element formulation of a structure coupled to an
electrical network:[

Mm 0
0 MN

] [
Ü

Q̈N

]
+

[
Dm 0
0 DN

] [
U̇

Q̇N

]
+

[
Km + KcKeKc

T KcKeP

(KcKeP)
T

KN

] [
U
QN

]
=

[
F
VN

]
. (13)
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Figure 5: Picture of the setup, including the plate covered with piezoelectric transducers, a shaker, a laser vibrometer and the
plate electrical analogue.

A similar expression is derived in [37] in the case of a single unit cell being periodically assembled along one
direction. The present finite element formulation is an extension to non-periodic 2D networks. Besides, it
is convenient as it allows to assemble the network unit cells the same way as in the finite element method.
Hence, local modifications of network components can be implemented. This should ease the way going
towards non-periodic structures.

3.3. Validation of the finite element model

Numerical simulations are compared to measurements to validate the finite element model developed
in the previous subsections. The experimental setup is exhibited in figure 5. The simply-supported plate
periodically covered with piezoelectric patches is suspended. A shaker applies a point load and a force
transducer measures it. A laser vibrometer measures the velocity on the other side of the plate. The (x, y)
location of both the excitation and the velocity measurements is drawn in figure 6. Moreover, the upper
electrodes of the patches are either connected to the ground or to the network thanks to switches, one of
which can be spotted in figure 1b.

The structure is modeled with 20-node hexahedral elements. Both the plate and the piezoelectric patches
are meshed with one element in depth. In the other directions, the piezoelectric patches as well as the plate
beneath them are meshed with nx× ny elements. Taking nx = ny = 3 leads to converged values for natural
frequencies of the undamped structure up to 1 kHz. Accordingly, the figure 6 depicts the mesh used to
obtain all the following numerical results.

The plate is made of duralumin. Its Poisson’s ratio and density are respectively set at 0.346 and
2800 kg/m

3
. Its Young’s modulus is set at 68.8 GPa to adjust the eleventh natural frequency of the

plate calculated with short-circuited piezoelectric patches to the corresponding resonance in the experimen-
tal measurement. This corresponds to the last peak before 900 Hz as plotted in figure 8. Structural damping
is taken into account, so that the mechanical damping matrix Dm and the mechanical stiffness matrix Km

are related by

Km + jΩDm = (1 + 2jξ)Km, which is equivalent to Dm =
2ξ

Ω
Km. (14)

The damping coefficient ξ is set at 3.10-3 so that the amplitude of the first simulated peak is roughly equal
to the measured one.
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Figure 6: Dimensions and meshing of the mechanical structure, • (x, y) location of both the excitation and the velocity
measurement, and � position of the added mass in section 5.1.

The piezoelectric patches are made of the PIC 153 PZT material [38]. Few material characteristics are
available in the manufacturer’s data. Thus these characteristics are either extrapolated from datasheets of
other PZT materials, or numerically optimized. This is the case of the piezoelectric coefficients d31 and
d33. By extrapolation on the basis of other PZT materials whose characteristics are available in [38], it
is assumed that d33 ≈ −2d31. Their values are then set in order to minimize the quadratic error on the
coupling factors. The modal coupling factor (kc)n for the n-th mode is

(kc)n =

√(
(fOC)n
(fSC)n

)2

− 1. (15)

In this expression, (fSC)n is the n-th normal frequency of the plate when the piezoelectric patches are
short-circuited, while (fOC)n is the n-th normal frequency of the plate when each upper electrode of the
piezoelectric patches is left unconnected. Not interconnecting the upper electrodes of patches in the case of
open-circuit allows to define a non-zero coupling factor for all modes, which leads to a more precise adjust-
ment for the values of d33 and d31. These frequencies are obtained by using the finite element formulation
presented in equation (6). Computing the mean squared error (MSE) between simulated and measured
values of (kc)n for the first eleven modes of the structure results in figure 7a. As a consequence, the value
of d31 is set at -260 pC/N and the value of d33 is estimated at 520 pC/N. This d33 value is notably smaller
than the value of 600 pC/N indicated by the manufacturer’s data. This confirms the need to experimentally
evaluate the materials characteristics when possible.

As a result, the simulated coupling factors are shown in figure 7b. The gap between the simulated
and measured coupling factors is less than 5 %. Besides, this maximum overestimation is for the first
coupling factor and could be partly explained by the non-ideal experimental boundary conditions. The
plate experimental setup is linked to a rigid frame via thin supports, while the plate is the only part of the
assembly that is modeled. Therefore the added flexibility owned to the supports is not modeled. Knowing
this maximum error of 5 % could be reduced, the prediction of the coupling factors is considered sufficiently
precise. All numerical values which are needed for the modeling are summed up in table 2.
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(a) (b)

Figure 7: (a) MSE on the modal coupling factors for different d31 piezoelectric coefficient values and (b) resulting comparison
between (· · · ) measured and (—) simulated coupling factors of the first eleven plate modes.

Table 2: PIC 153 PZT material [38] characteristics which have been used for the finite element modeling.

Elastic coefficients Poisson coefficients Piezoelectric coefficients Relative permittivities Density(
10-12N/m2

)
(-)

(
10-12C/N

)
(-)

(
kg/m3

)
sE11 16.83a sE33 1.15sE11

b
ν12 0.34 d31 -260c εσ33/ε0 4200 ρP 7600

sE12 -ν12s
E
11 sE44 1.15sE66

b
ν13 1.25ν12

b d33 -2d31
b εε33/ε0 2575d

sE13 -ν13s
E
11 sE66 2

(
sE11-sE12

)
a Supposed equal to the sE11 coefficient of the PIC 151 PZT material [38].
b Relations extrapolated from other PZT material characteristics.
c Set to minimize the MSE on the coupling factors (see figure 7a).
d Measured on an unbound depolarized patch at 1 kHz and low level of excitation.

Figure 8: (· · · ) Experimental and (—) simulated FRFs with short-circuited piezoelectric patches.
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Figure 9: Electrical representation of the electromechanical coupling.

The case of short-circuited patches is simulated using the formulation of equation (6). The plotted results
in figure 8 show that the numerical simulation forecasts the dynamics of the structure up to 900 Hz rather
well. Moreover, the remaining differences between numerical and experimental results could be reduced.
Indeed, the peak at 687 Hz can not be predicted by our model since it is a frame mode. Furthermore,
the gaps between the first simulated and measured peaks can be attributed to the non-ideal experimental
boundary conditions. This has been explained by Robin et al., who designed a first version of the setup
in [39]. Other details are available in [40] as well.

4. Broadband damping of a periodic plate

The analogous network of a periodic plate is validated by comparing its natural frequencies and electrical
current mode shapes to the natural frequencies and the velocity mode shapes of the mechanical structure.
To do so, the nominal inductance value needed to meet the frequential coherence condition is estimated.
Finally, vibration damping of the first modes of the structure is experimentally achieved by coupling the
plate to its analogous network. A numerical simulation validates the model developed in section 3.2 of a
structure being coupled to an electrical network.

4.1. Frequential coherence condition

In order to tune the natural frequencies of the network to the natural frequencies of the plate, the
frequential coherence condition of equation (2) should be met. In the case of the periodic plate covered by
piezoelectric patches, it becomes

1

a2
KD
θ

m
=

1

â2
1

LCε
. (16)

In this last equation, KD
θ is the mechanical stiffness when the piezoelectric patches are left in open-circuit.

The blocked piezoelectric capacitance Cε is the capacitance when no bending displacement is allowed.
According to the lumped electrical model of the piezoelectric coupling [19], such as depicted in figure 9,
these two quantities can be related to the mechanical stiffness when the piezoelectric patches are short-
circuited and to the static piezoelectric capacitance, respectively denoted KE

θ and C0:

KD
θ = KE

θ +
e2θ
Cε

, (17a)

C0 = Cε +
e2θ
KE
θ

, (17b)

with eθ being the global coupling coefficient. From the two previous equations, one obtains

Cε

C0
=
KE
θ

KD
θ

. (18)

On that account, the frequential coherence condition of equation (16) can also be written

1

a2
KE
θ

m
=

1

â2
1

LC0
. (19)
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Figure 10: Square plate of variable thickness hs covered by a square piezoelectric patch of constant thickness hp. The stiffness
of each portion of the plate and the piezoelectric patch can be modeled as a spring, such as drawn on the right hand-side. The
represented thickness is not to scale.

The choice is to use the inductance value L as the tuning parameter. The side of the unit cell and the
transformer ratio are set at a = 60 mm and â = 4. The mass m values can be computed knowing the plate
dimensions and the materials densities. This means that KE

θ and C0 should be estimated to obtain a value
for L.

4.2. Estimation of the bending stiffness

The method of calculation of the bending stiffness value KE
θ for a square mechanical plate is based on

the model depicted in figure 10. It includes a series and parallel combination of discrete springs, so that the
bending stiffness KE

θy when y is deemed as the normal axis is

1

KE
θy

=
1

KE
θy1

+
1

KE
θy2 +KE

θy3

+
1

KE
θy4

, (20)

where KE
θy1, KE

θy2 and KE
θy4 are the stiffness of the plate portions indicated in figure 10, while KE

θy3 is the
stiffness of the piezoelectric patch. Denoting ν and Y the Poisson coefficient and the Young modulus of the
plate, these stiffness values can be computed by the following expressions:

1

KE
θy1

=
1− ν2

Y

∫ (a−lp)/2

0

1

I(y)
dy, (21a)

1

KE
θy2

=
1− ν2

Y

∫ (a+lp)/2

(a−lp)/2

1

I(y)
dy, (21b)

1

KE
θy3

=
1− ν212
1/sE11

∫ (a+lp)/2

(a−lp)/2

1

Ip(y)
dy, (21c)

1

KE
θy4

=
1− ν2

Y

∫ a

(a+lp)/2

1

I(y)
dy, (21d)

with I and Ip respectively being the second moments of area of the structure and of the piezoelectric patch.
Assuming the piezoelectric patches thicknesses are small compared to the structure thickness, the expressions
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Figure 11: Distribution of the C0 values (in nF) for (a) the periodic plate and (b) the variable thickness plate of section 5.2.

of I and Ip are computed with respect to the mid-surface of the plate:

I(y) =
∫ a
0

∫ hs/2

−hs/2
z2 dx dz, (22a)

Ip(y) =
∫ (a+lp)/2

(a−lp)/2
∫ hs/2+hp

hs/2
z2 dx dz. (22b)

Similar equations can be written to estimate the bending stiffness KE
θx when x is deemed as the normal axis.

In the case of a periodic plate, the thickness hs (x, y) does not depend on the (x, y) coordinates, as
opposed to what is drawn in figure 10. Then computing the bending stiffness along both in-plane directions
give the same result:

KE
θ = KE

θx = KE
θy. (23)

4.3. Estimation of the static piezoelectric capacitance

The free piezoelectric capacitance, usually denoted Cσ, is the capacitance obtained under zero stress.
This value can be estimated by using the relative permittivity εσ33 in table 2. However, this quantity is
notably different from the static capacitance C0 that appears in equation (19). Indeed, the piezoelectric
patches are not entirely free to move since they are bound to the structure. Another way of estimating C0

involves computing the dynamic capacitance C(j)(Ω):

C(j)(Ω) =
Q(j)

V (j)
. (24)

The piezoelectric capacitance is frequency-dependent because of the piezoelectric coupling. It has been
explained in [41] and [42], among others. The j-th static capacitance C0 would then be equal to C(j)(Ω) at
0 Hz.

A simulation of C(j)(Ω) can be obtained by using the finite element formulation of equation (7). When
considering the j-th piezoelectric patch, V (j) serves as the excitation. Meanwhile, the other patches are left
in open-circuit, which means all values in Q are set to 0 except Q(j). The C0 values distribution for the
constant thickness plate previously studied is exhibited in figure 11a. One can notice that the boundary
conditions have an influence on the static capacitances, as the C0 values are smaller in the corners than at
the center. However, a reasonable assumption is to set C0 = 149.3 nF for all piezoelectric patches of the
plate.
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Figure 12: (a) MAC matrix between simulated electrical current modes of the network and simulated velocity modes of the
periodic plate. (b) First four modes of the periodic plate electrical analogous network.

Figure 13: Comparison of the simulated natural frequencies of the periodic plate and of its electrical analogous network.

4.4. Network validation and broadband damping

Now that the parameters KE
θ and C0 have been estimated, the inductance value L can be derived for

each unit cell of the network by applying the frequential coherence condition of equation (19). The resulting
value is 246.6 mH. As stated in section 2.2, the produced inductors have a nominal inductance value of
244 mH, which is close enough to the targeted value to attain a significant damping performance in the end.

Since their behaviors can be predicted, the analogy between the plate and the network can be verified
by comparing the mode shapes and the natural frequencies of both systems. These comparisons are quite
important since they are the main verification methods that will be available in future numerical examples.
The MAC can be used in this case as well, to check if there is a similarity between electrical and mechanical
mode shapes. The MAC matrix of the plate and its analogous network is represented in figure 12a, while
the simulated natural frequencies of both systems are compared in figure 13. The MAC matrix shows that
the first fourteen electrical and mechanical mode shapes are mutually consistent, and the comparison of
natural frequencies shows that both systems have the same first natural frequencies. The fact that the MAC
matrix is not diagonal is due to the comparison between results obtained with a lumped model on one hand,
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Figure 14: Comparison of velocity FRFs : (· · · ) experimental FRF measured with the piezoelectric patches in short-circuit,
(− · −) experimental and (—) simulated FRF when the periodic plate is connected to its electrical analogous network.

and with a finite element model on the other hand. Discretizing the electrical network with more unit cells
would make the MAC matrix tend to a diagonal matrix, and would bring mechanical and electrical natural
frequencies closer. In the end, these figures are further arguments in showing that the developed network is
an electrical analogue of the plate over the considered frequency range.

The case of the structure being coupled to its passive electrical analogue is finally considered. As seen
in figure 14, broadband vibration damping is achieved. Meanwhile, the frame mode at 687 Hz is barely
affected by the connection to the network, which was expected. Besides, the model in equation (13) is able
to predict the dynamics of the structure coupled to its electrical analogue. Hence, this model could be used
to find the optimal resistive components to be added to the network in order to numerically optimize the
damping performance.

5. Broadband damping of non-periodic plates

The present objective is to extend the concept of piezoelectric network damping to complex structures.
The two complex cases studied in this section are non-periodic plates. The first one has a mass locally
added on its surface. The second one is a plate of varying thickness. In both cases, the parameters of the
frequential coherence condition are estimated. The plate analogues are then validated by comparing the
natural frequencies and mode shapes of the structures and of the networks. Finally, a promising broadband
vibration damping performance is achieved by coupling the plates to their respective analogous networks.

5.1. Plate with an additional local mass

The first case of a complex plate here treated is the addition of a mass which is a 22 mm thick, 40 mm
diameter cylindrical rod of 207 g. This mass is added on the side of the plate which is not covered by
piezoelectric patches, on the crossed position in figure 6. The mass is added in the finite element model
as well, in the form of a 22 mm thick patch covering the same surface as a piezoelectric patch. Its Young
modulus is set at 325 MPa. This way, the seventh simulated natural frequency of the plate with short-
circuited patches is adjusted to the seventh peak on the measured FRF. Moreover, the damping coefficient
ξ of equation (14) is now set at 6.10-3 so that the amplitude of the seventh simulated peak is roughly equal
to the measured one. The correlation between numerical and experimental results in this case is shown in
figure 17. When compared to the results in figure 8, one can notice that the natural frequencies of the plate
have been lowered, that the contact with the added mass induces damping in the measured FRF, and that
a frame mode at 203 Hz is now observed. Since the frame is not modeled, its effects can not be foreseen.
The simulated FRF fits quite well with the measured one nonetheless.

To define the non-periodic plate electrical analogue, the first idea is to keep using the frequential coherence
condition of equation (19). Since the mass m has locally been multiplied by a factor of around 6.2, a first
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Figure 15: (a) MAC matrix between simulated electrical current modes of the modified network and simulated velocity modes
of the plate on which a mass has been added. (b) First four modes of the electrical network with a local modification of
inductance.

Figure 16: Comparison of the simulated natural frequencies of the periodic plate on which a mass has been added and of its
electrical analogous network.

approximation would be to multiply the product LC0 of the corresponding unit cell by the same factor. If
only L is modified not to deteriorate the electromechanical coupling [9], the new inductance value would
be 6.2 × 246.6 = 1.53 H. This value is an overestimation however, as some mechanical stiffness is locally
added as well. In this particular studied case, we propose not to use the frequential coherence condition of
equation (19) to define the electrical analogue. Indeed, modeling the contact of the added mass on the plate
to estimate the locally added stiffness is out-of-scope of this work. Furthermore, the stiffness model drawn
in figure 10 gives correct results only if the mid-surface of the unit cell is close to the mid-surface of the
plate. This is not the case here, since the added mass is nearly seven times thicker than the plate. Thus,
we suggest to define the non-periodic plate electrical analogue by tuning the first natural frequency of the
electrical network to the first natural frequency of the non-periodic plate. The first simulated resonance at
around 88 Hz in figure 17 is used as a reference value for the structure. Numerical simulations show that the
initial inductance of 246.6 mH should be locally replaced by an inductance of 1.34 H to set the first natural
frequency of the network to around 88 Hz.
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Figure 17: Comparison of velocity FRFs with the added mass: (· · · ) experimental and (−−) simulated FRF measured with
the piezoelectric patches in short-circuit, (− · −) experimental and (—) simulated FRF when the plate on which a mass had
been added is connected to its electrical analogous network.

The electrical current mode shapes of the modified network are computed using the model of equation (5).
The mode shapes of the periodic plate represented in figure 12b are different from those seen in figure 15b,
which are not symmetric anymore. They are then compared to the velocity modes of the mechanical
structure, which are computed using equation (6). The MAC between these set of natural vectors is plotted
in figure 15a, and the comparison of mechanical and electrical natural frequencies is made in figure 16. It
shows that the first six modes of the network and of the plate are mutually consistent. To obtain a proper
analogy at higher frequencies, two solutions are possible. The first one would be to have more piezoelectric
patches on the plate, which is equivalent to refine the meshing of the analogous network. The second solution
would be to find another analogous unit cell for the plate. Indeed, the significant mass discontinuity induced
by the added mass can hardly be predicted by a finite difference model. As a consequence, this studied case
can be deemed as the limit case of validity for the plate electrical analogue of section 2. In the end, the
analogy between the non-periodic plate and the modified network is still verified up to around 600 Hz.

The non-periodic plate is now coupled to its passive electrical analogue. The FRF measurement is made
with the same setup as described in section 3.3. As seen in figure 17, broadband damping is achieved in
this case as well. This result validates the approach of coupling a non-periodic structure to its fully passive
electrical analogue for multimodal damping purposes. Besides, the simulated results fit rather well with
the measured ones. The remaining differences are due to the differences already spotted between results
with short-circuited piezoelectric patches, and hence could be reduced by modeling the non-ideal boundary
conditions. As it is, this shows that the finite element model developed in this work and expressed by
equation (13) can be used to predict the dynamics of a complex structure coupled to an electrical network.
It could also be used to design the dissipative components that could be added in the network to improve
the damping performance.

5.2. Variable thickness plate

The last studied case is a plate with the same geometry and dimensions as in figure 6 but with a
variable thickness. For now, it is assumed that the thickness hs of the plate varies linearly with the x and
y coordinates. Therefore, with α, β, γ and δ being real values:

hs (x, y) = α+ βx+ γy + δxy. (25)

The numerical values of hs at the plate corners are summed up in table 3. The thickness of each piezoelectric
patch is constant and is set at 1/6 of the mean thickness of the plate portion it covers.

The frequential coherence condition (19) should still be locally verified to ensure that the structure
and its analogous network have identical bending wave propagation properties. The choice is to use the
inductance value L as the tuning parameter. As stated previously, the square unit cell is still of side a = 60
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Table 3: Thicknesses values at the corners of the plate. These four values are enough to set the profile of the plate such as
defined in equation (25).

Position x (mm) Position y (mm) Thickness hs(x, y) (mm)
0 0 5

420 0 3
0 360 4

420 360 2

(a)

6
-• x

y

(b)

Figure 18: (a) MAC matrix between simulated electrical current modes of the network and simulated velocity modes of the
variable thickness plate. (b) First four modes of the variable thickness plate electrical analogous network.

mm. The transformer ratio is kept at â = 4. The local values of m can be computed knowing the thickness
hs(x, y) variations and the materials densities, which remain the same as before. This means that KE

θ and
C0 should be estimated to obtain a value for L.

Because of the thickness variations, the bending stiffness KE
θx and KE

θy along the in-plane directions have
two different values. Estimating these quantities by using the model drawn in figure 10 is made by replacing
hs by its formulation of equation (25) in the method detailed in section 4.2. In the end, the stiffness in
equation (19) is taken as the mean value of KE

θx and KE
θy:

KE
θ =

1

2

(
KE
θx +KE

θy

)
. (26)

As far as the static capacitances distribution go, the same method as suggested in section 4.3 is followed.
The resulting C0 values distribution obtained with the finite element model of equation (7) is shown in
figure 11b. The comparison with the case of a periodic plate shows that all C0 values are different from one
another in the present case since all piezoelectric patches have different thicknesses.

Now that the parameters KE
θ and C0 have been estimated, the inductance value L can be derived for

each unit cell of the network by applying the frequential coherence condition of equation (19). Calculating
the MAC and comparing mechanical and electrical natural frequencies are the main methods of analogy
validation that are going to be used going towards even more complex structures. Hence we use it here
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Figure 19: Comparison of the simulated natural frequencies of the variable thickness plate and of its electrical analogous
network.

Figure 20: (· · · ) Simulated FRF with the piezoelectric patches in short-circuit, and (—) simulated FRF when the variable
thickness plate is connected to its electrical analogous network.

to check that the developed network is the electrical analogue of the considered non-periodic plate. The
mode shapes and natural frequencies of the network and of the non-periodic plate are compared in figure 18
and 19, respectively. The analogy between the two systems is ensured up to the tenth electrical current
mode, which is promising for broadband vibration damping.

The behavior of the plate of variable thickness being coupled to its electrical analogue is finally simulated
using the finite element formulation of equation (13). The excitation is applied to the plate surface where
the piezoelectric patches are bound, at the same point as drawn in figure 6. The same non-ideal transformers
as described in section 2.2 are considered to add some damping to the coupled system. However, the series
resistances of the inductors are set to 0, as it allows better perception of the tuning of the analogous network.
The driving-point mobility is plotted in figure 20. It shows that the objective of the designed analogous
network is met, as the first few modes of the variable thickness plate are damped thanks to the piezoelectric
coupling with the analogous network. While resistors could be included in the model in different positions
of the network in order to enhance the damping performance, this validates the effectiveness of the damping
solution here proposed. Moreover, the electrical components characteristics are realistic. This highlights the
feasibility of integrating such a broadband damping solution with purely passive components to a complex
structure.

6. Conclusions

This work investigates the extension of piezoelectric network damping to non-periodic structures. Indeed,
the efficiency of coupling a periodic mechanical structure via thin piezoelectric patches to a periodic electrical
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network for passive broadband damping purposes has been proven before. The process followed in this article
is to start from the known case of a periodic plate and to gradually make it non-periodic. In all situations,
the structure is connected to an electrical analogue. The electrical network is designed to exhibit the same
modal properties as the mechanical structure to be damped.

As a consequence, the case of a periodic simply-supported plate is first considered. Its electrical analogue
is derived by applying the direct electromechanical analogy to a finite difference model of a Kirchhoff-Love
square plate. The resulting unit cell is then assembled to create the periodic plate electrical analogue. This
network is implemented by producing passive electrical components. The network is then connected to its
analogous mechanical structure. Vibration damping of the first eleven modes of the plate, which are spread
over a frequency range of nearly 1 kHz, is achieved.

Following this, cases of non-periodic plates are investigated. The first one involves a local mass addition
on the plate surface. The natural frequencies and the mode shapes of the structure change because of this
addition. The network is modified accordingly, and a significant multimodal vibration damping performance
is obtained once again. The second studied case of a non-periodic plate is a plate with a variable thickness.
This last case is entirely numerical. The electrical components of the network are designed by respecting the
frequential coherence condition previously derived. The final simulations highlight the achievable damping
performance with a fully passive electrical network connected to the non-periodic structure. It is a first
successful step towards coupling a complex structure to its electrical analogue for multimodal damping
purposes.

Meanwhile, a predictive model of the coupled system has been proposed. It involves a finite element
model of a mechanical structure covered by thin piezoelectric patches on one hand, and a behavioral system
of the electrical network on the other hand. Both models have been validated independently by comparison
with experimental results on periodic and non-periodic plates and networks. These two models have then
be merged to forecast the electromechanical dynamics of the coupled system, which is a contribution of
the present article. This larger model has also been validated by comparison with experimental results
on periodic and non-periodic structures. Therefore, one can be confident about using this finite element
formulation going towards more complex structures. These structures could be plates with various boundary
conditions, arches or tubes. Future works will study the attainable vibration damping performance when
these structures are coupled to their respective analogous networks. Furthermore, it is now possible to
predict the optimal resistive components to add to the network to optimize the damping performance. To
do so, defining quantitative criteria to estimate the multimodal damping performance will be required.
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