
HAL Id: hal-02909738
https://hal.science/hal-02909738

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On minimum spanning tree streaming for hierarchical
segmentation

Leonardo Gigli, Santiago Velasco-Forero, Beatriz Marcotegui

To cite this version:
Leonardo Gigli, Santiago Velasco-Forero, Beatriz Marcotegui. On minimum spanning tree
streaming for hierarchical segmentation. Pattern Recognition Letters, 2020, 138, pp.155-162.
�10.1016/j.patrec.2020.07.006�. �hal-02909738�

https://hal.science/hal-02909738
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

1

Pattern Recognition Letters
journal homepage: www.elsevier.com

On minimum spanning tree streaming for hierarchical segmentation

Leonardo Giglia, Santiago Velasco-Foreroa, Beatriz Marcoteguia

aCentre de Morphologie Mathématique - MINES ParisTech - PSL Research University,
35 Rue Saint-Honoré, 77300 Fontainebleau, France

Article history:

Minimum Spanning Tree, Streaming
Processing, Hierarchical Segmentation,
Mathematical Morphology

ABSTRACT

The minimum spanning tree (MST) is one the most popular data structure used to extract
hierarchical information from images. This work addresses MST construction in stream-
ing for images. First, we focus on the problem of computing a MST of the union of two
graphs with a non-empty intersection. Then we show how our solution can be applied
to streaming images. The proposed solution relies on the decomposition of the data in
two parts. One stable that does not change in the future. This can be stocked or used
for further treatments. The other unstable needs further information before becoming
stable. The correctness of proposed algorithm has been proven and confirmed in the case
of morphological segmentation of remote sensing images.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Image analysis involves extracting meaningful information
from digital images. Tasks such as locate, characterize and
identify objects are very common in this field. Image segmen-
tation algorithms are used for image partition and to isolate
objects or regions of interest. Hierarchical segmentation pro-
vide much richer information. These algorithms produce a se-
quence of nested partitions of increasing coarseness. Each one
contains the representation of items at different scales. Over
the years, several graph-based hierarchical segmentation meth-
ods have been developed in Mathematical Morphology Meyer
(2001b, 2015); Zanoguera et al. (1999); Cousty et al. (2018).
Computing a MST is a fundamental step for many of these al-
gorithms. For quasi-flat-zones Najman et al. (2013); Zanoguera
and Meyer (2002) a MST on the image gradient is calculated to
achieve a characterization of hierarchical structures. In Cousty
et al. (2018) a bijection between saliency maps and hierarchies
based on quasi-flat zones is provided. Furthermore, a MST is
calculated for other image analysis methods such as in hier-
archical segmentation Meyer (2001a), marker-based segmenta-
tion (Couprie et al., 2011), prior-based segmentation Fehri et al.
(2017), salience detection Tu et al. (2016), superpixel segmen-
tation Wei et al. (2018).

e-mail: name.surname@mines-paristech.fr (Leonardo Gigli)

This paper is an extended version of the work published by
Gigli et al. (2018). The original paper addresses the problem of
computing a MST on image streaming . The main contributions
of this version are:

• A new simpler method to produce MST on streaming

• Compare the novel method against the one presented in a
previous paper by Gigli et al. (2018).

• Illustrate the streaming extension of three MST-based seg-
mentation algorithms.

In order to validate our method we focus on Remote Sens-
ing (RS) applications. Recent advances in RS and computer
techniques give birth to the explosive growth of RS data Ma
et al. (2015). The straight application of classical Image Pro-
cessing (IP) techniques cannot be used for real-time processing
applications such as streaming. Classical IP methods needs to
wait until all the data is known. Furthermore, in many cases
the images are too big to fit entirely in memory. Therefore, it
is necessary to split the images in strips or tiles before treating
them Matas et al. (2008); Gazagnes and Wilkinson (2019). Ac-
cordingly, streaming spatial algorithms have been identified as
one of the main research challenges in RS Li et al. (2016).

The rest of the paper is organized as follows: Section 2 in-
troduces the problem and notation. Successively, Section 3
presents two algorithms to solve our problem and proves their

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S016786552030252X
Manuscript_5f4e1338103765678ff1c4ceae23b32b

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S016786552030252X

2

correctness. Section 4 reports quantitative evaluation of our
methods. Furthermore Section 5 proposes applications of our
method to hierarchical morphological segmentation. Finally,
we draw the conclusions in Section 6.

2. Problem and methodology

Let us start introducing the context and the mathematical
elements we are going to deal with. Given an image I, we can
associate to it a 4-connected weighted graph G = (V,E,W),
with nodes V = {p1, . . . , pn} being all image pixels and edges
E = {e1, . . . , em} between neighboring pixels, and weighting
edges by color/intensity differences. For example, if we assume
I be a grayscale image we can define W(e) = |I(p) − I(q)|,
where e = (p, q) and I(p) is the image intensity at pixel p.

Briefly a MST of a graph G is a subgraph T that spans all
the nodes of G. It contains no cycle and it is such that the
sum of the weights of its edges is minimal. Prim and Kruskal
are the most well known algorithms (Wu and Chao, 2004)
to extract a MST from a graph G. Kruskal method runs in
O(|E| log(|E|)) time in worst case, where | · | is the function that
measures the cardinality of a set. Whilst the implementation
of Prim that uses Fibonacci heap runs in O(|E| + |V| log(|V|)).
In the case of graph associated to images, (Bao et al., 2014)
developed a Prim-based algorithm. The authors propose a
method to compute a MST for a 8-bit depth that runs in O(|V|)
time. Furthermore, Prim and Kruskal algorithms have been
applied also for clustering identification problems. See (Kim,
2009) for further details. However, in this context the biggest
challenge is the processing of huge data volume. To solve this
problem, (Olman et al., 2009) proposed a parallel Prim-based
algorithm to construct a MST. Similarly to the methods we
present later, their method split data in disjoint chunks. Extract
a MST for each chunk and a MST for bipartite graphs between
two neighboring chunks. Then merge all the MSTs together
and finally extract a MST of the complete data set from this
union. Unlike the previous case, our methods split the data
in non-disjoint chunks. This give us as main advantage, the
footprint memory is reduced. The graphs are decomposed
between a stable and an unstable part. The first belongs to the
final MST. So, it can be stored and it is not modified anymore.
From the second we have to extract the remaining of the final
MST. In this way, a streaming application can use data on
the fly based on stable regions and the footprint memory is
reduced. Therefore bigger data sizes can be processed.

In this paper we focus our attention on streaming applica-
tions. Let us introduce the streaming image problem. Con-
sider the simple case of an image I decomposed in two blocks
B1, B2 and sent one after another. Let B1 be the first block arriv-
ing. Suppose that we compute its MST. The question is, how to
compute the MST for the whole image, I = B1 ∪ B2, when B2
arrives and exploit the information extracted from B1? Before
tackling this problem, basic definitions from graph theory and
notation used in this paper will be given.

Fig. 1: T0 = MST (I0) in red and T1 = MST (I1) in blue. ET0 and ET1 in
bold and dashed, edges linking common pixels (in emerald) and candidate to
form cycles on the union of the two MST.

Definition 1 (Graph Union). Let G1 = (V1,E1,W1) and G2 =

(V2,E2,W2) two weighted undirected graphs, such that

W1
∣∣∣
E1∩E2

≡ W2
∣∣∣
E1∩E2

,

whereW
∣∣∣
E

is the restriction of the functionW to the set E. We
call G1 ∪ G2, the weighted undirected graph G = (V,E,W)
withV = V1 ∪V2, E = E1 ∪ E2, and for all e ∈ E:

W(e) =

W1(e) if e ∈ E1,

W2(e) if e ∈ E2.

Figure 1 illustrates the union of two minimum spanning trees.

Definition 2. Given a weighted graph G = (V,E,W) and a
subset E′ ⊆ E of the edges, we call G − E′ the graph (V,E \
E′,W) obtained by removing the edges E′ from G.

Furthermore, MST (·) indicates any function that returns a
minimum spanning tree of G. E(G) is the set of all edges in G.
In order to simplify the notation, from now on we treat both
images and graphs as the same objects.

Finally, we come back to our question. Let Gt, a graph
streaming over time. This is, at each interval t a new block
of the complete graph Bt = (Vt,Et,Wt) arrives. So it holds:

Gt =

t⋃
s=0

Bs.

Assume that at time t − 1 the intersection between Gt−1 and the
new block Bt is known and it is never empty. In this context,
we address the problem of updating the MST of the graph Gt−1
each time that a block Bt arrives. In particular, we show two
algorithms capable to build a MST of the graph Gt, that exploit
information coming from time t − 1.

We conclude this section showing how this formulation can
be applied to a stream of images. Let It be an image streaming
over time. Without loss of generality, assume that new pixels
come from one side of the image, for example the right side of
image. If Bt is the new block at time t, for t = 0, . . . ,T , we have
It = It−1 ∪ Bt. The last column of It−1 is also the first column
of Bt, as in Figure 2.

3

Fig. 2: Streaming of image It as the union of the two non disjoint images It−1
and Bt . Without loss of generality they share a column of pixels.

For other streaming configurations, as for example a 2D
tiling, the only difference is that the common pixels should be
along the common tiling boundaries.

3. Proposed algorithms

We introduce two methods to compute a MST for streaming
by examining the case of the union G of two MSTs T0 and T1,
as shown in Figure 1. In order to extract a MST from the graph
G we need to locate all the cycles contained in it. Then, remove
the heaviest edges from them. Therefore, as first step, we need
to find edges forming cycles in G. Please remark that all cycles
contained in the union pass through the pixels in the common
intersection between the two trees at least twice. To simplify
our explanation, from now on we will refer to this common in-
tersection as frontier. Indeed, it is straightforward to prove that
a cycle in G is generated each time the two trees do not share an
edge in the frontier. When this happens, we can find two differ-
ent simple paths to join two vertices in the frontier. Without loss
of generality, let u, v be two vertices in the frontier. Let assume
that e = (u, v) ∈ T0 but e < T1. Since T1 is connected we can
find a different path π = {v0 = u, . . . , vn = v} in T1 that joins u
and v. Thus π∪{e} is a cycle inG. Generalizing this idea, we can
retrieve all the cycles looking for the subgraph G′ made by the
union of the subgraph ET0 and ET1 that contains all the simple
paths in T0 and T1 that link any two vertices of the frontier. In
Figure 1 we draw the edges that belong to G′ = ET0 ∪ ET1 with
bold and dashed lines respectively. Since we are working with
trees, it turns out it is easier to find all the simple paths from
any node in the frontier N to a special node r marked as root.
To do so, we mark one node in the frontier as root of the MST
and traverse the tree twice. The first time, we traverse the tree
in a top-down fashion using the depth-first-search-algorithm to
build the vector of predecessors. The second time, the tree is
traversed from bottom-up. This allows us to store all the edges
in simple paths from the root to any other node in the frontier.
We call this procedure find unstable edges. See the pseudo-
code in Procedure 1. The name of this last procedure will be
clearer in the next section. Its main purpose is to identify the
edges in the tree that may possibly generate a cycle in the fol-
lowing iterations. From now on, with the term path we mean
simple path.

The two methods that we developed1 to find a MST of Gt,
using information coming from Gt−1 are as follows:

• Streaming Spanning Tree v1: At the step t, the graph
G made by the union ofMST (Gt−1) andMST (Bt) may

1https://github.com/liubigli/SST

Procedure 1 find unstable edges

Input: A minimum spanning tree T , root node r and the list of
nodes N = [n1, . . . , nh] ⊂ N in the frontier

Output: E list of edges linking r to another frontier node N.
1: procedure find unstable edges
2: // each node in the graph is identified by a number n ∈ N
3: E ← ∅ // edges to return
4: V ← (False, . . . , False) // visited nodes
5: // p[n] : predecessor map of tree nodes. p[r] = −1.
6: p← depth first order(T , r)
7: for n ∈ N do
8: while p[n] >= 0 & V[n] == False do
9: E ← E ∪ {(n, p[n])}

10: V[n] = True
11: n← p[n]

contain cycles. The idea is to identify all the edges that
may cause cycles using the Procedure 1 on both graphs
MST (Gt−1) and MST (Bt). Let EGt−1 and EBt be the
graphs made by all the vertices and edges appearing in
all the paths in MST (Gt−1) and MST (Bt) respectively
connecting any two nodes in the frontier Nt. The method
computesMST (EGt−1 ∪ EBt), and finally it returns:

MST (Gt) = (MST (Gt−1) − EGt−1) ∪(MST (Bt) − EBt)
∪MST (EGt−1 ∪ EBt)

• Streaming Spanning Tree v2: At step t, we consider the
graph G made by the union of MST (Gt−1) and Bt. As
in v1, we consider the graph EGt−1 composed of the paths
in MST (Gt−1) that link any two vertices of the common
frontier because they may possibly generate cycles in G.
Instead of computing a MST for the newly arrived Bt. We
compute a MST of Bt combined with the candidate edges
to form cycles of the previous step. The result is added to
MST (Gt−1) without the candidate edges to form cycles.

MST (Gt) = (MST (Gt−1) − EGt−1) ∪MST (EGt−1 ∪ Bt)

Please remark that graph MST (Gt−1) contains edges com-
ing from Bs, ∀s = 0, . . . , t − 1. Thus the subgraph EGt−1 could
contain edges that belong to any previous block. Procedures 2
and 3 shows the pseudo-code for the two methods. In order to
prove the correctness of our methods, we prove the following
theorem.

Theorem 1. All the proposed methods return a minimum span-
ning tree for the graph Gt, for each t.

Proof. We only prove that the second method returns a MST.
For a proof of the first method please refer to our previous work
(Gigli et al., 2018). We show that the graph

Tt = (MST (Gt−1) − EGt−1) ∪MST (EGt−1 ∪ Bt)

returned by the Streaming spanning tree v2 at time t respects
the following three properties: 1) Tt is connected, 2) Tt is a
spanning tree, 3) the sum of all weights

∑
e∈Et

we, is minimal.

4

Procedure 2 Streaming Spanning Tree v1

Input: A streaming graph Gt

Output: A MS T for the graph Gt

1: procedure Streaming Spanning Tree v1
2: T0 ←MST (G0)
3: // N1 frontier with block B1, r1 ∈ N1
4: EG0 = find unstable edges(T0, r1,N1)
5: F0 ← T0 − EG0

6: T0 ← F0 ∪ EG0

7: while a new block Bt arrives do:
8: Tt ←MST (Bt)
9: // Nt frontier with Tt, rt ∈ Nt

10: EBt ← find unstable edges(Tt, rt,Nt)
11: Ft ← Tt − EBt

12: T ←MST (EGt−1 ∪ EBt)
13: Tt ← Ft−1 ∪ Ft ∪ T

14: // Fetching EGt for next iteration
15: // Nt+1 frontier with block Bt+1, rt+1 ∈ Nt+1
16: EGt ← find unstable edges(Tt, rt+1,Nt+1)
17: Ft ← Tt − EGt

Procedure 3 Streaming Spanning Tree v2

Input: A streaming graph Gt

Output: A minimum spanning tree MS T for the graph Gt

1: procedure Streaming Spanning Tree v2
2: T0 ←MST (B0)
3: // N1 frontier with block B1, r1 ∈ N1
4: EG0 = find unstable edges(T0, r1,N1)
5: F0 ← T0 − EG0

6: T0 ← F0 ∪ EG0

7: while a new block Bt arrives do:
8: Tt ← Ft−1 ∪MST (EGt−1 ∪ Bt)
9: // Fetching EGt for next iteration

10: // Nt+1 frontier with block Bt+1, rt+1 ∈ Nt+1
11: EGt ← find unstable edges(Tt, rt+1,Nt+1)
12: Ft ← Tt − EGt

First of all, we prove that Tt is connected.
We show that for any u, v ∈ Gt there exists a path π = {v0 =

u, . . . , vn = v} contained in Tt. Let now consider

T ′t =MST (Gt−1) ∪MST (EGt−1 ∪ Bt) ⊇ Tt.

By construction T ′t is connected since is the union of two con-
nected graphs with a non empty intersection. For this reason,
it is possible to find a path π = {v0 = u, . . . , vn = v} contained
in T ′t . Using the fact that T ′t ⊇ Tt, we can conclude that ei-
ther π ⊆ Tt or it must exists an edge e = (vi, vi+1) such that
e < E(Tt). In this last case, by construction e ∈ EGt−1 , but
e < MST (Gt−1) − EGt−1 . However, since MST (EGt−1 ∪ Bt)
is a connected tree we can find another path π1 = {w0 =

vi, . . . ,wm = v j} ⊆ MST (EGt−1 ∪ Bt) and thus in Tt. Repeating
this procedure for all the edges e = (vi, vi+1) of the path π not in
E(Tt), we can build a path π′ from u to v entirely contained in
Tt. Therefore Tt is connected.

We prove that Tt is a tree by contradiction. Let’s assume that

Fig. 3: In black the edge e, while in blue the
edges inMST (Gt−1−EGt−1), in red edges com-
ing from EGt−1 . In particular, the dashed red
edges are edges initially in EGt−1 but not in
MST (EGt−1 ∪ Bt).

Tt contains cycles. Thus, suppose that ∃v ∈ V(Gt) and a path
π = {v0 = v, . . . , vn = v} that is a cycle in Tt.

By definition of Tt it is straightforward that such a cycle
cannot be contained entirely in MST (Gt−1) − EGt−1 nor in
MST (EGt−1 ∪ Bt), since they are respectively a forest and a
tree. So the cycle π must pass through the nodes and edges of
both graphs. In particular it must cross at least twice the fron-
tier between Gt−1 and Bt. By definition, all paths in Gt−1 link-
ing two nodes of the frontier are included in EGt−1 . Therefore
MST (Gt−1) − EGt−1 can not contain such edges. As a conse-
quence Tt has no cycles.

Finally, we prove the third property by contradiction. We
define the cost of a graph G as the sum of its weights cost(G) =∑

e∈E(G) we. So, let suppose that Tt is not minimal. Then there
exists e ∈ Gt s.t. Tt ∪ {e} contains a spanning tree T such that
cost(T) < cost(Tt). Remark that by definition of Tt, the edge e
cannot belong to E(EGt−1 ∪ Bt). Otherwise the edge e would be
contained also in MST (EGt−1 ∪ Bt), which is a contradiction.
Let now consider e′ the edge in Tt replaced by e in T . Since the
two trees differ only by the two edges it holds we < we′ . Two
cases are possible:

i) e′ is an edge originally inMST (Gt−1),
ii) e′ is an edge originally in the new block Bt, this is, e′ ∈
E(MST (EGt−1 ∪ Bt)) ∩ E(Bt), as in figure 3.

Both cases lead to a contradiction. In fact suppose that e′ was
originally in MST (Gt−1), then MST (Gt−1) ∪ {e} contains a
cycle that pass through e and e′. If we < we′MST (Gt−1) would
have chosen e instead of e′ but it is not the case. On the other
hand, if e′ is contained inMST (EGt−1 ∪ Bt) ∩ Bt, then we can
find e′′ that belongs to EGt−1 but not inMST (EGt−1 ∪ Bt), such
that Tt ∪ {e′′} has a cycle containing e′ and e′′ (see red dashed
line in figure 3). Since e′′ is not contained inMST (EGt−1 ∪ Bt)
we can deduce that we′′ ≥ we′ , and thus we′′ > we. As in the
previous case this lead to a contradiction because it implies that
MST (Gt−1) ∪ {e}, with e ∈ Gt−1 contains a MST T ′ such that
cost(T ′) < cost(MST (Gt−1)).

We conclude this section showing an interesting insight of
the proposed methods that will be useful for possible applica-
tions. As the reader may have already noticed, at the end of
each iteration t, we decompose the MST (Gt) in two disjoint
parts: a) EGt , a graph made of all edges inMST (Gt) that may
form cycles when the new block arrives. b) Ft = Tt − EGt , a
forest made by all the rest of the graph.

The first graph, is indeed made by edges that we call unsta-
ble. Mostly because we could eliminate some of them in the
next step t + 1. The second graph is made by edges that we
call stable, since they will belong to all MSTs from now on.
This is important for two reasons. 1) At each step the mem-
ory footprint is reduced by discarding edges that are no longer

5

necessary to compute further MSTs. 2) The stable edges can
be used for further tasks as we will see below. In Figure 4, we
report an example that shows the evolution of the stable + un-
stable decomposition of minimum spanning trees through the
time. In green we represent the forest Ft over time, while in red
the graph EGt .

(a) t = 0 (b) t = 1

(c) t = 2

Fig. 4: An example of stable + unstable decomposition of minimum spanning
tree. The green graph is the forest Ft that contains only stable edges, while
the red graph is EGt that contains only unstable edges. (b-c) Pixels without
edges are stable, so is possible to store that part of the graph and do not need to
consider in following intervals.

4. Benchmarks

We conducted our experiments on a high resolution image
taken from the site http://www.gigapan.com/. The image
is (12000×47196) pixels high resolution photo of Planet Mars’
surface2. The CPU of the machine used for the tests is Intel 3.00
GHz Xeon with 32GB RAM. We considered the case as shown
in Section 2 where blocks of an image stream horizontally.

As first benchmark, we measured how long our methods
took to build the MST for the complete image and we com-
pared this against the brute-force method, that is the method
that load in memory all the image and then compute the MST
using Kruskal approach. We make the image stream in blocks
Bt of size 12000 × 4000 pixels, and at each interval t we mea-
sure the time the algorithms take to compute MST (It). In
Figure 5 we report the results. During the experiment we re-
marked that the brute-force method is faster compared to our
algorithms until the image size reaches the limit to fit entirely in
RAM. Hence, the reader should be aware that on a Turing Ma-
chine with unlimited resources the brute force algorithm would
be faster. In our machine, the image size limit is about 240
megapixels (Mpx). After that, the brute-force method needs to
use swap memory, and its runtime grows until the image size
reach about 380 Mpx, when the image size makes the program
crash. On the contrary, thanks to the stable + unstable decom-
position that reduces the memory footprint of Algorithms 2 and

2http://www.cmm.mines-paristech.fr/~gigli/mars.jpg

3, the execution times of our methods grow quasi-linearly with
the image size, and they are able to treat images of bigger sizes.

100 200 300 400 500
Megapixels in the image (Mpx)

0

200

400

600

800

1000

1200

1400

1600

Ti
m
e
(s
)

Benchmark Algorithms 2 and 3 and brute force method
Streaming Spanning Tree v1
Streaming Spanning Tree v2
brute force

Fig. 5: Runtime of Algorithm 2, Algorithm 3 and brute-force algorithm on a
(12000 × 47196) pixels image of Planet Mars’ surface.

Furthermore, in order to better understand how the size of
the blocks Bt affects the runtime, we measured the execution
times of our methods with different sizes for streaming blocks
that are 12000 × 4000, 12000 × 8000 and 12000 × 12000 pix-
els. We report the results obtained in Figure 6. As the reader
can see, Algorithm 3 performs better than Algorithm 2 in the
general case. Moreover, we noted an improvement in the exe-
cution times to treat the entire image when we use block sizes of
12000× 8000 pixels compared with block size of 12000× 4000
pixels. This is because, using bigger blocks, we reach the entire
image dimensions in fewer iterations and we spend less time
updating the MSTs. Nevertheless, using blocks of bigger sizes
also increases the quantity of memory needed at each iteration
and thus increases the risk to use swap memory that slows down
the overall execution time. For this reason, in the case of Al-
gorithm 3 we do not remarked the same improvement when we
use blocks size of 12000×12000 pixels compared with the ones
of 12000 × 8000 pixels. Thus, the ideal block size should be a
trade-off between the footprint of the block Bt and the number
of iterations needed to treat the entire image.

We end this section by analysing the time complexity of Al-
gorithm 3. Clearly this relies on the algorithm used to com-
pute MST (EGt−1 ∪ Bt), and it depends on the cardinality of
sets EGt−1 ∪ Bt for all 0 ≤ t ≤ T , that are bounded by
|Bt | ≤ |EGt−1 ∪ Bt | ≤ |Bt | + |MST (Gt−1)|. The best case is
indeed when EGt−1 corresponds to the frontier, and the worst
case is when EGt−1 ≡ MST (Gt−1), as for example, a graph
MST (Gt−1) shaped like a comb facing the frontier. We ob-
serve that in this second case the memory complexity of our
methods is the same as brute force method. Hence, assum-
ing for example to use Kruskal algorithm to compute the MST,
the time complexity c of computing a MST for a graph G is:
O
(

(T+1)
2 (2m log(m) + N)

)
≤ c ≤ O

(
m log(m) + log(H(m + nT)) +

N(T+1)
2

)
, where N is the number of nodes in G, n,m the number

of nodes and edges respectively in each block, T is the num-
ber of steps, and H(m + nT) =

∑T
t=1(m + nt) log(m + nt) is the

hyperfactorial function.

6

100 200 300 400 500
Megapixels in the image (Mpx)

0

100

200

300

400

500

600

700

Ti
m

e
(s

)
Benchmarks with different block sizes

Streaming Spanning Tree v1 - (12k x 4k)
Streaming Spanning Tree v2 - (12k x 4k)
Streaming Spanning Tree v1 - (12k x 8k)
Streaming Spanning Tree v2 - (12k x 8k)
Streaming Spanning Tree v1 - (12k x 12k)
Streaming Spanning Tree v2 - (12k x 12k)

Fig. 6: Runtime of Algorithm 2 and 3 with different block sizes. We used blocks
of 12000 × 4000, 12000 × 8000 and 12000 × 12000 pixels.

Doing a similar analysis on Algorithm 2 we find that its
complexity, in memory and time, depends on the cardinality
of union of unstable edges in both sides of the frontier, i.e,
|EGt−1 ∪ EBt |. We conclude that the size of the unstable part
has a crucial impact on the performance of algorithms.

5. Applications

In this section we introduce three applications of our al-
gorithm to image segmentation. In particular, we exploited
the stable + unstable decomposition of our methods to imple-
ment a streaming version of λ-quasi-flat zones (Najman et al.,
2013)(Zanoguera and Meyer, 2002), watershed-cuts (Cousty
et al., 2009) and constrained connectivity (Soille, 2008). How-
ever, other approaches as hierarchical watershed Cousty and
Najman (2011), stochastic watershed Angulo and Jeulin (2007)
could be also considered in our framework. In the applications,
we use slightly different versions of Algorithms 2 and 3, that
each time t return the stable forest Ft and the unstable graph
EGt . Remember that the MST for the graph Gt can be obtained
asMST (Gt) = ∪t

s=0Fs ∪ EGt . In order to validate the stream-
ing versions of the previously mentioned methods, we applied
them to the case of horizontal streaming as described in Sec-
tion 2. We report in Figure 7 the remote sensing image used for
our experiments, that we split in three blocks. The blue dashed
lines represent the frontiers between two consecutive blocks,
while red pixels are the markers used for the watershed-cuts.

Fig. 7: Image used to validate streaming version of the segmentation methods.
The image has been split in three blocks (see blue dashed lines) and the blocks
stream from left to right. As explained in Section 2 two consecutive blocks
share a column of pixels. In red, the pixels used as markers for watershed-cut.

5.1. λ-quasi-flat zones
Let recall the definition of λ-quasi-flat zone hierarchy. Sup-

pose I be an image and consider G = (V,E,W) its associated
weighted graph (as seen in Section 2). Given an integer λ ∈ N
we can extract from the graph G a subgraph Gλ = (V,Eλ,W)
such that Eλ = {e ∈ E|W(e) < λ}, that is the graph Gλ is ob-
tained from G removing all the edges whose weight is equal
or greater than λ. The set Pλ = {C0, . . . ,Cnλ } made of all
connected components of Gλ is a partition of the set of nodes
V. The connected components are also called lambda-quasi-
flat zones, since the variation between two neighboring nodes
in a connected component does not exceed λ. Remark that if
λ1 ≤ λ2, then the partition obtained using λ1 is finer than the
one obtained using λ2. That is, for each connected component
C ∈ Pλ1 it exists a connected component C′ ∈ Pλ2 such that
C ⊆ C′. In that case, we write Pλ1 � Pλ2 to indicate that par-
tition Pλ1 is finer than partition Pλ2 . By making varying the
values of lambda from zero to max(W) we obtain a sequence
of partitions such that P0 = V � . . . � P|E|−1 = {V}, that is the
λ-quasi-flat zone hierarchy. Theorem 4 in Cousty et al. (2018)
states that we obtain the same result thresholding the edges of
the minimum spanning tree of G. For this reason the algorithms
presented above could be suitable to compute a level of λ-quasi-
flat zone hierarchy in a streaming fashion, exploiting the stable
+ unstable decomposition. Let explain it using the example
in Figure 7. At time t = 0 we get MST (G0) = F0 ∪ EG0 .
Now, removing the edges in MST (G0) larger than λ, we ob-
tain C(0)

0 , . . . ,C(0)
n0 connected components. We call unstable con-

nected component a region C containing nodes on the frontier.
On the contrary, we classify as stable connected component a
region C that does not contain any node in the frontier.
In fact, it is straightforward that a connected component con-
taining nodes on the frontier can change in the following iter-
ation, for example it can expand and include nodes of future
blocks. We conclude that, at each time t, we can assign a la-
bel only to stable connected components. Conversely, we need
to keep in memory the stable edges contained in unstable con-
nected components. We call residual graph R0, the graph made
by nodes contained in unstable connected components and sta-
ble edges contained in them at time t = 0. Thank to this decom-
position, to get the connected components in future intervals of
time, we do not need the entire MST (Gt), but is sufficient to
consider the graph Rt−1 ∪ Ft ∪ EBt and threshold edges larger
than λ from it. To summarize, at each time t we do:

1. Consider the graph Gt = Rt−1 ∪ Ft ∪ EBt where Rt−1 is the
residual graph obtained at previous step.

2. Threshold all edges in Gt larger than a given λ, obtaining
C

(t)
0 , . . . ,C

(t)
nt connected components.

3. Assign a label only to components C(t)
j whose pixels are

not in the frontier. In Figure 8 these regions are repre-
sented by non-black colors. Mark as unstable connected
components the regions C(t)

j containing nodes in the fron-
tier. In Figure 8 (a,b) these regions are the black pixels.

4. Assign to Rt the stable edges contained in unstable con-
nected components at iteration t.

Figure 8 reports the result of the procedure above applied on
Figure 7.

7

5.2. Watershed cuts
Another popular method to segment an image that exploit

the minimum spanning tree is the watershed cut (Cousty et al.,
2009). This method needs a set M = {p0, . . . , pk} of pixels
called markers. At the end of the process each of the marker
will be contained in a different region of the segmented im-
age. Basically, the method takes as input a weighted graph
G = (V,E,W) and a set M of markers and proceeds in the
following way:

1. add to the set of nodesV as special node z called well, that
isV′ = V ∪ {z}

2. for each marker p, add an edge (p, z) to the set of edges
E, whose weight is m − 1 (with m = min

e∈E
W(e)), i.e. E′ =

E ∪ {(p, z)|p ∈ M}
3. compute a minimum spanning tree T ′ of the graph G′ =

(V′,E′,W′)
4. return the connected components C0, . . . ,Ck, of the sub-

graph F ⊆ T ′ restricted only to nodes inV.

Remark that the connected components are the regions of our
segmentation and that a marker is contained in each of them. In
fact, each marker p is connected in G′ to the well z with an edge
whose weight is minimum. Necessarily those edges will be in
the minimum spanning tree T ′ of the extended graph G′, and
for this reason each path in the MST that connects two markers
must pass by the well node z. We conclude that in the subgraph
F ⊆ T ′ restricted to nodesV, two markers must belong to dif-
ferent connected components.
It is possible to derive a streaming version of the watershed
cuts like we did to get λ-quasi-flat zones. Once again we use
the example in Figure 7 to illustrate it. At time t = 0, we
obtain the segmentation as connected components of subgraph
F ′ ⊆ MST (G′0) as just seen. Also in this case, we split these
regions between unstable and stable based on the criteria of
whether they contains frontier nodes or not. Successively, we
assign a label only to stable connected components, and we re-
trieve the residual graph R0, that is the graph composed by the
nodes in the unstable connected components with stable edges.

(a) t = 0 (b) t = 1

(c) t = 2

Fig. 8: An example of one level of λ-quasi-flat zones in streaming, with λ = 10
for image in Fig. 7. Black pixels in Figures (a) and (b) are those that do not
have a stable label in that iteration.

(a) t = 0 (b) t = 1

(c) t = 2

Fig. 9: Watershed cuts in streaming for image in Fig. 7. Red pixels in the
images are the markers of the segmentation. Black pixels in Figures (a) and (b)
are the connected components that do not have a stable label in that iteration.

Similarly to the previous subsection, to get the connected com-
ponents in future intervals of time, we do not need the entire
MST (G′t), but is sufficient to consider the graph Rt−1∪F′t∪E′B′t .
To summarize, let Gt a streaming of graph. At each time t we
do:

1. Consider the graph G′t = Rt−1∪F′t ∪EB′t , where Rt−1 is the
residual graph obtained at previous step.

2. Compute C(t)
0 , . . . ,C

(t)
nt connected components of the sub-

graph obtained removing well z and its connections from
G′t .

3. Assing a label exclusively to components C(t)
j whose pix-

els are not in the frontier. In Figure 9 these components
are non-black regions of the image. Mark as unstable con-
nected components the regions C(t)

j that contain at least one
node in the frontier. In Figure 9 (a,b): these regions are
black pixels.

4. Assign Rt as the graph made by nodes in unstable con-
nected components at iteration t with stable edges.

5.3. (α, ω)-constrained connectivity

Lastly, we conclude this section introducing a third applica-
tion of our streaming methods. This time we show a stream-
ing version of the (α, ω)-constrained connectivity method. In-
troduced by Soille (2008) this method extends the concept of
α-quasi-flat zones and tackles the problem of chaining-effect
Soille (2011). In fact, it can happen that distinct objects in the
image are separated by one or more transitions going in steps
having an intensity height less than or equal to λ. It follows
that those objects fall in the same λ-quasi-flat zone even though
they are distinct. Essentially, the idea proposed is to introduce
a connectivity index to measure the degree of connection of
a connected component. Briefly, let I be a grayscale image,
and consider a λ-quasi-flat zone C. We define the range of
the quasi-flat zone R(C) as the biggest difference of intensity
among two pixels in C, i.e., R(C) = maxp,q∈C |I(p) − I(q)|. In
the original paper (Soille, 2008) proposed to use the range of a
connected component as a measure of connection, but it could

8

be any predicate with a non-decreasing property on λ-quasi-flat
zones such as area or volume of λ-quasi-flat zones. However,
hereunder we recall its original definition. Given a pixel p, the
(α, ω)-connected component of p is the largest λ-quasi-flat zone
containing p such that λ ≤ α and with a range less than ω,

(α, ω) −CC(p) = max
λ

{
λ −CC(p)|λ ≤ α and R(λ −CC(p)) ≤ ω

}
,

where λ − CC(p) is the λ-quasi flat zone that contains p.
Moreover, two pixels p and q are (α, ω)-connected if and only
if q ∈ (α, ω) − CC(p). It turns out that the relation “is (α, ω)-
connected” is an equivalence relation and thus it generates a
unique partition of the image definition domain. Let now dis-
cuss how a streaming version of MST can be used to obtain
the (α, ω)-constrained connectivity for a stream of images. We
implemented it in a straightforward manner. Basically, at each
interval t we first compute the stable α-quasi-flat zones of the
image It as in the previous subsection, and then for each sta-
ble α connected components we extract the (α, ω) connected
components contained in it. In Figure 10 we report the result
obtained on the test image in 7.

(a) t = 0 (b) t = 1

(c) t = 2

Fig. 10: An example of (α, ω)-constrained connectivity in streaming, with α =

10 and ω = 150 for image in Fig. 7. Black pixels in Figures (a) and (b) are
those that do not have a stable label in that iteration.

6. Conclusions

This paper introduced two methods for the computation of a
minimum spanning tree for graph streaming. We have shown
empirically that their execution time grows quasi-linearly with
image size. Finally, we have shown how to apply these meth-
ods to segmentation tasks. In particular how they can be used to
extract a level of λ-quasi-flat-zones hierarchy for image stream-
ing. The main advantage of our proposed algorithm is that at
each time the MST is decomposed in two parts. The stable part
can be stored or used in further tasks. As shown in the case of
segmentation. The second one, the unstable, is kept in mem-
ory. Since it may contain edges that could be removed from
MST as future information arrives. Thanks to this decomposi-
tion we can reduce the memory necessary to compute the MST
and treat images of bigger sizes.

References

Angulo, J., Jeulin, D., 2007. Stochastic watershed segmentation., in: ISMM
2007, pp. 265–276.

Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G., 2014. Tree filtering: Efficient
structure-preserving smoothing with a minimum spanning tree. IEEE Trans.
Im. Proc. 23, 555–569.

Couprie, C., Grady, L., Najman, L., Talbot, H., 2011. Power watershed: A uni-
fying graph-based optimization framework. IEEE Transactions on Pattern
Analysis and Machine Intelligence 33, 1384–1399.

Cousty, J., Bertrand, G., Najman, L., Couprie, M., 2009. Watershed cuts: Min-
imum spanning forests and the drop of water principle. IEEE Transactions
on Pattern Analysis and Machine Intelligence 31, 1362–1374.

Cousty, J., Najman, L., 2011. Incremental algorithm for hierarchical minimum
spanning forests and saliency of watershed cuts, in: ISMM, Springer. pp.
272–283.

Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S., 2018. Hierarchical
segmentations with graphs: quasi-flat zones, minimum spanning trees, and
saliency maps. Journal of Mathematical Imaging and Vision 60, 479–502.

Fehri, A., Velasco-Forero, S., Meyer, F., 2017. Prior-based hierarchical seg-
mentation highlighting structures of interest, in: International Symposium
on Mathematical Morphology and Its Applications to Signal and Image Pro-
cessing, Springer. pp. 146–158.

Gazagnes, S., Wilkinson, M.H., 2019. Distributed component forests in 2-d:
Hierarchical image representations suitable for tera-scale images. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence , 1–22.

Gigli, L., Velasco-Forero, S., Marcotegui, B., 2018. On minimum spanning tree
streaming for image analysis, in: 2018 25th ICIP, IEEE. pp. 3229–3233.

Kim, W., 2009. Parallel clustering algorithms: survey. Parallel Algorithms,
Spring 34, 43.

Li, S., Dragicevic, S., Castro, F.A., Sester, M., Winter, S., Coltekin, A., Pettit,
C., Jiang, B., Haworth, J., Stein, A., et al., 2016. Geospatial big data han-
dling theory and methods: A review and research challenges. ISPRS Journal
of Photogrammetry and Remote Sensing 115, 119–133.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., Jie, W., 2015.
Remote sensing big data computing: Challenges and opportunities. Future
Generation Computer Systems 51, 47–60.

Matas, P., Dokladalova, E., Akil, M., Grandpierre, T., Najman, L., Poupa, M.,
Georgiev, V., 2008. Parallel algorithm for concurrent computation of con-
nected component tree, in: International Conference on Advanced Concepts
for Intelligent Vision Systems, Springer. pp. 230–241.

Meyer, F., 2001a. Hierarchies of partitions and morphological segmentation,
in: International Conference on Scale-Space Theories in Computer Vision,
Springer. pp. 161–182.

Meyer, F., 2001b. An overview of morphological segmentation. International
journal of pattern recognition and artificial intelligence 15, 1089–1118.

Meyer, F., 2015. The waterfall hierarchy on weighted graphs, in: International
Symposium on Mathematical Morphology and Its Applications to Signal
and Image Processing, Springer. pp. 325–336.

Najman, L., Cousty, J., Perret, B., 2013. Playing with kruskal: Algorithms for
morphological trees in edge-weighted graphs, in: ISMM, pp. 135–146.

Olman, V., Mao, F., Wu, H., Xu, Y., 2009. Parallel clustering algorithm for
large data sets with applications in bioinformatics. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 6, 344–352.

Soille, P., 2008. Constrained connectivity for hierarchical image partitioning
and simplification. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30, 1132–1145. doi:10.1109/TPAMI.2007.70817.

Soille, P., 2011. Preventing chaining through transitions while favouring it
within homogeneous regions, in: International Symposium on Mathematical
Morphology and Its Applications to Signal and Image Processing, Springer.
pp. 96–107.

Tu, W.C., He, S., Yang, Q., Chien, S.Y., 2016. Real-time salient object detection
with a minimum spanning tree, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2334–2342.

Wei, X., Yang, Q., Gong, Y., Ahuja, N., Yang, M.H., 2018. Superpixel hierar-
chy. IEEE Transactions on Image Processing 27, 4838–4849.

Wu, B.Y., Chao, K.M., 2004. Spanning trees and optimization problems. CRC
Press.

Zanoguera, F., Marcotegui, B., Meyer, F., 1999. A toolbox for interactive seg-
mentation based on nested partitions, in: Proceedings 1999 ICIP, IEEE. pp.
21–25.

Zanoguera, F., Meyer, F., 2002. On the implementation of non-separable vector
levelings. Proc. of VIth ISMM, Sydney, CSIRO , 369–377.

