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LOCAL TRANSPARENT BOUNDARY CONDITIONS FOR WAVE
PROPAGATION IN FRACTAL TREES (II). ERROR AND

COMPLEXITY ANALYSIS

PATRICK JOLY ∗ AND MARYNA KACHANOVSKA ∗

Abstract. This work is dedicated to a refined error analysis of the high-order transparent
boundary conditions introduced in the companion work [8] for the weighted wave equation on a
fractal tree. The construction of such boundary conditions relies on truncating the meromorphic
series that represents the symbol of the Dirichlet-to-Neumann operator. The error induced by the
truncation depends on the behaviour of the eigenvalues and the eigenfunctions of the weighted
Laplacian on a self-similar metric tree. In this work we quantify this error by computing asymptotics
of the eigenvalues and bounds for Neumann traces of the eigenfunctions. We prove the sharpness of
the obtained bounds for a class of self-similar trees.

Key words. Wave equation, Dirchlet-to-Neumann operator, fractal, metric graph, counting
function, Weyl asymptotics
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1. Introduction. Sound propagation in a human respiratory tract can be used
to detect various lung diseases, see e.g. the Audible Human Project [1, 17]. Because
of the complexity of the underlying physical process, in the respective numerical sim-
ulations one often uses simplified models. One of such models, which we study in this
work, describes wave propagation inside a bronchiolar tree. It is based on multiple
simplifying assumptions, in particular, the absence of the interactions between the
bronchioles and the lung tissue, as well as the geometrical self-similarity of the bron-
chiolar tree [15, 5, 16]. A rigorous asymptotic analysis of this model [10, 18], when
the thickness of the bronchioles tends to zero, leads to the weighted 1D wave equation
on a fractal tree with infinitely many edges.

To perform numerical simulations on such a tree, it is necessary to be able to
truncate the computational domain. To our knowledge, there exist three methods
of doing so, all of them based on approximating the Dirichlet-to-Neumann (DtN)
operator: local low-order approximate boundary conditions (BCs) [9, 18], convolution
quadrature based discrete transparent BCs [6], and local high-order approximate BCs
[8]. A refined error analysis of the latter method constitutes the subject of this article.

In [9], it was proven that the symbol (the Fourier-Laplace transform of the con-
volution kernel) of the DtN operator is a meromorphic function, which can be rep-
resented as a partial fraction expansion with infinitely many terms. Truncating this
expansion at finitely many terms results in a symbol of a convolution operator that is
local in the time domain, see [8]. While this process provides a numerically tractable
and stable realization of the DtN, it introduces an approximation error. This error is
controlled by a remainder of a convergent series, which, in turn, is related to the poles
and residues of the original partial fraction expansion [8]. These arguments prove
convergence of the method as the number of terms in the truncated series tends to
infinity, but do not provide information on the convergence rate.

The goal of this paper is to prove explicit bounds on the convergence rate of the
method of [8]. The principal idea is to exploit the connection between the poles (and
residues) of the partial fraction expansion of the DtN symbol and the eigenvalues
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(and Neumann traces of the eigenfunctions) of a weighted Laplacian on a self-similar
tree. This allows to relate the convergence rate to the asymptotic estimates on the
eigenvalues and bounds on the Neumann traces of the eigenfunctions.

This article is organized as follows. Section 2 introduces the notations and the
problem under consideration. In Section 3 we recall the method of approximated
transparent boundary conditions from [8], and present the result about the conver-
gence of the approximated BCs from [8]. The quantity controlling the error and
depending on the remainder of the convergent series is referred to as the error indi-
cator. Section 3.3 states the goals of the present work based on the results of the
preceding sections. In Section 4 we present an upper bound for the error indicator,
and in Section 5 a lower bound is studied. Section 6 is dedicated to conclusions and
open questions.

2. Problem setting. This section is not new and follows the works [9, 6, 8].

2.1. Notation. We consider an infinite (in terms of the number of edges) p-adic
tree T [9, Definiton 2.1]. Let us define it by construction. First of all, let, with n ∈ N,
Gn be a set of edges, defined as follows: G0 contains a single edge (’root’ edge), G1

contains p edges (children of the root edge in G0, i.e. edges which all share the same
vertex with the root edge), and Gn+1 consists of all pn+1 children edges of all the
edges Σ ∈ Gn. The edges of T are given by the collection

⋃
n∈N
Gn. The pn edges

belonging to Gn will be denoted by

Σn,k, k = 0, . . . , pn − 1.

Each edge Σn,k has p children

Σn+1,pk+j ∈ Gn+1, j = 0, . . . , p− 1.(2.1)

The edges Σn+1,pk+j share the vertex Mn,k with the parent edge Σn,k (see Figure 1).
The root vertex is a vertex incident only to the root edge Σ0,0, and is denoted by M∗.

We will study metric trees. This means that any edge Σn,k can be identified with
a segment of R of length `n,k; additionally, we assign to it a constant weight µn,k > 0.
All over the article, we assume that µ0,0 = 1. In what follows, we will consider self-

M∗
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M1,0

Σ1,1
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. . .
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Figure 1. Left: A self-similar p-adic (p = 2) infinite tree. In blue we mark the edges that
belong to G0, in orange the edges of G1, in magenta the edges of G2. Right: Distribution of weights
on the edges of a binary infinite self-similar tree.

similar (fractal) trees, see [9, Definition 2.3]. Let us explain this in more detail. With
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such trees we associate two vectors

α = (α0, . . . , αp−1) , µ = (µ0, . . . , µp−1) , α,µ ∈ R+
∗ .(2.2)

The self-similarity condition means that the length/weight of the edge Σn+1,pk+j is
related to the length/weight of its parent edge Σn,k according to the following rule:

`n+1,pk+j = αj`n,k, µn+1,pk+j = µjµn,k, j = 0, . . . , p− 1.

We will assume that the tree is ’bounded’, i.e.

(2.3) |α|∞ := sup
j=0,...,p−1

αj < 1.

Given m ∈ N∗, by T m, we denote the subtree of T made of the first m generations,
i.e., with an obvious abuse of notation:

(2.4) T :=
+∞⋃
`=0

G`, T m :=

m⋃
`=0

G`.

Let us call a tree a ’reference tree’ if the length of the root edge is `0,0 = 1. Unless
stated otherwise, we will always assume that T is a reference tree.

2.2. The weighted wave equation on fractal trees. To write differential
equations on the tree T , we need to introduce along each edge Σn,j ∈ Gn an abscissa
s ∈ [0, `n,j ] in such a way that Σn,j is oriented towards the generation Gn+1. This
allows us, with an obvious abuse of notation, to write a function defined ot T as a
function of s, seen as the space variable.

We then define (formally) the weight function s 7→ µ(s) on T by µ(s) = µn,j ,
s ∈ Σn,j . Denoting by t the time variable, and given a source term f : T × R+ → R,
we will look for u : T ×R+ → R, defined as follows. With the notation un,j = u|Σn,j ,
u satisfies on each edge Σn,j the 1D wave equation:

∂2
t un,j − ∂2

sun,j = fn,j on Σn,j , j = 0, . . . pn − 1, n ≥ 0,(2.5)

and the following continuity and Kirchoff conditions:

(2.6)

un,j(Mn,j , t) = un+1,pj+k(Mn,j , t), k = 0, . . . , p− 1,

∂sun,j(Mn,j , t) =
p−1∑
k=0

µk ∂sun+1,pj+k(Mn,j , t), j = 0, . . . pn − 1, n ≥ 0.

Equations (2.5, 2.6) are completed by a homogeneous Dirichlet condition at the root
vertex M∗ and vanishing initial conditions:

u(M∗, t) = 0, t > 0, u(., 0) = ∂tu(., 0) = 0, on T .(2.7)

Additionally, we need to define the BCs at the ’infinite’, fractal boundary of the tree.
This is the most delicate point of the model, which we will formalize in Section 2.3.

2.3. Neumann and Dirichlet BVPs. To provide a rigorous mathematical
formulation of the problem (2.5, 2.6, 2.7), we shall equip it with Neumann or Dirich-
let boundary conditions at the ’infinite’ boundary of the tree. This is done in the
weak sense through the variational formulation on the problem, which requires the
introduction of appropriate weighted Sobolev spaces on T .
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2.3.1. Sobolev Spaces. For a function v : T → C, we adopt the notation∫
T

µ v :=

∞∑
n=0

pn−1∑
k=0

µn,k

∫
Σn,k

v(s) ds(2.8)

Let C(T ) be a space of continuous functions on T , and

C0(T ) := {v ∈ C(T ) : v = 0 on T \ T m, for some m ∈ N}.

Let us introduce the following three spaces. First of all,

L2
µ(T ) = {v : v|Σ ∈ L2(Σ), for all Σ ∈ T ; ‖v‖ <∞}, ‖v‖2 = ‖v‖2L2

µ(T ) :=

∫
T

µ|v|2.

We denote by (., .) the corresponding complex scalar product in L2
µ(T ). The weighted

Sobolev space H1
µ is defined as follows:

H1
µ(T ) := {v ∈ C(T ) ∩ L2

µ(T ) : ‖∂sv‖ <∞}, ‖v‖2H1
µ(T ) = ‖v‖2 + ‖∂sv‖2.

Finally, the last space is an analogue of the classical H1
0 -space:

H1
µ,0(T ) := C0(T ) ∩H1

µ(T )
‖.‖H1

µ(T )
.

Similarly, we define the corresponding spaces on a truncated tree T m. The associated
L2
µ-scalar product will be denoted by (., .)Tm .

Finally, we will use the following result from [9].

Theorem 2.1. For |α|∞ < 1, the embedding of H1
µ(T ) in L2

µ(T ) is compact.

Remark 2.2. In what follows we will not make an explicit distinction between
complex and real function spaces, keeping in mind that time-dependent quantities are
real-valued; in the rest of the paper the complex function spaces are used.

2.3.2. The BVP problems. To define the Neumann (resp. Dirichlet) problem,
we introduce the space Vn (resp., Vd) that differs from H1

µ(T ) (resp. H1
µ,0(T )) only

by the condition at the root vertex:

Vn(T ) := {v ∈ H1
µ(T ) : v(M∗) = 0}, Vd(T ) := {v ∈ H1

µ,0(T ) : v(M∗) = 0}.

In the sequel, we shall use the index a to distinguish between the Neumann (a = n)
and Dirichlet problems (a = d), whose weak formulation is essentially the same, the
only difference lying in the choice of the trial and test space, i.e. Vn(T ) or Vd(T ).

Definition 2.3 (Neumann and Dirichlet problems).
Find ua ∈ C0(R+;Va(T )) ∩ C1(R+; L2

µ(T )), s.t. ua(., 0) = ∂tua(., 0) = 0, and

(∂2
t ua, v) + (∂sua, ∂sv) = (f, v), for all v ∈ Va(T ).(2.9)

The above problems are well-posed whenever f ∈ L1
loc(R+; L2

µ(T )), [6, Theorem 2.1].
Surprisingly, in some cases the solutions un and ud may coincide. To explain this
result in more detail, let us introduce

(2.10)
〈
µα
〉

:=

p−1∑
i=0

µiαi, 〈µ/α〉 :=

p−1∑
i=0

µi
αi
, (since |α|∞ < 1,

〈
µα
〉
< 〈µ/α〉).

Theorem 2.4 ([9]). If
〈
µα
〉
≥ 1 or 〈µ/α〉 ≤ 1, the spaces H1

µ,0(T ) and H1
µ(T )

coincide, and thus un = ud. Otherwise, H1
µ,0(T ) ( H1

µ(T ), and un 6= ud.
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2.4. Reduction to a finite tree. In what follows, we assume that the source
term is supported on a finite number of generations:

(2.11) ∃ m0 > 1 such that ∀ t > 0, supp f(., t) ⊆ T m0 .

To perform numerical simulations, we will truncate the tree T to m generations with
m > m0 , in order to compute the restriction of the solution ua of (2.9) to T m. This
allows to consider (2.5, 2.6) only for n ≤ m. The problem is then to find boundary
conditions at the boundary of T m (except M∗), i.e. at points {Mm,j , 0 ≤ j ≤ pm−1},
that should characterize the restriction of ua to T m. Such conditions are called
transparent boundary conditions.

Remark 2.5. All over the article we consider the parameter m to be fixed.

For the problems (2.9), the transparent BCs were constructed and characterized in
[9]. Before presenting them, let us introduce auxiliary notations.

2.4.1. Notations. We will denote by K(∂t) the following convolution operator:

(
K(∂t)v

)
(t) =

t∫
0

k(t− τ)v(τ)dτ, where v : t ∈ R+ 7→ v(t) ∈ R.

The integral in the above has to be understood in the sense of a convolution of
causal tempered distributions. The notation K(∂t) refers to the symbol K(ω) of the
convolution operator (i.e. the Fourier-Laplace transform of the convolution kernel k):

K(ω) := (Fk)(ω) =

+∞∫
0

eiωtk(t)dt, ω ∈ C+ := {z ∈ C : Im z > 0}.

Following the above convention, provided a scaling parameter δ > 0, we will denote
by K(δ ∂t) the convolution operator with the symbol K(δω). In what follows we will
work with the space H1

0,loc(R+) := {v ∈ H1
loc(R+) : v(0) = 0}.

2.4.2. Transparent boundary conditions. With the above, the transparent
boundary condition at the node Mm,j takes the form (see Remark 2.6)

−µm,j ∂sua(Mm,j , t) = Bam,j(∂t)ua(Mm,j , t),(2.12)

where the operators Bam,j ∈ L
(
H1

0,loc(R+), L2
loc(R+)

)
, cf. [7], are related to a single

convolution operator Λa(∂t) (defined further) via

Bam,j(∂t) = µm,j α
−1
m,j

p−1∑
k=0

µk
αk

Λa

(
αkαm,j ∂t

)
.(2.13)

The operator Λa(∂t) ∈ L
(
H1

0,loc(R+), L2
loc(R+)

)
is the reference DtN operator.

2.4.3. Reference DtN operator. Recall that T is the reference tree. The
reference DtN is the DtN associated to the root vertex of this tree, namely:(

Λa(∂t)g
)
(t) := −∂suag(M∗, t), g ∈ H1

0,loc(R+), where(2.14)

• if a = n, uag ∈ C1(R+;L2
µ(T )) ∩ C0(R+; H1

µ(T )),
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• if a = d, uag ∈ C1(R+;L2
µ(T )) ∩ C0(R+; H1

µ,0(T )),
and uag solves

(∂2
t u

a
g, v) + (∂su

a
g, ∂sv) = 0, for all v ∈ Va(T ), uag(M

∗, t) = g(t),

uag(., 0) = ∂tu
a
g(., 0) = 0.

(2.15)

Remark 2.6. Since understanding the construction of the transparent BCs is not
required for reading this paper, we refer the interested reader to [9] for more details.

2.4.4. The truncated problem. We consider the problem consisting in solving
(2.5, 2.6) for n ≤ m completed with the transparent conditions (2.12). To formulate
it, let us introduce the space Vµ(T m) of restrictions to T m of functions in Va(T ):

Vµ(T m) := {v ∈ H1
µ(T m) : v(M∗) = 0},

and the vectorial trace operators on Γm := {Mm,j , 0 ≤ j ≤ pm−1}:

γm : Vµ(T m)→ Rp
m

, γmv = (v(Mm,0), . . . , v(Mm,pm−1)) .(2.16)

Accordingly, we introduce the matrix operator

Bam(∂t) = diag
(
Bam,j(∂t)

)
0≤j≤pm−1

∈ L
(
H1

0,loc(R+,Rp
m

), L2
loc(R+,Rp

m

)
)
.(2.17)

The weak formulation of such a problem reduced to the finite tree T m reads:

Find uam ∈ C(R+;Vµ(T m)) ∩ C1(R+; L2
µ(T m)), s.t. uam(., 0) = ∂tu

a
m(., 0) = 0, and

(∂2
t u

a
m, v)Tm + (∂su

a
m, ∂sv)T m +

∫
Γm

Bam(∂t)γmu
a
m γmv = (f, v)T m ,(2.18)

for any v ∈ Vµ(T m). Here, for ϕ ∈ C0(R+;Vµ(T m)) and f1, f2 : R→ R, we use the
notation: ∫

Γm

f1(µ)f2(α)γmϕ(t) :=

pm−1∑
j=0

f1(µm,j)f2(αm,j)ϕ(Mm,j , t).(2.19)

The problems (2.9) and (2.18) are equivalent in the following sense.

Theorem 2.7 (Theorem 2.6 in [6]). For all f ∈ L1
loc(R+; L2

µ(T )) satisfying
(2.11), the problem (2.18) has a unique solution uam, and uam = ua|Tm , where ua
solves (2.9).

Unlike (2.9), the problem (2.18) is suitable for numerical simulations (provided that
the boundary term is computable), as it is posed on a tree with finitely many edges.

2.5. Characterization and properties of the reference DtN operator.
The resolution of (2.18) relies on approximating the operator Bam(∂t), in other words,
through (2.13), on approximating the reference DtN operator Λa(∂t). The goal of this
section is to describe an important property of the reference DtN, which will be used
in the construction and analysis of the transparent boundary conditions. For this, let
us define the following Hermitian non-negative sesquilinear form on Va := Va(T ):

∀ (u, v) ∈ Va, a(u, v) = (∂su, ∂sv) ≡
∞∑
n=0

pn−1∑
k=0

∫
Σn,k

µn,k ∂su ∂sv ds.(2.20)
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It allows to define two unbounded self-adjoint operators Aa, a = n or d, in L2
µ(T ):

Aa : D(Aa)→ L2
µ(T ), (Aau, v) = a(u, v),(2.21)

D(Aa) = {v ∈ Va : with C(v) > 0, |a(v, g)| < C(v)‖g‖L2
µ(T ), for all g ∈ Va}.(2.22)

Remark 2.8. In a strong form, the operator Aa is a weighted Laplace operator
µ−1(s)∂s(µ(s)∂s.) on L2

µ(T ), with the Dirichlet condition at the root of the tree and
the Neumann (a = n) or Dirichlet (a = d) conditions at the fractal boundary of T .

From Theorem 2.1 it follows that the spectrum of these operators is a pure point
spectrum. We define the eigenvalues and normalized eigenfunctions as

Aaϕa,n = ω2
a,n ϕa,n, ‖ϕa,n‖L2

µ(T ) = 1, 0 < ω2
a,1 ≤ ω2

a,2 ≤ . . .→ +∞.(2.23)

Remark that the eigenvalues do not vanish, as shown in [9, Remark 1.20]. A spectral
representation of the operator Aa yields the following result.

Theorem 2.9 (Proposition 1.23, discussion after (144) in [9]). The symbol of
the reference DtN operator Λa, a ∈ {n, d}, satisfies

Λa(ω) = Λa(0)− ω2
+∞∑
n=1

aa,n
(ωa,n)2 − ω2

, aa,n = ω−2
a,n ∂sϕa,n(M∗)2.(2.24)

The above series converges uniformly on compact subsets of C \ {±ωa,n, n ≥ 1}.
In (2.23), the eigenvalues are repeated with their multiplicities, and, as a conse-
quence, the series (2.24) may have repeated poles. Moreover, the unique continuation
principle for eigenfunctions no longer holds, and it may happen that ϕa,n 6≡ 0, but
∂sϕa,n(M∗) = 0 (hence aa,n = 0). For this reason, we introduce the sets

(2.25)


Sappa := {ω2 / ∃ n ≥ 1 s. t. ω2 = ω2

a,n}, (⇔ apparent poles)

Sa := {ω2 ∈ Sappa /
∑

ω2
a,n=ω2

∂sϕa,n(M∗)2 > 0 }, (⇔ poles)

and recast the set Sa as

(2.26) Sa :=
{

Ω2
a,k, k ≥ 1, with 0 < Ωa,1 < Ωa,2 < . . .→ +∞

}
,

so that Pa =
{
± Ωa,k, k ≥ 1} is the set of poles of Λa(ω). All the above allows to

rewrite (2.24) as follows:

Λa(ω) = Λa(0)− ω2
+∞∑
k=1

Aa,k

Ω2
a,k − ω2

, with Aa,k > 0.(2.27)

Remark 2.10. Using Theorem 2.9, it is possible to show that the series (2.27)
converges uniformly on the compact subsets of C \ Pa.

3. Approximate transparent boundary conditions: formulation and er-
ror analysis. As pointed out in the end of Section 2.4.4, the numerical resolution of
(2.18) requires approximating the operators Bam, or, with (2.13), the operators Λa(∂t).
This is the subject of this section. All over this section we fix m ≥ 1.
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3.1. A formulation of the method.

3.1.1. Approximating the reference DtN operator. The idea is to realize
a local approximation of the operator Λa(∂t) through a rational approximation of its
symbol. Of course, the most natural idea is to truncate the series (2.27) at N terms
(with N becoming an approximation parameter):

ΛN
a (ω) = Λa(0)− ω2

N∑
k=1

Aa,k

Ω2
a,k − ω2

,(3.1)

and to define ΛNa (∂t) as the operator whose symbol is ΛN
a (ω). This operator can be

realized through the introduction of N auxiliary unknowns which are coupled to the
argument of ΛNa (∂t) via ODEs. More precisely

(
ΛNa (∂t)g

)
(t) = Λa(0) g(t) +

N∑
k=1

Aa,k
dλk
dt

, where

d2λk
dt2

+ Ω2
a,kλk =

dg

dt
, λk(0) =

dλk
dt

(0) = 0.

(3.2)

Remark 3.1. The coefficients Aa,k, Ωa,k can be computed with the method of [8].

3.1.2. Approximating the transparent boundary conditions. According
to the previous section, we introduce the truncated DtN operator Ba,Nm (∂t) by replac-
ing in (2.13) Λa by ΛNa , i.e.,

Ba,Nm (∂t) = diag
(
Ba,Nm,j (∂t)

)
0≤j≤pm−1

,

Ba,Nm,j (∂t) = µm,j α
−1
m,j

p−1∑
k=0

µk
αk

ΛNa (αkαm,j∂t).
(3.3)

3.1.3. A truncated system. Using the approximation (3.3) in the truncated
system (2.18) yields the following problem:

Find ua,Nm ∈ C1(R+; L2
µ(T m)) ∩ C0(R+;Vµ(T m)) s.t. ua,Nm (0) = ∂tu

a,N
m (0) = 0,

and s.t. for any v ∈ Vµ(T m),

(∂2
t u

a,N
m , v)T m + (∂su

a,N
m , ∂sv)Tm +

∫
Γm

Ba,Nm (∂t)γmu
a,N
m γmv = (f, v)T m .(3.4)

The stability of (3.4) (independently of N) was proven in [8]: it relies on the non-
negativity of Λa(0) and the coefficients Aa,k, k ∈ N∗, in (3.1).

3.2. Error analysis. The convergence of ua,Nm towards uam was established in
[8] through an (abstract) error estimate. To state this result, let us introduce the
following notation for the error:

(3.5) εa,Nm := ua,Nm − uam (recall that uam = ua|Tm , cf. Theorem 2.7).

We will need an additional regularity assumption on the source term f , namely

(3.6) f ∈W 4,1(R+; L2
µ(T m)) and f(0) = . . . = f (3)(0) = 0.
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Additionally, let us introduce the following parameter that will control the error

ra,N :=

∞∑
k=N+1

Aa,k Ω−2
a,k, with Sa :=

∞∑
k=1

Aa,k Ω−2
a,k < +∞.(3.7)

The convergence of the series Sa was proven in [8]. Let us introduce the energy norm
of v ∈ C1(R+; L2

µ(T m)) ∩ C0(R+;Vµ(T m)), with v(0) = 0:

(3.8) |||v|||[0,T ];T m := sup
t≤T

(
‖∂tv(·, t)‖L2

µ(T m) + ‖∂sv(·, t)‖L2
µ(T m)

)
.

We then have the following abstract error estimate.

Theorem 3.2 ([8]). Let m,N ≥ 1. Let f satisfy (2.11) and (3.6). Then, with
ra,N defined in (3.7), the error (3.5) satisfies, with some Cm > 0,

|||εa,Nm |||[0,T ];Tm ≤ Cm T ra,N ‖∂4
t ∂sua‖L1(0,T ;L2

µ(T )), for all T > 0.(3.9)

Therefore, for fixed T,m, for all 0 < t < T , ‖εa,Nm (t)‖L2
µ(T m) → 0, as N → +∞.

The error estimate (3.9) shows that the error is governed by the quantity ra,N (which
we will refer to as an error indicator in the rest of the paper). It however remains
abstract because we do not provide any explicit bound for ra,N .

3.3. The goal of this article. Because the convergence of the approximate
transparent boundary conditions is defined by the remainder ra,N of the convergent
series Sa, the main goal of the present article is to provide an explicit upper bound on
ra,N in terms of N . While Theorem 3.2 provides only an upper bound for the error
induced by the approximation (3.3), in practical computations (see the numerical
experiments in [8]) this bound often appears to be tight (i.e. the error εa,Nm converges
with N like ra,N ). Therefore, we will also obtain a lower bound on ra,N explicit in N .

Remark 3.3. The number of terms in the approximation (3.1) plays a role in the
complexity estimates. As seen from (3.2), in the time domain we introduce N auxiliary
unknowns coupled to the original unknown ua,Nm through N ODEs. The numerical
resolution of (3.4) discretized as suggested in [8] is then of O(N) complexity.

4. Explicit upper bounds for the error indicator.

4.1. Main results. Here we summarize the principal results of Section 4, while
the proofs will be provided in the sections that follow.

Remark 4.1. In what follows we will use the notation
∑

instead of
p−1∑
j=0

.

To formulate these results, let us introduce the Minkowski dimension of T , cf. [14]:

ds > 0 is a unique number s.t.
∑

αdsj = 1.(4.1)

To prove the existence and uniqueness of ds > 0, we remark that the function d 7→∑
αdj is continuous strictly monotonically decaying on R+, and takes values from p

to 0. In what follows we will also use the following notation:

〈α〉 :=
∑

αj .

It is clear that ds < 1 if and only if 〈α〉 < 1. This case corresponds to the fact that
the total length of all the branches of the tree T is finite. We then have
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Theorem 4.2 (Convergence rate). There exists c+a > 0, depending on µ, α, s.t.,
for all N ≥ 2, ra,N defined in (3.7) satisfies:

• if 〈α〉 < 1 (ds < 1), ra,N ≤ c+a N−1.

• if 〈α〉 = 1 (ds = 1), ra,N ≤ c+a N−1 logN .

• if 〈α〉 > 1 (ds > 1), ra,N ≤ c+a N−
1
ds .

Alternatively, we can reformulate the above statement as a result for

Na,ε := inf{N ∈ N∗ : ra,N < ε}.(4.2)

This quantity shows how many terms should be taken in the approximation (3.3) in
order to ensure that |||εa,Nm |||[0,T ];Tm < Cε, with some C > 0, and is important for
complexity estimates, cf. Remark 3.3.

Theorem 4.3. There exists C+
a > 0, depending on µ, α, s.t., for all 0 < ε < 1/2,

Na,ε defined in (4.2) satisfies:

• if 〈α〉 < 1 (ds < 1), Na,ε ≤ C+
a ε−1.

• if 〈α〉 = 1 (ds = 1), Na,ε ≤ C+
a ε−1 log ε−1.

• if 〈α〉 > 1 (ds > 1), Na,ε ≤ C+
a ε−ds .

4.2. Motivation and plan of the section. Proving Theorem 4.2 requires find-
ing an explicit bound on ra,N in terms of N . For this we remark that comparing the
two series representations (2.24) and (2.27) of Λa(ω), it is possible to re-express ra,N
using the eigenvalues ω2

a,n of Aa and the coefficients aa,n (as defined by (2.23)). This
yields two definitions of ra,N (the first definition below is the definition (3.7)):

ra,N =

∞∑
k=N+1

Aa,k

Ω2
a,k

, ra,N ≡
∑

ωa,n>Ωa,N

aa,n
ω2
a,n

, aa,n =
∂sϕa,n(M∗)2

ω2
a,n

.(4.3)

From the above it is clear that estimating ra,N requires
(i) an estimate on the asymptotic (as n→ +∞) growth of the eigenvalues ω2

a,n;
(ii) an estimate on the coefficients aa,n, which, in turn, requires an estimate on

∂sϕa,n(M∗).
To obtain (i), it is sufficient to find the asymptotic behaviour of the counting function

ρa : R+ → N, ρa(λ) = #{` : ω2
a,` < λ},(4.4)

of the operator Aa, as λ→ +∞. For addressing (ii), the most natural approach would
be to estimate individually each of the coefficients aa,n. It is not difficult to prove
that there exists Ca > 0, s.t. aa,n ≤ Ca for all n ∈ N∗. Combining this upper bound
with the asymptotic estimate provided by (i), i.e. ω2

a,n = c(n) + o(c(n)) as n→ +∞,
yields an upper bound on ra,N :

ra,N ≤ CCa
∑

ωa,n>Ωa,N

c(n)−1, with some C > 0.

However, depending on the geometry of the tree T , the series in the right-hand side
may not converge. Because numerical experiments indicate that the uniform bound
aa,n ≤ Ca is optimal (we conjecture that there exists ca > 0, s.t. for all n ∈ N there
exists n∗ > n s.t. aa,n∗ > ca), a different strategy for estimating ra,N is needed.
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An alternative strategy. To obtain an estimate on ra,N , we replace an individual
estimate of aa,n by an estimate on a sum of aa,n lying in a certain frequency window.
This idea was inspired by the work of Barnett and Hassell [3], where the authors prove
a certain quasi-orthogonality property of the Neumann traces of the eigenfunctions of
the Dirichlet Laplacian −∆ in a open set in Rd.

As we will see, for this it is more advantageous to work with the second definition
of ra,N in (4.3). The price to pay when using this strategy is that the obtained bound
is of the type ra,N ≤ CΩ−1

a,N , which is not explicit in N . Nonetheless, it is possible to
make this bound explicit in N by exploiting estimates on the counting function (4.4).

Plan of the section. The rest of this section is organized as follows. In Section
4.3, we prove the bound ra,N ≤ CΩ−1

a,N . Section 4.4 is dedicated to the study of
the asymptotics of the counting function (4.4). In Section 4.5 we combine these two
results to prove Theorem 4.3. We could have started by the proof of Theorem 4.2,
but this seemed somewhat less natural to us. In Section 4.6, we prove Theorem 4.2.

4.3. An implicit bound on ra,N . Based on the second expression in (4.3), let
us introduce the following quantity

Ra,ω :=
∑

ωa,n>ω

aa,n
ω2
a,n

, so that ra,N ≡ Ra,Ωa,N
.(4.5)

We then have the first result (cf. the discussion in the end of Section 4.2).

Proposition 4.4. There exists c̃+a > 0, that depends on α,µ, s.t.

Ra,ω < c̃+a ω
−1, for all ω > 0.(4.6)

As discussed in the end of Section 4.2, the proof of Proposition 4.4 relies on an estimate
on the Neumann traces of ’packages’ of eigenfunctions. We need a corresponding
auxiliary result, which is summarized and proven in the section that follows.

4.3.1. An upper bound for the Neumann traces of eigenfunctions.

Lemma 4.5. For any η > 0, there exists C+
η > 0 (that depends on µ,α, a) s.t.∑

j: |ωa,j−ω|<η
(∂sϕa,j(M

∗))2
ω−2
a,j ≡

∑
j: |ωa,j−ω|<η

aa,j ≤ C+
η , for all ω > 0.(4.7)

The above lemma shows that the sum of the coefficients aa,j corresponding to the
eigenfrequencies lying in the frequency window (ω−η, ω+η) is bounded independently
of ω. This result is stronger than the simple uniform estimate |aa,j | ≤ Ca because it
is independent on the number of the eigenfrequencies on the interval (ω − η, ω + η).

The proof of this result is adapted from the proof of a similar estimate for the
Laplacian in a bounded domain in Rd by Barnett, Hassell [3]. The only modification
compared to [3] is required in the proof of Lemma 2.1 [3], where we choose a smooth
multiplier χ(s) (in the notation of [3], a(s)) supported on Σ0,0, s.t. χ(M∗) = −1. We
will nonetheless present its proof here, for the sake of self-consistency of the paper.
To prove Lemma 4.5, we start with the following auxiliary lemma.

Lemma 4.6. Let J a
ω,η := {j : |ωa,j − ω| < η}, where ω ≥ 1, η > 0. Let

∀ c = (cj)j∈J a
ω,η
∈ RKa (where Ka = #J a

ω,η), ϕc :=
∑

j∈J a
ω,η

cjϕa,j .

Then, with some Cη > 0,

|ϕ′c(M∗)| ≤ Cηω‖c‖RKa .(4.8)
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Proof. Let χ : T → R be a C1-function supported on the root branch Σ0,0, with
χ(M∗) = 1 and χ(M0,0) = 0. Identifying Σ0,0 with [0, 1] (and M∗ with 0), we have

ϕ′c(0)2 = −
1∫

0

d

ds
(χ(s)ϕ′c(s))

2
= I1 + I2,

I1 = −
1∫

0

χ′(s)(ϕ′c(s))
2ds, I2 = −2

1∫
0

χ(s)ϕ′c(s)ϕ
′′
c(s)ds.

(4.9)

Our goal is to bound I1, I2. First of all, from the definition (2.23) it follows that

‖ϕa,j‖ = 1, ‖∂sϕa,j‖2 = ω2
a,j , (ϕa,j , ϕa,k) = (∂sϕa,j , ∂sϕa,k) = 0, for j 6= k.(4.10)

The above with the definition of J a
ω,η yields the bound:

‖ϕc‖L2
µ

= ‖c‖, ‖ϕ′c‖2 =
∑

j∈J a
ω,η

ω2
a,jc

2
j ≤ (ω + η)2‖c‖2.(4.11)

The first term in (4.9) thus satisfies

|I1| ≤ |χ′|∞(ω + η)2‖c‖2.(4.12)

By Remark 2.8, because µ is piecewise-constant on T , on Σ0,0 it holds that −ϕ′′a,j =

ω2
a,jϕa,j . We use this expression to handle ϕ′′c in I2, cf. (4.9):

I2 = 2

1∫
0

χ(s)ϕ′c(s)
∑

j∈J a
ω,η

ω2
a,jcjϕa,j(s)ds.(4.13)

Bounding the above term with the Cauchy-Schwarz inequality would result in

|I2| ≤ C‖ϕ′c‖

∥∥∥∥∥∥
∑

j∈J a
ω,η

ω2
a,jcjϕa,j

∥∥∥∥∥∥
(4.11)

≤ C(ω + η)3‖c‖2,

which, for large ω, is ω times more than what we would like to have. To overcome
this problem, we will use two observations: 1) ωa,j in the above sum are ’close’ to ω;
2) the orthogonality of eigenfunctions (cf. the first equation of (4.11)). We rewrite∑

j∈J a
ω,η

ω2
a,jcjϕa,j(s) =

∑
j∈J a

ω,η

(ω2
a,j − ω2)cjϕa,j(s) + ω2ϕc(s) = ψc(s) + ω2ϕc(s).

Then (4.13) rewrites

I2 = 2

1∫
0

χ(s)ϕ′c(s)ψc(s)ds+ 2ω2

1∫
0

χ(s)ϕ′c(s)ϕc(s)ds

= 2

1∫
0

χ(s)ϕ′c(s)ψc(s)ds− ω2

1∫
0

ϕ2
c(s)χ

′(s)ds,(4.14)
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where we integrated by parts using χ(1) = 0 and ϕc(0) = 0. Next we bound ψc using
first the orthogonality of ϕa,j , cf. (4.11), and next |ω2

a,j − ω2| ≤ η(2η + ω), j ∈ J a
ω,η:

‖ψc‖2 =
∑

j∈J a
ω,η

(ω2
a,j − ω2)2c2j ≤ η(2η + ω)‖c‖2.(4.15)

Therefore, by the Cauchy-Schwarz inequality, using the bounds (4.11) and (4.15),
applied to (4.14), we have

|I2| ≤ 2|χ|∞
√
η(2η + ω)(ω + η)‖c‖2 + |χ′|∞(ω + η)2‖c‖2.

Combining the above bound and (4.12) in (4.9) results in

|ϕ′c(0)|2 ≤ C(η)ω2‖c‖2,

which is the desired statement (with an abuse of notation M∗ ≡ 0).

Lemma 4.5 is then almost an immediate corollary of Lemma 4.6.

Proof of Lemma 4.5. Clearly, it suffices to prove the bound for ω large enough.
Take in Lemma 4.6 c := (∂sϕa,j(M

∗))j∈J a
ω,η

. Then (4.8) rewrites

∑
j∈J a

ω,η

∂sϕa,j(M
∗)2 ≤ Cηω

( ∑
j∈J a

ω,η

∂sϕa,j(M
∗)2
) 1

2

.

This yields
∑

j∈J a
ω,η

∂sϕa,j(M
∗)2 ≤ C2

ηω
2. For ω large enough, for all j ∈ J a

ω,η, one has

that ωa,j ≥ ω − η > 0, and therefore,

∑
j∈J a

ω,η

(∂sϕa,j(M
∗))2ω−2

a,j ≤ Cη
ω2

|ω − η|2
≤ C̃η,

for all ω large enough. This proves Lemma 4.5.

4.3.2. Proof of Proposition 4.4. Because ω 7→ Ra,ω is non-increasing and
piecewise-constant, it suffices to prove Proposition 4.4 for ω = M ∈ N∗. We start by
rewriting (4.5) in the following form

Ra,M =
∑

n:ωa,n≥M

aa,n
ω2
a,n

=

∞∑
n=M

∑
n≤ωa,j<n+1

aa,j
ω2
a,j

,

where, in order to apply Lemma 4.5, we split the interval [m,∞) into subintervals
[k, k+1), k ≥ m, and sum over the eigenvalues belonging to these intervals. Obviously,

Ra,M ≤
∞∑

n=M

1

n2

∑
n≤ωa,j<n+1

aa,j ≤
∞∑

n=M

1

n2

∑
|ωa,j−n|≤1

aa,j ≤ C+
1

∞∑
n=M

1

n2
,

where the last bound follows from Lemma 4.5 applied with η = 1. The above remain-
der is then O(M−1), which proves the desired statement.
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4.4. Asymptotics of the counting function. The second result, necessary
for the proof of Theorem 4.2, cf. Section 4.2, summarizes estimates on the counting
function ρa. We shall need the following definition:

Definition 4.7 (Arithmetic set, cf. [14]). A set E = {γj , 0 ≤ j ≤ p− 1} ⊂ R+
∗

is called arithmetic if γj/γk ∈ Q for all j, k. The span of E is the largest γ ∈ R+
∗ , s.t.

γj/γ ∈ N for all j.

Theorem 4.8. The counting function ρa, cf. (4.4), satisfies, as λ→ +∞,

1. if 〈α〉 < 1 (ds < 1), then ρa(λ) = π−1 (1− 〈α〉)−1
λ

1
2 +O(λ

ds
2 ).

2. if 〈α〉 = 1 (ds = 1), then ρa(λ) = π−1 Cα λ
1
2 log λ

1
2 +O(λ

1
2 ), where

Cα =
(∑

αj logα−1
j

)−1

.

3. if 〈α〉 > 1 (ds > 1), there exists a bounded function ρ∞a : R+ → R+, s.t.

ρa = ρ∞a (λ)λ
ds
2 + o(λ

ds
2 ), a ∈ {d, n},(4.16)

where, with E := {logα−1
j , j = 0, . . . , p− 1}, the function ρ∞a satisfies:

• if the set E is arithmetic with the span γ, then ρ∞a (λ) = ψ∞a ( 1
2 log λ)

with ψ∞a piecewise-continuous and γ-periodic, s.t. 0 < ψ− < ψ∞a < ψ+.

• otherwise, ρ∞a (λ) = ρ∞a (const > 0).

The goal of this section is to prove Theorem 4.8. Asymptotics of counting functions
of the discrete and continuous Laplacian on various types of fractals were obtained in
e.g. [13, 14, 2], see as well [11] and references therein. Our geometric setting bears
some similarities to the one from the work by Levitin, Vassiliev [14], however, we do
not use the same geometrical and boundary condition assumptions.

We will make use of the ideas from the seminal article by Kigami and Lapidus
[13], whether the authors study the counting function for the discrete Laplacian on the
post-critically finite self-similar fractals (the geometry considered in the present paper
does not belong to this class). In particular, like for the classical Weyl’s estimates
(for the Laplacian in bounded domains of Rd for instance), the study of ρa(λ) relies
on the min-max principle and the so-called Dirichlet-Neumann bracketing technique.
Using properties of the fractal geometry, it is possible to write a recursive equation
for ρa(λ), which next is investigated using the renewal theorem from [14].

4.4.1. A recursive equation for ρa(λ). This section is dedicated to the proof
of the recursive equation for ρa(λ). For this, we will extensively use the well-known
min-max characterization of the eigenvalues:

ω2
a,n = inf

Q∈Fn(Va)
sup
v∈Q

a(v, v)

‖v‖2
L2
µ(T )

where Fn(Va) := {Q : Q ⊂ Va,dimQ = n}.(4.17)

Lemma 4.9 (A recursive equation). The functions ρa, a ∈ {n, d}, satisfy

ρa(λ) = ra(λ) +
∑

ρa(α2
jλ), λ > 0,(4.18)

where ra : R+
∗ → R+

∗ is a piecewise-continuous function, s.t.⌈
π−1λ

1
2

⌉
− 1 ≤ ra(λ) ≤

⌈
π−1λ

1
2

⌉
+ p.(4.19)
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Moreover, there exists λ∗a > 0, s.t. ra(λ) = 0 and ρa(λ) = 0 for λ < λ∗a.

Proof. Note that showing (4.18, 4.19) amounts to proving the double inequality

(4.20)
∑

ρa(α2
jλ) +

⌈
π−1λ

1
2

⌉
− 1 ≤ ρa(λ) ≤

∑
ρa(α2

jλ) +
⌈
π−1λ

1
2

⌉
+ p,

so that, setting ra(λ) := ρa(λ)−
∑
ρa(α2

jλ), ra inherits piecewise-continuity from ρa
and satisfies (4.19). We will prove (4.20) for a = n, the case a = d being almost
verbatim the same. The proof is based on two ideas: the classical Dirichlet-Neumann
bracketing technique and a rescaling argument.
Step 1. Dirichlet-Neumann bracketing.

Figure 2. Left: we illustrate the space Ṽn(T ), which includes functions that may be discontin-

uous in the point M0,0. Right: an illustration to the space Ṽn,0(T ), where all functions vanish in
the point M0,0. By red we mark the points where the functions vanish.

Step 1.1. Let AN be the self-adjoint operator in L2
µ(T ) associated to the sesquilinear

form a(u, v) (2.20), defined like An in (2.21), but with the following domain (remark
that Vn is replaced by H1

µ(T ), i. e. the Dirichlet condition in M∗ is removed):

D(AN ; T ) = {u ∈ H1
µ(T ) : |a(u, v)| ≤ C(u)‖v‖L2

µ(T ), ∀v ∈ H1
µ(T )}.

In a strong form, this operator corresponds to the weighted Laplacian on T , with the
Neumann conditions at M∗ and at the fractal boundary of the tree T . By Theorem
2.1, it has a compact resolvent. Its spectrum is denoted by σN (T ) and the associated
counting function by ρN (λ; T ).

Let T1,j be the self-similar p-adic subtree of T whose root edge is Σ1,j . Let us introduce
a broken space that contains Vn(T ) (see Figure 2 for an illustration)

Ṽn(T ) := {u ∈ L2
µ(T ) : u|Σ0,0

∈ H1(Σ0,0), u(M∗) = 0, u|T1,j ∈ H1
µ(T1,j)), ∀j}.

Let us define the operator Ãn like in (2.21), with the domain

D(Ãn) = {u ∈ Ṽn(T ) : |a(u, v)| ≤ C(u)‖v‖L2
µ(T ), ∀v ∈ Ṽn(T )}.

Again, by Theorem 2.1, it has a compact resolvent. We denote by σ̃n(T ) and by

ρ̃n(λ; T ) the spectrum and counting function of the operator Ãn.

Finally, let Ṽn,0 be a subspace of Vn of functions vanishing in M0,0,

Ṽn,0(T ) = {v ∈ Vn(T ) : v(M0,0) = 0},



16 P. JOLY, M. KACHANOVSKA

see Figure 2 for an illustration. The spectrum of the associated operator Ãn,0 (defined
like above) will be denoted by σ̃n,0(T ), and the counting function by ρ̃n,0(λ; T ).

Let us remark that we will need to use the counting functions for different trees,
and hence the notation ρ(λ; T ), where the tree is made explicit. The notation ρ(λ) is
reserved for the counting functions for the operators on the original tree T .

Step 1.2. Relations between the counting functions.
Relating ρn and ρN . We will need an upper bound for ρN (λ; T ) in terms of ρn(λ) ≡
ρn(λ; T ). It can be obtained from the same arguments as [13, Corollary 4.7] because
the co-dimension of Vn(T ), as a subspace of H1

µ(T ), is finite. Namely,

ρN (λ; T ) ≤ ρn(λ; T ) + dim
(
H1
µ(T ) \ Vn(T )

)
= ρn(λ; T ) + 1.(4.21)

Relating ρn and ρ̃n. The min-max principle (4.17), since Vn(T ) ⊂ Ṽn(T ), yields

ρn(λ; T ) ≤ ρ̃n(λ; T ).(4.22)

Relating ρn and ρ̃n,0. As Ṽn,0(T ) ⊂ Vn(T ), we obtain, by the min-max principle,

ρ̃n,0(λ; T ) ≤ ρn(λ; T ).(4.23)

Step 2. An equation for ρ̃n(λ; T ).
Step 2.1. An immediate identity. Because, with an obvious abuse of notation,

Ṽn(T ) = Vn(Σ0,0)⊕
p−1⊕
j=0

H1
µ(T1,j), Vn(Σ0,0) := {u ∈ H1(Σ0,0) : u(M∗) = 0},

the spectrum σ̃n of Ãn consists of the eigenvalues of −∆ on Vn(Σ0,0) (cf. Remark 2.8;
the associated counting function is denoted by ρn(λ; Σ0,0) and is known explicitly) and

the union
p−1⋃
j=0

σN (T1,j). The counting function ρ̃n is a sum of the respective counting

functions:

ρ̃n(λ; T ) = ρn(λ; Σ0,0) +
∑

ρN (λ; T1,j), ρn(λ; Σ0,0) =
⌈
π−1λ

1
2 + 1/2

⌉
− 1.(4.24)

Step 2.2. Scaling argument. The goal of this step is to show that

ρN (λ; T1,j) = ρN (α2
jλ; T ).(4.25)

To see this, we get back to the min-max characterization of eigenvalues (4.17). Since
T1,j is obtained from T by a similitude transformation γj of ratio αj (cf. [9]), setting
formally s̃ = γj(s), we obtain the following identities, valid for any v ∈ H1

µ(T ),

‖v‖2L2
µ(T ) =

∫
T
|v(s)|2 µ(s) ds = µ−1

j

∫
T1,j
|v(γ−1

j (s̃))|2 α−1
j µ(s̃) ds̃,

a(v, v) =

∫
T
|∂sv(s)|2 µ(s) ds = µ−1

j

∫
T1,j
|∂s̃v(γ−1

j (s̃))|2 αj µ(s̃) ds̃,

and thus, see the min-max principle (4.17),

ω2
N,` ∈ σN (T ) ⇐⇒ α−2

j ω2
N,` ∈ σN (T1,j).(4.26)
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Therefore, ρN (λ; T1,j) = #{` : α−2
j ω2

N,` < λ} = ρN (α2
jλ; T ), i.e. (4.25).

Step 2.3. Summary. Combining (4.25) with (4.24), we obtain

ρ̃n(λ) =
⌈
π−1λ

1
2 + 1/2

⌉
− 1 +

∑
ρN (α2

jλ).(4.27)

Step 3. An equation for ρ̃n,0(λ; T ).
Just like in the previous case, we remark that (with an abuse of notation)

Ṽn,0 = H1
0 (Σ0,0)⊕

p−1⊕
j=0

Vn(T1,j).

Repeating the same arguments as in Step 2, we get the recursive equation for ρ̃n,0:

ρ̃n,0(λ) =
⌈
π−1λ

1
2

⌉
− 1 +

∑
ρn(α2

jλ).(4.28)

Step 4. Proof of (4.20). Inserting (4.22) into (4.27) gives:

ρn(λ) ≤
⌈
π−1λ

1
2 + 1/2

⌉
− 1 +

∑
ρN (α2

jλ) ≤
⌈
π−1λ

1
2

⌉
+
∑

ρn(α2
jλ) + p,(4.29)

where the last bound was obtained from (4.21) and the inequality dx+1/2e ≤ dxe+1.
The lower bound is obtained by combining (4.23) and (4.28):

ρn(λ) ≥
⌈
π−1λ

1
2

⌉
− 1 +

∑
ρn(α2

jλ).(4.30)

Combining (4.29) and (4.30) yields (4.20).
Step 5. ’Causality’ of ρn(λ), rn(λ). ρn(λ) = 0 for λ < ω2

1,n; the same holds for
ρn(α2

jλ), for j = 0, . . . , p− 1, since αj < 1. Thus, rn(λ) = 0 for λ < λ∗n := ω2
1,n.

4.4.2. Renewal theory. In order to solve the recursive equation (4.18), we will
rewrite it in a more convenient form. In general we are interested in equations of the
type: provided Φ piecewise-continuous, find ϕ s.t. for all λ > 0,

ϕ(λ) = Φ(λ) +
∑

ϕ(α2
jλ).(4.31)

The change of variables x := 1
2 log λ transforms (4.31) into an equation with delays:

ϕ(e2x) = Φ(e2x) +
∑

ϕ(α2
je

2x) = Φ(e2x) +
∑

ϕ(e2(x−logα−1
j )), x ∈ R.(4.32)

To handle the equations of type (4.32), we will use the renewal theorem, cf. [4, p.
358] or [12, Appendix B.4]; we will exploit its version suggested by Levitin, Vassiliev
[14], whose statement is the most suitable for our needs.

Theorem 4.10 (Renewal theorem, [14]). Let Ψ : R → R be a piecewise-
continuous function that satisfies the following bound: there exist C, α ≥ 0, s.t.
|Ψ(x)| < Ce−α|x| on R. Let ψ : R→ R solve

ψ(x) = Ψ(x) +
∑

cjψ(x− γj), cj , γj > 0,
∑

cj = 1.(4.33)

Assume additionally that lim
x→−∞

ψ(x) = 0.

Then ψ as defined above is unique; it is uniformly bounded on R and

ψ(x) = ψ∞(x) + o(1), as x→ +∞,

where ψ∞ is a periodic function defined as follows:
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(1) if the set {γj , j = 0, . . . , p− 1} is arithmetic, then, with γ being its span,

ψ∞(x) = γJ−1
∞∑

k=−∞
Ψ(x− kγ), J =

∑
cjγj .

(2) otherwise, ψ∞(x) = const = J−1
∞∫
−∞

Ψ(x)dx.

Remark 4.11. If Ψ is non-negative, and for all x sufficiently large Ψ(x) is strictly
positive, then from the explicit expressions for ψ∞ in Theorem 4.10 and periodicity of
ψ∞ it follows that ψ∞(x) > ψ− > 0 for all x ∈ R.

We will use a direct consequence of Theorem 4.10, formulated below.

Lemma 4.12. Let ϕ : R+
∗ → R satisfy

ϕ(λ) = Φ(λ) +
∑

ϕ(α2
jλ), and ϕ(λ) = 0, for λ ≤ λ∗, λ∗ > 0,(4.34)

where Φ : R+ → R is piecewise-continuous, s.t., with some C∗ > 0,

|Φ(λ)| ≤ C∗ for all λ > 0.(4.35)

Then, there exists C > 0, s.t. for all λ > 0, |ϕ(λ)| ≤ Cλ
ds
2 .

Proof. First of all, remark that

Φ(λ) = 0, for all λ < λ∗.(4.36)

This is seen by rewriting Φ(λ) = ϕ(λ) −
∑
ϕ(α2

jλ) and recalling that for λ ≤ λ∗,
ϕ(λ) = ϕ(α2

jλ) = 0, by (4.34).
The rest of the proof follows closely the proof of Lemma 2.2 in [14]. We will

rewrite (4.34) in the form required by Theorem 4.10, by a change of variables and
rescaling. As explained in the beginning of Section 4.4.2, we transform (4.34) by a
change of variables x = 1

2 log λ, λ > 0 (so that λ = e2x), into

ϕ(e2x) = Φ(e2x) +
∑

ϕ(α2
je

2x) = Φ(e2x) +
∑

ϕ(e2(x−logα−1
j )).(4.37)

It remains to make appear the weights cj s.t.
∑
cj = 1, required in (4.33). For this we

multiply (4.37) by e−dsx and set ψ(x) := ϕ(e2x)e−dsx (so that ϕ(λ) = λ
ds
2 ψ( 1

2 log λ)).

After some computations (4.37) rewrites, with γj = logα−1
j ,

ψ(x) = Ψ(x) +
∑

αdsj ψ(x− γj), with Ψ(x) := Φ(e2x)e−dsx,(4.38)

where, with the definition (4.1) of ds, we recognize (4.33). Let us verify the conditions
of Theorem 4.10:

• Ψ is piecewise-continuous, because Φ is piecewise-continuous;

• the bound |Ψ(x)| ≤ Ce−α|x| holds true (with α = ds > 0) because

– for x < 1
2 log λ∗, Ψ(x) = 0 by ’causality’ of Φ (4.36);

– for x > 0, |Ψ(x)| ≤ C∗e−dsx as a direct consequence of (4.35);

– for x ∈
[

1
2 log λ∗, 0

]
(if λ∗ < 1), by (4.35), |Ψ(x)| ≤ C∗e−dsx ≤ C∗λ

− ds2∗ .

• lim
x→−∞

ψ(x) = 0, because ϕ(e2x) = 0 for x < 1
2 log λ∗.

By Theorem 4.10, ψ is uniformly bounded on R, and so is ϕ(λ)λ−
ds
2 ≡ ψ( 1

2 log λ).
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4.4.3. Proof of Theorem 4.8. Before stating an actual proof, let us first ex-
plain the principal idea. One could try making an ansatz for the asymptotic behaviour
of the counting function by generalizing the known asymptotics of the counting func-
tion for the Neumann/Dirichlet Laplacian on a bounded domain Ω ⊂ Rd. I.e.

ρa(λ) = Cλκ + o(λκ), as λ→ +∞, C > 0,

where κ ≥ 0 is a power to be determined; substituting the above into (4.18) yields

Cλκ + o(λκ) =

√
λ

π
+O(1) + C

∑
α2κ
j λ

κ + o(λκ),

or, alternatively,

C
(

1−
∑

α2κ
j

)
λκ =

√
λ

π
+ o(λκ), as λ→ +∞.(4.39)

The above shows that we should expect κ ≥ 1/2. Two cases are possible:

• κ > 1/2. Necessarily, by power matching in (4.39),
∑
α2κ
j = 1. By (4.1),

2κ = ds > 1, which is possible only if 〈α〉 > 1.

• κ = 1/2. By power matching in (4.39), C = π−1(1−〈α〉)−1 (which is positive
iff 〈α〉 < 1).

Let us now prove the above rigorously. Let us remark that the proofs of the cases
〈α〉 ≤ 1 and 〈α〉 > 1 differ slightly.

Proof of Theorem 4.8. Case 〈α〉 < 1. Let us remark that a similar problem was
treated in [14]. We present the proof here in a way that is somewhat different from
the one in the aforementioned work, which allows to extend it easily to the particular
case 〈α〉 = 1, not studied in [14]. Let, with Cα = π−1 (1− 〈α〉)−1

,

ϕa(λ) := ρa(λ)−
⌊
Cαλ

1
2

⌋
.(4.40)

Our goal is to prove that ϕa(λ) = O(λ
ds
2 ). For this we will apply Lemma 4.12 with

ϕ = ϕa. Let us show that ϕa(λ) satisfies the conditions of this lemma. Let

Φa(λ) := ϕa(λ)−
∑

ϕa(α2
jλ).(4.41)

Evidently, ϕa(λ) is piecewise-continuous and vanishes for λ < min(C−2
α , ω2

a,1) (same
is true for Φa). It remains to show that, with some C∗ > 0, |Φa(λ)| ≤ C∗.
Let us prove first the lower bound Φa(λ) ≥ −C∗. Replacing the first term in (4.41)
by using the recursive equation (4.18) yields

Φa(λ) = ra(λ) +
∑

ρa(α2
jλ)−

⌊
Cαλ

1
2

⌋
−
∑(

ρa(α2
jλ)−

⌊
Cααjλ

1
2

⌋)
.

Using x ≥ bxc ≥ x− 1, the lower bound (4.19) and dxe ≥ x, the above rewrites

Φa(λ) ≥ π−1
√
λ− 1− Cαλ

1
2 +

∑
αjCαλ

1
2 − p.

Thus, with Cα = π−1(1−〈α〉)−1, Φa(λ) ≥ −1−p. The upper bound can be obtained
repeating the same arguments almost verbatim.
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Applying Lemma 4.12, we deduce that ϕa(λ) = O(λ
ds
2 ), ds < 1.

Case 〈α〉 = 1. The proof mimics the proof of the case 〈α〉 < 1 almost verbatim,
with the only difference being that the function under consideration is

ϕa(λ) = ρa(λ)−
⌊
π−1

(∑
αj logα−1

j

)−1

λ
1
2 log λ

1
2

⌋
.

We leave the details to the reader.
Case 〈α〉 > 1. In this case we will not apply Lemma 4.12, but rather use the refined
result stated in the end of Theorem 4.10.
For this we rewrite the recursive relation (4.18) like in the proof of Lemma 4.12, cf.

(4.38). With ψa(x) = ρa(e2x)e−dsx (so that ρa(λ) = ψa

(
1
2 log λ

)
λ
ds
2 ), (4.18) gives

ψa(x) = Ψa(x) +
∑

ψa(x− logα−1
j )αdsj , Ψa(x) := ra(e2x)e−dsx.

The above equation satisfies the conditions of Theorem 4.10 (this can be shown using
the same arguments as in the proof of Lemma 4.12, using the bound ra(e2x) ≤ Cex,
x > 0, cf. (4.19), ’causality’ of ra and the fact that and ds > 1). Thus we can apply
Theorem 4.10, which shows that, as x→ +∞, ψa(x) = ψ∞a (x) + o(1). Therefore,

ρa(λ) = ψa

(
1

2
log λ

)
λ
ds
2 = ρ∞a (λ)λ

ds
2 + o(λ

ds
2 ), as λ→ +∞,

where ρ∞a (λ) = ψ∞a
(

1
2 log λ

)
. Let us remark that ρ∞a is bounded by Theorem 4.10.

Moreover, by Remark 4.11 and observation that Ψa(x) is strictly positive for large x,
cf. an explicit expression for ra in (4.19), it follows that ρ∞a is bounded from below
by a positive constant.

4.5. Proof of Theorem 4.3. To prove Theorem 4.3, let us start by the following
corollary of Theorem 4.8. Similarly to ρa(λ), let us introduce the related quantity,
namely the number of positive poles of Λa smaller than λ:

Pa(λ) = #{n : Ωa,n < λ}.(4.42)

Following the discussion preceding the derivation of (2.27), let us recall that the
positive poles of Λa constitute a subset of (ωa,n)n∈N (we assume ωa,n > 0 for all n),
and the eigenvalues, unlike the poles, are counted with their multiplicities. Therefore,

Pa(λ) ≤ #{k : ωa,k < λ} ≡ ρa(λ2).(4.43)

Combining the above relation with Theorem 4.8 yields

Corollary 4.13. Let Pa : R+ → N be defined in (4.42). Then, with Ca > 0,
a ∈ {n, d}, depending on α, µ, it holds, for all λ > 2,

1. if 〈α〉 < 1 (ds < 1), then Pa(λ) ≤ Caλ.

2. if 〈α〉 = 1 (ds = 1), then Pa(λ) ≤ Caλ log λ.

3. if 〈α〉 > 1 (ds > 1), then Pa(λ) ≤ Caλ
ds .

We now have all the necessary ingredients required to prove Theorem 4.3.

Proof of Theorem 4.3. Recall that Na,ε (cf. (4.2)) is defined as

Na,ε = min{N ∈ N∗ : ra,N < ε}, ra,N =
∑

ωa,n>Ωa,N

aa,n
ω2
a,n

.(4.44)
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By Proposition 4.4, with (4.5),

ra,N < c̃+a Ω−1
a,N , and thus Na,ε ≤ min{N ∈ N∗ : c̃+a Ω−1

a,N ≤ ε},(4.45)

or, in other words,

Na,ε ≤ min{N ∈ N∗ : Ωa,N ≥ c̃+a ε−1} ≡ #{n : Ωa,n < c̃+a ε
−1}+ 1.

From the above and (4.42) we have

Na,ε ≤ Pa(c̃+a ε
−1) + 1,(4.46)

and the result of Theorem 4.3 follows from the above bound and Corollary 4.13.

4.6. Proof of Theorem 4.2. We will prove this result as a corollary of Theorem
4.3. Let us show the result for the case 〈α〉 < 1. Evidently, it suffices to show this
bound for all N sufficiently large.

First, let us fix 0 < ε < 1/2. By definition (4.44) of Na,ε, we have ra,N < ε for all
N ≥ Na,ε. In particular, by Theorem 4.3, we have that Na,ε < N∗ := dC+

a ε
−1e, and

therefore ra,N∗ < ε. In other words, for all 0 < ε < 1/2,

ra,dC+
a ε−1e < ε.(4.47)

For any N ∈ N sufficiently large, there exists 0 < ε < 1/2 s.t. N = dC+
a ε
−1e, and in

this case ε ≤ C+
a (N −1)−1. This with (4.47) yields the desired bound ra,N ≤ c+a N−1.

The result for the cases 〈α〉 ≥ 1 follows similarly (with the case 〈α〉 = 1 being
somewhat less trivial); the details are left to the reader.

5. Explicit lower bounds for the error indicator. The goal of this section
is to prove the lower bounds on ra,N , as discussed in Section 3.3.

5.1. Main results. The two main results of this section read.

Theorem 5.1. There exists c−a > 0, depending only on µ, α, such that, for all
N ≥ 1, ra,N defined in (3.7) satisfies:

ra,N > c−a N
−1.

This result can be re-formulated in terms of the quantity Na,ε.

Theorem 5.2. There exists C−a > 0, depending only on µ, α, such that, for all
0 < ε < 1, Na,ε defined in (4.2) satisfies:

Na,ε > C−a ε
−1.

Comparing the statements of Theorems 4.2 and Theorem 5.1, we see that the upper
bound on ra,N when 〈α〉 < 1 is sharp. This however does not seem to be the case
when 〈α〉 ≥ 1. In particular, when 〈α〉 > 1, the upper bound reads ra,N < c+a N

−1/ds ,
and for large N evidently N−1/ds � N−1.

It is natural to ask whether in this case one of the bounds (the upper or the lower
one) is not sharp. The answer to this question depends on the tree T and is two-fold:

• when there exists i 6= j s.t. αi = αj (i.e. in the presence of symmetries), it
may happen that 〈α〉 ≥ 1, and yet ra,N ≤ CN−1, with some C > 0. This is
clarified in Appendix A.

• in the case when αi 6= αj for i 6= j, our numerical experiments (cf. [8])
indicate that the upper bound provided by Theorem 4.2 is likely to be sharp.
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5.2. Plan of the proof and of this section. The proofs of Theorems 5.1 and
5.2 will be similar in their ideas to the proofs of Theorems 4.2, 4.3. Recall in particular
that the proof of Theorem 4.3 relies on the following ingredients:

1. an upper bound ra,N ≤ c̃+a Ω−1
a,N , which shows that to guarantee that ra,N < ε,

one takes Na,ε ≤ N∗ where N∗ = min{n : c̃+a ε
−1 ≤ Ωa,N∗};

2. an observation that N∗ = Pa(c̃+a ε
−1) + 1;

3. an upper bound on Pa(c̃+a ε
−1) (cf. Corollary 4.13).

In the proof of the lower bound we will repeat this reasoning but with inverse inequal-
ities. We will make use of the auxiliary results that are counterparts of Proposition
4.4 and Theorem 4.8.

Plan of the section. This section is organized as follows. In Section 5.3, we prove
the bound ra,N ≥ cΩ−1

a,N . Section 5.4 is dedicated to the proof of the lower bound for
the number of the poles of Λa on an interval. In Section 5.5 we combine these two
results to prove Theorem 5.2. In Section 5.6, we prove Theorem 5.1.

5.3. An implicit lower bound for ra,N . Recall that, cf. (4.5), Ra,ω =∑
ωa,n>ω

aa,n
ω2
a,n

. The following result shows that Proposition 4.4 is sharp.

Proposition 5.3. There exists c̃−a > 0, which depends on µ,α, s.t.

Ra,ω ≥ c̃−a ω−1, for all ω ≥ 1.(5.1)

Just like Proposition 4.4, the above result relies on the estimates on the Neumann
traces of the eigenfunctions.

5.3.1. A lower bound for the Neumann traces of eigenfunctions. The
result that follows shows the sharpness of the estimate of Lemma 4.5.

Lemma 5.4. There exists η∗ > 0, s.t. for all η > η∗, there exists C−η > 0, s.t.∑
j: |ωa,j−ω|<η

(∂sϕa,j(M
∗))2ω−2

a,j ≡
∑

j: |ωa,j−ω|<η
aa,j ≥ C−η , for all ω ≥ 1.(5.2)

The proof is based on ideas different from the ones used in the proof of Lemma 4.5.

Proof. First, let us remark the following. By (2.21, 2.22), see also Remark 2.8,
because µ is piecewise-constant, the eigenfunctions of Aa satisfy −∂2

sϕa,n = ω2
a,nϕa,n

on Σ0,0 (identified with [0, 1]). Since ϕa(M∗) = 0, we have on Σ0,0,

ϕa,n(s) = Ca,n sinωa,ns, Ca,n ≥ 0.

We can easily relate Ca,n to the coefficients aa,n = (∂sϕa,n(0))2ω−2
a,n:

ϕa,n(s) = a
1
2
a,n sinωa,ns.(5.3)

Let us now prove the desired result. Let ω ≥ 1, and let vω : T → R be s.t. vω(s) =
sin(ωs) on Σ0,0 and vω(s) = 0 otherwise. Because vω ∈ L2

µ(T ), and {ϕa,n}n∈N∗ is a

Schauder basis in L2
µ(T ), the following series converges in L2

µ(T ):

vω =

∞∑
n=0

γωa,nϕa,n, γωa,n =

1∫
0

vω(s)ϕa,n(s)ds.(5.4)
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Moreover, for all η > 0,

‖vω‖2L2
µ(T ) =

∞∑
n=0

|γωa,n|2 = Saω,η + Iaω,η,

Saω,η =
∑

n: |ωa,n−ω|<η
|γωa,n|2, Iaω,η =

∑
n: |ωa,n−ω|≥η

|γωa,n|2.
(5.5)

To prove (5.2), we will prove the three inequalities (with constants uniform in η, ω):

(a) |Saω,η| ≤
∑

|ωa,n−ω|<η
aa,n, (b) |Iaω,η| ≤ CIη−1, (c) ‖vω‖2 ≥

1

4
.(5.6)

Combining these bounds in (5.5) then yields

1

4
≤

∑
|ωa,n−ω|<η

aa,n + CIη
−1,

and the lower bound (5.2) follows by taking η > η∗, with η∗ sufficiently large. It
remains to prove (5.6). We start by rewriting γa,n using (5.3):

γωa,n=a
1
2
a,n

1∫
0

sin(ωs) sin(ωa,ns)ds =
a

1
2
a,n

2

(
− sin(ω − ωa,n)

ω − ωa,n
+

sin(ω + ωa,n)

ω + ωa,n

)
.(5.7)

Because | sin(x)/x| ≤ 1, and also ω + ωa,n > |ωa,n − ω|, the above yields

|γωa,n| ≤ a
1
2
a,n min

(
1

|ω − ωa,n|
, 1

)
.(5.8)

Proof of (5.6)-(a). By (5.8), |γωa,n| ≤ a
1
2
a,n, hence the desired bound is immediate from

the definition (5.5) of Saω,η.
Proof of (5.6)-(b). Let us first prove the desired bound for ω = W ∈ N∗, and
η = k ∈ N∗, and next argue about extending it to the general case. With the
definition (5.5) of Iaω,η,

IaW,k =
∑

ωa,n≤W−k
|γωa,n|2 +

∑
ωa,n≥W+k

|γωa,n|2
(5.8)

≤ I−W,k + I+
W,k, where

I−W,k =
∑

ωa,n≤W−k

aa,n
(W − ωa,n)2

, I+
W,k =

∑
ωa,n≥W+k

aa,n
(ωa,n −W )2

.(5.9)

To bound each of the above terms, we will make use of Lemma 4.5. The first term in
(5.9) vanishes when W ≤ k; otherwise, it can be rewritten as follows:

I−W,k =

W−k−1∑
`=0

∑
`≤ωa,n<`+1

aa,n
(W − ωa,n)2

≤
W−k−1∑
`=0

1

(W − `− 1)2

∑
`≤ωa,n<`+1

aa,n.

Using Lemma 4.5 with η = 1 we obtain the following bound

I−W,k ≤ C
+
1

W−k−1∑
`=0

(W − `− 1)−2 = C+
1

W−1∑
`=k

1

`2
≤ C1

k
,
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where C1 does not depend on W or k. Altogether, we have

I−W,k =

{
0, if k ≥W,
≤ C1k

−1, otherwise.
(5.10)

It remains to bound the second term in (5.9); we use the same ideas:

I+
W,k =

∞∑
`=W+k

∑
`≤ωa,n<`+1

aa,n
(ωa,n −W )2

≤
∞∑

`=W+k

1

(`−W )2

∑
`≤ωa,n<`+1

aa,n

≤ C+
1

∞∑
`=W+k

1

(`−W )2
, by Lemma 4.5.

We then obtain a uniform in W bound, with C2 independent of W and k:

I+
W,k < C2k

−1.(5.11)

Combining (5.10) and (5.11) into (5.9) yields the desired bound

|IaW,k| ≤ (C1 + C2)k−1.(5.12)

When ω, η /∈ N, and ω, η > 1, one has a bound Iaω,η ≤ I−dωe,bηc + I+
bωc,bηc, which, with

(5.10) and (5.11), yields the desired bound (5.6)-(b).
Proof of (5.6)-(c). The proof is straightforward:

‖v‖2L2
µ(T ) ≡

1∫
0

sin2(ωs)ds =
1

2
− sin(2ωs)

4ω
≥ 1

4
, when ω ≥ 1.

5.3.2. Proof of Proposition 5.3. Let us fix η := ` ≥ 1 integer and large
enough, so that the conditions of Lemma 5.4 hold true. Because ω 7→ Ra,ω is decreas-
ing and piecewise-constant, it suffices to prove the result for ω = M ∈ N sufficiently

large. Let us assume that M > `. Recall that Ra,M =
∑

n:ωa,n>M

aa,n
ω2
a,n

.

Because we would like to apply the result of Lemma 5.4, we use the same trick
as in the proof of Proposition 4.4, namely, we split the interval [M,∞) into smaller
intervals of the width 2` that do not intersect:

[M,∞) = [(M + `)− `, (M + `) + `) ∪ [(M + 3`)− `, (M + 3`) + `) ∪ . . .

With a shortened notation, Ik := [(M + k`)− `, (M + k`) + `), we rewrite

Ra,M =

∞∑
k=1

∑
ωa,n∈I2k−1

aa,n
ω2
a,n

≥
∞∑
k=1

1

((M + (2k − 1)`)− `)2

∑
ωa,n∈I2k−1

aa,n.(5.13)

By Lemma 5.4, applied with ω = M + (2k − 1)` and η = `,∑
ωa,n∈I2k−1

aa,n ≥ C−` > 0 for all k ∈ N∗.

Inserting the above bound into (5.13) yields the desired bound:

Ra,M ≥ C−`
∞∑
k=1

1

(M + (2k − 1)`)
2 ≥ C

−
`

∑
k: (2k−1)`≥M

1

(M + (2k − 1)`)
2

≥ C−`
∑

k: (2k−1)`≥M

1

4(2k − 1)2
≥ c̃

M
, with some c̃ > 0.
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5.4. A lower bound for the number of poles on an interval. In this section
we will state a lower bound for Pa(λ) = #{n : Ωa,n < λ}.

Theorem 5.5. Pa(λ) defined in (4.42) satisfies

Pa(λ) >
⌊
(2π)−1λ

⌋
, for all λ > 0.(5.14)

The above result does not follow from the asymptotics of Theorem 4.8, since it also
encodes some information about the eigenvalue multiplicity and the Neumann traces
of the eigenfunctions, see the discussion in Section 2.5. It shows that inside the

interval (0, λ) there are at least O
(
λ

1
2

)
distinct eigenvalues, s.t. the corresponding

eigenfunctions ϕa,n satisfy ∂sϕa,n(M∗) 6= 0. The proof of this result is simple, and
relies on Lemma 5.3 from [9], which shows that Λa(ω) satisfies a certain non-linear
equation.

Lemma 5.6 (Lemma 5.3 from [9]). For any ω ∈ C \ R,

Λa(ω) = ω
cosωFa(ω)− ω sinω

sinωFa(ω) + ω cosω
, Fa(ω) =

p−1∑
i=0

µi
αi

Λa(αiω), a ∈ {d, n}.(5.15)

We will also need the following result which is an expression of a general monotonicity
property of Herglotz functions.

Lemma 5.7. Let Fa be defined in (5.15). Then F′a(ω) ≤ 0 for all ω > 0 s.t. ω is
not a pole of Fa(ω).

Proof. Evidently it is sufficient to show that for ω > 0, Λ′a(ω) < 0. Using the
representation (2.27), one proves that Λ′a(ω) equals to the series (which converges
uniformly on compact subsets of C not containing the poles of Λa (this can be proven
by comparing the series to the uniformly convergent series (2.27))):

Λ′a(ω) = −
+∞∑
n=1

2Aa,nΩ2
a,nω

(Ω2
a,n − ω2)2

.

The above quantity is negative for ω > 0, since Aa,n > 0 for all n ≥ 1.

The above two results suffice for the proof of Theorem 5.5.

Proof of Theorem 5.5. To prove the desired result, we will show that on each
interval Im := [mπ, (m+ 1)π], m ∈ N∗, the function Λa(ω) has at least one pole. For
this we will use the expression (5.15). Since Λa is meromorphic, it is also valid for
ω /∈ C \ R, i.e. ω ∈ R \ Pa (outside of poles).

Step 1. Necessary and sufficient conditions for Λa(Ω0) =∞. Examining (5.15)
reveals that ω = Ω0 ∈ R+

∗ is a pole of Λa(ω) iff one of the following holds true:
(C1) Fa(ω) has a pole in Ω0, and lim

ω→Ω0

Λa(ω) =∞, in other words, with (5.15),

lim
ω→Ω0

ω
cosω − ω sinωF−1

a (ω)

sinω + ω cosωF−1
a (ω)

= lim
ω→Ω0

ω
cosω

sinω
=∞.

This is possible, if and only if, for some k ∈ N∗,

Ω0 = kπ and Fa(Ω0) =∞.(5.16)
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(C2) Fa(Ω0) 6=∞, the denominator of (5.15) vanishes and the numerator does not:

(a) sin Ω0Fa(Ω0) = −Ω0 cos Ω0, (b) cos Ω0Fa(Ω0) 6= Ω0 sin Ω0.(5.17)

Remark that (a)⇒ (b). To see this, assume the opposite: (a) ; (b), i.e.

(a) sin Ω0Fa(Ω0) = −Ω0 cos Ω0, and (b′) cos Ω0Fa(Ω0) = Ω0 sin Ω0.

Evidently, as Ω0 6= 0, and Fa(Ω0) 6= ∞, for (a) to hold it is necessary that
sin Ω0 6= 0. With (a), (b′) is equivalent to − cos2 Ω0 = sin2 Ω0, hence a
contradiction. Therefore, (5.17) is equivalent to

Fa(Ω0) = −Ω0 (tan Ω0)
−1
, Ω0 6= kπ, k ∈ N∗.(5.18)

Step 2. Proof that on Im Λa has at least one pole. We will prove the result by
contradiction. Let us assume that Λa has no poles in Im. In particular, this is
possible iff (5.16) and (5.18) do not hold. I.e. Λa has no poles in Im iff

Fa(mπ) 6=∞, Fa((m+ 1)π) 6=∞, and(5.19)

Fa(ω) 6= f(ω), f(ω) := −ω(tanω)−1 on Im.(5.20)

It remains to consider two possibilities:
Case 1. Fa has no poles in Im. By continuity of Fa and f , (5.20) holds if and
only if Fa > f or Fa < f on (mπ, (m+ 1)π).

However, f is strictly growing on Im, and

lim
ω→mπ+

f(ω) = −∞, lim
ω→(m+1)π−

f(ω) = +∞.(5.21)

Hence Fa > f on Im would mean that Fa(ω) has a pole in ω = (m + 1)π, while
Fa < f on Im would imply that Fa(ω) has a pole in ω = mπ. This contradicts (5.19).
Case 2. Fa has at least one pole inside Im. We will consider the case when it
has a single pole, while the case with multiple poles can be studied similarly.
With (5.19), we assume that Fa has a pole in Ω0 with Ω0 ∈ (mπ, (m + 1)π). With
(5.20), on the interval (mπ,Ω0), Fa 6= f . This is possible iff on (mπ,Ω0) either Fa > f
or Fa < f . Let us show that considering both possibilities leads to a contradiction:

• let us assume that (mπ,Ω0), Fa > f . By Lemma 5.7, F′a ≤ 0, and thus on
the interval (mπ,Ω0), Fa is a continuous monotonically decreasing function
that changes its value from Fa(mπ) to −∞. This implies that f has a pole
in Ω0 ∈ (mπ, (m+ 1)π), and we arrive at the contradiction.

• let us assume that (mπ,Ω0), Fa < f . By (5.21) lim
ω→mπ+

f(ω) = −∞, thus Fa

has a pole in mπ, but this is impossible by (5.20).

Thus, inside each interval Im = [mπ, (m + 1)π] Λa(ω) has at least one pole;
hence, on each half-open interval [mπ, (m+ 2)π), m ≥ 0, Λa(ω) has at least one pole.
Because the intervals of such form do not intersect, and the interval (0, λ) contains at
least

⌊
λ
2π

⌋
such intervals (and thus poles), we conclude that Pa(λ) ≥

⌊
λ
2π

⌋
.

5.5. Proof of Theorem 5.2. Evidently, it suffices to prove the desired result
for all ε > 0 sufficiently small. We proceed just like in the proof of Theorem 4.3.
First of all, recall that ra,N = Ra,Ωa,N

, cf. (4.5), and, by Proposition 5.3, we have the
following bound for all Ωa,N > 1:

ra,N > c̃−a Ω−1
a,N , with some c̃−a > 0.(5.22)
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By definition Na,ε = min{N : ra,N < ε}, and therefore, for all ε sufficiently small,

Na,ε ≥ min{N : c̃−a Ω−1
a,N ≤ ε} = min{N : Ωa,N ≥ c̃−a ε−1}

≡ #{n : Ωa,n < c̃−a ε
−1}+ 1 = Pa(c̃−a ε

−1) + 1.

By Theorem 5.5, for all ε sufficiently small, Na,ε > C−a ε
−1, with C−a > 0.

5.6. Proof of Theorem 5.1. We proceed just like in the proof of Theorem 4.2.
Let ε > 0. From the definition of Na,ε (4.2), it follows that ra,N > ε for all

N < Na,ε. From Theorem 5.2, we know that Na,ε > C−a ε
−1 (which is > 1 for ε small

enough), and therefore ra,bC−a ε−1c > ε. For all N sufficiently large there exists ε s.t.

N = bC−a ε−1c, and ε > C−a N
−1. Therefore, ra,N > C−a N

−1.

6. Conclusions and Open Questions. In this work, we have presented a
refined error analysis for high-order approximated transparent boundary conditions
for the weighted wave equation on a self-similar one-dimensional fractal tree. This
approach is an alternative to the convolution quadrature [6] and is based on the
truncation of the meromorphic series representing the symbol of the DtN operator.
The complexity of the method depends on the number of poles in the truncated
series; we have presented estimates on the number of poles, required to achieve a
desired accuracy ε, based on the analysis of the eigenfunctions and eigenvalues of
the weighted Laplacian on the fractal tree. Our future efforts are directed towards
improving the convergence of the technique, based on approximation of the remainder
of the meromorphic series.

Acknowledgements. We are grateful to Konstantin Pankrashkin (University
Paris-Sud, Orsay, France) for many fruitful discussions.

Appendix A. Behaviour of ra,N in the presence of symmetries. Let us
consider the tree T with the length ratios α s.t. there exists i 6= j, s.t. αi = αj . We
will call such a tree a symmetric tree.

In particular, let us assume that the length ratios are given by

α = (α
(0)
0 , α

(1)
0 , . . . , α

(n0)
0 , α

(0)
1 , . . . , α

(n1)
1 , . . . , α

(0)
p−1, . . . α

(np−1)
p−1 ), ni ≥ 0,(A.1)

such that for all k = 0, . . . , p− 1, i = 0, . . . , np−1, it holds that

α
(i)
k = α̃k, and α̃k 6= α̃j , k 6= j.

Similarly we define the vector µ = (µ
(0)
0 , µ

(1)
0 , . . . µ

(np−1)
p−1 ) (without any constraints

but the positivity of the coefficients). Temporary, in this appendix, the symbol of
the reference DtN operator associated to the tree with the parameters α,µ will be
denoted by Λα,µa . Similarly, we will use the notation rα,µa,N , Nα,µa,ε , ρα,µa,ε , Pα,µa .

Given (A.1), let us define the vector of the values α̃k and the associated quantity d̃s:

α̃ = (α̃0, . . . , α̃p−1), and d̃s ∈ R+
∗ s.t.

∑
α̃d̃sj = 1, cf. (4.1).(A.2)

Remark that the above quantity does not coincide with the Minkowski dimension ds

of the tree T . More precisely, because
∑
j

nj∑
k=0

α
(k)
j =

∑
(nj + 1)α̃j ≥

∑
α̃j , we have

nj∑
k=0

(α
(k)
j )d̃s =

∑
(nj + 1)d̃s α̃d̃sj ≥

∑
α̃d̃sj = 1.
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Therefore,

〈α̃〉 ≤ 〈α〉, and d̃s ≤ ds.(A.3)

A.1. Two principal results. As mentioned in Section 5.1, we have the follow-
ing improvement of the upper bound of Theorem 4.2 for symmetric trees.

Proposition A.1. For some c+a depending only on α, µ, the following holds true:
for all N ≥ 2, rα,µa,N satisfies:

• if 〈α̃〉 < 1 (d̃s < 1), rα,µa,N ≤ c+a N−1.

• if 〈α̃〉 = 1 (d̃s = 1), rα,µa,N ≤ c+a N−1 logN .

• if 〈α̃〉 > 1 (d̃s > 1), rα,µa,N ≤ c+a N−1/d̃s .

The above proposition is very similar to Theorem 4.2. The difference is that in Theo-
rem 4.2 it is the whole vector α that plays a role, while the above result involves only
the vector of the ’non-repeating; values α̃. With (A.3), we see that the error indicator
may decrease faster than predicted by Theorem 4.2 in the presence of symmetries.

Remark A.2. The simplest illustration to the statement of Proposition A.1 is

given by T s.t. α = (α
(0)
0 , . . . , α

(p−1)
0 ), i.e. α̃ = (α̃0). In this case ds = log p/ log α̃−1

0 ,

while d̃s = 1/ log α̃−1
0 (< 1). Independently of the value of p, by Proposition A.1,

rα,µa,N ≤ c+a N−1.

In a similar manner, the counterpart of Theorem 4.3 in the symmetric case reads.

Proposition A.3. There exists C+
a > 0, depending only on µ, α, such that, for

all 0 < ε < 1/2, Nα,µa,ε satisfies:

• if 〈α̃〉 < 1 (d̃s < 1), Nα,µa,ε ≤ C+
a ε−1.

• if 〈α̃〉 = 1 (d̃s = 1), Nα,µa,ε ≤ C+
a ε−1 log ε−1.

• if 〈α̃〉 > 1 (d̃s > 1), Nα,µa,ε ≤ C+
a ε−d̃s .

A.2. Main idea of the proof and auxiliary results. Like in Section 4, we
first prove Proposition A.3, and next Proposition A.1. Recall that the proof of Theo-
rem 4.3 (whose refinement is given by Proposition A.3) relies on Corollary 4.13 about
the upper bound for the pole counting function Pa(λ). The improvement in the
bounds of Proposition A.3 thus stems from the improved version of Corollary 4.13.

Proposition A.4. With Ca > 0, a ∈ {n, d}, depending on α, µ, it holds:

• if 〈α̃〉 < 1 (d̃s < 1), then Pα,µa (λ) ≤ Caλ.

• if 〈α̃〉 = 1 (d̃s = 1), then Pα,µa (λ) ≤ Caλ log λ.

• if 〈α̃〉 > 1 (d̃s > 1), then Pα,µa (λ) ≤ Caλ
d̃s .

To prove this proposition, we will need the following refinement of Lemma 5.6, which
we repeat for the convenience of the reader below.

Theorem A.5 (Lemma 5.3 in [9], Lemma 5.5, Corollary 5.6 in [9]). The symbol
of the reference DtN operator Λ(ω) = Λa(ω), a ∈ {n, d}, Λ : C \ R→ C, satisfies

(A.4) Λ(ω) = −ω ω tanω − Fα,µ(ω)

tanωFα,µ(ω) + ω
, Fα,µ(ω) =

p−1∑
i=0

µi
αi

Λ(αiω).

Moreover, Λa is the unique even solution of (A.4) analytic in the origin that satisfies
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• if
〈
µ/α

〉
≤ 1, Λ(0) = 0, for a ∈ {d, n}.

• if
〈
µ/α

〉
> 1 and

〈
µα
〉
< 1, Λ(0) = 1−

〈
µ/α

〉−1
if a = d, and Λ(0) = 0 if

a = n.

• if
〈
µα
〉
≥ 1, Λ(0) = 1−

〈
µ/α

〉−1
, for a ∈ {d, n}.

Proof of Proposition A.4. The proof of this proposition relies on the following
observation: Λα,µa = Λα̃,µ̃a , with α̃ defined in (A.2) and µ̃ specified further.

Step 1. Given α, µ (cf. (A.1)), let α̃ be defined like in (A.2) and

µ̃ := (µ̃0, . . . , µ̃p−1), µ̃i :=

ni∑
k=0

µ
(k)
i .

Let us prove that Λα,µa = Λα̃,µ̃a with the help of Theorem A.5. Without loss of
generality, we will consider the case

〈
µα
〉
≥ 1, while the remaining cases can be

proven similarly.
Step 1.1. A problem satisfied by Λα,µa . First, remark that for all σ ∈ R,

p−1∑
i=0

ni∑
k=0

µ
(k)
i

(
α

(k)
i

)σ
=

p−1∑
i=0

α̃σi

ni∑
k=0

µ
(k)
i =

p−1∑
i=0

α̃σi µ̃i.(A.5)

By Theorem A.5, Λα,µa = Λ, where Λ(ω) is the unique even solution, analytic in the
origin, of

Λ(ω) = −ω ω tanω − Fα,µ(ω)

tanωFα,µ(ω) + ω
, where

Fα,µ(ω) =

p−1∑
i=0

ni∑
k=0

µ
(k)
i

α
(k)
i

Λ(α
(k)
i ω) =

p−1∑
i=0

µ̃i
α̃i

Λ(α̃iω),

(A.6)

(where the last identity is derived like (A.5)), with the condition in the origin

Λ(0) = 1− 〈µ/α〉−1 (A.5)
= 1− 〈µ̃/α̃〉−1.(A.7)

Step 1.2. A problem satisfied by Λα̃,µ̃a . Let us remark that
〈
µα
〉

= 〈µ̃α̃〉 by (A.5).

By Theorem A.5, Λα̃,µ̃a satisfies (A.6) with Λ(0) = 1 − 〈µ̃/α̃〉−1, i.e. (A.7).

Because the solution to (A.6) and (A.7) is unique, we conclude that Λα̃,µ̃a = Λα,µa .
Step 2. An inequality for Pα,µa (λ). From the previous step it follows that Pα,µa =

P α̃,µ̃a . By (4.43), for all λ > 0, P α̃,µ̃a (λ) ≤ ρα̃,µ̃a (λ2), hence

Pα,µa (λ) ≤ ρα̃,µ̃a (λ2), for all λ > 0.

It remains to use the asymptotic estimates of Theorem 4.8 to bound ρα̃,µ̃a .

A.3. Proof of Propositions A.3, A.1.

Proof of Proposition A.3. We proceed like in the proof of Theorem 4.3 to obtain
(4.46), i.e. Nα,µa,ε ≤ Pα,µa (Cε−1) + 1, and next conclude by using Proposition A.4.

The proof of Proposition A.1 is similar to the proof of Theorem 4.2, the only difference
being that instead of Theorem 4.3, we use Proposition A.3. We leave it to the reader.
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