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In this paper we prove that the systole fonction on a connected component of area one translation surfaces admits a local maximum that is not a global maximum if and only if the connected component is not hyperelliptic.

Introduction

This paper deals with flat metric defined by Abelian differentials on compact Riemann surfaces (translation surfaces). For a translation surface, we define the relative systole Sys(S) to be the length of the shortest saddle connection of S. A sequence of area one translation surfaces (S n ) n∈N in a stratum of the moduli space of translation surfaces leaves any compact set if and only if Sys(S n ) → 0. The set of translation surfaces with short relative systole and compactification issues of strata are related to dynamics and counting problems on translation surfaces and have been widely studied in the last 30 years (see for instance [START_REF] Kerckhoff | Ergodicity of billiard flows and quadratic differentials[END_REF][START_REF] Eskin | Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants[END_REF][START_REF] Eskin | Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow[END_REF]).

Here, we are interested in the opposite problem: we study surfaces that are "far" from the boundary. In [START_REF] Boissy | Systoles in translation surfaces[END_REF], we have characterized global maxima for Sys and we have shown that each stratum of genus greater than or equal to 3 contains local but non global maxima for the function Sys. The constructed surfaces in [START_REF] Boissy | Systoles in translation surfaces[END_REF] are not in the hyperelliptic connected components.

In this paper, we prove that there are no such local maxima in hyperelliptic connected components (Theorem 3.1 in the text), while they exist in every other connected component (Theorem 4.1 in the text). This gives us the following characterization.

Theorem (Main Theorem). Let C be a connected component of a stratum of area one surfaces. The relative systole fonction on C admits a local maximum that is not a global maximum if and only if C is not hyperelliptic.

Note that our notion of relative systole is different from the "true systole" i.e. shortest closed curve that has been studied by Judge and Parlier in [START_REF] Judge | The maximum number of systoles for genus two Riemann surfaces with abelian differentials[END_REF]. In the rest of the paper, for simplicity, if not mentioned otherwise, the term "systole" will mean "relative systole".

Background

Translation surfaces.

A translation surface is a (real, compact, connected) genus g surface S with a translation atlas i.e. a triple (S, U, Σ) such that Σ (whose elements are called singularities) is a finite subset of S and U = {(U i , z i )} is an atlas of S \Σ whose transition maps are translations of C ≃ R 2 . We will require that for each s ∈ Σ, there is a neighborhood of s isometric to a Euclidean cone whose total angle is a multiple of 2π. One can show that the holomorphic structure on S \ Σ extends to S and that the holomorphic 1-form ω = dz i extends to a holomorphic 1-form on S where Σ corresponds to the zeroes of ω and maybe some marked points. We usually call ω an Abelian differential. A zero of ω of order k corresponds to a singularity of angle (k + 1)2π. By a slight abuse of notation, we authorize the order of a zero to be 0, in this case it corresponds to a regular marked point.

A saddle connection is a geodesic segment joining two singularities (possibly the same) and with no singularity in its interior. Integrating ω along the saddle connection we get a complex number. Considered as a planar vector, this complex number represents the affine holonomy vector of the saddle connection. In particular, its Euclidean length is the modulus of its holonomy vector.

For g ≥ 1, we define the moduli space of Abelian differentials H g as the moduli space of pairs (X, ω) where X is a genus g (compact, connected) Riemann surface and ω non-zero holomorphic 1-form defined on X. The term moduli space means that we identify the points (X, ω) and (X ′ , ω ′ ) if there exists an analytic isomorphism f :

X → X ′ such that f * ω ′ = ω.
One can also see a translation surface obtained from a polygon (or a finite union of polygons) whose sides come by pairs, and for each pair, the corresponding segments are parallel and of the same length. These parallel sides are glued together by translation and we assume that this identification preserves the natural orientation of the polygons. In this context, two translation surfaces are identified in the moduli space of Abelian differentials if and only if the corresponding polygons can be obtained from each other by cutting and gluing and preserving the identifications.

The moduli space of Abelian differentials is stratified by the combinatorics of the zeroes; we will denote by H(k 1 , . . . , k r ) the stratum of H g consisting of (classes of) pairs (X, ω) such that ω has exactly r zeroes, of order k 1 , . . . , k r respectively. It is well known that this space is (Hausdorff) complex analytic. We have the classical Gauss-Bonnet formula i k i = 2g -2, where g is the genus of the underlying surfaces. We often restrict to the subset H 1 (k 1 , . . . , k r ) of area one surfaces. Local coordinates for a stratum of Abelian differentials are obtained by integrating the holomorphic 1-form along a basis of the relative homology H 1 (S, Σ; Z), where Σ denotes the set of conical singularities of S.

2.2.

Connected component of strata. Here, we recall the Kontsevich-Zorich classification the connected components of the strata of Abelian differentials [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian differentials with prescribed singularities[END_REF].

A translation surface (X, ω) is hyperelliptic if the underlying Riemann surface is hyperelliptic, i.e. there is an involution τ such that X/τ is the Riemann sphere. In this case ω satisfies τ * ω = -ω. A connected component of a stratum is said to be hyperelliptic if it consists only of hyperelliptic translation surfaces (note that a connected component which is not hyperelliptic might contain some hyperelliptic translation surfaces).

Let γ be a simple closed smooth curve parametrized by the arc length on a translation surface that avoids the singularities. Then t → γ ′ (t) defines a map from S 1 to S 1 . We denote by Ind(γ) the index of this map. Assume that the translation surface S has only even degree singularities S ∈ H(2k 1 , . . . , 2k r ). Let (a i , b i ) i∈{1,...,g} be a collection of simple closed curves as above and representing a symplectic basis of the homology of S. Then

g i=1 (ind(a i ) + 1)(ind(b i ) + 1) mod 2
is an invariant of connected component ans is called the parity of the spin structure (see [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian differentials with prescribed singularities[END_REF] for details).

Here is a reformulation of the classification of connected component of strata by Kontsevich-Zorich (Theorem 1 and Theorem 2 of [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian differentials with prescribed singularities[END_REF]).

Theorem 2.1 (Kontsevich-Zorich). Let H = H(k 1 , . . . , k r ) be a stratum of genus g ≥ 2 translation surfaces.

• The stratum H contains a hyperelliptic connected component if and only if H = H(2g -2) or H = H(g -1, g -1). In this case there is only one hyperelliptic component. In genus two, any stratum is connected (and hyperelliptic). • If there exists i such that k i is odd, or if g = 3, then there exists a unique nonhyperelliptic connected component. • If g ≥ 4 and, for all i, k i is even, then there are exactly two nonhyperelliptic connected components distinguished by the parity of the spin structure.

The following lemma is classical and will be useful in the next section.

Lemma 2.2. Let S be a translation surface in a hyperelliptic connected component and let γ be a saddle connection. Then γ and τ (γ) are homologous.

Hyperelliptic connected component

In this section, we prove the first part of the Main Theorem. The proof uses the following technical lemma. We postpone its proof to the end of the section. Lemma 3.2. Let D be a translation surface that is topologically a disk and whose boundary consists of n-saddle connections (a "n-gon") with n ≥ 4. We assume that all boundary saddle connections are of length greater than or equal to 1. Then, we can continuously deform D so that its area decreases and the boundary saddle connections of length 1 remain of length 1.

Proof of Theorem 3.1. Let S ∈ C be a translation surface that such that Sys(S) is not a global maximum. We use the same normalization as in [START_REF] Boissy | Systoles in translation surfaces[END_REF]: after rescaling the surface we assume that Sys(S) equals 1, and we will continuously deform S so that Sys(S) remains 1 and Area(S) decreases.

Let γ 1 , . . . , γ r be the set of saddle connections realizing the systole. Recall that γ 1 , . . . , γ r are sides of the Delaunay triangulation and that global maxima correspond to surfaces which Delaunay cells are only equilateral triangles (see Lemma 3.1 and Theorem 3.3 in [START_REF] Boissy | Systoles in translation surfaces[END_REF]). Let C 1 , . . . , C k be the connected components of S\∪ i γ i . Up to renumbering we can assume that C 1 is not a triangle. We consider τ (C 1 ), where τ is the hyperelliptic involution. We study the two possible cases whether τ (C 1 ) equals C 1 or not. Note that C 1 does not contain any singularity in its interior since there are at most two singularities in S and if there are two singularities P 1 , P 2 we must have τ (P 1 ) = P 2 .

Case 1. We first assume that τ (C 1 ) = C 1 . Since the hyperelliptic involution preserves ∪ i γ i , we have (up to renumbering) τ (C 1 ) = C 2 .

We observe that C 1 has only one boundary component. Indeed, suppose that there are more than one such components and consider a saddle connection η in C 1 that joins a singularity of one boundary component to a singularity of another boundary component. Then τ (η) is a curve in C 2 and must be homologous to η by Lemma 2.2. But C 1 \η is connected, and hence S\(η ∪ τ (η)) is connected, which is a contradiction. Therefore C 1 is a disk because it embeds in S/τ which is a sphere.

Since the boundary of C 1 consists of at least 4 saddle connections of length 1, by Lemma 3.2, we can continuously decrease its area while keeping the boundary saddle connections of length 1.

This continuous deformation of C 1 leads to the following area decreasing continuous deformation of S:

The component C 2 is deformed in a symmetric way as C 1 .

For each saddle connection γ in the boundary of C 1 , the components of S\(γ ∪ τ (γ)) correspond to components of the complementary of [γ] in the quotient sphere S/τ . Since [C 1 ] = [C 2 ], then C 1 , C 2 are in the same connected component of S\(γ ∪τ (γ)). We denote by D γ the other component. Note that D γ is empty if γ = τ (γ). We observe that if γ 1 , γ 2 are two distinct saddle connections in the boundary of C 1 , then D γ 1 and D γ 2 are disjoint. In particular, we can rotate all such components D γ independently in a compatible way with the deformation of C 1 , C 2 and we glue these components in the natural way. The area of each C i decreases while the area of the D γ remains constant. Therefore the total area of the surface decreases.

Case 2. Now we assume that τ (C 1 ) = C 1 . We claim that we can cut C 1 along saddle connections and obtain two discs A and B such that τ (A) = B and for each saddle connection γ in the boundary of A, either γ is of length 1, or τ (γ) = γ (equivalently, γ is also a boundary saddle connection of B).

To prove the claim, we first consider the Delaunay cells of S. Recall that the shortest geodesics (hence the boundary saddle connections of C 1 ) are sides of the Delaunay cells (see [START_REF] Boissy | Systoles in translation surfaces[END_REF], Lemma If

A k ∪ B k = C 1 , we define A = A k , B = B k .
The boundary of the disk A consists of n ≥ 3 saddle connections of lengths at least 1. If n ≥ 4, then from Lemma 3.2, it can be continuously deformed so that the area decreases and the boundary saddle connections of length 1 remain of length one. Otherwise A is a triangle but cannot be a equilateral triangle, hence it can also be deformed as above.

We deform B in a symmetric way. Note that A and B are directly glued together in C 1 along the boundary saddle connections of lengths greater than one. Therefore the possible changes of these saddle connections are not a problem. The deformation of S\C 1 is treated as in the previous case.

Proof of Lemma 3.2. The sum of the boundary angles (coming from the intersection of two consecutive boundary saddle connections) of D equals (n -2)π. Therefore D has boundary angles smaller than π. If such a boundary angle has a corresponding boundary saddle connection which is of length greater than 1, then by slightly changing its length we can decrease the area of the corresponding triangle and hence of D.

So we can assume that for each boundary angle smaller than π, the two adjacent saddle connections are of length 1. We claim that we can find two consecutive angles such that one is smaller than π and the other is smaller than 2π (note that since D is not necessarily embedded in the plane, it can have boundary angles greater than 2π). Indeed, consider the sequence of consecutive boundary angles of D. If each time an angle is smaller than π, the following one is greater than or equal to 2π, then the global sum will be greater than nπ, which is not possible. Now we consider the 3 consecutive saddle connections corresponding to these two angles, and see them as a broken line on the plane. We close this line by adding a segment t to obtain a quadrilateral Q (that can be also crossed). Without loss of generality, we can assume that t is horizontal. We have

Area(D) = Area(D 0 ) + Area alg (Q)
where D 0 is the translation surface obtained by "replacing" the broken line by t (see Figure 1). Here Area alg (Q) means that the part of Q below the segment t is counted negatively.

Claim: We can deform continuously Q without changing the lengths of its sides so that Area alg (Q) decreases.

Denote by MNP Q the quadrilateral Q and by a, b, c, d the lengths of the sides of Q with a being the length of the segment t = MN. Denote by α the oriented angle from MN to MQ, and by γ its opposite angle in Q (i.e. the angle from P Q to P N). Without loss of generality we assume that b = c = 1, d ≥ 1 and 0 < γ < π (in fact we must have γ > π/3 otherwise there would be a smallest saddle connection). We also have -π < α < π. Also, the sides NP and QM do not intersect since it would imply intersecting boundary saddle connections in D (see Figure 1).

Denote K = Area alg (Q). We compute K by adding the (algebraic) area of the triangles MNQ and NP Q. We obtain

(1) K = 1 2 (ad sin(α) + bc sin(γ)) .
The expression of the length of NQ gives the second equality:

(2)

a 2 + d 2 -2ad cos(α) = b 2 + c 2 -2bc cos(γ).
These two equations imply the Bretschneider's formula for Q:

(3) K 2 = (s -a)(s -b)(s -c)(s -d) -abcd cos( α + γ 2 ),
where s = a+b+c+d

2

. From now on, we fix a, b, c, d and study the variations of the area with respect to α, γ. Equation (2) implies that γ depends differentially on α. Hence we can write K = K(α). We need to prove that K ′ (α) = 0 or K(α) is a strict local maximum (note that α varies in an open set). We have:

(K 2 ) ′ (α) = abcd(1 + γ ′ (α)) sin( α + γ 2 ) cos( α + γ 2 ). D • M d • Q c • P b • N a D • M d • Q c • P b • N a D • M d • Q c • P b • N a Figure 1.
The disk D and the quadrilateral Q in 3 configurations.

We assume that K ′ (α) = 0, hence (K 2 ) ′ (α) = 0, hence we are in one of the following three cases:

(1) sin( α+γ 2 ) = 0. The conditions -π < α < π and 0 < γ < π imply α = -γ < 0. Hence the quadrilateral Q have self-intersections. Since the sides NP and QM do not intersect, the sides MN and P Q intersect. The condition α = -γ implies that the points M, N, P, Q are cocyclic, and since b = c = 1 we must have d < 1 which is a contradiction.

(2) cos( α+γ 2 ) = 0. Then α + γ = π, and therefore α > 0 and hence K > 0. From (2) and (3), we have a strict local maximum for K 2 and therefore for K.

(3) γ ′ (α) = -1. By differentiating (2) and using (1), we see that K = 0, hence Q has a self-intersection I = MN ∩P Q. By differentiating (1) and using (2), we obtain 

K ′ (α) = 0 = 1 2 ( a 2 +d 2 2 -1), hence a 2 + d 2 = 2. Since d ≥ 1, we have a ≤ 1 ≤ d.

Nonhyperelliptic connected components

In this section, we prove the second part of the Main Theorem. The proof is a refinement of the proof of Theorem 4.7 in [START_REF] Boissy | Systoles in translation surfaces[END_REF]. We will need the following lemma, which is a refinement of Lemma 3.2 (2) in [START_REF] Boissy | Systoles in translation surfaces[END_REF]. Lemma 4.2. Let C ⊂ H(2k 1 , . . . , 2k r ) be a connected component of a stratum of abelian differentials with 2k 1 , . . . , 2k r ≥ 0. There exists a surface S ∈ C realizing the global maximum for the systole function, and such that there exists a shortest saddle connection γ joining a singularity of degree 2k 1 to itself and Ind([γ]) = 0.

Proof. We do as in the proof of Lemma 3.2 in [START_REF] Boissy | Systoles in translation surfaces[END_REF]. There exists a square tiled surface in C with singularities on each corner of the squares as in Figure 2, and we can assume that the top left horizontal segment identifies with the bottom left horizontal segment (see Figure 2). After a suitable transformation as in the figure, we obtain the required surface.

Proof of Theorem 4.1. In Theorem 4.7 in [START_REF] Boissy | Systoles in translation surfaces[END_REF] we have already constructed examples in each genus g ≥ 3 stratum. By Theorem 3.1 each such example is in a nonhyperelliptic component. So it remains to construct new examples only in strata with more than one nonhyperelliptic connected component.

From the Theorem of Kontsevich-Zorich stated in Section 2.2, there is more than one nonhyperelliptic connected component only for genus g ≥ 4 strata with only even degree singularities and in this case there In Figure 3 we give surfaces S 2,0 ∈ H(2, 0) and S 2,0,0 ∈ H(2, 0, 0) that are local but nonglobal maxima for the systole function. We consider the following construction: start from the surface S 2,0 and a surface M that is a global maximum for Sys in H(2k 1 , . . . , 2k r ). There exists a shortest saddle connection γ 1 in S 2,0 joining the two singularities. By Lemma 4.2, we can assume that there exists a shortest saddle connection γ 2 in M joining the singularity of degree 2k 1 to itself and such that Ind([γ 2 ]) = 0. We can assume that γ 1 , γ 2 are vertical and of the same length. Now we glue the two surfaces by the following classical surgery: cut the two surfaces along γ 1 and γ 2 , and glue the left side of γ 1 with the right side of γ 2 and the right side of γ 1 with the left side of γ 2 . We get a surface S in H(2k 1 + 4, 2k 2 , . . . , 2k r ) that satisfies the hypothesis of Theorem 4.1 in [START_REF] Boissy | Systoles in translation surfaces[END_REF] and hence is a local but nonglobal maximum. By Theorem 3.1, the surface S is necessarily in a nonhyperelliptic component.

1 • • • • • • • • • • • • • • • • 1 • • 1 • • • • • • • • • • • • • • • • 1 • γ •
We compute Spin(S): we choose a symplectic basis (a i , b i ) i of H 1 (M, Z) such that [γ 2 ] = a 1 . Then a simple computation gives [START_REF] Judge | The maximum number of systoles for genus two Riemann surfaces with abelian differentials[END_REF] Spin(S) = Spin(S 0,2 ) + Spin(M) + Ind(a 1 ) + 1 mod 2.

Since Ind(a 1 ) = 0, we have Spin(S) = Spin(S 0,2 ) + Spin(M) + 1 mod 2.

When i 2k i ≥ 4, we can prescribe any value of Spin(M) by choosing M in a suitable component and in this way we can obtain any possible value for Spin(S). Note that this is also true for M ∈ H(4) or M ∈ H(2, 2). Indeed, in these strata there are two components, the hyperelliptic one and the nonhyperelliptic one, and the spin structure distinguishes them (see [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian differentials with prescribed singularities[END_REF], Theorem 2 and Corollary 5). By this construction, we obtain a local but non global maximum for Sys in any (nonhyperelliptic) connected component of any stratum H(2n 1 , . . . , 2n r ) for r ≥ 1, as soon as i 2n i ≥ 8 and 2n j ≥ 4 for at least one j ∈ {1, . . . , r}.

We do an analogous construction as above starting from S 2,0,0 (see Figure 3) and M ∈ H(0, 2 r ) with γ 1 ∈ S 2,0,0 joining the two marked points, and γ 2 ∈ M joining the marked point to itself. We obtain a local but nonglobal maximum in H(2 r+2 ). For r ≥ 2 we can choose the spin structure of M and thus get S in any nonhyperelliptic component of H(2 r+2 ). Note that for r = 1, we get S ∈ H(2, 2, 2) with odd spin structure.

b

• c There remain the following cases:

• d • a • c • d • b • a • b • c • d • e • a • b • c • d • e • a • S 2 ∈ H(2) S 1,1 ∈ H(1, 1)
• H(6). We do the same construction as above starting from S 2,0 and M ∈ H(2). We consider for M ∈ H(2) the surface S 2 in Figure 4. We see that 4)).

• H(4, 2). We do the same as for H(6), starting from S 2,0,0 and M = S 2 . • The even component of H(2, 2, 2). We do the same construction but starting from S 2,0,0 and M ∈ H(1, 1) the surface S 1,1 in Figure 4. We consider γ 2 = a (joining the two singularities of degree 1). By a direct computation, we see that the above construction gives a surface S ∈ H(2, 2, 2) with Spin(S) = 0 mod 2.

Theorem 3 . 1 .

 31 Let C be a hyperelliptic connected component of the moduli space of Abelian differentials. Let S ∈ C be a local maximum of the relative systole function Sys. Then S is a global maximum for Sys in C.

•

  3.1). This induces a decomposition of C 1 into Delaunay cells, and this decomposition is preserved by the involution τ because of the uniqueness of the Delaunay cell decomposition. We define a Delaunay subdivision D in the following way: for each Delaunay cell d, if τ (d) = d, then d, τ (d) ∈ D. If τ (d) = d and since d is cyclic it can be cut by a diagonal into two polygons d ′ and d ′′ = τ (d ′ ), then d ′ , d ′′ ∈ D. Now we use the following algorithm: We start from a pair d 0 , τ (d 0 ) in D and let A 0 = d 0 and B 0 = τ (d 0 ). • Suppose we have constructed the disks A k and B k such that τ (A k ) = B k and A k , B k are union of elements in D. If A k ∪B k = C 1 , there exists an element d k+1 ∈ D adjacent to A k along a saddle connection γ k (and τ (d k+1 ) ∈ D is adjacent to B k along τ (γ k )). We define A k+1 by gluing A k and d k+1 along γ k . Note that γ k is the only saddle connection in the common boundary of A k and d k+1 because otherwise S\(γ k ∪τ (γ k )) would be connected which is impossible in the hyperelliptic connected component.

  However, triangle inequalities for INP and IMQ give a + c > d + b and hence a > d, which is a contradiction.

Theorem 4 . 1 .

 41 Each nonhyperelliptic connected component of each stratum of area one surfaces with no marked points contains local maxima of the function Sys that are not global.

Figure 2 .

 2 Figure 2. A global maximum with a closed shortest saddle connection γ sastisfying Ind([γ]) = 0

Figure 3 .

 3 Figure 3. Local but nonglobal maxima in H(2, 0) and H(2, 0, 0)

Figure 4 .

 4 Figure 4. Global maxima in H(2) and H(1, 1)

  [a], [b] in this figure have different indices mod 2. Hence choosing γ 2 = a or γ 2 = b gives surfaces with different Spin structure (see Equation (