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Here, we derive the Pauli Matrix Equivalent for Spin-1 particles (mainly Z-Boson and W-Boson).
Pauli Matrices are generally associated with Spin- 1

2
particles and it is used for determining the

properties of many Spin- 1
2

particles. But in our case, we try to expand its domain and attempt to
implement it for calculating the Unitary Operators of the Harmonic oscillator involving the Spin-1
system and study it.

I. INTRODUCTION

Pauli Matrices are a set of three 2× 2 complex matri-
ces which are Hermitian and Unitary in nature and they
occur in the Pauli Equation which takes into account
the interaction of the spin of a particle with an exter-
nal electromagnetic field. In Quantum Mechanics, each
Pauli matrix is related to an angular momentum opera-
tor that corresponds to an observable describing the spin
of a Spin- 12 particle, in each of the three spatial direc-
tions. But we seldom need to deal with particles which
are having spin more than 1

2 i.e. Spin-1 Particles; Spin-
3
2 Particles; Spin-2 Particles; etc. and for that we need
to search for matrices which perform similar function to
that of Pauli Matrices (in case of Spin- 12 particles). In

Spin- 12 particles, the Pauli Matrices are in the form of:

X = σx =

[
0 1
1 0

]
(1)

Y = σy =

[
0 −i
i 0

]
(2)

Z = σz =

[
1 0
0 −1

]
(3)

Also sometimes the Identity Matrix, I is referred to
as the ‘Zeroth’ Pauli Matrix and is denoted by σ0.
The above denoted Matrices are useful for Spin- 12
particles like Fermions (Proton, Neutrons, Electrons,
Quarks, etc.) and not for other particles. So, in this
paper we will see how to further calculate the equiv-
alent Pauli Matrix for Spin-1 particles and implement
it to calculate the Unitary Operators of the Quan-
tum Harmonic Oscillator involving a Spin-1 system.

S tructure:
In Section II, we do the Mathematical Modelling
for the Equivalent Matrices and discuss the results for
higher spin particles. Then, in Section III we revisit the
harmonic oscillator in-context of our quantum world and

discuss its analytical solution along with its features.
In Section IV, we involve with the transformation of
Unitary Operators and after that in Section V, we
involve the implementation of the Spin-1 system into
the Quantum Harmonic Oscillator with relevant trans-
formations and generalization which ultimately leads to
the derivation of the Hamiltonian of our system. Then
in Section VI, we derive the Unitary Operators of our
system using the informations from the previous sections
and then in its following subsection we represent the
16 × 16 Matrix of the different Unitary Operators. At
last, in Section VII, we discuss the Results of our project
followed by the Conclusion and Acknowledgement.

II. MATHEMATICAL MODELLING

Let us assume that we have a Spin-s system for which
the Eigenvalue S2 is given by:

S2 = s(s+ 1)~2 (4)

Or

S =
√
s(s+ 1)~

The eigenvalues of Sz are written sz ~ , where sz is al-
lowed to take the values s, s−1, · · · ,−s+1,−s i.e. there
are 2s + 1 distinct allowed values of sz. We can repre-
sent the state of the particle by (2s+ 1) different Wave-
functions which are in-turn denoted as ψsz (x

′). Here
ψsz (x

′) is the Probability density for observing the parti-

cle at position x
′

with spin angular momentum sz~ in the
z- direction. Now, by using the extended Pauli scheme,
we can easily find out the Momentum operators and the
Spin operators. The Spin Operator comes out in the
form:

(σk)jl =
〈s, j|Sk|s, l〉

s~
(5)

Where, j and l are integers and j, l ∈ (−s,+s).
Now, to make our calculations easier, we continue with
σz matrix. We know that:

Sz|s, j〉 = j~|s, j〉 (6)
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∴ We can write:

(σ3)jl =
〈s, j|Sk|s, l〉

s~
=
j

s
δij (7)

Here we have used the Orthonormality property of |s, j〉.
Thus, σz is the suitably normalized diagonal matrix of
the eigenvalues of Sz. The elements of σx and σy are
most easily obtained by considering the ladder operators:

S± = Sx ± iSy (8)

Now, according to Eq.(5)-(8), we can write9:

S+ |s, j〉 = [s (s+ 1)− j (j + 1)]1/2 ~ |s, j + 1〉 (9)

and

S− |s, j〉 = [s (s+ 1)− j (j − 1)]1/2 ~ |s, j − 1〉. (10)

Now, by combining all the conditions and equations, we
have:

(σ1)j l =
[s (s+ 1)− j (j − 1)]1/2

2 s
δj l+1

+
[s (s+ 1)− j (j + 1)]1/2

2 s
δj l−1

(11)

and

(σ2)j l =
[s (s+ 1)− j (j − 1)]1/2

2 i s
δj l+1

− [s (s+ 1)− j (j + 1)]1/2

2 i s
δj l−1

(12)

∴ According to Eq.(7), Eq.(11) and Eq.(12), we have:

σ1 =
1√
2

0 1 0
1 0 1
0 1 0

 (13)

σ2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 (14)

σ3 =

1 0 0
0 0 0
0 0 −1

 (15)

Where, σ1, σ2, σ3 are the Pauli Matrix equivalents for
Spin-1 Particles.

III. HARMONIC OSCILLATOR IN BRIEF

The most common and familiar version of
the Hamiltonian of the quantum harmonic

oscillator in general can be written as:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 =

p̂2

2m
+

1

2
kx̂2 (16)

where Ĥ is the Hamiltonian of the System, m is
the mass of the particle, k is the bond stiffness
(which is analogous to spring constant in clas-
sical mechanics), x̂ is the position operator and

p̂ = −i~ ∂

∂x
(17)

is the momentum operator where ~
is the reduced Plank’s constant.

The analytical solution of the Schrodinger
wave equation is given by Ref.1:

Ψ =

∞∑
nx=0

∞∑
ny=0

1

2n n!

(mω
π~

)1/2
e−

ζ2

2 e−
β2

2 Hnx(ζ)Hny (β)U(t)

(18)

Where;

ζ =

√
mω

~
x and β =

√
mω

~
y (19)

Here Hn is the nth order Hermite polynomial. U(t) is the
unitary operator of the system showing its time evolution
and is given by:

U(t) = exp(
−itEn

~
) = e

−itEn
~ (20)

where En are the allowed energy eigenvalues of the par-
ticle and are given by:

En = (nx +
1

2
)~ω+ (ny +

1

2
)~ω = (nx +ny + 1)~ω (21)

And the states corresponding to the various energy
eigenvalues are orthogonal to each other and satisfy:∫ +∞

−∞
ψjψxdxi = 0 : ∀ xi (22)

A much simpler approach to the harmonic oscil-
lator problem lies in the use of ladder opera-
tor method where we make use of ladder oper-
ators i.e. the creation and annihilation opera-
tors (â, â†), to find the solution of the problem.

** Here â† denotes the ‘Creation’ operator and â
denotes the ‘Annihilation’ operator in Spin-1 system.
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We can also the Hamiltonian in terms of the creation
and annihilation operators (â, â†)7:

Ĥ = ~ω(ââ † −1

2
) = ~ω(ââ †+

1

2
)

Now the Hamiltonian for “a discrete quantum harmonic
oscillator” is given by:

Ĥ =
(p̂d)2

2
+

(x̂d)2 + (ŷd)2

2
(23)

where p̂d is the discrete momentum operator and x̂d and
ŷd are the discrete position operators in in x and y spatial
dimension respectively. Also p̂d can be expressed as:

p̂d = (F d)−1 · x̂d · (F d) (24)

where F d is the standard discrete Quantum Fourier
Transform matrix3. Each element of F d can be expressed
as:

[F d]j,k =
exp(2iπjk/N)√

N
(25)

Where j, k ∈ [−N2 , ......,
N
2 − 1] and j= no. of rows in the

matrix and k= no. of columns in the matrix.

IV. UNITARY OPERATOR
TRANSFORMATIONS

For the sake of reducing mathematical complexity, let
us assume ~, ω and m is unity (i.e.all are having value
1). So, we can write the Schrodinger equation as:

i
∂Ψ

∂t
= ĤΨ (26)

which further implies:

Ψ(t) = Ψ(0)exp(−iĤt)

From the above, it is vivid that the unitary operator
to be computed is U(t) = exp(−iĤdt) where Ĥd is the
discretized Hamiltonian operator mentioned in Equation
(3). So. the unitary operator is given by:

U(t) = exp(−it( (p̂d)2

2
+

(x̂d)2 + (ŷd)2

2
)) (27)

Or if we consider the X-dimension only, then we get the
unitary operator as:

Ux̂(t) = exp(
−it
2

((F d)−1 · (̂xd)2 · (F d) + (x̂d)2)) (28)

Due to the discretization of space; the position operator
[x̂d], being a diagonal matrix, can be expanded by using
the concept of Matrix exponential as Ref.2:

exp(− it
2

[A]) = I +

∞∑
m=1

(− it
2

)m
[A]m

m!
(29)

Here A is the corresponding Operator Matrix.

V. IMPLEMENTATION ON A SPIN-1 SYSTEM

The Hamiltonian of the full system is given by4:

Ĥ = Ĥfield + Ĥatom + Ĥint

where Ĥfield is the free Hamiltonian, Ĥatom is the atomic

excitation Hamiltonian and Ĥint is the interaction Hamil-
tonian.

A. MODEL

We have modeled our system using Rabi Hamiltonian5.
However, in our case we will be using somewhat modified
version of Rabi Hamiltonian6:

Hs =

2∑
k=1

ωka
†
kak +

ω0

2
σ3 +

2∑
k=1

gk(eiθkak + e−iθka†k)σ1

(30)
Where ω0 is the frequency of the main oscillator, ωk

is the frequency of the k-th environment oscillator; a†k
and ak are the creation and annihilation operators of
the main system and the k-th environmental oscillator
respectively. Whereas gk’s are the coupling constant for
the interaction between the k-th environment oscillator
and the main quantum oscillator. We set k=1 from
now to prevent us from complicating the process.

For simplicity, we will consider the simplest case of our
model and substitute k=1 in our original Hamiltonian
[in Eq.(30)] to obtain the special case of our Hamiltonian
which will be our working Hamiltonian from now:

H = ω1a
†
1a1 +

ω0

2
σ3 + g1(eiθ1a1 + e−iθ1a†1)σ1

For simplicity we will drop the sub-script 1 from
our Hamiltonian and obtain:

H = ωa†a+
ω0

2
σ3 + g(eiθa+ e−iθa†)σ1 (31)

B. RELEVANT TRANSFORMATION AND
GENERALIZATION

Now, as our system involves Spin-1 particles, so the
following commutation relations uphold:

[ai, a
†
j ] ≡ aia

†
j − a

†
jai = δij (32)

[a†i , a
†
j ] = [ai, aj ] = 0 (33)

Here δij is known as ‘Kronecker delta’.
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The operators used in the Hamiltonian can be trans-
formed according to Holstein-Primakoff transformations8

(i.e. it maps spin operators for a system of spin-S mo-
ments on a lattice to creation and annihilation operators)
as:

Ŝ+
j =

√
(2S − n̂j)âj (34)

Ŝ−j = â†j

√
(2S − n̂j) (35)

where â†j (âj) is the creation (annihilation) operator at
site j that satisfies the commutation relations mentioned

above and n̂j = â†j âj is the “Number Operator”. Hence
we can generalize the above equations as:

S+ =
√

(2S − a†a)a (36)

S− = a†
√

(2S − a†a) (37)

Where;

S+ ≡ Sx + iSy and S− ≡ Sx − iSy
Where;
Sx (= σ1), Sy (= σ2), Sz (= σ3) are the Pauli matrices
for Spin-1 system (as mentioned in the previous section).

Now by using the above transformations; we can write
our creation and annihilation operators in terms of Ma-
trices as:

a† =

0 0 0
1 0 0
0 1 0

 and a =

0 1 0
0 0 1
0 0 0

 (38)

Now the Hamiltonian for our coupled quantum har-
monic oscillator in Eq.(31) can be decomposed as:

H = ωa†a⊗ I +
ω0

2
I⊗ σ3 + g(eiθa+ e−iθa†)⊗ σ1

Or the above equation can be written as:

H = ωa†a⊗ I +
ω0

2
I⊗ S3 + g(eiθa+ e−iθa†)⊗ S1 (39)

Now, we will evaluate each term to simplify the expres-
sion of the Hamiltonian in the form of matrix. Here,

ωa†a⊗ I = ω

0 0 0
0 1 0
0 0 1

⊗
1 0 0

0 1 0
0 0 1



⇒ ωa†a⊗ I =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 ω 0 0 0 0 0
0 0 0 0 ω 0 0 0 0
0 0 0 0 0 ω 0 0 0
0 0 0 0 0 0 ω 0 0
0 0 0 0 0 0 0 ω 0
0 0 0 0 0 0 0 0 ω


(40)

Similarly,

ω0

2
I⊗ Sz =

ω0

2

1 0 0
0 1 0
0 0 1

⊗
1 0 0

0 0 0
0 0 −1



⇒ ω0

2
I⊗ Sz =



ω0

2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −ω0

2 0 0 0 0 0 0
0 0 0 ω0

2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −ω0

2 0 0 0
0 0 0 0 0 0 ω0

2 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −ω0

2


(41)

Finally,

g(eiθb+ e−iθb†)⊗Sx =
g√
2

 0 eiθ 0
e−iθ 0 eiθ

0 e−iθ 0

⊗
0 1 0

1 0 1
0 1 0



⇒ g√
2



0 0 0 0 eiθ 0 0 0 0
0 0 0 eiθ 0 eiθ 0 0 0
0 0 0 0 eiθ 0 0 0 0
0 e−iθ 0 0 0 0 0 eiθ 0

e−iθ 0 e−iθ 0 0 0 eiθ 0 eiθ

0 e−iθ 0 0 0 0 0 eiθ 0
0 0 0 0 e−iθ 0 0 0 0
0 0 0 e−iθ 0 e−iθ 0 0 0
0 0 0 0 e−iθ 0 0 0 0


(42)

Substituting the above values in Eq.(39), we
get the value of H (a 9 × 9 matrix) as:
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H =



ω0

2
0 0 0 geiθ√

2
0 0 0 0

0 0 0 geiθ√
2

0 geiθ√
2

0 0 0

0 0 −ω0

2
0 geiθ√

2
0 0 0 0

0 ge−iθ√
2

0 (ω + ω0

2
) 0 0 0 geiθ√

2
0

ge−iθ√
2

0 ge−iθ√
2

0 ω 0 geiθ√
2

0 geiθ√
2

0 ge−iθ√
2

0 0 0 (ω − ω0

2
) 0 geiθ√

2
0

0 0 0 0 ge−iθ√
2

0 (ω + ω0

2
) 0 0

0 0 0 ge−iθ√
2

0 ge−iθ√
2

0 ω 0

0 0 0 0 ge−iθ√
2

0 0 0 (ω − ω0

2
)



VI. DERIVATION OF UNITARY OPERATORS

Clearly, we know that for a system with Hamiltonian
H, the unitary operator is given by:

U = e−iHt (43)

Where H is the Hamiltonian of the system derived in the
previous section.

But to find the unitary operator compatible, we need
to change the form of our Hamiltonian and write it as a
sum of two matrices whose corresponding unitary oper-
ators are relatively easier to compute:

H = X + Y

Where,

X =


ω0
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 −ω0
2

0 0 0 0 0 0

0 0 0 (ω +
ω0
2

) 0 0 0 0 0

0 0 0 0 ω 0 0 0 0

0 0 0 0 0 (ω − ω0
2

) 0 0 0

0 0 0 0 0 0 (ω +
ω0
2

) 0 0

0 0 0 0 0 0 0 ω 0

0 0 0 0 0 0 0 0 (ω − ω0
2

)



Y =



0 0 0 0
geiθ√

2
0 0 0 0

0 0 0
geiθ√

2
0

geiθ√
2

0 0 0

0 0 0 0
geiθ√

2
0 0 0 0

0
ge−iθ√

2
0 0 0 0 0

geiθ√
2

0

ge−iθ√
2

0
ge−iθ√

2
0 0 0

geiθ√
2

0
geiθ√

2

0
ge−iθ√

2
0 0 0 0 0

geiθ√
2

0

0 0 0 0
ge−iθ√

2
0 0 0 0

0 0 0
ge−iθ√

2
0

ge−iθ√
2

0 0 0

0 0 0 0
ge−iθ√

2
0 0 0 0



Thus we have,

U = e−iXt.e−iY t

=⇒ U = Ux(t).Uy(t)

where Ux(t) = e−iXt and Uy(t) = e−iY t. First we will
compute Uy(t), then Ux(t). We can see that Uy(t) can
be expanded using Taylor series of expansion of the ex-
ponential function as:

Uy(t) = exp(−itY ) = I +

∞∑
m=1

(−it)mY
m

m!

=⇒ Uy(t) = I + (−it)1Y
1!

+ (−it)2Y
2

2!
+ (−it)3Y

3

3!

+(−it)4Y
4

4!
+ (−it)5Y

5

5!
+ ......

Now, for simplicity, let us denote g√
2

= g
′

=⇒ Uy(t) = [1 +
(−itg′)2

2!
+

(−itg′)4

4!
+ ...]I

+[
(−itg′)

1!
+

(−itg′)3

3!
+

(−itg′)5

5!
+ ...]M

Where;

M =



0 0 0 0 eiθ 0 0 0 0
0 0 0 eiθ 0 eiθ 0 0 0
0 0 0 0 eiθ 0 0 0 0
0 e−iθ 0 0 0 0 0 eiθ 0

e−iθ 0 e−iθ 0 0 0 eiθ 0 eiθ

0 e−iθ 0 0 0 0 0 eiθ 0
0 0 0 0 e−iθ 0 0 0 0
0 0 0 e−iθ 0 e−iθ 0 0 0
0 0 0 0 e−iθ 0 0 0 0


(** We can observe that [Y 2, Y 4, Y 6,....] will give Iden-
tity matrices whereas [Y 1, Y 3, Y 5,...] will give the same
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Qubit states Results after Uy(t)acts

|0000〉 (cos gt√
2
|0000〉 − i sin gt√

2
e−iθ |0100〉)

|0001〉 (cos gt√
2
|0001〉 − i sin gt√

2
e−iθ(|0011〉+ 0101))

|0010〉 (cos gt√
2
|0010〉 − i sin gt√

2
e−iθ |0100〉)

|0011〉
(cos gt√

2
|0011〉 − i sin gt√

2
e−iθ |0001〉 −

i sin gt√
2
eiθ |0111〉)

|0100〉
(cos gt√

2
|0100〉 − i sin gt√

2
e−iθ(|0110〉 +

|1000〉)− i sin gt√
2
eiθ(|0000〉+ |0010〉))

|0101〉
(cos gt√

2
|0101〉 − i sin gt√

2
e−iθ |0111〉 −

i sin gt√
2
eiθ |0001〉)

|0110〉 (cos gt√
2
|0110〉 − i sin gt√

2
eiθ |0100〉)

|0111〉 (cos gt√
2
|0111〉 − i sin gt√

2
eiθ(|0011〉+ 0101))

|1000〉 (cos gt√
2
|1000〉 − i sin gt√

2
eiθ |0100〉)

TABLE I. Operator Uy(t) acting on Qubit States.

matrix which is given above as M. So we differentiate
them in two groups.)

=⇒ Uy(t) = cos g
′
tI− iM sin g

′
t

=⇒ Uy(t) = cos
gt√

2
I− iM sin

gt√
2

(44)

Now for Spin-1 particles, we need to use a 4-qubit
system but for implementing a 4-qubit system we must
require a 16 × 16 matrix because any matrix of order
N × N must satisfy the condition N = 2n (where
n= number of qubits). But we can express the above
equation in form of a 16 × 16 matrix (which we have
shown in the next sub-section), instead of a 9 × 9
matrix, by adding 1 diagonally seven times and placing
0 in other positions. In our situation we need only
nine of the sixteen 4-qubit states (mentioned in Table
(I)) because for the other seven states we will get the
same Unitary matrix as result (i.e. without any change).

In the above segment, we computed the Uy(t) operator.
In order to compute Ux(t) which is equal to e−iXt, we first
expand the expression using the Taylor expansion of the
exponential function just like we did in earlier case as:

Ux(t) = exp(−itX) = I +

∞∑
m=1

(−it)mX
m

m!

=⇒ Ux(t) = I + (−it)1X
1!

+ (−it)2X
2

2!
+ (−it)3X

3

3!

+(−it)4X
4

4!
+ (−it)5X

5

5!
+ ......

Therefore by using the above equation,
we can express Ux(t) in terms of e as:

Ux̂(t)[1, 1] exp(-(ω0
2

)it)
Ux̂(t)[2, 2] exp(-(0)it)
Ux̂(t)[3, 3] exp((ω0

2
)it)

Ux̂(t)[4, 4] exp(-(ω + ω0
2

)it)
Ux̂(t)[5, 5] exp(-(ω)it)
Ux̂(t)[6, 6] exp(-(ω − ω0

2
)it)

Ux̂(t)[7, 7] exp(-(ω + ω0
2

)it)
Ux̂(t)[8, 8] exp(-(ω)it)
Ux̂(t)[9, 9] exp(-(ω − ω0

2
)it)

In this case also we will consider a 16 × 16 matrix
(in place of a 9 × 9 matrix) because of same reason
mentioned before and also we will construct the matrix
in the same pattern as mentioned in case of Uy(t)
operator. It is easy to observe as X is a diagonal
matrix, each diagonal element of Ux(t) makes an
exact Taylor expansion of the exponential function

(**The 16 × 16 matrix for both Uy(t) and Ux(t)
operators are mentioned in the next sub-section.)

Again, we operate this operator on different 4-qubits
states (in our situation we need only nine of the sixteen
4-qubit states because for the other seven states we
will get the same Unitary matrix as result.) and then
study the results for the same given in Table(IV):

Qubit states Results after Ux(t)acts

|0000〉 e(−
ω0
2

)it |0000〉
|0001〉 e(0)it |0000〉
|0010〉 e(

ω0
2

)it |0000〉
|0011〉 e−(ω+

ω0
2

)it |0011〉
|0100〉 e(−ω)it |0100〉
|0101〉 e−(ω−ω0

2
)it |0101〉

|0110〉 e−(ω+
ω0
2

)it |0110〉
|0111〉 e(−ω)it |0111〉
|1000〉 e−(ω−ω0

2
)it |1000〉

TABLE II. Operator Ux(t) acting on Qubit States.

From the above table we can see the effect of Ux(t)
operator acting on the different 4-qubit states.

Now, we know how to implement both the parts of
our Unitary operator and the complete unitary matrix
(16× 16) can be implemented by by operating both the
operations in series. In this way we can easily calculate
our Unitary operators for Spin-1 system and also verify
the effectiveness of Pauli Matrices equivalent to Spin-1
system/ particles.
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UNITARY OPERATOR MATRIX
REPRESENTATIONS

The 16 × 16 Matrix representation of the Unitary op-
erators Uy(t) and Ux(t) are:

Uy(t) =



A 0 0 0 B 0 0 0 0 0 0 0 0 0 0 0
0 A 0 B 0 B 0 0 0 0 0 0 0 0 0 0
0 0 A 0 B 0 0 0 0 0 0 0 0 0 0 0
0 C 0 A 0 0 0 B 0 0 0 0 0 0 0 0
C 0 C 0 A 0 B 0 B 0 0 0 0 0 0 0
0 C 0 0 0 A 0 B 0 0 0 0 0 0 0 0
0 0 0 0 C 0 A 0 0 0 0 0 0 0 0 0
0 0 0 C 0 C 0 A 0 0 0 0 0 0 0 0
0 0 0 0 C 0 0 0 A 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Where,

A = cos( gt√
2
); B = −i sin( gt√

2
)eiθ and C = −i sin( gt√

2
)e−iθ.

Ux(t) =



S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

S 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 P 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 P 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Where,

P = e−(ω+
ω0
2 )it; Q = e(−ω)it; R = e−(ω−

ω0
2 )it;

S = e(−
ω0
2 )it and 1

s = 1

e(−
ω0
2

)it
= e(

ω0
2 )it

DATA AVAILABILITY

Further information regarding process of implementing
the Unitary Operators on higher spin particles like Spin-
3
2 particles, Spin-2 particles etc. can be made available
upon reasonable number of requests.

VII. RESULTS

In first part of our paper, we extend the idea
of Pauli Matrices from Spin- 12 particles to Spin-1
particles and see the implementation of the equiv-
alent matrices. We can also see that equivalent
Pauli Matrices can also be found for higher spin
particles like Spin- 32 particles, Spin-2 particles etc.

In the final part, we introduce a coupled quantum
harmonic oscillator to a Spin-1 system (Z-Bosonic/ W-
Bosonic system etc.) and try to implement its unitary op-
erator to the system using our previous section’s knowl-
edge.

CONCLUSION

Now, we understand that we can further implement
the idea of Pauli equivalent matrices on higher spin par-
ticles and derive the unitary operators of the Quantum
Harmonic Oscillators using those informations in a much
simpler yet effective manner. We conclude with one last
remark that there are various processes for finding the
Pauli equivalent matrices for higher spin particles but
we have used a much simpler yet effective process to find
the values and implement it further onto a Quantum
Harmonic Oscillator for finding its Unitary Operators.

Also it will be better to notice that I didn’t disentan-
gle the qubit states in the results which I got after Uy(t)
acts on the qubits because it would be necessary in case
of Quantum simulation of a circuit which we are not in-
volving and we are keeping all the results in the entangled
state.
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