
HAL Id: hal-02909702
https://hal.science/hal-02909702

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining evolutions of complex spatial objects using a
single-attributed Directed Acyclic Graph

Frédéric Flouvat, Nazha Selmaoui-Folcher, Jérémy Sanhes, Chengcheng Mu,
Claude Pasquier, Jean-François Boulicaut

To cite this version:
Frédéric Flouvat, Nazha Selmaoui-Folcher, Jérémy Sanhes, Chengcheng Mu, Claude Pasquier, et al..
Mining evolutions of complex spatial objects using a single-attributed Directed Acyclic Graph. Knowl-
edge and Information Systems (KAIS), 2020, 62 (10), pp.3931-3971. �10.1007/s10115-020-01478-9�.
�hal-02909702�

https://hal.science/hal-02909702
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Mining evolutions of complex spatial objects using a single
attributed Directed Acyclic Graph

Frédéric Flouvat · Nazha Selmaoui-Folcher ·
Jérémy Sanhes · Chengcheng Mu · Claude
Pasquier · Jean-François Boulicaut

Received: 08 June 2018 / Accepted: 07 March 2020

Abstract Directed Acyclic Graphs (DAGs) are used in many domains ranging from
computer science to bioinformatics, including industry and geoscience. They enable
to model complex evolutions where spatial objects (e.g., soil erosion) may move,
(dis)appear, merge or split. We study a new graph-based representation, called at-
tributed DAG (a-DAG). It enables to capture interactions between objects as well as
information on objects (e.g., characteristics or events). In this paper, we focus on pat-
tern mining in such data. Our patterns, called weighted paths, offer a good trade-off
between expressiveness and complexity. Frequency and compactness constraints are
used to filter out uninteresting patterns. These constraints lead to an exact condensed
representation (without loss of information) in the single-graph setting. A depth-first
search strategy and an optimized data structure are proposed to achieve the efficiency of
weighted path discovery. It does a progressive extension of patterns based on database
projections. Relevance, scalability and genericity are illustrated by means of qualitative
and quantitative results when mining various real and synthetic datasets. In particu-
lar, we show how such an approach can be used to monitor soil erosion using remote
sensing and Geographical Information System (GIS) data.

Keywords Graph mining, spatio-temporal data, attributed DAG, weighted path,
environmental monitoring

This research was supported by the project FOSTER ANR-2010-COSI-012-01
funded by the french Ministry of Higher Education and Research.

F. Flouvat, N. Selmaoui-Folcher, J. Sanhes, C. Mu
ISEA, University of New Caledonia, BP R4, 98851 Nouméa, New Caledonia
E-mail: frederic.flouvat@univ-nc.nc, E-mail: nazha.selmaoui@univ-nc.nc

C. Pasquier
Université Côte d’Azur, CNRS, I3S, France
E-mail: claude.pasquier@univ-cotedazur.fr

J.-F. Boulicaut
LIRIS UMR5205, CNRS, INSA de Lyon, 69621 Lyon, France
E-mail: jean-francois.boulicaut@insa-lyon.fr

2 Frédéric Flouvat et al.

1 Introduction

Analysis and management of environmental risks are major issues in today’s world.
These last years, a huge amount of data has been collected to monitor the environ-
ment. One of the main challenges with such data is to understand and predict dynamics
of ecosystems affected by global climate change and local human activity. However, un-
derlying phenomena and collected data are complex. A large number of spatial objects
evolve over long periods of time. Moreover, each object may be related to several het-
erogeneous information (e.g., landcover, weather, soil type, topology) that may explain
or influence their evolution. Objects may also move and change (as illustrated in Fig-
ure 1). For example, soil erosion may grow, shrink, move, appear, disappear, merge or
split. Analysis of this data by scientists and decision makers is difficult and requires
advanced data mining approaches. In such a context, supporting pattern discovery
seems particularly promising but analyzing such complex spatio-temporal phenomena
remains challenging.

����

����

1 : ef
2 : abc 3 : df

4 : a 5 : dfh

6 : b
7 : ac

8 : b 9 : df

10 : bh

11 : efh

Fig. 1: Example of time series related to environmental monitoring (with moving, appearing,
disappearing, merging or splitting objects) and its corresponding DAG representation.

Graph mining has been an important topic for the data mining community over
the past years. One reason for this large dissemination is that a graph structure can
be used to model many problems since it can easily support entities, their attributes,
and relationships between entities [19]. Various types of graphs have been studied
such as trees or Directed Acyclic Graphs (DAG). The interest of DAGs is to capture
dependencies or triggering relations. In this context, DAGs have been used in various
application domains such as in computer science, bioinformatic or industry [17, 63, 52,
73, 49, 25]. For example, [17, 52, 73] have used DAGs to model computer networks, web
navigation patterns, XML documents or class dependencies in software engineering. [63]
uses DAGs to represent interactions between genes. [25] models human interactions in

Mining evolutions of complex spatial objects 3

meetings using DAGs. Spatio-temporal data can also be naturally represented as a
single large DAG. Vertices represent spatial objects (e.g., rain, forest, mine, road) and
edges represent neighboring objects in consecutive timestamps. For example, [49] uses
a single labeled DAG to model crime incidents. All these works focus on labeled graphs
and/or transactional databases. In the first case, each vertex can only be associated
with a single label, i.e., only one information (a single property or an event). In the
second one, only a collection of graphs can be analyzed and not a single large graph.
Their application is by construction limited to specific contexts.

To analyze complex spatio-temporal data, an alternative would be to express the
studied problem into some available frameworks, such as sequential pattern discov-
ery [2], string pattern extraction [21] or set system mining [4]. However, all these
frameworks also focus on transactional databases. A natural approach would be to
transform the single input graph into a transactional database (e.g., a collection of
graphs or sequences). However, as shown in [60], such an approach is not scalable and
it loses structural information. Moreover, it leads to several problems for pattern in-
terpretation. For example, a single input graph can be transformed into a collection
of paths (i.e., sequences) by duplicating some nodes or deleting some edges. The first
solution will over-express information and thus add a bias. The second one would result
in information loss. Although such problems may be fixed thanks to a post-processing
step, it is not satisfactory.

In this paper, we model evolutions of complex spatial objects using a single at-
tributed DAG (a-DAG), i.e., a Directed Acyclic Graph in which vertices are labeled
by some attributes. Such a data representation enables to capture information on ob-
jects and their complex dynamics such that moving, merging/splitting, or appear-
ing/disappearing. Therefore, we design a new pattern domain, called the weighted
paths, to study frequent evolutions in a single a-DAG. It is based on sequential pat-
terns [77] and path patterns [16]. It offers a good trade-off between expressiveness and
complexity. Indeed, complex patterns are more difficult to mine (which impacts algo-
rithm scalability), but also more difficult to interpret by domain experts. A weighted
path is a sequence of itemsets in which a value is associated with each transition.
This value represents the frequency of this transition/evolution within the path in
the a-DAG (see Section 3). In addition to frequency constraint, we also consider a
non-redundancy constraint. It leads to a condensed representation of frequent patterns
without loss of information (i.e., all the patterns with their frequency can be derived
from the computed subset without accessing the data). We propose an algorithm to
compute weighted paths in a single a-DAG. It is a generic algorithm that can be used to
mine any type of a-DAG and not only the ones related to spatio-temporal phenomena
analysis. It is based on a depth-first search strategy and it performs progressive pat-
tern extensions. It recursively projects the a-DAG and it progressively expand patterns
into all projected a-DAGs. A detailed empirical study has been performed to discuss
the scalability and the genericity of our approach. Its added-value is mainly illustrated
on real-world time series monitoring soil erosion though we also provide experimental
results on a patent citation network and some synthetic datasets.

This work is a significant extension of [58]. It modeled a dengue epidemic spread
thanks to an attributed DAG, and we were looking for frequent evolutions, i.e., fre-
quent paths. This first paper shows how a-DAGs can be used to model spatio-temporal
phenomena and it introduces the weighted path pattern domain. It also provides a
mining strategy based on an n-ary relation transformation. However, the algorithm
from [58] is not complete while its scalability for large graph analysis remains an issue.

4 Frédéric Flouvat et al.

Indeed, the largest graph mined using this first algorithm had 40.000 vertices, 120.000
edges and 7.5 attributes per vertex in average.

Our key contributions in this paper are:

1. A sound and complete depth-first search strategy to mine condensed weighted paths
in a single a-DAG (with theoretical proofs for properties and completeness)

2. An optimized data structure and an algorithm to extract patterns more efficiently
and in larger graphs (e.g., a graph with 200.000 vertices, 600.000 edges, and 7.5
attributes per vertex in average, was mined in less than 8 minutes with a minimum
support threshold of 10%)

3. A detailed performance analysis with various synthetic datasets and a patent cita-
tion network

4. A KDD process where this pattern mining approach is integrated to monitor soil
erosion using remote sensing and GIS data.

The rest of the paper is organized as follows. Section 2 gives an overview of related
works dealing with graph mining and spatio-temporal pattern discovery. Section 3
introduces our theoretical framework, i.e., the data representation, the pattern domain,
the constraints and the studied mining task. Section 4 presents our algorithm to mine
the weighted path patterns that satisfy user-defined constraints. Section 5 discusses
performance issues and it provides a case study where we use the weighed path pattern
to study soil erosion using times series of remotely sensed data. Finally, Section 6
concludes the paper and gives some perspectives.

2 Related works

2.1 Spatio-temporal pattern mining

These last years, the explosion of spatial data collected by experts, sensors and satellites
opens new challenges for the data mining community. In this context, many works have
been done to extract spatio-temporal patterns. Initially, these works have considered
the spatial dimension and the temporal dimension independently (see, e.g., colocation
mining [36] and time series mining). Lately, these works have been extended to integrate
both dimensions. We can distinguish two frameworks: mining trajectories of moving
objects [31] and mining evolutions of properties/attributes related to spatial objects
[64, 67, 15, 3, 49, 5]. In our work, we focus on the second framework.

In this framework, [15] generalize the concept of colocation to spatio-temporal
data. Spatio-temporal co-occurence patterns are subsets of properties such that their
instances are spatially close for a significant period of time. Such a concept has also
been studied in other works. For example, [57] study Spread Patterns of spatio-temporal
Co-occurrences Over Zones (SPCOZ) which represent frequent trajectories of spatial
colocations. In [78], the authors study spatial patterns frequently occurring at different
times (called Spatial Object Association Pattern, or SOAP), and propose to visualize
their evolutions using graphs.

More generally, sequence and graph mining frameworks have also been used to an-
alyze spatio-temporal phenomena. For example, [64] use sequential pattern mining to
extract frequent evolutions of spatial objects. They consider evolutions of geographical
regions associated with various occurring events or properties. Thus, the database is a
collection of sequences of itemsets (e.g. set of environmental properties or events), each

Mining evolutions of complex spatial objects 5

one representing the evolution of a given region. [67] use sequential patterns to study the
spatial spread of events in predefined temporal windows. They decompose the temporal
dimension in time windows of a given size (e.g. 4 days), represent space as a grid and
introduce the concept of flow patterns. A flow pattern is a frequent sequence of events
< I1 → I2 → ...→ Ik > in which Ii is a set of events and each event e(location) ∈ Ii
is composed of an event type e (e.g. rain, wind) and its location. In these patterns,
each set Ii is composed of spatially close events occurring at the same time, and two
sets Ij and Ik are consecutive if their events are consecutive and in the same time win-
dow. In [3], authors propose a new pattern domain, called spatio-sequential patterns, to
study evolutions of spatial objects/regions and their neighborhood. They introduce the
concept of spatial itemset, i.e. a pair of itemsets (I, I ′) associated with spatially close
regions and denoted by I.I ′. Then, they integrate this notion in the sequence frame-
work. The database is a collection of sequences of itemsets representing evolution of
regions such as in [64], but it also integrates a neighborhood relationship. Resulting pat-
terns are frequent sequences of spatial itemsets < I1.I

′
1, I2.I

′
2, ... Ik.I

′
k > where Ii are

events/properties (an itemset) related to a set of regions and I ′i are events/properties
(an itemset) related to their neighborhood.

Graphs have also been used to study spatio-temporal phenomena. [39, 74] use
graphs to represent the topology of spatial objects and their relationships. These for-
malisms enable to capture complex, dynamic, region-based structures, with the com-
ponent regions inhabited by a multiplicity of dynamic objects. [23, 62] have worked
to define qualitative spatial terminology in graph-based embeddings. [46, 24] have also
proposed such models to represent complex spatial objects (but again they do not
represent changes). [49] consider a collection of spatio-temporal events modeled as a
labeled DAG, and search frequent sub-DAGs representing events located together and
occurring serially. They propose a new interest measure called the cascade participa-
tion index to represent the frequency of a pattern in such data. This measure is the
minimum conditional probability of a pattern given one of its events. Thanks to the
monotonicity of this measure, a levelwise algorithm has been developed to mine these
patterns. [5] study evolutions of regions w.r.t. event types. They also model such data
using a labeled DAG, but they extract frequent spatio-temporal event sequences in-
stead of sub-DAGs. Such as in the previous work, each region is associated with a single
event type. They introduce a parametrized spatio-temporal “follow” relationship and
a frequency measure based on the minimum participation ratios such as in [36]. The
proposed algorithm adopts a pattern-growth strategy to mine frequent sequences.

2.2 Mining patterns over a collection of labeled graphs

Mining graph data has been a topic of interest for several years. [37] propose an Apriori-
like algorithm [1] for mining frequent substructures from graph data. The database is a
collection of graph transactions. Each graph transaction is a labeled graph represented
by its adjacency matrix. A levelwise search on the frequent canonical matrix code is
performed. This study focuses on induced subgraph patterns, i.e. subgraphs satisfying
the parent-descendant relationship. [42] propose an improved version of [37]’s levelwise
algorithm based on efficient data structures and various optimizations for candidate
generation and counting. In [75], authors also study frequent subgraph mining in a
collection of labeled graphs. They investigate a new approach to mine these patterns
more efficiently based on a pattern growth strategy. Patterns are mapped to unique

6 Frédéric Flouvat et al.

sequences (DFS codes) which are extended recursively. The proposed algorithm, called
gSpan, performs a depth-first exploration of the search space, and avoids costly can-
didate generation. Several other algorithms have been proposed to efficiently mine
frequent subgraphs [53, 32, 68, 22]. Surveys of graph mining approaches can be found
in [69, 38]. On another hand, many contributions focus on a specific class of graph data
(e.g. trees, acyclic graphs, oriented graphs). Their main goal is to develop dedicated
approaches optimized w.r.t a specific representation. For example, several works focus
on DAGs and their multiple applications [72, 52, 33, 48, 25]. [72] study DAG mining
to optimize code compaction in computer programming. They propose an approach
to mine frequent patterns in a set of labeled DAGs. Patterns are unconnected, multi-
or single-rooted, and induced sub-DAGs. In a very different context, [25] also exploite
DAG mining to find human interaction patterns occurring in meetings. Their database
is a set of human interaction flows, each one being represented by a labeled DAG. Ver-
tices have weights to distinguish participant ranks. The aim is to find frequent weighted
sub-DAGs in a collection of weighted DAGs. To solve this problem, the authors adapte
[72]’s work in order to integrate weights in both the support measure and the mining
algorithm.

2.3 Pattern mining in the single-graph setting

Most of the studies referenced previously deal with frequent pattern mining in a graph-
transaction database. However, in many application domains, data is represented as a
single (large) graph. The graph-transaction setting and the single-graph setting share
common properties but algorithms developed for the former cannot be used for the
latter - whereas the opposite is true [43]. One major issue in the single-graph setting is
the subgraph isomorphism test. In the graph-transaction setting, this test is stopped
when the first occurrence of a sub-graph is found in a transaction whereas when dealing
with a single-graph, one needs to find all occurrences, which has an important impact
on performances. Another problem in the single-graph context is how to define pattern
frequency. Indeed, it cannot be defined as the number of transactions in which a pattern
occurs. Several authors have studied this issue [43, 26, 12, 40]. Most of them defined
a frequency based on pattern occurrences. However, several occurrences may overlap,
leading to a non-monotonic frequency measure. Therefore, new frequency measures
have been studied.

2.4 Mining attributed graphs

In many applications, using labeled graphs to represent data is not enough to capture
all available information. Attributed graphs have been introduced to deal with this
limitation. An attributed graph is a graph in which each vertex is labeled by several
attributes (i.e. an itemset). However, mining attributed graphs generally leads to a com-
binatorial explosion (i.e., the exploration of search spaces for both graphs and itemsets),
which brings new challenges. Several studies related to attributed graph mining focused
on discovering communities sharing similar behavior or interest (e.g. [50, 28, 41, 61]).
This problem is central in several application domains such as social network analysis
or systems biology. In social networks, an important task is the identification of groups
of people with strong social interactions and similar interest. In systems biology, one

Mining evolutions of complex spatial objects 7

aim is to identify groups of genes with similar gene expressions. In that context, [50]
introduced cohesive patterns, i.e. patterns representing subgraphs with shared item-
sets. Such patterns combined principles of dense subgraphs and subspace clusters. The
CoPaM algorithm was developed to extract maximal cohesive patterns based on a
levelwise pattern enumeration. [28] worked on similar patterns though they did not
consider a density constraint. Their algorithm combined a depth-first search tree and
a prefix tree to efficiently extract maximal patterns. Fukuzaki et al. applied their ap-
proach to biological network (metabolic pathways) analysis for drug discovery as well
as to collaborative research extraction in citation networks. To our knowledge, only
[17, 47, 54] have investigated frequent pattern mining in attributed DAGs. [17] worked
on frequent sub-DAG mining in a database composed of several attributed DAGs. How-
ever, they concentrated on pyramid patterns, which are DAGs with only one source
node, and only considered induced sub-DAGs. [47] mined frequent sub-DAGs in a sin-
gle attributed graph. In their work, labels and quantitative itemsets were attributed to
vertices. By keeping labels, frequent pattern mining was simplified and decomposed in
two steps: mining a labeled graph using gSpan algorithm [75] and mining quantitative
itemsets using QFIMiner algorithm [70]. The frequency measure used was based on
the minimum number of edge-disjoint occurrences. [54] propose a framework to mine
frequent subgraphs in rooted DAGs. A graph is rooted if one can find a vertex v such
that there exists a path between v and any other vertex of the graph. Thus, this work
cannot mine graphs such as the one presented in Fig. 1. Their framework considers
the transactional setting and the single graph one. It uses spanning trees of graphs
and a new canonical form to explore the search space using an adaptation of a tree
mining algorithm. Their work also highlights the complexity and the cost of subgraph
isomorphisms in such context.

2.5 Condensed representations in graph mining

In frequent pattern mining, the number of extracted patterns can be huge (expo-
nential in the input size in the worst case). As a consequence, numerous works have
sought condensed representations of solutions. In [34], the authors proposed to study
maximal frequent itemsets. While all frequent itemsets can be deduced thanks to the
frequency constraint’s monotonicity property, a major limitation of maximal patterns
is that the frequency of sub-patterns cannot be worked out without accessing data.
Several other condensed representations have been proposed to reduce the number of
extracted solutions without information loss [55, 11, 14]. Closedness is probably the
most studied constraint and it has been applied to most pattern domains (e.g. item-
sets, sequences, trees, graphs). A pattern is closed if there is no super-patterns (w.r.t.
a specialization/generalization relation) with the same support (i.e., occurring in the
same transactions).

Several algorithms have been designed to mine closed patterns in a collection of
graphs ([76, 63]). [76] proposed to mine closed frequent graphs in graph transactions.
They highlighted that optimizations and properties previously developed for itemsets
and sequences did not hold in graphs. They introduced new concepts (“equivalent
occurrence” and “early termination”) to improve pattern pruning. These properties
have been integrated in the CloseGraph algorithm, based on gSpan and its right-most
extension approach.

8 Frédéric Flouvat et al.

[63] proposed an algorithm called DigDag to mine closed frequent embedded sub-
DAGs in a collection of labeled DAGs, where each DAG must have distinct labels.
Despite this restriction, results showed that mining such sub-DAGs in a real gene
network dataset (with 100 graphs/networks and 50 labels/genes) was not a trivial task.
A two-step approach was developed to find the patterns. The first step mined closed
frequent ancestor-descendant edges using the itemset mining algorithm LCM [66]. The
second step combined these edges to discover closed frequent embedded sub-DAGs.

2.6 Mining path patterns in graphs

In our work, we focused on a particular pattern domain in graphs: paths. Mining paths
in graphs has been the subject of previous studies. They highlighted the interest of such
patterns in many application fields such as biochemical or gene networks analysis [20,
35], communication monitoring in distributed environments (on-line services), or Web
navigation patterns [16, 10, 51, 30].

[16] mined frequent paths, called “path traversal patterns”, in a labeled directed
graph. The graph represented user access patterns in a distributed information en-
vironment where documents or objects were linked together (e.g. Web pages, on-line
services). In their work, they did not consider backward references, because they as-
sumed that a backward reference was made for easy navigation but not for browsing.
Based on this assumption, they transformed the graph data into a set of maximal
forward references, i.e. sequences. Thus, the original problem was transformed into a
frequent sequence mining problem, and the graph structure was not considered. [10]
also worked on navigation patterns. They represented a user navigation session as a
Markov chain (i.e. a labeled directed graph) and thus sought frequent paths in a col-
lection of Markov chains. They proposed a heuristic to efficiently extract longer paths
(often related to low frequency values), since their previous levelwise algorithm did not
scale up in such case.

2.7 Position of our work

As highlighted previously, mining a single labeled graph and mining a collection of
attributed graphs have been studied in the literature but mainly separately. Several
strategies (e.g. depth-first or breadth-first) have been proposed. A popular strategy
due to its efficiency is to progressively extend interesting patterns based on database
projections. Such depth-first traversal of the search space has been proposed in [56]
for mining sequential patterns. An advantage of such approach is to limit memory
consumption (and as a consequence execution time) by generating and testing less
patterns at the same time. However, combining structural exploration of DAGs with
the combinatorial of itemsets in the single-graph setting is much more difficult. It
cannot be resolved by using a simple adaptation of existing frequent pattern mining
algorithms. As claimed in [43], “algorithms developed for the graph-transaction setting
cannot be used to solve the single-graph setting, whereas the latter algorithms can be
easily adapted to solve the former problem”.

As discussed in [26, 12], the main problem in the single-graph setting is overlapping
embeddings. Due to these embeddings, pattern generation and frequency computation
are much more difficult. For example, frequency in a transactional database (i.e. a

Mining evolutions of complex spatial objects 9

collection of graphs) is ”simply” obtained by counting the number of input graphs that
contain the pattern. In the single-graph setting, we have to find all occurrences, and not
only one per transaction, which is far more complex due to their possible overlapping.
Defining an anti-monotone frequency constraint in such context is difficult and its
computation is also a problem for scalability. For example, one approach is to find
maximum independent node sets (MIS) [43] but this problem is NP-Complete.

Defining a condensed representation of interesting patterns, without loss of informa-
tion, is also more complex in the single-graph setting. Closed patterns in a collection
of transactions (sets, sequences or graphs) are the most studied form of condensed
representation. It exploits the Galois connexion that holds between transactions and
patterns. An important property of the closure operator in this context is the support
preservation property: patterns and their closures have the same support. This prop-
erty relies on the support definition: a pattern is counted once per transaction. In the
single-graph setting, this support definition, this Galois connexion and their properties
do not hold anymore. New concepts have to be introduced.

3 Definitions and problem statement

This paragraph introduces more formally the concept of attributed directed acyclic
graph (a-DAG) and the generic pattern mining approach developed in this paper.

3.1 Attributed directed acyclic graphs (a-DAGs)

An a-DAG G = (VG, EG, λG) on a set of items I consists of a set of vertices VG,
a set of directed edges EG ⊆ VG × VG and a labelling function λG : VG → 2I that
maps each vertex in VG to a subset of I. An example of such graph is given in Fig.
2. In the rest of this paper, we simply denote xy the itemset {x, y}. If there is a path
from a u to v in G, then u is called an ancestor of v (v is called a descendant of u). If
u � v ∈ EG (i.e. u is an immediate ancestor of v), then u is a parent of v (v is a
child of u).

3.2 Weighted path patterns

Let P be a sequence of itemsets Ii ∈ 2I denoted P = I1�I2� · · ·�I|P |. P is
called a path pattern if and only if there exists a sequence of consecutive vertices
v1, v2, . . . , v|P | ∈ VG satisfying ∀Ii ∈ P , Ii ⊆ λG(vi) and each vi is a parent of

vi+1 in G. The sequence of vertices O = v1 � v2 � · · · � v|P | is called

a path occurrence of P . For example, given the a-DAG in Fig. 2, the occurrences
of the size-3 path ah�cd�i are 2 � 3 � 6 , 2 � 3 � 8 , 2 � 3 � 10 ,

2 � 4 � 7 , 2 � 5 � 7 , and 5 � 7 � 8 . Occurrence 2 � 3 � 6 sup-
ports paths ah�bcd�bi, a�bcd�bi, h�bcd�bi,h�b�bi, and so on.
In the following, occurG(P) denotes the set of occurrences of P in G, and GP the
subgraph of G restricted to occurrences of P (i.e. GP ⊆ G).

Path patterns can describe a temporal sequence of events or a temporal evolution
of objects. They provide representations of temporal causal relationships that can be

10 Frédéric Flouvat et al.

1 : ac

3 : bcd 4 : cd

2 : ah

5 : acdh

6 : bi 7 : bcdi

8 : fghi 9 : eh

10 : cfi 11 : cf

VG = { 1 , 2 , 3 , . . . , 10 , 11 }

EG = { 1 � 3 , 1 � 4 , . . .}
I = {a, b, c, d, e, f, g, h, i}
λG : 1 → {a, c}

2 → {a, h}
3 → {c, d, e}
...
10 → {c, f, i}
11 → {c, f}

Fig. 2: Example of a-DAG.

easily interpreted by experts. However, as illustrated in figure 3, the same path pattern
can represent various situations. For example, the path pattern a�b�c�d occurs
in the two input databases A and B. In the a-DAG A, this pattern is related to a
spread, whereas it represents a single evolution in the a-DAG B. To cope with this
limit without increasing pattern language “complexity", we introduce a new pattern
domain: weighted path patterns.

1 : a

2 : b

3 : bc 4 : c

5 : de 6 : d 8 : d7 : ad

A

occurA(a�b�c�d) =
{ 1 � 2 � 3 � 5 ,

1 � 2 � 3 � 6 ,
...

1 � 2 � 4 � 8 }

4 : df

3 : c

2 : b

1 : a

B

occurB(a�b�c�d) =
{ 1 � 2 � 3 � 4 }

Fig. 3: Two a-DAGs in which path a� b� c� d occurs in very different ways.

Mining evolutions of complex spatial objects 11

A weighted path is a path with weight on each edge. The weight represents the
number of occurrences of an edge within the path. For example, in Fig. 2, path P =
ah�cd�i (whose occurrences have been listed above) provides the weighted path

pattern: ah
4
� cd

6
� i. Indeed, occurGP (ah�cd) = 4 and occurGP (cd�i) = 6.

In other words, itemset cd occurs four times after itemset ah, and itemset i occurs six

times after path ah�cd. In Fig. 3, we have the weighted path a
1
� b

2
� c

6
� d in

a-DAG A and the weighted path a
1
� b

1
� c

1
� d in a-DAG B. These patterns

highlight that this sequence has a wider impact in the first graph than in the second
one.

A weighted path P = I1
w1

� I2
w2

� ...
wm−1

� Im is called a sub-weighted

path of another weighted path P ′ = I ′1
w′1
� I ′2

w′2
� ...

w′n−1

� I ′n with m ≤ n,
(P ′ is a super-weighted path of P), denoted P v P ′, if ∃k ∈ {1, ..., n} such that

∀i ∈ {1, ...,m}, Ii ⊆ I ′k+i−1 and wi = w′k+i−1. For example, in Fig. 2, pattern c
3
�

i
2
� fg is a sub-weighted path of ah

3
� cd

3
� i

2
� fg

1
� cfi (but c

5
� i

4
� f

is not).

Given a weighted path P ′ = I ′1
w′1
� I ′2

w′2
� ...

w′l−1

� I ′l , a pattern P = I1
w1

�

I2
w2

� ...
wk−1

� Ik (with k ≤ l) is called prefix of P ′ if and only if (i) Ii = I ′i and

(ii) wi = w′i (∀i ≤ k). For example, patterns ah
1
� cd and ah

1
� cd

2
� bcdi are

prefixes of ah
1
� cd

2
� bcdi

1
� eh

2
� cf .

3.3 Frequency and non-redundancy constraints

In data mining, frequent pattern discovery focuses on patterns whose sup-
port/frequency is greater than a given threshold. Based on [12], we define a monotonic

support value of a pattern P = I1
w1

� I2
w2

� ...
wk−1

� Ik in an a-DAG G, denoted
σG(P), by:

σG(P) = min
1≤i<|P |

wi = min
1≤i<|P |

|occurGP (Ii�Ii+1)|

This support definition is well adapted to frequency in a single a-DAG and it can be
relatively easily computed. Indeed, it distinguishes paths occurring at several locations
in an a-DAG from those occurring at few locations but representing the evolution of
the same node (i.e. patterns beginning from, or finishing on, one or few vertices and

that spread). For example in Fig. 3, pattern a
1
� b

2
� c

6
� d begins by one vertex

but spreads after. Its support is 1. In other words, paths occurring at several distinct
locations have a higher support.
Based on this definition of support, we can define the following minimal support
constraint to only keep patterns covered by a minimum number of instances minsup:

Cfreq ≡ σG(P) ≥ minsup

However, frequent paths in G can be numerous and redundant. It thus makes sense
to define non-redundancy constraints [13]. A popular non-redundancy constraint is
related to the concept of closedness. Efficient algorithms have been designed based on

12 Frédéric Flouvat et al.

theoretical properties of closure operators such as “closure of a pattern is unique" (see,
e.g., [65, 29]). However, in the single-graph setting, there is no transaction. Moreover,
closure of a pattern is not necessarily unique [58]. Thus, the definition of closed pattern
as proposed in the transactional setting does not hold anymore in the single-graph
setting. In this work, we adapt this definition and propose a new non-redundancy
constraint in the single-graph setting (the first one). Intuitively, patterns satisfying
this constraint can be seen as “locally closed” because it only keeps maximal patterns
representing different path occurrences (such as closed patterns in the transactional
setting).

Based on the notations introduced in [9], we denote Th(G,Cfreq) the set of all
frequent weighted paths in an a-DAG G (i.e. the theory of G w.r.t. the minimal sup-
port constraint). We introduce the following non-redundancy constraint to filter
redundant frequent patterns:

CnonRedund ≡ P ∈ Th(G,Cfreq) | @P ′ ∈ Th(G,Cfreq) such that P v P ′

This constraint discards patterns that are a sub-weigthed paths (w.r.t. definition in

section 3.2) of a longer frequent weighted path. For example, if pattern ah
3
� cd

3
�

bi
2
� fg

1
� cfi is frequent in the a-DAG of Fig. 2, then it is not necessary to keep

pattern c
3
� i

2
� fg because it can be deduced from the first one. On the contrary,

pattern c
5
� i

4
� f has to be kept because weights (i.e. occurences) are different.

In other words, this non-redundancy constraint only keeps patterns associated with
different path occurrences in the a-DAG.

Problem statement Given a single a-DAG G, the problem consists in enumerating
the set of all frequent non-redundant weighted paths in G, denoted Th(G,Cfreq ∧
CnonRedund).

4 Mining weighted path in a single a-DAG

In this section, we introduce an approach to mine frequent non-redundant weighted
paths in a single a-DAG. This complete and efficient approach is based on progressive
pattern extensions and a depth-first traversal of the input a-DAG.

4.1 Pattern extensions and graph projections

A weighted path extension is performed by adding a weighted edge and an itemset at
the end of a pattern. It is done based on the occurrences of the pattern in the input
a-DAG. Last vertices of each occurrence, and their descendant vertices and edges, are
more particularly determinant. In other words, given a pattern P , extensions of P can
be found in the projection of the input a-DAG w.r.t. P . For example, let us consider

the pattern P = ah
3
� cd

3
� bi in the a-DAG G of Fig. 2. This pattern is associated

with the occurrences { 2 � 3 � 6 , 2 � 4 � 7 , 2 � 5 � 7 }. As
illustrated in Fig. 4, the projection of G w.r.t. P (right figure) represents all possible
extensions of this pattern.

Mining evolutions of complex spatial objects 13

Definition 1 (Projected a-DAG) Let P = I1
w1

� I2
w2

� ...
wk−1

� Ik be a
weighted path in an a-DAG G = (VG, EG, λG). The P -projected a-DAG of G, denoted
G|P = (V |P , E|P , λG), is the subgraph of G composed of the last vertices in each
occurrence of P in G with all their descendants, and their corresponding edges in EG.

1 : ac

3 : bcd 4 : cd

2 : ah

5 : acdh

6 : bi 7 : bcdi

8 : fghi 9 : eh

10 : cfi 11 : cf

6 : bi 7 : bcdi

8 : fghi 9 : eh

10 : cfi 11 : cf

Fig. 4: Example of a-DAG G (left) and its P -projected a-DAG (right), with P = cd
3
� bi.

To avoid construction of redundant patterns, extension must be done in such a way
that, there is no other possible extension with the same weight and a larger itemset. In
other words, resulting patterns must be maximal w.r.t. itemsets and associated with
different sets of occurrences in the a-DAG. Fig.5 illustrates all possible maximal -in

term of itemsets- extensions of size-3 weighted path ah
3
� cd

3
� bi. Based on the

projected a-DAG of Fig. 4, we see that this pattern can be extended with
3
� h

related to the edges { 6 � 8 , 7 � 8 , 7 � 9 }, and
2
� fghi related

to the edges { 6 � 8 , 7 � 8 }. Note that only the first extension is frequent

with minsup = 3. The resulting pattern ah
3
� cd

3
� bi

3
� h is associated with

the occurrences { 2 � 3 � 6 � 8 , 2 � 4 � 7 � 8 , 2 � 4 �

7 � 9 , 2 � 5 � 7 � 8 , 2 � 5 � 7 � 9 }. Based on the last

vertices (8 and 9), this pattern can be extended with
3
� cf and

2
� cfi,

resulting in the frequent pattern ah
3
� cd

3
� bi

3
� h

3
� cf . This last pattern

is related to 7 occurrences (2 � 3 � 6 � 8 � 10 , 2 � 4 � 7 � 8 � 10 ,

2 � 4 � 7 � 9 � 10 , 2 � 4 � 7 � 9 � 11 , 2 � 5 � 7 � 8 � 10 ,

2 � 5 � 7 � 9 � 10 , 2 � 5 � 7 � 9 � 11).
Note that this last pattern would be expressed as < (cd)(bi)(h)(cf) > using classi-

cal sequential pattern domains (sequences, paths or strings). Its frequency would be 7
since classical frequency definitions are based on the number of occurrences. Our pat-

tern language by representing this pattern by the weighted path cd
3
� bi

3
� h

3
� cf

14 Frédéric Flouvat et al.

is closer to reality. Moreover, our frequency definition is monotonically decreasing, while
the number of occurrences may not (as illustrated in this example). Thus, our minimum
frequency constraint can be used to efficiently prune the search space.

ah cd bi

h

fghi

cf

cfi
3 3

3

2

3

2

2 3
4
5

6
7

8
9

8

10
11

10

Fig. 5: Complete extensions of ah
3
� cd

3
� bi (minsup=3).

We call “complete extensions” the extensions done in the previous example be-
cause all occurrences of the pattern can be extended in the input a-DAG with the new
edge and itemset.

Definition 2 (Complete extension) Let P = I1
w1

� I2
w2

� ...
wk−1

� Ik a pattern

to be extended with
wk
� X, X ∈ 2I , resulting in a pattern denoted by P

wk
� X.

Let V|Pk
= {u ∈ VG | t � u ∈ occurGP (Ik−1�Ik)} be the last vertices of each

occurrence of P in the a-DAG G.
wk
� X is a complete extension of P if and only if ∀u ∈ V|Pk

, ∃v ∈ VG such that,
u � v ∈ EG, X ⊆ λ(v) and wk =| occur

GP
wk
� X

(Ik�X) |.

An interest of a complete extension is that it does not modify the prefix of the
pattern being extended. It does not change its weights nor its itemsets. For example,

extending ah
3
� cd

3
� bi with h does not change the prefix of this pattern because all

its occurrences in the a-DAG (2 � 3 � 6 , 2 � 4 � 7 , 2 � 5 � 7)
have h in a child vertex. As a consequence, if the initial pattern is frequent and non-
redundant, then frequency and non-redundancy of the extended pattern only depend
on the extension (which simplifies tests).

Theorem 1 Given a frequent pattern P = I1
w1

� I2
w2

� ...
wk−1

� Ik such that P is
non-redundant in a set of patterns T . The complete extension of P with

wk
� X, i.e.

P
wk
� X, is also frequent and non-redundant in T iff

1. wk ≥ minsup
2. @Y ∈ 2I such that X ⊂ Y , occur

GP
wk
� X

(Ik�X) = occur
GP

wk
� Y

(Ik�Y)

Proof According to definition 2, a complete extension extends all the path occurrences
of the studied pattern. In other words, if P

wk
� X is a complete extension then P is

not modified by this extension, i.e. itemsets and weights in P
wk
� X remain the same.

The first condition of the theorem ensures that P
wk
� X is frequent. Since P is frequent,

Mining evolutions of complex spatial objects 15

all the weights wi of P are greater or equal than the minimum support threshold
minsup. Thanks to complete extension, we still have wi ≥ minsup, i = 1, 2, ...k − 1,
in P

wk
� X. Thus, if wk ≥ minsup, then P

wk
� X is also frequent.

The second condition ensures that P
wk
� X is non-redundant in T \ {P}. Indeed,

suppose that P
wk
� X is redundant and the second condition is satisfied, then there

exists a path P ′ such that P v P ′, which leads to a contradiction since P is a non-
redundant pattern.

The complete extension principle was first introduced in [58]. However, this ap-
proach alone may miss patterns. For example, there are three solutions in Fig. 6 :

a
3
� b, b

2
� c and a

2
� b

1
� c. The two firsts can be generated using a complete

extension of patterns a and b, but the last one cannot. Indeed, it cannot be generated

using a
3
� b because its occurrences are { 1 � 3 , 1 � 4 , 2 � 4 } and c

is not in a child vertex of vertex 3.

1 : a 2 : a

3 : b 4 : b 5 : b

6 : c

Frequent non-redundant weighted paths (minsup=1) :

a
3
� b

b
2
� c

a
2
� b

1
� c

Frequent non-redundant weighted paths found by com-
plete extension:

a
3
� b

b
2
� c

Frequent non-redundant weighted paths found by partial
extension:
a

2
� b

1
� c

Fig. 6: Example of a-DAG illustrating the importance of partial extensions.

To find these patterns, we have to consider partial extensions, i.e. extensions
that expand only some of the occurrences of the pattern.

Definition 3 (Partial extension) Let P = I1
w1

� I2
w2

� ...
wk−1

� Ik be a pattern to

extend with
wk
� X, X ∈ 2I . Let V|Pk

= {u ∈ VG | t � u ∈ occurGP (Ik−1�Ik)}
be the set of the last vertices of P in the a-DAG G.
wk
� X is a partial extension of P if and only if ∃u ∈ V|Pk

such that ∀v ∈ VG, u �

v ∈ EG and X 6⊆ λ(v).

However, such extensions are more difficult to handle because they may impact

weights or itemsets of the prefix. In the previous example, a
3
� b can be partially

extended with
2
� c, but this discards one occurence of a

3
� b (1 � 3). Thus,

the weight of a � b have to be changed and we obtain the pattern a
2
� b

2
� c.

Such a case also occurs with the pattern ah
3
� cd

3
� bi from the a-DAG of Fig. 2.

As illustrated in Fig. 7, this pattern can be “partially” extended with
1
� eh. Aside

16 Frédéric Flouvat et al.

from being infrequent, this extension has also an impact on ah
3
� cd

3
� bi, because

eh is only associated with one child vertex of 7 . This extension discards the occurence

2 � 3 � 6 of ah
3
� cd

3
� bi. Thus, we have the pattern ah

2
� cd

2
�

bi
1
� eh, with occurrences { 2 � 4 � 7 � 9 , 2 � 5 � 7 � 9 }.

However, this pattern is not maximal w.r.t. these path occurrences, i.e. it is redundant.

The pattern ah
2
� cd

2
� bcdi

1
� eh is associated with the same occurrences and

it includes the previous one.

ah cd bi eh
3 3

2 3
4
5

6
7

9

ah cd bcdi eh=⇒ 22 1

2 3
4
5

6
7

9

Fig. 7: Partial extensions of ah
3
� cd

3
� bi.

A partial extension may lead to solutions not generated by complete extensions.
It may also lead to a redundant or infrequent pattern because it may change the
set of occurrences associated with the prefix (occurrences may be removed). After a
complete extension, we only have to test the extension to know if the generated pattern
is a solution. After a partial extension, it is more complex. As formalized in the next
theorem, we have to test the extension of the pattern but also its prefix.

Theorem 2 Given a frequent pattern P = I1
w1

� I2
w2

� ...
wk−1

� Ik such that P is

non-redundant in a set of patterns T . Given P ′ = I1
w′1
� I2

w′2
� ...

w′k−1

� Ik
wk
� X a

pattern generated by partial extension of P with
wk
� X (i.e. wi ≥ w′i). P

′ is frequent
and non-redundant in T iff

1. I1
w′1
� I2

w′2
� ...

w′k−1

� Ik is a frequent and non-redundant pattern
2.

wk
� X is a frequent and non-redundant extension

Proof P ′ = I1
w′1
� I2

w′2
� ...

w′k−1

� Ik
wk
� X is generated after a partial extension

of P with
wk
� X. Thus, for all path occurrences v1 � v2 � · · · � vk

of P ′, we have X ⊆ λG(vk). Let us consider the prefixes v1 � v2 � · · · �

vk−1 of this set of occurrences. X is a associated in G to a child vertex of each

v1 � v2 � · · · � vk−1 . In other words,
wk
� X is a complete extension of

I1
w′1
� I2

w′2
� ...

w′k−1

� Ik. According to theorem 1, P ′ is frequent and non-redundant

Mining evolutions of complex spatial objects 17

iff I1
w′1
� I2

w′2
� ...

w′k−1

� Ik and its complete extension
wk
� X are frequent and

non-redundant.

The frequency of the new prefix (the one after partial extension) depends on the
number of occurrences that cannot be extended. Thus, it is not necessary to recompute
all. We can use the weights of the original pattern, and the number of occurrences
discarded, to compute the frequency of the generated pattern (see property 1).

Property 1 Let P = I1
w1

� I2
w2

� ...
wk−1

� Ik be a frequent pattern and P ′ =

I1
w′1
� I2

w′2
� ...

w′k−1

� Ik
wk
� X be the pattern generated by partial extension of

P with
wk
� X. Let Disi = occurGP (Ii

wi
� Ii+1) \ occurGP ′ (Ii

wi
� Ii+1) be the

set of edges of occurG(P) discarded for Ii
wi
� Ii+1 after the partial extension of P

with X. The pattern P ′ is frequent iff wk ≥ minsup and w′i = wi − |Disi| ≥ minsup,
∀i = 1, 2, ..., k − 1.

Moreover, given a set of path occurrences O, it is also possible to construct the
maximal pattern associated with O by intersecting itemsets related to vertices of O.

Let us consider the previous example with the partial extension of ah
3
� cd

3
� bi

with
1
� eh. The set of occurrences associated with ah

3
� cd

3
� bi is restricted to

{ 2 � 4 � 7 � 9 , 2 � 5 � 7 � 9 }. If we intersect itemsets of these

two paths, we obtain the non-redundant pattern ah
2
� cd

2
� bcdi

1
� eh. This

remark can be expressed more formally by the following property.

Property 2 Let P = I1
w1

� I2
w2

� ...
wk−1

� Ik be a pattern and Vi ⊆ VG be the set
of vertices supporting Ii in the occurrences of P , i.e. Vi = occurGP (Ii). The pattern
P is non-redundant iff Ii =

⋂
u∈Vi

λG(u), ∀i = 1, 2, ..., k.

Proof If Ii =
⋂

u∈Vi
λG(u), then Ii is the maximal itemset (w.r.t. inclusion) common

to this set of vertices Vi. Thus, Q is the maximal pattern (w.r.t. itemset inclusion)
related to this subgraph of G, i.e. it is non-redundant.

Suppose that the prefix of P ′ remains frequent after partial extension of P . Ac-
cording to the previous property, the set of occurrences of P ′ can be used to generate a
(non-redundant) solution, even if P ′ is redundant. In other words, all frequent partial
extension can be used to generate a solution.

These theorems and properties are the building blocks of the exploration strategy
presented in the next section.

4.2 A depth-first search exploration strategy

The exploration strategy used to extract these patterns relies on a depth-first traversal
of the search space. It progressively extends patterns based on a-DAG projections and
complete/partial extensions. At each step, the algorithm focuses on a projection of
the input a-DAG. Then, it uses complete and partial extensions to generate frequent
non-redundant patterns related to this projection.

This approach enables to enumerate all solutions. As illustrated previously, given
a pattern P , we can construct all the solutions with prefix P using the P -projected

18 Frédéric Flouvat et al.

a-DAG G|P and complete extensions. Moreover, property 2 shows that occurrences of
P can also be used to recursively construct all the solutions related to a subset of these
occurrences (thanks to partial extensions). Lemma 1 formalizes this by decomposing
the original pattern mining problem into a set of subproblems.

Lemma 1 (prefix-based recursive generation)

– Let {I1, I2, ..., In} be the complete set of size-1 frequent non-redundant patterns in
an a-DAG G, and {G|I1 , G|I2 , ..., G|In} be the set of projected a-DAGs associated
with these patterns. The complete set of size-2 frequent non-redundant patterns in
G can be generated from {G|I1 , G|I2 , ..., G|In}.

– Let {P1, P2, ..., Pm} be the complete set of size-k frequent non-redundant patterns in
an a-DAG G, and {G|P1

, G|P2
, ..., G|Pm

} be the set of projected a-DAGs associated
with these patterns. The complete set of size-(k+1) frequent non-redundant patterns
in G can be generated from {G|P1

, G|P2
, ..., G|Pm

}.

Proof Let us consider size-1 patterns first. Suppose that there exists a frequent non-
redundant pattern P = Y1

w1

� Y2 s.t. P cannot be generated from any G|Ii (1 ≤
i ≤ n). This means that Y1 is not a frequent non-redundant pattern but also that
occurG(Y1) 6⊆ occurG(Ii). Indeed, if occurG(Y1) ⊆ occurG(Ii), then G|Y1

⊆ G|Ii and
P can be generated from G|Ii (using property 2 and partial extensions). This is not
possible. Firstly, Y1 is necessarily frequent (because P is frequent). Secondly, if it is
redundant, then there exists a frequent non-redundant pattern Ii s.t. Y1 ⊆ Ii and both
patterns have the same support, i.e. occurG(Y1) = occurG(Ii).
This reasoning can be transposed to size-k patterns. Suppose that there exists a size-

(k+1) frequent non-redundant pattern P ′ = Y1
w1

� Y2
w2

� ...
wk−1

� Yk
wk
� X

s.t. P ′ cannot be generated from any G|Pi
(1 ≤ i ≤ n). Let us denote by Q the

size-k prefix of P ′, i.e. Q = Y1
w1

� Y2
w2

� ...
wk−1

� Yk. This means that Q is
not a frequent non-redundant pattern but also that occurG(Q) 6⊆ occurG(Pi). Indeed,
if occurG(Q) ⊆ occurG(Pi), then G|Q ⊆ G|Pi

and P ′ can be generated from G|Pi

(using property 2 and partial extensions with X). This is not possible. Firstly, Q is
necessarily frequent (because P ′ is frequent). Secondly, if it is redundant, then there
exists a frequent non-redundant pattern Pi s.t. Q v Pi, i.e. occurG(Q) = occurG(Pi).

A basic approach to find all solutions would be to recursively construct a complete
projection of the a-DAG for each prefix. However, the cost of this approach w.r.t. main
memory would be very high. To deal with this problem, we do not keep all the edges of
the projected a-DAG, but only the ones necessary for first path extensions, also called
candidate edges.

Definition 4 (Candidate edges) Let P be a size-k weighted path and G|P =
(V |P , E|P , λG) be the P -projected a-DAG of G. The set of candidate edges for P ,
denoted cand(E|P), is the set of edges in E|P that can be used to extend an occurence
of P , i.e. cand(E|P) = {(vk, u) ∈ E|P | v1 � ... � vk ∈ occurG(P)}.

For example, candidate edges for P = ah
3
� cd

3
� bi (Fig. 4) are

{(6, 8), (7, 8), (7, 9)}. All possible size-1 complete and partial extensions (P
3
� h,

P
2
� fghi and P

1
� eh) can be generated from this set of edges. This example also

Mining evolutions of complex spatial objects 19

shows that the extension problem can be transformed in a closed itemset mining prob-
lem based on this set of candidate edges. In this example, the transactional database
would be {fghi, fghi, eh} because there are two edges leading to fghi and one for eh.
Closed itemsets would be h (support: 3), eh (support: 1) and fghi (support: 2). These
three closed itemsets enable to generate the three possible non-redundant extensions
of P .

Definition 5 (Transactional database of candidate extensions) Let P be a
weighted path in an a-DAG G, and G|P = (V |P , E|P , λG) be the P -projected a-
DAG of G. The transactional database DG|P associated with the P -projected a-DAG
of G is the collection of transactions t ⊆ I such that t = λ(v), with v ∈ V |P and
(u, v) ∈ cand(E|P).

In Fig. 2, occurrences of pattern ac
3
� cd are 1 � 3 , 1 � 4 and 5 �

7 . Thus, candidat edges for this pattern are {(3, 6), (3, 8), (3, 10), (4, 7), (7, 8), (7, 9)}.
The transactional database is D

G|ac
3
�cd

= {bi, fghi, cfi, bcdi, fghi, eh}. There are

two transactions with itemset fghi, because fghi is associated with the edges (3, 8)
and (7, 8). With minsup = 3, frequent closed itemsets, i.e. frequent non-redundant
extensions, are i (support: 5), h (support: 3) and fi (support: 3). The first one leads

to the complete extension
5
� i and frequent non-redundant pattern ac

3
� cd

5
� i.

The second one leads to the partial extension
3
� h and infrequent (non-redundant)

pattern ac
2
� bcd

3
� h (using property 2). The last one leads to the partial extension

3
� fi and infrequent (non-redundant) pattern ac

2
� bcd

3
� fi (using property 2).

The following theorem formalizes the generation of frequent non-redundant weighted
paths using these “local" closed itemsets.

Theorem 3 Let P = I1
w1

� I2
w2

� ...
wk−1

� Ik be the prefix of a frequent non-
redundant weighted path in an a-DAG G, and DG|P be the transactional database related
to the projection of G w.r.t. P . Let X ∈ 2I be a frequent closed itemset in DG|P , and
w = support(X) be its frequency in DG|P .

If
w
� X is a complete extension of P , then I1

w1

� I2
w2

� ...
wk−1

� Ik
w
� X is the

prefix of a frequent non-redundant weighted path.

If
w
� X is a partial extension of P , then P ′ = I ′1

w′1
� I ′2

w′2
� ...

w′k−1

� I ′k
w
� X

is the prefix of a non-redundant weighted path, with I ′i =
⋂

u∈V ′i
λG(u) and V ′i =

occurGP ′ (Ii) (∀i = 1, 2, ..., k).

Proof Let
w
� X be a complete extension of P . I1

w1

� I2
w2

� ...
wk−1

� Ik
w
� X

is frequent and non-redundant, by theorem 1, iff w ≥ minsup and @Y ∈ 2I such that
X ⊂ Y , occur

GP
w
� X

(Ik�X) = occur
GP

w
� Y

(Ik�Y). X is frequent in DG|P . Thus,
support(X) ≥ minsup, i.e. w ≥ minsup (since support(X) = w). X is also closed in
DG|P , i.e. @Y ∈ 2I such that X ⊂ Y and support(X) = support(Y) in DG|P . Thus,
the set of transactions supporting X in DG|P is different from the one supporting
Y . In other words, {(u, v) ∈ cand(E|P) | X ⊆ λG(v)} 6= {(u, v) ∈ cand(E|P) |
Y ⊆ λG(v)}, i.e. occur

GP
w
� X

(Ik�X) 6= occur
GP

w
� Y

(Ik�Y). Thus, X is a non-
redundant extension.

20 Frédéric Flouvat et al.

The second part of the theorem is a corollary of theorem 2 and property 2. As
shown previously, if X is a closed itemset in DG|P , then

w
� X is a non-redundant

extension, since @Y ∈ 2I such that occur
GP

w
� X

(Ik�X) = occur
GP

w
� Y

(Ik�Y).

Moreover, I ′1
w′1
� I ′2

w′2
� ...

w′k−1

� I ′k is non-redundant by definition (property 2),
since I ′i =

⋂
u∈V ′i

λG(u), ∀i = 1, 2, ..., k.
Note that occurG(P ′) ⊆ occurG(P) because P ′ is generated after a partial extension
of P . Thus, P ′ is generated using a subset of vertices supporting each Ii in occur-
rences of P , i.e. occurGP ′ (Ii) ⊆ occurGP (Ii). As a consequence, V ′i = occurGP ′ (I

′
i) =

occurGP ′ (Ii) and Ii ⊆ I ′i, i.e. I
′
i is the maximal itemset supported by this set of occur-

rences.

Based on this theorem, we recursively generate each pattern based on the closed
frequent itemsets extracted from candidate edges. If an itemset leads to a partial ex-
tension, we first update the weights of the prefix using property 1. Then, if the re-
sulting pattern stills frequent, we recompute the itemsets of the prefix using prop-
erty 2. After, we continue its recursive extension and save the final pattern. All fre-
quent non-redundant patterns are generated using this depth-first algorithm. However,
some patterns (or part of patterns) may be generated twice. For example, in Fig. 8,

a
3
� bcd

3
� fi is generated based on a prefix growth of a, and bcd

3
� fi is

generated based on a prefix growth of bcd. To avoid this, we have to do inclusion tests
(and potentially update some solutions) before recursively extending the current pat-

tern. Indeed, if a
3
� bcd

3
� fi is generated first, we have to stop the extension of

bcd
3
� fi and do not save this last pattern. If bcd

4
� i is generated first, we have

to update this pattern with prefix a
3
� in the set of solutions and stop its extensions

(because they have already been processed when extending bcd
4
� i).

This approach is described in algorithm 1. Fig. 8 illustrates the different steps of
this algorithm with the a-DAG introduced in Fig. 2 and minsup = 3. The complete
set of frequent non-redundant weighted path can be extracted in the following steps:

1. Mine size-1 patterns: Scan G once to find all the size-1 frequent non-redundant
weighted paths. To do this, the algorithm generates a transactional database com-
posed of the itemsets associated with the origin of each edge of G, and mine the
frequent closed itemsets of this database. The first size-1 patterns of this set are
a(6), ac(3), ah(4), b(6), bcd(5), bi(3) (with frequency in parenthesis).

2. Divide the search space: The search space can be divided based on the size-1
frequent patterns previously extracted. Each size-1 pattern leads to one prefix and
to one projected a-DAG. To limit memory occupation, only the candidate edges are
computed. For example, the first solutions being explored are the ones with prefix
a, and they are computed based on the candidate edges of a, i.e. cand(E|a) =
{(1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (5, 7)}. Once all the solutions with prefix a are
mined, the algorithm explores the solutions with prefix ac (the next size-1 pattern
generated), etc. Note that these projected a-DAG are not explored if the number
of candidate edges is lower than the minimum support threshold value (line 1 of
the algorithm), because in such case the resulting patterns will not be frequent.

3. Recursive extension of prefixes: Each subset of solutions are generated recur-
sively by extending progressively patterns based on candidate edges. More precisely,
for each prefix, its candidate edges are transformed into a transactional database

Mining evolutions of complex spatial objects 21

D
G

1 → 3
1 → 4
2 → 3
2 → 4
2 → 5
3 → 6
3 → 8
3 → 10
...

ac
ac
ah
ah
ah
bcd
bcd
bcd
…

FClosed:
a (6)
ac (3)
ah (4)
b (6)
bcd (5)
bi (3)
...

a

D
G|a

1 → 3
1 → 4
2 → 3
2 → 4
2 → 5
5 → 7

bcd
cd

bcd
cd

acdh
bcdi

FClosed:
bcd (3)
cd (6)

a → bcd3

partial

D
G|a →bcd

3 → 6
3 → 8
3 → 10
7 → 8
7 → 9

bi
fghi
cfi

fghi
eh

FClosed:
fi (3)
h (3)
i (4)

a → bcd → i
3 4

D
G|a →bcd → i

6 → 8
8 → 10

fghi
cfi

FClosed:∅
D

G|a →cd

3 → 6
3 → 8
3 → 10
4 → 7
5 → 7
7 → 8
7 → 9

bi
fghi
cfi

bcdi
bcdi
fghi
eh

a →
 cd

6

FClosed:
bi (3)
ci (3)
fi (3)
i (6)
h (3)

a → cd →bi
5 3

D
G|a →cd → bi

6 → 8
7 → 8
7 → 9

fghi
fghi
eh

FClosed:
h (3)

a → cd →bi → h
5 3 3

D
G|... →h

8 → 10
9 → 10
9 → 11

cfi
cfi
cf

FClosed:
cf (3)

a → cd →bi → h → cf
5 3 3 3

D
G|... →cf

∅

...

D
G|bcd

3 → 6
3 → 8
3 → 10
7 → 8
7 → 9

bi
fghi
cfi

fghi
eh

...

bcd

FClosed:
fi (3)
i (4)
h (3)

bcd → i4

bcd → h3

bcd → fi3

a → bcd → fi
3 3

D
G|a →bcd → fi

8 → 10 cfi

FClosed:∅

D
G|a →bcd → h

8 → 10
9 → 10
9 → 11

cfi
cfi
cf

FClosed:
cf (3)

D
G|... →cf

∅

a → bcd → h
3 3

a → bcd → h → cf
3 3 3

Fig. 8: Example of PrefixPathGrowth execution with minsup = 3.

ALGORITHM 1: PrefixPathGrowth(P , G, minsup, Th, cand(E|P))

Input : A pattern P , an a-DAG G = (VG, EG, λG), the minimum support threshold
minsup, the set of solutions Th, the set of candidate edges cand(E|P)

1 if |cand(E|P)| < minsup then
2 Th = Th ∪ {P};
3 else
4 FClosed =MiningFreqClosedItemset(cand(E|P),minsup)
5 if FClosed == ∅ then
6 Th = Th ∪ {P};
7 else
8 foreach X ∈ FClosed do
9 P ′ = P

w
� X, with w = support(X)

10 if |P | > 1 and IsPartialExtension(X,P, cand(E|P)) then
11 BackwardUpdate(P ′, G, cand(E|P))
12 if σG(P ′) < minsup then
13 Continue // skip the current loop iteration and go to next

extension
14 end
15 end
16 if ¬ Include(Th, P ′) and ¬ UpdatePrefixes(Th, P ′) then
17 PrefixPathGrowth (P ′, G, minsup, Th, cand(E|P ′))
18 end
19 end
20 end
21 end

22 Frédéric Flouvat et al.

and closed frequent itemsets are mined (line 4 of the algorithm). Each closed item-
set is used to extend the current prefix (line 9 of the algorithm). Each new prefix
(and its candidate edges) is then used in input of another recursive call (line 17 of
the algorithm). Lines 10-15 of the algorithm correspond to a partial extension of
the prefix. As mentioned before, in such case, the prefix has to be updated (func-
tion BackwardUpdate) and frequency has to be checked. Line 16 checks if prefix
P ′ has not already been studied (totally or partially). If there is a pattern in Th
which includes P ′, this prefix extension is stopped (function Include). If there is
a pattern in Th such that its prefix is a suffix of P ′, the pattern in Th is updated
with P ′ and the extension is stopped (function UpdatePrefixes).
This process on the example of Fig. 8 is detailed below:
(a) Mine patterns with prefix a : The transactional database related to this

projection of G is DG|a = {bcd, cd, bcd, cd, acdh, bcdi}. Two frequent closed
itemsets are mined: bcd (with a support of 3) and cd (with a support of 6).

Thus, we have two possible prefix extensions: a
3
� bcd and a

6
� cd (complete

extensions).
i. Mine patterns with prefix a�bcd : The transactional database related

to this projection of G is D
G|a

3
� bcd

= {bi, fghi, cfi, fghi, eh}. The three
frequent closed itemsets in this database are fi (with a support of 3), h
(with a support of 3) and i (with a support of 4). Thus, we have three

possible prefix extensions: a
3
� bcd

3
� fi, a

3
� bcd

3
� h and

a
3
� bcd

4
� i (complete extensions).

– Mine patterns with prefix a�bcd�fi : The transactional
database related to this projection of G is D

G|a
3
� bcd

3
� fi

= {cfi}.
There is no frequent closed itemset in this database. Thus, this pattern
is not extended.

– Mine patterns with prefix a�bcd�h : The transactional database
related to this projection of G is D

G|a
3
� bcd

3
� h

= {cfi, cfi, cf}.
There is only one frequent closed itemset in this database: cf (with

a support of 3). Thus, we have one possible prefix extension: a
3
�

bcd
3
� h

3
� cf (complete extension).

? Mine patterns with prefix a�bcd�h�cf : The
transactional database related to this projection of G is
D

G|a
3
� bcd

3
� h

3
� cf

= ∅. There is no frequent closed itemset

in this database. Thus, this pattern is not extended.
– Mine patterns with prefix a�bcd�i : The transactional database

related to this projection of G is D
G|a

3
� bcd

4
� i

= {fghi, cfi}. There
is no frequent closed itemset in this database. Thus, this pattern is not
extended.

ii. Mine patterns with prefix a�cd : The transactional database
related to this projection of G is D

G|a
6
� cd

= {bi, fghi, cfi, bcdi,
bcdi, fghi, eh}. The frequent closed itemsets in this database are
bi(3), ci(3), fi(3), i(6), h(3). Thus, we have 5 possible prefix extensions
(and only i is a complete extension). After backward update of itemsets

and weights for partial extensions, we have prefixes a
5
� cd

3
� bi,

Mining evolutions of complex spatial objects 23

a
5
� cd

3
� ci and a

6
� cd

6
� i, which are recursively explored. Note

that a
2
� cd

3
� fi and a

2
� cd

3
� h are not frequents.

– Mine patterns with prefix a�cd�bi, a�cd�ci and
a�cd�i : ...

(b) Mine patterns with prefix ac, ah, b, bcd, bi ...

Note that, in this example, the algorithm doesn’t need to explore bcd
3
� fi, bcd

4
� i

and bcd
3
� h (test done in line 16 of the algorithm), because super-patterns have

already been explored when mining solutions prefixed with a.

4.3 Data structure and optimizations

The previous algorithm presents the global strategy of our approach. However, some
steps of this strategy may be particularly time consuming without an adapted data
structure. In particular, it is the the case of the BackwardUpdate, Include and
UpdatePrefixes functions because they do costly comparisons between the current
pattern and its occurrences in the input graph.

To cope with this difficulty, we propose a data structure to efficiently mine solutions.
This data structure is called the pattern graph. Each path in this graph represents a
solution, i.e. a frequent non-redundant pattern with its occurrences. Given a solution
P = I1�I2� · · ·�I|P |. There is a path in the pattern graph representing this pattern.
Each vertex of this path contains an itemset of P and its occurrences in the input graph.
Directed edges of this path represent the successive itemsets of P . More formally,
this graph, denoted by GTh, consists of a set of vertices VTh, a set of edges ETh ⊆
VTh×VTh, a labelling function λw : ETh → Z that maps each edge in ETh to a weight,
and a labelling function λTh : VTh → (2I , 2VG) that maps each vertex in VTh to an
itemset and a subset of vertices of G. For example, Fig. 9 shows the pattern graph of
the 5 solutions extracted in Fig. 8. Each path represents one solution. For example,

path 1 � 2 � 3 represents pattern a
3
� bcd

3
� fi and its occurrences

{ 1 � 3 � 8 , 1 � 3 � 10 , 2 � 3 � 8 , 2 � 3 � 10 , 5 �

7 � 8 } in G. As illustrated by this figure, a vertex of the pattern graph can
be shared across several solutions. For example, vertices 1 , 4 and 5 are used to

represent patterns a
3
� bcd

3
� h

3
� cf and a

5
� cd

3
� bi

3
� h

3
� cf . To the

opposite, we need different vertices (7 and 8) to represent cd in patterns a
6
� cd

and a
5
� cd

3
� bi

3
� h

3
� cf , because they are not associated with exactly the

same occurrences in G.
This data structure enables to efficiently store patterns but also to efficiently gen-

erate them. Each pattern extension corresponds to the generation of a new vertex and
a new edge in the pattern graph. If the vertex is already in the pattern graph, we
simply add a new edge and stop extensions for this pattern because they have already
been previously processed. We have such example in Fig. 9 when extending pattern

a
5
� cd

3
� bi (path 1 � 8 � 9) with

3
� h

3
� cf (path 4 � 5).

Thanks to this data structure, inclusion tests (function Include) and pattern updates
(function UpdatePrefixes) in algorithm 1 are much more easy. They consist only in
searching a vertex in a set of vertices. This search can be simplified because each vertex

24 Frédéric Flouvat et al.

Examples of frequent non-redundant
weighted paths (minsup=3):

a
3
� bcd

3
� fi

a
3
� bcd

3
� h

3
� cf

a
3
� bcd

4
� i

a
6
� cd

a
5
� cd

3
� bi

3
� h

3
� cf

1 : (a, {1, 2, 5})

2 : (bcd, {3, 7})

3 : (fi, {8, 10})

4 : (h, {8, 9})

5 : (cf, {10, 11})

6 : (i, {6, 8, 10})

7 : (cd, {3, 4, 5, 7}) 8 : (cd, {3, 4, 5})

9 : (bi, {6, 7})

3 6 5

3 4

3

3

3

3

Fig. 9: Pattern graph of the solutions extracted in Fig. 8.

u ∈ VTh is uniquely identified by its subset of vertices V , with λTh(u) = (X,V). It is
a direct consequence of property 2.

Algorithm 2 describes our algorithm using this pattern graph data structure. The
global strategy has not changed but several operations are simplified using the data
structure. The initial call of this recursive algorithm is done with uk = u0, λTh(u0) =
(∅, VG).

Given a pattern P = I1
w1

� I2
w2

� ...
wk−1

� Ik. The algorithm extends this
pattern with all possible frequent non-redundant extensions X. It generates patterns

P ′ = I ′1
w′1
� I ′2

w′2
� ...

w′k−1

� I ′k
suppX

� X, with I ′i = Ii and w′i = wi if it is a complete
extension, or Ii ⊆ I ′i and w′i ≤ wi if it is a partial extension (i = 1, ..., k). Lines 5-9
correspond to the generation of the first itemset I1 of P , i.e. the generation of a vertex
(I1, V1) in the pattern graph. Line 6 checks if this vertex is already in the pattern graph,
i.e. if a super-pattern has already been generated. This simple test substitues the costly
Include function. Lines 11-25 represent the general case where Ik is the last itemset of
P and Vk its occurrences. Line 11 processes V ′k, i.e. the subset of vertices of Vk that can
be extended with X. If Vk 6= V ′k (line 12), then we have a partial extension of P with X.
This test substitues the previous IsPartialExtension function. The BackwardUpdate

function in line 13 processes the new prefix I ′1
w′1
� I ′2

w′2
� ...

w′k−1

� I ′k w.r.t.
V ′k and returns true if it is frequent. New vertices and edges may be inserted in the
pattern graph to represent this new prefix. Lines 17-24 represent the extension of the
pattern graph with X. u′k is the current vertex in the pattern graph. If the extension is

Mining evolutions of complex spatial objects 25

ALGORITHM 2: PrefixPathGrowth-PatternGraph(G, minsup, GTh, uk)

Input : An a-DAG G = (VG, EG, λG), a minimum support threshold minsup, a pattern
graph GTh = (VTh, ETh, λTh, λw), a vertex uk ∈ VTh with λTh(uk) = (Ik, Vk)

1 cand(E|P) = {(u, v) ∈ EG | u ∈ Vk}
2 FClosed =MiningFreqClosedItemset (cand(E|P),minsup)
3 foreach X ∈ FClosed do
4 VX = {v ∈ VG | (u, v) ∈ cand(E|P) and X ⊆ λG(v)}
5 if Ik == ∅ then
6 if @uX ∈ VTh s.t. λTh(uX) = (X,VX) then
7 Insert uX in VTh with λTh (uX) = (X,VX)
8 PrefixPathGrowth-PatternGraph (G, minsup, GTh, uX)
9 end

10 else
11 V ′k = {u ∈ Vk | (u, v) ∈ cand(E|P) and X ⊆ λG(v)}
12 if Vk 6= V ′k then // partial extension
13 if BackwardUpdate(G,minsup,GTh, uk, V

′
k) == False then

14 Continue // skip the current loop iteration and go to next
extension

15 end
16 end
17 Let u′k ∈ VTh s.t. λTh(u

′
k) = (I′k, V

′
k)

18 if @uX ∈ VTh s.t. λTh(uX) = (X,VX) then
19 Insert uX in VTh with λTh (uX) = (X,VX)

20 Insert (u′k, uX) in ETh with λw
(
(u′k, uX)

)
= support(X)

21 PrefixPathGrowth-PatternGraph (G, minsup, GTh, uX)
22 else
23 Insert (u′k, uX) in ETh with λw

(
(u′k, uX)

)
= support(X)

24 end
25 end
26 end

complete, then u′k = uk. If the extension is partial, u′k is the vertex of the pattern graph
associated with V ′k (an existing vertex or a newly created one by the BackwardUpdate
function). Line 18 tests if (X,VX) is already in the pattern graph, i.e. if this part of
the pattern (and its extensions) has already been generated. If it is not in the pattern
graph, the algorithm inserts vertex uX , generates an edge (u′k, uX) and continues the
extension of P ′. It it is already in the pattern graph, the algorithm only generates an
edge (u′k, uX) and stops extensions. These operations substitute the UpdatePrefixes
function. It avoids the generation of the same extension twice, such as in the previous

example with a
5
� cd

3
� bi and

3
� h

3
� cf (direct extension of 1 � 8 � 9

with 4 � 5).
Algorithm 3 describes in details the BackwardUpdate function. The input param-

eter uk is the last vertex of P = I1
w1

� I2
w2

� ...
wk−1

� Ik in the pattern graph.
V ′k is the set of occurrences that can be partially extended with X in algorithm 2. The
principle of algorithm 3 is to recursively explore all ancestors of uk and to update their
occurrences according to V ′k (cascading updates). This exploration continues until the

prefix remains frequent. At the end, if I ′1
w′1
� I ′2

w′2
� ...

w′k−1

� I ′k is frequent, the
algorithm inserts all necessary vertices and edges in the pattern graph. Lines 1-4 cor-
respond to I ′1 processing, i.e. insertion of (I ′1, V

′
1) in the pattern graph. In such case,

all the pattern is frequent and all (I ′i, V
′
i) vertices (and the corresponding edges) can

26 Frédéric Flouvat et al.

ALGORITHM 3: BackwardUpdate(G, minsup, GTh, uk, V ′k)

Input : An a-DAG G = (VG, EG, λG), a minimum support threshold minsup, a pattern
graph GTh = (VTh, ETh, λTh, λw), a vertex uk ∈ VTh with λTh(uk) = (Ik, Vk), a
subset of vertices V ′k representing a partial extension of Ik (V ′k ⊂ Vk)

Output: True if the the prefix is frequent, False elsewhere

1 if @uk−1 ∈ VTh s.t. (uk−1, uk) ∈ ETh then
2 Insert u′k in VTh with λTh(u

′
k) = (I′k, V

′
k) and I

′
k = Ik ∪

⋂
u∈V ′

k
λG(u)

3 return True
4 else
5 frequent = False
6 foreach uk−1 ∈ VTh s.t. (uk−1, uk) ∈ ETh , with λTh(uk−1) = (Ik−1, Vk−1) do
7 V ′k−1 = {u ∈ Vk−1 | (u, v) ∈ EG and v ∈ V ′k}
8 if ∃(u′k−1, u

′
k) ∈ ETh s.t. λTh(u

′
k−1) = (I′k−1, V

′
k−1) and λTh(u

′
k) = (I′k, V

′
k) then

9 if BackwardUpdate(G, minsup, GTh, uk−1, V ′k−1) == True then
10 frequent = True
11 end
12 else
13 w′k = λw ((uk−1, uk))−

∣∣∣{(u, v) ∈ EG | u ∈ Vk−1, u /∈ V ′k−1 and v ∈ V ′k}
∣∣∣

14 if w′k ≥ minsup then
15 if BackwardUpdate(G, minsup, GTh, uk−1, V ′k−1) == True then
16 frequent = True
17 Insert u′k in VTh with λTh(u

′
k) = (I′k, V

′
k) and I

′
k = Ik ∪

⋂
u∈V ′

k
λG(u)

18 Insert (u′k−1, u
′
k) in ETh s.t. λTh(u

′
k−1) = (I′k−1, V

′
k−1), with

λw
(
(u′k−1, u

′
k)
)
= w′k

19 end
20 end
21 end
22 end
23 return frequent
24 end

be recursively inserted in the pattern graph (lines 16-19). Property 2 is used to process

all I ′i (lines 2 and 17). Line 13 is the frequency computation of I ′k−1

w′k−1

� I ′k in P

based on property 1. Note that if I ′k−1

w′k−1

� I ′k is already in the pattern graph, then
we continue the recursive exploration of the prefix without processing anything for I ′k
(lines 8-11).

4.4 Size of the search space and computational complexity

Size of the search space Basically, a weighted path pattern is a sequence of itemsets
representing a set of sub-paths in the input graph. The number of possible itemsets for
each element of such pattern is 2n − 1, with n the number of different items. Given a
path of size k in the input graph, with all vertices labelled by the n items. The number
of possible sub-patterns is (2n − 1)k. In the worst case, the number of paths of size
k in a directed acyclic graph is the number of k-combinations of vertices, i.e. (|VG|

k).
Thus, we have (|VG|

k)× (2n − 1)k possible patterns of size k. Let kmax be the longest

path in the input graph. The size of search space is
∑kmax

k=2

(
(|VG|

k)× (2n − 1)k
)
.

Mining evolutions of complex spatial objects 27

Computational complexity Algorithm 2 recursively extends patterns to find the so-
lutions. To study the computational complexity of this algorithm, we focus on the
complexity of generating one solution. Each recursive call generates all the valid exten-
sions of the current pattern w.r.t. frequency and non-redundancy constraints. These
extensions increase the size of the current pattern by one itemset.

Line 1 lists all outgoing edges from the occurrences of the current pattern. In the
worst case, its time complexity is linear in the number of edges in the input graph,
i.e. O(|EG|). Line 2 extracts all frequent closed itemsets from the database generated
from these outgoing edges. To our knowledge, one of the most efficient algorithm for
this task is LCM [65]. Its time complexity is linear in the number of frequent closed
itemsets, i.e. O(2n) in the worst case. Then, lines 3-26 corresponds to the enumeration
of all frequent non-redundant extensions based on closed itemsets. Let us study one
iteration of this loop (because we study the computational complexity of generating
one solution).

Line 4 searches all the occurrences of a given itemset extension in the projected
database cand(E|P). Its time complexity is O(|EG| × n) in the worst case. Lines 5-9
represent the generation of the first element of the pattern. First, the algorithm searches
if this element has not been previously generated in the pattern graph (lines 4-6).
Vertices of the pattern graph are stored in a tree based data structure, and finding a
element in such data structure is logarithmic in the input size, i.e. O(log(|VTh|). Then,
the algorithm generates a new vertex and inserts it in the pattern graph (if necessary),
with a time complexity of O(1).

Lines 11-12, the algorithm uses the current vertex of the pattern graph to check
if the current extension is a partial extension. The time complexity of this operation
is O(|VG| × n). If it is a partial extension, the algorithm executes a backward update
(line 13), i.e. it inserts new vertices in the pattern graph (algorithm 3). The time
complexity of this algorithm for one itemset extension is O(log(|ETh|) + |EG| × n) in
the worst case (such as lines 4-6). If it is not a partial extension, lines 17-25 checks if
this extension has already been generated in the pattern graph. The time complexity
of these operations is O(log(|VTh|)) for the search and O(1) for the new vertex/edge
generation.

At the end, the time complexity of our algorithm to extract one pattern of size k
is O(2n+ |EG|×n+ |VG|×n+ log(|VTh|)) in the worst case. Note that it is much less
in practice because we don’t have all vertices and all edges to check at each iteration
(due to graph projections).

The space complexity corresponds mainly to the size of the pattern graph, i.e.
O(|ETh| + |VTh| × (n + |VG|)) (the space complexity of LCM is linear in the input
size). In the worst case, this size depends on the number of solutions which can be
very big. However, as highlighted in our experiments (see next section), memory usage
remains acceptable because vertices and edges are often shared across several solutions.

5 Experimental results

Our PrefixPathGrowth-PatternGraph algorithm has been implemented in C++. Ex-
periments were performed on a computer running Ubuntu 14.04 LTS with an Intel
Core i5 @ 3.10GHz and 16GB of main memory. First, we use our approach to study
spatio-temporal data dealing with soil erosion monitoring. Second, we demonstrate its
genericity and scalability by using data from a patent citation network as well as nine

28 Frédéric Flouvat et al.

synthetic datasets. Performance analysis is done w.r.t. execution times, memory usage
and number of solutions.

5.1 Application to soil erosion monitoring : qualitative and performance analysis

Soil erosion is a worldwide major issue which affects both environment and econ-
omy. This phenomenon is natural but it is greatly accelerated by anthropic activities
(e.g. bush fires, deforestation, mining projects) and climate change (resulting in in-
tense precipitation events). It has also a strong impact on connected terrestrial and
coastal ecosystems such as mangrove and coral reefs. Identifying key components of
these erosion processes is essential to good environmental management and sustainable
development.

In this work, we study a satellite image time series of a region impacted by soil
erosion. This time series is composed of five images (SPOT4 and SPOT5) dated in
1999, 2002, 2005, 2008 and 2009. Spatial resolution of these images is 10 meters. Size
of the studied area is 794 × 660 pixels, i.e. 52.5 km2 (20.3 mi2). In addition to these
raster data, we also have the following vector data: a soil map, land cover data, and a
digital elevation model from which we derived the slope.

	

R
a
s
t
e
r
	
d
a
t
a	
+
	
V
e
c
t
o
r
	
d
a
t
a	

GIS	

Satellite	image	
time	series	

Spatial	object/area	
time	series	

A,B	

B,D,X	

B,X	

B,D,X	

X	

a-DAG	 			Spatio-temporal	patterns	
	
	

Ø Frequent	evolutions	
	

	

• NDVI,	RI	and	BI	
processing	

• Watershed	
Segmentation	

	

• Discretization	of	numerical	
values	in	5	bins		

• DAG	generation	
- vertex	=	object/area	
- edge	=	10%	overlapping	

between	two	objects	in	
consecutive	times	

	
	

Mining	frequent	non-
redundant	weighted	
paths	

Vizualisation	of	
patterns	and	
occurrences	

soil	map	
land	cover	
…	

…	

Fig. 10: The KDD process on the soil erosion dataset

To analyze such heterogenous data, several pre and post processing are necessary.
First, remote sensing indicators related to soil erosion monitoring are processed from
the images. Three indicators related to soil erosion have been used: NDVI (Natural Dif-
ference Vegetation Index), RI (Redness Index) and BI (Brightness Index). The NDVI is
a common measure to observe vegetation. The RI is used to quantify bare soils (in the
studied areas, soils are rich in irons and thus are rusty-red). The BI is also a measure
to study degraded lands [6]. We also integrate the vector data available on the studied
area (i.e. soil, land cover and slope). Then, each satellite image is segmented, i.e. pixels
sharing similar values are grouped in order to obtain homogenous regions/objects. We
use the watershed method [8] to group pixels sharing similar values into objects. We

Mining evolutions of complex spatial objects 29

choose this classical method because it generates lots of small very homogenous re-
gions (over-segmentation). Finally, numerical attributes are discretized and the a-DAG
is generated. In our experiments, numerical attributes are discretized into 5 classes
representing 5 intensity levels from 0 to 4. Vertices of the a-DAG represent the dif-
ferent spatial objects/regions in the segmented images. Each vertex is labeled with
a set of attributes which are discretized remote sensing indicators and attributes of
the vector data (land cover, soil type, etc). Edges of the a-DAG represent the possi-
ble influence/evolution of an object at time t on/into an object at time t + 1. Two
objects/vertices are linked through an edge if they are overlapping in two consecutive
times. In these experiments, we chose to link two objects o1 at time t and o2 at time
t+1 if at least 10% of o1’s pixels are in o2. This threshold has been chosen after several
experiments and feedbacks from the experts. It enables to capture fine interactions and
important evolutions, while avoiding many meaningless relations to be considered. At
the end, extracted patterns were analyzed with a geologist specialist of soil erosion. To
facilitate interpretation, we developed a tool to display occurrences of a given pattern
on the original images (in order to position the pattern in its geographical context).
Thus, the expert can visualize where, when and how frequent non-redundant weighted
paths (i.e. frequent evolutions) occurred. Since pattern occurrences might start at dif-
ferent times, we use different colors to identify temporal positions.

This workflow illustrated in Fig.10 has been integrated in the KNIME Analytics
Platform [7] through the development of several “nodes”. A detailed description of this
KDD process and its implementation in a KNIME plugin called PaTSI (PAttern mining
of Time Series of satellite Images) can be found in [18].

5.1.1 Qualitative results

This subsection details three interesting patterns obtained by our pattern mining algo-
rithm for this area. First, it was interesting to notice that most of the zones impacted
by soil erosion (with a Redness4 value) had a low slope as illustrated in Fig. 11.

Fig. 11 shows the zones supporting the pattern Redness4, Slope[3.6; 30]
246
�

Redness4, Slope[3.6; 30]
244
� Redness4, Slope[3.6; 30]

252
�

Redness4, Slope[3.6; 30]
259
� Redness4, Slope[3.6; 30]. When we compared this

pattern to Redness4
358
� Redness4

356
� Redness4

362
� Redness4

373
� Redness4

(another extracted pattern), we noticed that its frequency (244) represented almost
69% of the second pattern frequency (356). Moreover, spatial distribution of this
pattern showed that impacted zones were situated at the base of more sloppy zones.
Presence of a strong Redness index in such zones showed that these zones represented
deposition zones for sediments coming from higher places.

Fig. 12 shows zones impacted by mining activities. New mines and buildings ap-
peared in this area between 2005 and 2008. We can see them in the center and in the
bottom-left of the 2008 and 2009 images. As a consequence, soil erosion increased in
this area during this period (Redness1 to Redness4). This soil degradation is confirmed
by a low vegetation index (NDVI0) and a high brightness index (Brightness4). We can
notice that this degradation extends progressively. It began in 2005 with few areas (in
blue color in the 2005 image) and continued in 2008 with other nearby (in blue color
in the 2008 image). We also observe that once an area became degraded, it stayed
degraded for a long period of time (Redness4 followed by Redness4 in the pattern).

30 Frédéric Flouvat et al.

1999 2002 2005

2008 2009

Fig. 11: Pattern Redness4, Slope[3.6 ; 30]
246
� Redness4, Slope[3.6 ; 30]

244
�

Redness4, Slope[3.6 ; 30]
252
� Redness4, Slope[3.6 ; 30]

259
� Redness4, Slope[3.6 ; 30]

1999 2002 2005

2008 2009

Fig. 12: Pattern Redness1
58
� Redness4,NDVI0

61
� Redness4,NDVI0,Brightness4

A small part of this area was characterized by an increase in vegetation. Fig. 13
shows the pattern representing this evolution. Vegetation index (NDVI) is gradually
growing from medium (NDV I2) to very high (NDV I4). As shown in images, only
few areas followed such an evolution (in the south-west from 1999 to 2005 and in the
north-east from 2005 to 2009). Moreover, some of these zones (denoted by β in the

Mining evolutions of complex spatial objects 31

1999 2002 2005

2008 2009

Fig. 13: Pattern NDVI2
57
� NDVI3

58
� NDVI4

2009 image) were small lakes. In this case, an increase in NDVI may only represent an
algae proliferation. Other zones (denoted by γ in the 2009 image) were old trails. Since
those trails were less frequented, vegetation had grown. The α zone became a forest. Its
evolution may be related to a densification of the vegetation due to new plants. It may
also be related to an increase in tree size. However, in such a case, it is strange that
other forests had not experienced a similar evolution. Field investigations are required
to actually explain those changes in details.

5.1.2 Quantitative results

Table 1 presents the main characteristics of the a-DAG generated for this dataset.

Dataset # of # of # of items total # graph
edges vertices per vertex of items density[71]

Soil erosion 41 166 25 618 6 262 0.000063

Table 1: Characteristics of the soil erosion dataset.

Fig. 14 shows execution times, memory usage and number of solutions for several
minimum support thresholds. It demonstrates that our algorithm is efficient on this
dataset until down to very low support thresholds (lower than 1%). For very low
support thresholds, the algorithm can generate an important number of solutions. For
example, it extracted almost one million solutions with a minimum support threshold of
0.1%. That highlights the importance of considering other constraints (e.g. constraints
defined by experts) during pattern mining or in post-processing. In the present work, we
only take into account expert constraints in post-processing (using filters and regular
expressions).

32 Frédéric Flouvat et al.

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

Time (Erosion)

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

Memory (Erosion)

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

N
b

 o
f

s
o

lu
ti
o

n
s

Minimum support (% of the total number of edges in the a-DAG)

Nb of solutions (Erosion)

Fig. 14: Execution times, memory usage and number of solutions for the soil erosion dataset.

5.2 Application to a patent citation network and synthetic datasets : genericity and
detailed performance analysis

To demonstrate that our approach is generic and scalable, we also study real-world
data from a patent citation network and nine synthetic datasets. A summary of these
datasets and their parameters can be found in table 2.

5.2.1 The patent citation network: genericity and scalability

The patent citation network used is a subgraph of the cit-Patents graph from the
Stanford Large Network Dataset Collection [44, 45]. In this dataset, vertices represent
patents granted in the United States between 1975 and 1999, and edges represent
citations. Each vertex is labeled with 5 to 7 items corresponding to country, state,
year, type, category and sub-category of a patent. As shown in table 2, this dataset is
quite large but highly sparse (w.r.t. structure and items).

Fig. 15 shows execution times, memory usage and number of solutions generated
for this dataset. Execution times are higher than with the previous dataset, but do
not exceed 3 minutes down to a minimum support threshold of 0.1%. Memory usage is
smaller (1 Gb in the worst case against 3 Gb previously) since the graph is less dense.
Number of solutions is relatively stable (around 500 patterns) down to a minimum
support threshold of 1%. Those results demonstrate that our algorithm can efficiently
deal with relatively large sparse datasets. They also show that our approach can be
used to mine any attributed DAG, and not only spatio-temporal data.

Mining evolutions of complex spatial objects 33

Dataset # of # of # of items total # graph
edges (E) vertices (V) per vertex (λ) of items density[71]

Patent citation 414 487 184 284 5-7 506 0.000012
network

V20K E60K 60 000 20 000 1-5 15 0.00015
λ1-5

V40K E120K 120 000 40 000 1-5 15 0.000075
λ1-5

V200K E600K 600 000 200 000 1-5 15 0.000015
λ1-5

V20K E60K 60 000 20 000 5-10 15 0.00015
λ5-10

V40K E120K 120 000 40 000 5-10 15 0.000075
λ5-10

V200K E600K 600 000 200 000 5-10 15 0.000015
λ5-10

V20K E60K 60 000 20 000 5-10 15 0.00015
λ5-10 in 10 layers

V40K E120K 120 000 40 000 5-10 15 0.000075
λ5-10 in 10 layers

V200K E600K 600 000 200 000 5-10 15 0.000015
λ5-10 in 10 layers

Table 2: Characteristics of the patent citation network and the synthetic datasets.

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

Time (Patents)

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

Memory (Patents)

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

N
b

 o
f

s
o

lu
ti
o

n
s

Minimum support (% of the total number of edges in the a-DAG)

Nb of solutions (Patents)

Fig. 15: Execution times, memory usage and number of solutions for the patent citation net-
work.

34 Frédéric Flouvat et al.

5.2.2 The synthetic datasets: influence of data characteristics on performances

To study more in details the influence of different parameters on performances, we
generate nine synthetic datasets using the DigraphGenerator proposed in [59]. This
approach constructs a labelled DAG containing a given number of vertices and edges.
Edges are randomly generated (following an uniform distribution). To obtain attributed
DAGs, vertices are simply labeled with itemsets. For each vertex, the number of items
is randomly chosen (following a gaussian distribution). Then, items are selected among
a set of 15 ones (following an uniform distribution).

Fig. 16 shows execution times, memory usage and number of solutions for the first
three synthetic datasets. The left-hand graph highlights the impact of graph size on
execution times. As expected, execution times increase when graphs grow. Note that
our algorithm is still efficient for large graph (600 000 edges) down to very low supports
(1%). The right-hand graph shows memory usage and it increases in the same way than
execution times. The bottom graph shows that number of solutions are very similar
(but not identical if we look at detailed results) for all those datasets. It highlights
the problem of synthetic dataset generation, which is a well known problem in pattern
mining.

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 1<λ<5
V40K, E120K, 1<λ<5

V200K, E600K, 1<λ<5

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 1<λ<5
V40K, E120K, 1<λ<5

V200K, E600K, 1<λ<5

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

N
b

 o
f

s
o

lu
ti
o

n
s

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 1<λ<5
V40K, E120K, 1<λ<5

V200K, E600K, 1<λ<5

Fig. 16: Execution times, memory usage and number of solutions for synthetic datasets when
increasing graph size.

Fig. 17 illustrates the impact of the number of items per vertex on performances.
The total number of items is not changed in these experiments. We have only more
frequent items, more frequent itemsets and longer ones when the number of items per
vertex is between 5 and 10. Once again, as expected, execution times and memory usage

Mining evolutions of complex spatial objects 35

increase when itemset sizes increase. However, if we compare with previous results, we
notice that the impact is more important. As shown by Fig. 18, the number of solutions
dramatically increases when we add items. It also points out the difference between
(labeled) graph mining and attributed graph mining. Combinatorial complexity of at-
tributed graph mining is much higher than labeled graph mining, since complexity of
itemset mining, which is exponential in the number of items, is "added to each ver-
tex". It has to be noticed that in Fig. 18, we only present results for one of the studied
datasets because number of solutions were relatively similar (as discussed previously).

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 1<λ<5
V20K, E60K, 5<λ<10

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 1<λ<5
V20K, E60K, 5<λ<10

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V40K, E120K, 1<λ<5
V40K, E120K, 5<λ<10

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V40K, E120K, 1<λ<5
V40K, E120K, 5<λ<10

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V200K, E600K, 1<λ<5
V200K, E600K, 5<λ<10

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V200K, E600K, 1<λ<5
V200K, E600K, 5<λ<10

Fig. 17: Execution times and memory usage for synthetic datasets when increasing number of
items per vertex.

Finally, we studied performances on synthetic a-DAGs produced by an adapted ver-
sion of DigraphGenerator. Those a-DAGs have the same number of vertices and edges,
and the same distribution w.r.t. itemsets, than the previous synthetic datasets, but the
graph structure is different. Instead of randomly generating edges, we partitioned ver-

36 Frédéric Flouvat et al.

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

N
b

 o
f

s
o

lu
ti
o

n
s

Minimum support (% of the total number of edges in the a-DAG)

1<λ<5
5<λ<10

Fig. 18: Number of solutions for synthetic datasets when increasing number of items per vertex.

tices in 10 sets (called “layers"), we defined a total order between those sets, and we only
generated edges between vertices of two consecutive layers. As a consequence, we have
longer paths and a greater number of patterns mined. That graph structure is a typical
characteristic of a-DAGs obtained in spatio-temporal applications. Those graphs have
a particular structure due to their temporal dimension. As shown in Fig. 19, execution
times and memory usage were higher with layer-based graph structures. However, the
algorithm is still efficient down to low minimum support threshold (9-7%).

6 Conclusion and perspectives

In this paper, we propose a new algorithm to mine frequent patterns in a single a-
DAG, and its application to spatio-temporal environmental data. We show that this
new graph-based representation, called attributed DAGs, can capture complex inter-
actions between objects with all their characteristics/events. We use this data repre-
sentation to represent complex spatio-temporal phenomena, in particular ones with
moving and changing objects. In our application example related to soil erosion, ob-
jects may move, appear, disappear, merge or split. We use a new constrained pattern
domain, frequent non-redundant weighted paths, to study interesting substructures in
such data. We propose a new algorithm based on pattern-growth strategy and an op-
timized data structure to efficiently mine such graph. Our experiments on real and
synthetic datasets not only demonstrated the relevance of extracted patterns for soil
erosion issues, but also the scalability and genericity of our approach. Indeed, results
obtained for the spatio-temporal dataset successfully highlighted the evolution of soil
erosion w.r.t. vegetation, slope and mining activities. Results also show that our ap-
proach can be used to mine larger graph (e.g. graphs with 200.000 vertices, 600.000
edges, and 7.5 attributes per vertex in average) and that it can be used in other contexts
such as citation networks.

The present work offers several perspectives. In the specific setting of spatio-
temporal data, a future work could be to study the addition of spatial neighbors in the
analysis. Spatial relationships at a given time could be integrated in the data represen-
tation and in the pattern language. Such integration is challenging since it would impact
the scalability of algorithms. Moreover, extracted patterns would be more complexe to
interpret by domain experts, requiring dedicated visualization approaches. Another
perspective would be to integrate other statistical constraints and domain knowledge

Mining evolutions of complex spatial objects 37

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 5<λ<10, without layers
V20K, E60K, 5<λ<10, with 10 layers

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V20K, E60K, 5<λ<10, without layers
V20K, E60K, 5<λ<10, with 10 layers

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V40K, E120K, 5<λ<10, without layers
V40K, E120K, 5<λ<10, with 10 layers

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V40K, E120K, 5<λ<10, without layers
V40K, E120K, 5<λ<10, with 10 layers

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
s
)

Minimum support (% of the total number of edges in the a-DAG)

V200K, E600K, 5<λ<10, without layers
V200K, E600K, 5<λ<10, with 10 layers

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 (

in
 M

b
)

Minimum support (% of the total number of edges in the a-DAG)

V200K, E600K, 5<λ<10, without layers
V200K, E600K, 5<λ<10, with 10 layers

Fig. 19: Execution times and memory usage for synthetic datasets with a layer-based structure.

(through domain constraints) during pattern mining. A first work has been done in the
itemset mining setting in [27]. It takes advantage of mathematical domain models to
improve efficiency and relevancy of itemset mining. Finally, another possibility would
be to extend this work to propose a condensed representation for frequent subgraph
mining in the single-graph setting. Currently, only maximal patterns (w.r.t. structure
inclusion only) have been studied in this setting. However, with such representation,
we loose the information about frequency of sub-patterns.

References

1. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB), Morgan Kaufmann Publishers Inc., pp 487–499

38 Frédéric Flouvat et al.

2. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering (ICDE), IEEE Computer
Society, pp 3–14

3. Alatrista-Salas H, Bringay S, Flouvat F, Selmaoui-Folcher N, Teisseire M (2012)
The pattern next door: Towards spatio-sequential pattern discovery. In: Advances
in Knowledge Discovery and Data Mining, Springer, pp 157–168

4. Arimura H, Uno T (2009) Polynomial-delay and polynomial-space algorithms for
mining closed sequences, graphs, and pictures in accessible set systems. In: Pro-
ceedings of the SIAM International Conference on Data Mining (SDM), SIAM, pp
1088–1099

5. Aydin B, Angryk RA (2016) A graph-based approach to spatiotemporal event
sequence mining. In: Proceedings of the IEEE International Conference on Data
Mining Workshops (ICDMW), IEEE Computer Society, pp 1090–1097

6. Bannari A, Morin D, Bonn F, Huete A (1995) A review of vegetation indices.
Remote sensing reviews 13(1-2):95–120

7. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C,
Thiel K, Wiswedel B (2007) KNIME: The Konstanz Information Miner. In: Stud-
ies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007),
Springer

8. Beucher S, Meyer F (1993) The morphological approach to segmentation: the wa-
tershed transformation. Mathematical morphology in image processing. Optical
Engineering 34:433–481

9. Bonchi F, Lucchese C (2004) On closed constrained frequent pattern mining. In:
Proceedings of the IEEE International Conference on Data Mining (ICDM), IEEE
Computer Society, pp 35–42

10. Borges J, Levene M (2000) A fine grained heuristic to capture web navigation
patterns. ACM SIGKDD Explorations 2(1):40–50

11. Boulicaut JF, Bykowski A, Rigotti C (2003) Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery 7(1):5–22

12. Bringmann B, Nijssen S (2008) What is frequent in a single graph? In: Proceedings
of the Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining (PAKDD), Springer, pp 858–863

13. Calders T, Rigotti C, Boulicaut JF (2004) A Survey on Condensed Representations
for Frequent Sets. In: Constraint-Based Mining and Inductive Databases, Springer,
pp 64–80

14. Casali A, Cicchetti R, Lakhal L (2005) Essential patterns: A perfect cover of fre-
quent patterns. In: Proceedings of the International Conference on Data Ware-
housing and Knowledge Discovery (DaWaK), Springer, pp 428–437

15. Celik M, Shekhar S, Rogers JP, Shine JA (2008) Mixed-drove spatiotemporal co-
occurrence pattern mining. IEEE Transactions on Knowledge and Data Engineer-
ing 20(10):1322–1335

16. Chen MS, Park JS, Yu PS (1998) Efficient Data Mining for Path Traversal Patterns.
IEEE Transactions on Knowledge and Data Engineering 10(2):209–221

17. Chen Yl, Kao Hp, Ko Mt (2004) Mining DAG Patterns from DAG Databases.
Advances in Web-Age Information Management pp 579–588

18. Collin M, Flouvat F, Selmaoui-Folcher N (2016) Patsi: Pattern mining of time series
of satellite images in knime. In: Proceedings of the IEEE International Conference
on Data Mining Workshops (ICDMW), IEEE Computer Society, pp 1292–1295

Mining evolutions of complex spatial objects 39

19. Cook D, Holder L (2006) Mining Graph Data. Wiley
20. De Raedt L, Kramer S (2001) The levelwise version space algorithm and its ap-

plication to molecular fragment finding. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) - Volume 2, Morgan Kaufmann Pub-
lishers Inc., pp 853–859

21. De Raedt L, Jaeger M, Lee SD, Mannila H (2002) A theory of inductive query
answering. In: Proceedings of the IEEE International Conference on Data Mining
(ICDM), IEEE Computer Society, pp 123–130

22. Douar B, Liquiere M, Latiri C, Slimani Y (2015) Lc-mine: a framework for frequent
subgraph mining with local consistency techniques. Knowledge And Information
Systems 44(1):1–25

23. Dube MP, Egenhofer MJ (2014) Surrounds in partitions. In: Proceedings of the
ACM International Conference on Advances in Geographic Information Systems
(SIGSPATIAL), ACM, pp 233–242

24. Dube MP, Barrett JV, Egenhofer MJ (2015) From metric to topology: determin-
ing relations in discrete space. In: International Workshop on Spatial Information
Theory, Springer, pp 151–171

25. Fariha A, Ahmed CF, Leung CKS, Abdullah S, Cao L (2013) Mining frequent
patterns from human interactions in meetings using directed acyclic graphs. In:
Proceedings of the Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining (PAKDD), Springer, pp 38–49

26. Fiedler M, Borgelt C (2007) Support Computation for Mining Frequent Subgraphs
in a Single Graph. In: Mining and Learning with Graphs

27. Flouvat F, Sanhes J, Pasquier C, Selmaoui-Folcher N, Boulicaut JF (2014) Im-
proving pattern discovery relevancy by deriving constraints from expert models.
In: Proceedings of the European Conference on Artificial Intelligence (ECAI), IOS
Press, pp 327–332

28. Fukuzaki M, Seki M, Kashima H, Sese J (2010) Finding itemset-sharing patterns
in a large itemset-associated graph. In: Proceedings of the Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining (PAKDD), Springer, pp
147–159

29. Garriga GC, Khardon R, De Raedt L (2012) Mining closed patterns in relational,
graph and network data. Annals of Mathematics and Artificial Intelligence pp 1–28

30. Geng R, Xu W, Dong X (2007) WTPMiner: efficient mining of weighted frequent
patterns based on graph traversals. In: Proceedings of the International Conference
on Knowledge Science, Engineering and Management (KSEM), Springer, pp 412–
424

31. Giannotti F, Pedreschi D (eds) (2008) Mobility, Data Mining and Privacy - Geo-
graphic Knowledge Discovery. Springer

32. Gudes E, Shimony SE, Vanetik N (2006) Discovering Frequent Graph Patterns
Using Disjoint Paths. IEEE Transactions on Knowledge and Data Engineering
18(11):1441–1456

33. Günnemann S, Seidl T (2010) Subgraph Mining on Directed and Weighted Graphs.
In: Proceedings of the Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining (PAKDD), Springer, pp 133–146

34. Gunopulos D, Mannila H, Saluja S (1997) Discovering all most specific sentences
by randomized algorithms extended abstract. Springer

35. Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) Dagchainer: a tool for
mining segmental genome duplications and synteny. Bioinformatics 20(18):3643–

40 Frédéric Flouvat et al.

3646
36. Huang Y, Shekhar S, Xiong H (2004) Discovering colocation patterns from spa-

tial data sets: a general approach. IEEE Transactions on Knowledge and Data
Engineering 16(12):1472–1485

37. Inokuchi A, Washio T, Motoda H (2000) An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data. In: Proceedings of the European Con-
ference on Principles of Data Mining and Knowledge Discovery (PKDD), Springer,
vol 1910, pp 13–23

38. Jiang C, Coenen F, Zito M (2013) A survey of frequent subgraph mining algo-
rithms. The Knowledge Engineering Review 28(01):75–105

39. Jiang J, Worboys M (2009) Event-based topology for dynamic planar areal objects.
International Journal of Geographical Information Science 23(1):33–60

40. Jiang X, Xiong H, Wang C, Tan AH (2009) Mining globally distributed frequent
subgraphs in a single labeled graph. Data & Knowledge Engineering 68(10):1034–
1058

41. Khan A, Yan X, Wu KL (2010) Towards proximity pattern mining in large graphs.
In: Proceedings of the ACM International Conference on Management of Data
(SIGMOD), ACM Press, pp 867–878

42. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proceedings
of the IEEE International Conference on Data Mining (ICDM), IEEE Computer
Society, pp 313–320

43. Kuramochi M, Karypis G (2005) Finding Frequent Patterns in a Large Sparse
Graph*. Data Mining and Knowledge Discovery 11(3):243–271

44. Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset col-
lection. http://snap.stanford.edu/data

45. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the ACM Inter-
national Conference on Knowledge Discovery in Data Mining (SIGKDD), ACM,
pp 177–187

46. Lewis JA, Dube MP, Egenhofer MJ (2013) The topology of spatial scenes in r2.
In: International Conference on Spatial Information Theory, Springer, pp 495–515

47. Miyoshi Y, Ozaki T, Ohkawa T (2009) Frequent Pattern Discovery from a Single
Graph with Quantitative Itemsets. Proceedings of the IEEE International Confer-
ence on Data Mining Workshops (ICDMW) pp 527–532

48. Mohan P, Shekhar S, Shine JA, Rogers JP (2010) Cascading Spatio-temporal Pat-
tern Discovery: A Summary of Results. In: Proceedings of the SIAM International
Conference on Data Mining (SDM), pp 327–338

49. Mohan P, Shekhar S, Shine JA, Rogers JP (2012) Cascading spatio-temporal
pattern discovery. IEEE Transactions on Knowledge and Data Engineering
24(11):1977–1992

50. Moser F, Colak R, Rafiey A, Ester M (2009) Mining Cohesive Patterns from Graphs
with Feature Vectors. In: Proceedings of the SIAM International Conference on
Data Mining (SDM), pp 593–604

51. Nanopoulos A, Manolopoulos Y (2001) Mining patterns from graph traversals.
Data & Knowledge Engineering 37(3):243–266

52. Nguyen TT, Nguyen HA, Pham NH, Al-Kofahi JM, Nguyen TN (2009) Graph-
based mining of multiple object usage patterns. In: Proceedings of the the Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ACM Press, pp 383–392

Mining evolutions of complex spatial objects 41

53. Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a
difference. In: Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), ACM, pp 647–652

54. Pasquier C, Flouvat F, Sanhes J, Selmaoui-Folcher N (2017) Attributed graph
mining in the presence of automorphism. Knowledge And Information Systems
50(2):569–584

55. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering Frequent Closed
Itemsets for Association Rules. In: Proceedings of the International Conference on
Database Theory (ICDT), Springer, pp 398–416

56. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M (2004)
Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE
Transactions on Knowledge and Data Engineering 16(11):1424–1440

57. Qian F, He Q, He J (2009) Mining Spread Patterns of Spatio-temporal Co-
occurrences over Zones. In: Proceedings of the International Conference on Com-
putational Science and Its Applications (ICCSA), Springer, vol 5593, pp 677–692

58. Sanhes J, Flouvat F, Pasquier C, Selmaoui-Folcher N, Boulicaut J (2013) Weighted
path as a condensed pattern in a single attributed DAG. In: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI)

59. Sedgewick R, Wayne K (2011) Algorithms, 4th Edition. Addison-Wesley
60. Selmaoui-Folcher N, Flouvat F (2011) How to use classical tree mining algorithms

to find complex spatio-temporal patterns? In: Proceedings of the International
Conference on Database and Expert Systems Applications (DEXA), Springer, pp
107–117

61. Silva A, Meira Jr W, Zaki MJ (2012) Mining attribute-structure correlated patterns
in large attributed graphs. Proceedings of the VLDB Endowment 5(5):466–477

62. Sindoni G, Stell JG (2017) The logic of discrete qualitative relations. In: Pro-
ceedings of the International Conference on Spatial Information Theory (COSIT),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, vol 86, pp 1–15

63. Termier A, Tamada Y, Numata K, Imoto S, Washio T, Higushi T, Higuchi T
(2007) DigDag, a first algorithm to mine closed frequent embedded sub-DAGs. In:
Proceedings of Mining and Learning with Graphs (MLG), pp 1–5

64. Tsoukatos I, Gunopulos D (2001) Efficient Mining of Spatiotemporal Patterns. In:
Proceedings of the International Symposium on Spatial and Temporal Databases
(SSTD), Springer, vol 2121, pp 425–442

65. Uno T, Asai T, Uchida Y, Arimura H (2003) LCM: An Efficient Algorithm for
Enumerating Frequent Closed Item Sets. In: Proceedings of the IEEE International
Conference on Data Mining Workshop on Frequent Itemset Mining Implementa-
tions (FIMI), CEUR-WS.org, vol 90

66. Uno T, Asai T, Uchida Y, Arimura H (2004) An Efficient Algorithm for Enumerat-
ing Closed Patterns in Transaction Databases. In: Proceedings of the International
Conference on Discovery Science (DS), Springer, pp 16–31

67. Wang J, Hsu W, Lee ML, Wang JTL (2004) FlowMiner: Finding Flow Patterns in
Spatio-Temporal Databases. In: Proceedings of the IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), IEEE Computer Society, pp 14–21

68. Wang J, Hsu W, Lee ML, Sheng C (2006) A Partition-Based Approach to Graph
Mining. In: Proceedings of the IEEE International Conference on Data Engineering
(ICDE), IEEE Computer Society, pp 74—-74

69. Washio T, Motoda H (2003) State of the art of graph-based data mining. SIGKDD
Exploration Newsletter 5(1):59–68

42 Frédéric Flouvat et al.

70. Washio T, Mitsunaga Y, Motoda H (2005) Mining quantitative frequent itemsets
using adaptive density-based subspace clustering. In: Proceedings of the IEEE
International Conference on Data Mining (ICDM), IEEE Computer Society, pp
793–796

71. Wasserman S, Faust K (1994) Social network analysis: Methods and applications,
vol 8. Cambridge university press

72. Werth T, Dreweke A, Wörlein M, Fischer I, Philippsen M (2008) Dagma: mining
directed acyclic graphs. In: Proceedings of the IADIS European conference on data
mining, IADIS Press, pp 11–18

73. Werth T, Wörlein M, Dreweke A, Fischer I, Philippsen M (2009) Dag mining for
code compaction. In: Data Mining for Business Applications, Springer, pp 209–223

74. Worboys M (2012) The maptree: A fine-grained formal representation of space. In:
International Conference on Geographic Information Science, Springer, pp 298–310

75. Yan X, Han J (2002) gSpan: Graph-Bases Substructure Pattern Mining. In: Pro-
ceedings of the IEEE International Conference on Data Mining (ICDM), IEEE
Computer Society, vol 3, pp 721–724

76. Yan X, Han J (2003) CloseGraph. In: Proceedings of the ACM International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD), ACM Press, vol 6,
p 286

77. Yan X, Han J, Afshar R (2003) Clospan: Mining: Closed sequential patterns in large
datasets. In: Proceedings of the SIAM International Conference on Data Mining
(SDM), pp 166–177

78. Yang H, Parthasarathy S, Mehta S (2005) A generalized framework for mining
spatio-temporal patterns in scientific data. In: Proceedings of the ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM
Press, pp 716–721

