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Abstract. For aircraft engineers, detecting abnormalities in a large dataset
of recorded flights and understanding the reasons for these are crucial
development and monitoring issues. The main difficulty comes from the
fact that flights have unequal lengths, and data is usually high dimen-
sional, with a variety of recorded signals. This question is addressed here
by introducing a new methodology, combining time series partitioning,
relational clustering and the stochasticity of the online self-organizing
maps (SOM) algorithm. Our method allows to compress long and high-
frequency bivariate time series corresponding to real flights into a se-
quence of categorical labels, which are next clustered using relational
SOM. Eventually, by training SOM with a large number of initial con-
figurations and by taking advantage of the stability of the clusters, we
are able to isolate the most atypical flights, and, thanks to discussions
with experts, understand what makes a flight an “abnormal” data.

1 Introduction

This present paper is a part of joint work with the Health Monitoring Depart-
ment of Safran Aircraft Engines Company. The Pronostic Health Monitoring
consists in a set of methods to proactively detect any abnormal behavior with
the goal of optimizing and planning the maintenance operations.
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In an aircraft, sensors are installed on board to record multivariate time series
which describe the behavior of the engines. However analyzing this important
amount of data is a difficult task impossible to achieve manually. Even if the
experts have a very thorough knowledge about the engine operation data, they
need some help from algorithmic methods, as mentioned in [1], [2], [3].

In this paper, the flights are considered as a whole and represented by a
sequence of labels. Clustering these sequences leads to highlight some groups of
similar flights whilst putting to evidence some unclassifiable flights which are
very interesting to study and are good candidates for ”abnormality”.

The data are initially constituted by 549 flights with 8 different engines, with
a mean duration of 2.8 hours per flight. The acquisition frequency is 8Hz. No
assumption is done about the observed time series, but one of the component is
supposed to be a key variable, which strongly influences the behavior of the rest.

For the sake of simplicity, the bivariate case only is presented here, but the
method can be easily extended to higher dimensional data.

The paper is organized as follows: Section 2 presents the data, Sections 3
and 4 define the two-levels clustering which leads to represent each flight by
a sequence of labels. In Section 5, the dissimilarity matrix of all the flights is
defined and computed. Section 6 shows how to use the relational SOM to cluster
the flights and identify the abnormal ones. Section 7 is a short conclusion.

2 The data

One flight F is represented by a multivariate time series Zt, with 1 ≤ t ≤ T
and Zt ∈ Rd. The components of Zt are the variables recorded by the on board
sensors, for example the fan speed, the temperature inside the motor, the plane
speed, the oil temperature, etc.

As we take d = 2 in this contribution, we only consider Zt = (Xt, Yt), 1 ≤
t ≤ T , where the key variable Xt is the fan speed, and Yt is the temperature
inside the engine.

V flights of different lengths are recorded. For each v, 1 ≤ v ≤ V , the flight
Fv is thus denoted by Zv

t = (Xv
t , Y

v
t ), 1 ≤ t ≤ Tv.

For each flight v, the time series Xv
t is split into phases which can be in-

creasing transient, decreasing transient or stables, by using a rupture detection
algorithm such as the PELT algorithm ([4]). The methodology is described in
[5] and [6]. These phases have different lengths and the number of phases per
flight varies.

3 First level of labeling

To overcome the difficulty of dealing with phases of different lengths, each in-
creasing or decreasing X-phase is substituted by a fixed-length vector composed
of its relevant numerical features, as lengthy, midpoint value, median, variance,
variances of the two halves, means of the two halves, ...).
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Then any clustering algorithm may be used on these vectors. Here the pro-
cedure consists in a SOM map training, combined with a hierarchical agglom-
erative clustering (HAC) applied to the code-vectors computed by SOM ([7]).
We group the increasing phases of all the series Xv

t into clusters, denoted by
CA1, CA2, . . . , CAI . The same holds for the decreasing phases grouped into clus-
ters denoted by CD1, CD2, . . . , CDJ . The set of the stable phases is denoted by
CS. These clusters are called ”level-1 clusters”.

At this step, each flight is labeled by a sequence of labels, which are elements
of the set {A1, A2, . . . , AI , D1, D2, . . . , DJ , S}, according to the nature of the
successive phases of time series Xv

t : Ai if the phase belongs to cluster CAi, Dj

if the phase belongs to cluster CDj , S for the stable phases of CS.

4 Two-levels clustering and resulting labels

To take into account the second variable Y , we define an embedded level 2
clustering: each cluster CAi or CDj is split into a partition formed by the clusters
CAi,k, k = 1, . . . ,K(i) or CDj,l, l = 1, . . . , L(j), which are built according to the
second variable Y v

t . In the same way as for the level-1 clustering, each Y -phase
is summarized by its numerical features to make possible the use of classical
clustering algorithms.

This two-levels allows us to assign a two-indexes label Ai,k, Dj,l or label S, to
any bi-dimensional phase of any flight, so that all of the data is now summarized
into V label sequences denoted by Fv - for the sake of simplicity we use the same
notation for a flight and for its sequence of labels.

Table 1 presents the computed values of I, J , K(i), i = 1, . . . , I, L(j), j =
1, . . . , J .

We obtain I = 7 level-1 clusters of the increasing phases and J = 8 level-1
clusters of the decreasing phases.

I 1 2 3 4 5 6 7
Number of level-2 clusters 4 6 6 6 6 10 4

J 1 2 3 4 5 6 7 8

Number of level-2 clusters 6 8 10 6 10 6 6 8

Table 1: Number of clusters.

The number of labels of the 549 labeled sequences resulting from the two-
levels clustering, is 22,5 on average, with a minimum of 10 and a maximum of
35. Figure 1 shows the distribution of the 20 most frequent labels (outside the
S label).
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Fig. 1: Distribution of the 20 most frequent labels (outside the S label)

The more frequent labels are the label A1,1 (684 occurrences) which is a taxi-
phase label during which the plane rolls on the tarmac, followed by other taxi-
phases labels (A1,1, A1,4, D73, A3,6, A3,3) and some descent phases (D6,2, D2,6).

5 Dissimilarity Matrix and Relational SOM

As these labeled sequences are not known by numerical features, we have to use
the Relational SOM defined in [8], which is a generalization of the original SOM
algorithm defined for numerical data. It only requires as input a dissimilarity
matrix between the data. Hence, this method may be applied to any complex
data (time series, graphs, texts, etc...) as long as a dissimilarity matrix can be
computed.

The dissimilarities are defined according to the Optimal Matching method
[9], borrowed to biology and to genetic algorithms and which is based on the
computation of transition costs from a label to another one.

Several cases have to be distinguished:

– Substitution costs: two labels are exchanged
– Deletion costs: a label is deleted
– Adding costs: a label is added

5.1 Substitutions costs

Let us define the substitution costs for which we have to consider several cases:

– Between increasing phases labels substitution costs
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Let Aik and Ai′k′ be two different labels of i phases.
If i = i′, the two level-2 clusters belong to the same level-1 cluster Ai, and
we define the cost function c by:

c(Aik, Aik′) =
‖CAik − CAik′‖

maxs,s′ ‖CAis′ − CAis′‖

where CAxy is the bidimensional mean vector of the cluster CAxy and ‖ · ‖
is the Euclidean distance in the numerical features space.

If i 6= i′, one has to take into account the distance between the level-1 clusters
CAi and CA′

i and also the distance between the level-2 clusters CAik and
CAi′k′ . So the substitution cost is defined by:

c(Aik, Ai′k′) =
‖CAi − CAi′‖

maxs,s′ ‖CAs − CAs′‖
+

‖CAik − CAi′k′‖
maxs,s′ ‖CAis′ − CAi′s′‖

– Between decreasing phases labels substitution costs

The substitution cost between decreasing phase labels Djl and Dj′j′ is de-
fined in the same way by:

c(Djl,Djl′) =
‖CDjl − CDjl′‖

maxs,s′ ‖CDjs′ − CDjs′‖

if j = j′,
and

c(Djl, Dj′l′) =
‖CDj − CDj′‖

maxs,s′ ‖CDs − CDs′‖
+

‖CDjl − CDj′l′‖
maxs,s′ ‖CDjs′ − CDj′s′‖

if j 6= j′.

– Between increasing and decreasing phases labels substitution costs

According to the definition of increasing and decreasing phases, these sub-
stitution costs have to take large values. We take all these costs equal to

αmax

(
max

i,k,i′,k′
c(Aik, Ai′k′), max

j,l,j′,l′
c(Djl, Dj′l′)

)
where α is a positive number chosen by the user.

– Between increasing or decreasing phases labels and S labels substitution costs

These costs are defined in such a way that they are larger than all the
substitution costs between increasing phases or those between decreasing
phases, therefore

c(Aik, S) = max
s,u,s′,u′

c(Asu, As′u′)
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and
c(Djl, S) = max

s,u,s′,u′
c(Dsu, Ds′u′)

5.2 Adding costs and deletion costs

These costs are also defined to be very high equal to

βmax

(
max

i,k,i′,k′
c(Aik, Ai′k′), max

j,l,j′,l′
c(Djl, Dj′l′)

)
where β is a positive number chosen by the user.
Table 2 shows a part of the substitution costs matrix. We observe that the

substitution costs between two labels beginning by A1 are smaller than those
between one label beginning by A1 and other one beginning by A2, as desired.

A11 A12 A13 A14 A21 A22 A23 A24 A25
A11 0,00 0,14 0,62 0,92 1, 29 1, 95 1, 97 1, 78 1, 20
A12 0,14 0,00 0,65 1,00 1, 28 1, 65 1, 59 1, 78 1, 42
A13 0,62 0,65 0,00 1,00 1, 77 1, 78 1, 76 1, 01 1, 59
A14 0,92 1,00 1,00 0,00 1, 79 1, 00 1, 70 1, 14 1, 59

A21 1, 29 1, 28 1, 77 1, 79 0,00 0,02 0,18 0,03 0,29
A22 1, 95 1, 65 1, 78 1, 00 0,02 0,00 0,16 0,05 0,27
A23 1, 97 1, 59 1, 76 1, 70 0,18 0,16 0,00 0,21 0,24
A24 1, 78 1, 78 1, 01 1, 14 0,03 0,05 0,21 0,00 0,30
A25 1, 20 1, 42 1, 59 1, 59 0,29 0,27 0,24 0,30 0,00

Table 2: Partial representation of the substitution cost matrix.

Let us denote by∆ the dissimilarity matrix, where∆(v, v′) is the dissimilarity
between the labeled sequences Fv and Fv′ , defined as the minimal value of the
sum of the required changes costs to exchange Fv and Fv′ .

The distribution of the dissimilarities is illustrated at Figure 2.

Fig. 2: Dissimilarity distribution
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Figure 3 presents the most representative flight, determined as that one which
minimizes the sum of all the dissimilarities between it and all the others. It has
a ”normal” behavior (taxi, take-off, climb, cruise, descent, landing) !

Fig. 3: Variable fan speed of the representative flight

6 Clustering the labeled sequences and identifying fickle
flights

We use a 10 × 10 Kohonen map and the relational SOM algorithm trained on
the dissimilarity matrix ∆ to get a clustering of the flights, that is of the labeled
sequences.

If we consider several runs (at least 50) of the SOM algorithm, for a given
size of the map and for a given data set, we observe that most of the pairs of
flights are almost always or almost never in the same cluster. But there are also
pairs of flights whose associations look random. These pairs of flights are called
fickle pairs. This question was addressed by [10] in a bootstrap framework and
used for text mining in [11] and [12].

After having identified the fickle pairs, we define the fickle flights as being
those which belong to an important number of fickle pairs (greater than a certain
threshold).

The most fickle flights are then identified and are good candidates for exper-
tise in order to detect anomalies.

After 100 runs of the relational SOM algorithm, the percentages of attractive,
repulsive, fickle pairs are computed (see Table 3). Figure 4 shows the labeled

Attractive pairs Repulsive pairs Fickle pairs

30.02 58.09 11.80

Table 3: Computed percentages of attractive, repulsive, fickle pairs
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sequences re-ordered according to their fickleness, i.e. the number of fickle pairs
they belong to.

Fig. 4: Fickleness

Then it is possible to seek the most fickle labeled sequences that is the most
fickle flights. They are mainly on the edges of the Kohonen maps. The following
figures represent 4 fickle flights. The abscissa is the time, the left ordinate is the
value of the X variable which is the fan speed, the right ordinate in red is the
altitude represented to facilitate the interpretation.

The first fickle flight (Figure 5) looks like the representative flight of Figure
3, however the climb phase is very long and there is an unusual variation during
the climb.

Fig. 5: Fickle flight (Example 1)

Next example (Figure 6) is a very short flight with an atypical behavior of
the fan speed variable.

Fig. 6: Fickle flight (Example 2)
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In Figure 7, there is an inconsistency between the fan speed and the altitude:
it can be a measurement error of the altitude, that has to be confirmed by the
experts.

Fig. 7: Fickle flight (Example 3)

For the last example (Figure 8), the altitude has several levels but seems to
be normal, whilst the fan speed is chaotic!

Fig. 8: Fickle flight (Example 4)

All these examples are illustrations of quite atypical flights, which have to
be analyzed and characterized by the specialized experts.

7 Conclusion

The transformation of the flights represented by bidimensional time series into
sequences of labels makes possible their clustering, in order to identify groups of
similar flights, but overall to highlight some atypical flights which are the fickle
flights computed after repeated runs of SOM.

This methodology is an interesting tool to mine very complex data and dis-
cover abnormal or atypical individuals. The generalization to multidimensional
data is straightforward, although the computing time could be increasing with
the number of the embedded clustering which are necessary to define the labels.
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