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Abstract

In 1900 David Hilbert published his famous list of 23 problems. The sixth of them - the axiomatization of Physics - remains partially
unsolved. In this work we will give a gentle introduction and a brief review to one of the most recent and formal approaches to
this problem, based on synthetic higher categorical languages. This approach, developed by Baez, Schreiber, Sati, Fiorenza,
Freed, Lurie and many others, provides a formalization to the notion of classical field theory in terms of twisted differential
cohomologies in cohesive (∞, 1)-topos. Furthermore, following the Atiyah-Witten functorial style of topological quantum field
theories, it provides a nonperturbative quantization for classical field theories whose underlying cohomology satisfies orientability
and duality conditions. We follow a pedagogical and almost non-technical style trying to minimize the mathematical prerequisites.
No categorical background is required.

1. Introduction

In the year of 1900, David Hilbert (a mathematician
which is mostly known in Physics for his contribution to the
Einstein-Hilbert action functional) published a list containing
23 problems (usually known as the Hilbert’s problems) which
in his opinion would strongly influence the development of 20th
century mathematics [107]. The sixth problem is about the
axiomatization of the whole physics and, presently, it remains
partially unsolved. Our aim is to introduce basic ideas of an
approach to this problem following works of Urs Schreiber,
Domenico Fiorenza, Hisham Sati, Daniel Freed, John Baez and
many others, mostly inspired by the seminal topos-theoretic
works of William Lawvere [134, 137, 135, 138, 136] and
formalized through the development of higher topos theory
by André Joyal [118, 120, 119], Michael Batanin [27], Ross
Street [223], Charles Rezk [183, 184], Carlos Simpson [213],
Clark Barwick [24, 25, 26], Tom Leinster [140, 48], Dominic
Verity [236, 235], Jacob Lurie [147, 148] and many others. For
reviews on these different approaches to higher category theory,
see [47, 141, 140].

The idea goes as follows. Some points are also discussed in
[179, 191, 58, 58, 44]. See [202] for a technical introduction
and [160] for a gentle exposition. See [128] for a discussion
on other mathematical problems deeply influenced by Hilbert’s
works, [215, 178] for a more philosophical discussion and [128]
for the history of the sixth problem.

There are two kinds of math: naive (or intuitive) math and
axiomatic (or rigorous) math. In naive math the fundamental
objects are primitives, while in axiomatic math they are defined
in terms of more elementary structures. For instance, we have
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naive set theory and axiomatic set theory. In both cases (naive
or axiomatic) we need a background language (also called
logic) in order to develop the theory, as in the diagram below.
In the context of set theory this background language is just
classical logic.

naive
math

background
language

5=

!)
axiomatic

math

Notice that, when a mathematician is working (for instance,
when he is trying to prove some new result in his area of
research), at first he does not make use of completely rigorous
arguments. In fact, he first uses his intuition, making some
scribbles in pieces of paper or in a blackboard and usually
considers many wrong strategies before finally discovering a
good sequence of arguments which can be used to prove (or
disprove) the desired result. It is only at this later moment that
he tries to introduce rigor in his ideas, in order for his result
to be communicated and accepted by the other members of the
mathematical community.

Thus we can say that in the process of producing new
mathematics, naive arguments come before rigorous ones.
More precisely, we can say that naive mathematics produces
conjectures and rigorous mathematics turns these conjectures
into theorems. It happens that the same conjecture generally
can be proved (or disproved) in different ways, say by using
different tools or by considering different models. For instance,
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many concepts have algebraic and geometric incarnations (e.g,
Serre-Swan theorem [224, 210, 175], Stone diality [116],
Gelfand duality [174, 180] and Tannaka duality [59, 145]),
suggesting the existence of a duality between algebra and
geometry, as in diagram (1) below.

As will be discussed, this duality between algebra and
geometry, which in some generality is formalized by Isbell-type
dualities [112, 113, 220, 22], extends to the context of physics,
leading to dual approaches to Hilbert’s sixth problem. For
another incarnation of this duality, notice that when a geometric
entity x has a commutative algebraic incarnation A(X), then we
can define the noncommutative version of X simply by dropping
the commutativity requirement on A(X). This is precisely the
approach used in noncommutative geometry [97, 52].

naive
math

model

��

produces +3 conjectures

geometry

��

algebra

��

background
language

5=

!)
axiomatic

math produces
+3 theorems

(1)

When compared with mathematics, physics is a totally
different discipline. Indeed, in physics we have a restriction
on the existence of physical objects, meaning that we have
a connection with ontology, which is given by empiricism
[215]. More precisely, while math is a strictly logical discipline,
physics is logical and ontological. This restriction on existence
produces many difficulties. For instance, logical consistence
is no longer sufficient in order to establish a given sentence
as physically true: ontological consistence is also needed
(see [178] for a comparison between philosophical aspects of
math and physics). Thus, even though a sentence is logically
consistent, in order to be considered physically true it must
be consistent with all possible experiments! This fact can be
expressed in terms of a commutative diagram:

philosophy

��

+3 logic
mathematical

modelling
��

ontology
empiricism

+3 physics

But now, recall that logic determines the validity of
mathematical arguments, which was also translated in terms of
the commutative diagram (1). So, gluing the diagram of physics

with the diagram of math, we have a new commutative diagram:

conjectures +3 theorems

naive
math

KS

philosophy

��

+3 logic

KS

��

+3 axiomatic
math

KS

ontology
empiricism

+3 physics

One of the most important facts concerning the relation
between physics and mathematics is that, in the above diagram,
the arrow

logic +3 physics .

has an inverse
logic physicsks .

This last arrow is called physical insight. The composition of
physical insight with axiomatic math produces a new arrow,
called mathematical physics.

logic +3 axiomatic
math

math. phys.
u}

physics

insight

KS

Therefore, the full relation between physics and mathematics
is given by the following diagram

conjectures +3 theorems

naive
math

KS

philosophy

��

+3 logic

KS

KS

��

+3 axiomatic
math

KS

t|
ontology

empiricism
+3 physics

leading us to the following conclusion:

Conclusion: we can use physical insight in order to
do naive mathematics and, therefore, in order to produce
conjectures. These conjectures can eventually be proven,
producing theorems, which in turn can be used to create
mathematical models for physics (mathematical physics).
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The axiomatization problem of Physics1 concerns precisely
in building and studying concrete realizations of the following
sequence.

physics

��

ks +3 logic +3 naive
math

u}
theorems conjecturesks

Since this sequence depends explicitly on a background
language and since there is a duality between algebra and
geometry, it is natural to expect that this duality induces a
duality in the level of mathematical physics, as shown in the
following diagram.

physics

algebra

��
geometry

��

ks +3 logic +3 naive
math

u}
theorems conjectures

geometry
ks

algebraks

This is really the case. At the quantum level it dates from
the dual Heisenberg and Schrödinger approaches to quantum
mechanics (QM) and it extends to the context of Quantum Field
Theories (QFT) with the so-called Functorial (or Topological)
QFT (FQFT or TQFT) and Algebraic QFT (AQFT). Both of
them are based on a functorial approach capturing a locality
principle. More precisely, a TQFT is a functor F assigning
to each instant of time t a Hilbert space F(t) = Ht and
to each trajectory Σ : t → t′ an operator F(Σ) = U(t′; t)
representing time evolution [7, 238]. On the other hand, an
AQFT can be defined as a functor assigning to each small region
U ⊆ M of spacetime the corresponding local algebra A(U) of
observables, such that causality conditions are satisfied [18, 74].

At the classical level, it begins with the Gelfand duality
between the configuration space of Classical Mechanics M
and its algebra of observables C∞(M) and generalizes to a
duality between an arbitrary symplectic manifold (M, ω) and
its corresponding Poisson algebra of observables.

As we will see, in order to take the axiomatization problem
seriously one needs to consider arbitrarily abstract languages,
which are “higher” versions of the classical language, so that
one has to talk about “higher algebra” and “higher geometry”,
which should play a dual role. In this paper we will follow
only the geometric side, so that we will review an approach
to Hilbert’s sixth problem by means of higher geometrical
language. The “higher TQFT” are called extended TQFT. For
the higher algebraic approach see [30, 34, 32, 35, 33, 31] and
[54, 170, 171]. To a comparison between both approaches, see
[200, 198]. In sum, we have the following table2.

For us, “higher” means homotopical. Thus, “higher
geometry” is about the coupling between homotopy theory

1As will be discussed in next section, there exists another different (but
strictly related) problem: the unification problem of physics.

2For a complete version of this table, see [1].

geometry algebra
Schrödinger Heisenberg

TQFT AQFT
phase space alg. observables

higher Poisson geometry higher Poisson algebra

Table 1: geometry vs algebra

and geometry [144, 229, 146, 230, 201]. But since in
modern algebraic topology homotopy theory is described by∞-
category theory [163, 147, 49], “higher geometry” is also about
the∞-categorical version of geometry.

higher
geometry

=
homotopy

+
geometry

= ∞-categorical
geometry

(2)

Because a TQFT is a functor (a categorical object) assigning
time evolution operators to trajectories, it is natural do regard
extended TQFT’s as ∞-functors (which are ∞-categorical
objects) assigning trajetories and higher trajectories (which are
equivalent to trajectories of arbitrarily dimensional objects)
to higher operators acting on ∞-Hilbert spaces. This is the
approach of Baez-Dolan-Freed [7, 238, 81], formalized and
classified by Lurie [149].

On the other hand, recalling that functors are sources
of mathematical invariants, from (2) we conclude that
homotopical invariants should play an important role. There
are basically two kinds of such invariants: homotopy groups and
cohomology groups. Gauge theories are about G-bundles with
connections, which are classified by a flavor of cohomology:
the nonabelian differential cohomology [42, 211, 109, 201].
On the other hand, the D-brane charges are supposed to be
represented in twisted cohomology [239, 39], so that twisted
nonabelian differential cohomology should be the natural
context to describe gauge theories and string theory. What
about M-theory? In recent years, Schreiber, Fiorenza and
Sati showed that if the C-field of supergravity is quantized
in twisted cohomotopy cohomology (assumption known as
the Hypothesis H), then several folks involving M-theory,
including anomaly cancellations, can be proved in all needed
mathematical rigor [76, 75, 193, 43, 192, 194, 77]. Thus:

Conclusion: the ∞-categorical language, when regarded as
background language, seems to produce a promising approach
for working in Hilbert’s sixth problem.

The remaining of this paper is organized as follows. In
Section 2 we emphasize the difference between axiomatization
and unification, where the latter is introduced as a particular
approach to the former. In Section 3 we discuss why the
classical set-theoretic language is not enough to attack Hilbert’s
sixth problem, and in Section 4 we consider the categorical
language as the next natural candidate. We discuss that it is
a nice choice when trying to axiomatize particle physics, but
in Section 5 we argue that it is not sufficient to the entire
Hilbert’s sixth problem, so that one has to consider more
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abstract languages. Section 6 is devoted to the discussion of
an “abstractification process”, which assigns to each language a
more abstract language by means of categorification [14, 160].
Iterating the process and taking the limit one gets an infinitely
abstract language: the ∞-categorical language. It is argued
that this language solves the problems of Section 5 faced
by categorical language. In Section 7 the role of abstract
cohomology theory in the description of classical theories is
introduced and in Section 8 the quantization problem is briefly
considered and reviewed. Finally, some concluding remarks are
presented in Section 9.

2. Axiomatization vs Unification

Recall that the existence of physical insight gives the
“mathematical physics” arrow, as shown below. An approach to
Hilbert’s sixth problem can then be viewed as a way to present
mathematical physics as a surjective arrow.

axiomatic
math

mathematical

physics
+3 physics

Because axiomatic math is described by some kind of logic,
the starting point is to select a proper background language. The
selected background language determines directly the naive
math, so that the next step is to analyze the following loops:

naive
math

�&
background

language

6>

physicsks

(3)

Then, once some model has been selected, we lift it to
axiomatic math, as in the first diagram below. The final step
is to verify if the corresponding “mathematical physics” arrow
is surjective or not. In other words, we have to verify if the
axiomatic concepts produced by the selected logic are general
enough to model all physical phenomena.

axiomatic
math

��

naive
math

�'

model

KS

background
language

6>

5=

physicsks

Presently, physical theories can be divided into two classes
depending on the scale of energy involved: the classical

theories and the quantum theories, as shown below.

classical
physics

��
physics quantum

physics
ks

Thus, there are essentially two ways to build a surjective
“mathematical physics” arrow. Either we build the arrow
directly (as in the diagram above), or we first build surjective
arrows (a) and (b), which respectively axiomatize classical and
quantum physics, and then another arrow (c) linking these two
axiomatizations, as in the diagram below.

axiomatic
math

(a)

$$

(b)

��

naive
math

 (

model

KS

classical
physics

(c)

##��
brackground

language

6>

5=

physicsks quantum
physics

ks

We emphasize the difference between the two approaches: in
the first one, all physical theories are described by the same set
of axioms, while in the second classical and quantum theories
are described by different axioms, but that are related by some
process. This means that if we choose the first approach we
need to unify all physical theories.

There are some models to this unification arrow, but they
are not our focus. Just to mention one, string theory is
maybe the most well-known. It is based on the assumption
that the “building blocks” of nature are not particles, but
rather one dimensional entities called strings, i.e, connected
one-dimensional manifolds, which are diffeomorphic to some
interval (when it has boundary or when it is not compact) or to
the circle (if it is boundaryless and compact). In the first case
we say that we have open strings, while in the second we say
that we have closed strings.

From the mathematical viewpoint, string theory is very
fruitful - see [58, 191, 241, 67] for general discussions
and [62] for a brief review. This mathematical interest
arises in part from the following facts. Since strings are
1-dimensional objects, their worldsheets are 2-dimensional
manifolds (typically oriented). In the case of closed strings,
these are Riemann surfaces, whose moduli space is finite-
dimensional [60, 172]. Since the path integrals are defined on
the moduli space of trajectories, it follows that for closed strings
they are well-defined [61]. Not only this, they compute many
geometric-topological invariants [154, 164, 69, 46], playing
a fundamental role in many areas of math, such as complex
algebraic geometry [154, 46, 55], complex dynamics [70, 71,
108] and symplectic topology [87, 226, 164]. See [233] for a
nice pedagogical overview. In the case of open strings, they
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start and end in high dimensional objects, called D-branes,
which fits into a (higher) category called Fukaya category, also
playing a fundamental role in symplectic topology. Besides
that, they appear in Mirror Symmetry, which became a
highly active branch of algebraic geometry since the seminal
contribution [127] of Kontsevich. See also [110, 55, 122].

On the other hand, one needs to recall that physics is not
completely determined by the arrow logic⇒ physics, but there
is also the ontological (i.e, empirical) branch, and presently
there is no concrete empirical proof that strings (instead of
particles) really are the most fundamental objects of nature
[231, 8].

In this text, we will describe an attempt to realize the second
approach. As we will see, if one starts with a sufficiently
abstract (or powerful) background language, then one can
effectively axiomatize separately a huge amount of classical
and quantum theories, leaving the problem of finding a suitable
quantization process, which is the really difficult part3. At
least in the approach that will be discussed here, this difficulty
comes in part from the fact that the underlying background
language is itself under construction. Even so, there is
a very promising process, intended to generalize geometric
quantization from geometry to higher geometry, known as
motivic or cohomological or pull-push quantization [201, 176].

3. Towards The Correct Language

As commented in the last section, independently of the
approach used in order to attack Hilbert’s sixth problem, the
starting point is to select a proper background language. The
most obvious choice is the classical logic used to describe
set theory. This logic produces, via the arrow logic ⇒

axiomatic math, not only set theory, but indeed all classical
areas of math, such as group theory, topology and differential
geometry, since each of them can be described in terms of set
theory. Therefore, for this choice of background language, the
different known areas of mathematics could be used in order to
describe classical and quantum physical phenomena.

Since 1900, when Hilbert published his list of problems,
many classical and quantum theories were formalized by means
of these by now well known areas of mathematics. Indeed,
quantum theories were observed to have a more algebraic and
probabilistic nature, while classical theories were presumably
more geometric in character.

For instance, a system in quantum mchanics (which is
about quantum particles) can be formalized in the Schrödinger
approach as a pair (H , Ĥ), where H is a complex (separable)
Hilbert space and Ĥ : D(Ĥ) → H is a self-adjoint operator
defined in a (dense) subspace D(Ĥ) ⊆ H [181, 103]. We say
that Ĥ is the Hamiltonian of the system and the fundamental
problem is to determine its spectrum, which on one hand
is the set of all information about Ĥ that can be accessed
experimentally and on the other hand is the spectrum (in the
mathematical sense, i.e, the generalized eigenvalues) of Ĥ

3Notice that one of the Millennium Problems is part of this quest [115].

[227, 57]. The dynamics of the system from a instant t0 to a
instant t1 is guided by the unitary operator U(t1; t0) = e

i
~ (t1−t0)Ĥ

associated to Ĥ or, equivalently, by the (time independent)
Schrödinger equation i~ dψ

dt = Ĥψ.
On the other hand, classical theories for particles are given

by some action functional S : Fields(M) → R, defined in
some “space of configurations” (or “space of fields”) over
a spacetime M. These configurations (or fields) generally
involve paths γ : I → M, interpreted as the trajectories of
particles moving in some spacetime. If the particles are not
free, i.e, if they are subjected to some interaction, we have
also to consider its source as part of the configurations. The
presence of an interaction can be measured by means of a
force. Furthermore, it may (or not) be intrinsic to the spacetime
M. For the geometrical aspects of classical field theories, see
[91, 153, 104, 16] and the standard references [173, 79].

For instance, since the development of general relativity in
1916, gravity is supposed to be an intrinsic force4, meaning
that it will act on any particle. The presence of an intrinsic
force is formalized by the assumption of a certain additional
geometric structure on the spacetime M - in the case of gravity,
a Lorentzian metric g on M. Other intrinsic interactions are
modeled by other types of geometric structure. But not all
manifolds may carry a given geometric structure, specially if
integrability conditions are required [102, 221, 56]. This means
that not all manifolds can be used to model the spacetime.
Indeed, each geometric structure exists on a given manifold
only if certain quantities, called obstruction characteristic
classes vanish. For example, a compact manifold admits a
Lorentzian metric iff its Euler characteristic χ(M) vanishes,
which implies that S4 cannot be used to model the universe
[29, 56]. On the other hand, M has a spin structure (needed to
consider spinorial fields on M) iff its first two Stiefel-Whitney
classes are null [133]. Furthermore, if one tries to model gravity
using geometries other than the Lorentzian one the obstructions
are even stronger [157, 156].

An important class of non-intrinsic interactions are given by
Yang-Mills theories (or more general gauge theories). These
depend on a Lie group G, called the gauge group, and on
a G-principal bundle P → M over the spacetime M. The
interaction is modelled by a connection on P, which is just
a vertical equivariant g-valued 1-form A : T P → g, where
g is the Lie algebra of G. We can think of A as the
potential of the interaction, so that the force is just the (exterior
covariant) derivative dAA of A. Here, the standard example is
electromagnetism, for which G is the abelian group U(1) and
A is the eletromagnetic vector potential. We can think of an
arbitrary Yang-Mills interaction as some kind of “nonabelian”
version of electromagnetism, leading, e.g, to the development
of nonabelian Hodge theory [214, 212, 89, 111] and to
the formulation of powerful topological invariants, such as
Donaldson invariants [65, 64, 85] and Seiberg-Witten invariants
[208, 63, 226]. Note that if one tries to extend or modify

4There is an old but active discussion whether gravity is actually an external
force (gauge theory). It is not the focus of this review. See [130, 66, 232, 114,
190, 189].
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the Yang-Mills-type interactions one also finds obstructions
[158, 159].

Now, let us return to focus on Hilbert’s sixth problem. It
requires answering for questions like these [201, 202]:

1. What is a classical theory?
2. What is a quantum theory?
3. What is quantization?

Notice that the previous discussion does not answer these
questions. Indeed, it only reveals some examples and aspects of
what classical and quantum theories should be; it does not say,
axiomatically, what they really are. Furthermore, the presence
of obstructions for freely extending the Lorentzian geometry
of gravity and Yang-Mills theories suggests the existence
of another background language in which these obstructions
disappear. This leads us to the following conclusion:

Conclusion: classical logic, viewed as a background language,
is very nice in order to formulate and study properties of
particular classical and quantum theory. On the other hand,
a priori it does not give tools to study more deeper questions as
those required by Hilbert’s sixth problem.

4. The Role of Categorical Language

The above conclusion is that, in order to attack Hilbert’s sixth
problem, the natural strategy is to replace classical logic by a
more abstract background language. What kind of properties
should this new language have?

Recall that by making use of classical logic we learn
that classical theories are generally described by geometric
notions, while quantum theories are described by algebraic
and probabilistic tools. Since the quantization process is
some kind of process linking classical theories to quantum
theories, it should therefore connect geometric areas to
algebraic/probabilistic areas. So, the idea is to search for a
language which formalizes the notion of “area of mathematics”
and the notion of “map between two areas”.

This language actually exists: it is categorical language.
In categorical language, an area of mathematics is determined
by specifying which are the objects of interest, which are the
morphisms between these objects and which are the possible
ways to compose two given morphisms. This data defines a
category. The link between two areas of mathematics described
by categories C and D is formalized by the notion of functor.
This is given by a rule F : C → D assigning objects
into objects and mappings into mappings in such a way that
compositions are preserved. See [37, 168, 150] for classical
books on category theory and [186, 142, 185, 155] for more
recent, introductory and pedagogical expositions. See [139] for
a very elementary text. See [50, 51] for introductions devoted
to physicists.

Notice that we have a category Set, describing set theory,
whose fundamental objects are sets, whose morphisms are just
maps between sets and whose composition laws are the usual
compositions between functions. That all classical areas of

mathematics can be described by categorical language comes
from the the fact that in each of them the fundamental objects
are just sets endowed with some further structure, while the
morphisms are precisely the maps between the underlying sets
which preserve this additional structure. For instance, linear
algebra is the area of mathematics which study vector spaces
and linear maps. But a vector space is just a set endowed with a
linear structure, while a linear map is just a map preserving the
linear structure.

Therefore, each classical area of math defines a category C
equipped with an inclusion functor ı : C ↪→ Set which only
forgets all additional structures (in the context of linear algebra,
this functor forgets the linear structure). The categories which
can be included into Set are called concrete. Thus, in order to
recover classical logic from categorical language it is enough
to restrict the latter to the class of concrete categories.

The fact that categorical language is really more abstract than
classical logic comes from the existence of non-concrete (also
called abstract) categories. There are many examples of them.
For instance, given a natural number p, we can build a category
Cobp+1 whose objects are p-dimensional smooth manifolds and
whose mappings Σ : M → N are cobordisms between them, i.e,
(p + 1)-manifolds Σ such that ∂Σ = M t N. The abstractness
of this category comes from the fact that the morphisms are
not mappings satisfying some condition, but actually higher
dimensional manifolds. For a formal definition of Cobp+1 with
applications to homotopical aspects of cobordism theory, see
[83]. See also [222, 188, 88]. We recall that the study of
cobordisms dates from the seminal work of Thom [6, 228].

Observe that for p = 0 the objects of Cob1 are just 0-
manifolds: finite collection of points. The cobordisms between
them are 1-manifolds having these 0-manifolds as boundaries.
In other words, the morphisms are just disjoint unions of
intervals, while the composition between intervals [t0; t1] and
[t1; t2] is the interval [t0; t1].

With categorical language on hand, let us try to attack
Hilbert’s sixth problem. We start by recalling that the dynamics
of a system in quantum mechanics is guided by the time
evolution operators U(t1; t0) = e

i
~ (t1−t0)Ĥ . Notice that when

varying t0 and t1, all corresponding operators can be regarded
as a unique functor U : Cob1 → VecC, where VecC denotes
the category delimiting complex linear algebra (i.e, it is the
category of complex vector spaces and linear transformations).
Such a functor assigns to any instant t0 a complex vector space
U(t) = Ht and to any interval [t0; t1] an operator U(t1; t0) :
H0 → H1.

At this point, the careful reader could make some remarks:

1. As commented previously, a system in quantum
mechanics is defined by a pair (H , Ĥ), where we have a
single spaceH which does not depend on time, so that for
any interval [t0; t1] the time evolution operator U(t1; t0) is
defined in the same space. On the other hand, for a functor
U : Cob1 → VecC we have a space Ht for each instant
of time and, therefore, for any interval the corresponding
operators are defined on different spaces.

2. In quantum mechanics, the evolution is guided not
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by an arbitrary operator, but by a unitary operator.
Furthermore, in Quantum Mechanics the space H for
systems describing more than one (say k) particles
decomposes as a tensor product H1 ⊗ ... ⊗ Hk. However
both conditions are not contained in the data defining a
functor U : Cob1 → VecC.

About the first remark, notice that if there is an interval
[t0; t1] connecting two different time instants t0 and t1, then
there exists a inverse interval [t0; t1]−1 such that, when
composed (in Cob1) with the original interval, gives precisely
the trivial interval. In fact, the inverse is obtained simply by
flowing time in the inverse direction. In more concise terms,
any morphism in the category Cob1 is indeed an isomorphism.
But functors preserve isomorphisms, so that for any interval
[t0; t1] the corresponding spaces Ht0 = U(t0) and Ht1 = U(t1)
are isomorphic. This means that the spaces Ht actually do not
dependent on the time t: up to isomorphisms they are all the
same.

Concerning the second remark, let us say that there are some
reasons to believe that the unitarity of time evolution should not
be required as a fundamental axiom of the true fundamental
physics, but instead it should emerge as a consequence (or as
an additional assumption) of the correct axioms. For instance,
in quantum mechanics itself the unitarity of U(t0; t1) can be
viewed as a consequence of the Schrödinger equation, because
its solutions involve the exponential of a Hermitian operator
which by Stone’s theorem is automatically unitary [227]. There
are even more fundamental reasons involving the possibility of
topology change in quantum gravity [9].

On the other hand, it is really true that an arbitrary functor
U : Cob1 → VecC does not take into account the fact that in
a system with more than one particle the total space of states
decomposes as a tensor product of the state of spaces of each
particle. In order to incorporate this condition, notice that
when we say that we have a system of two fully independent
particles, we are saying that time intervals corresponding to
their time evolution are disjoint. Thus, we can interpret the time
evolution of a system with many particles as a disconnected one
dimension manifold, i.e, as a disconnected morphism of Cob1.
Consequently, the required condition on the space of states can
be obtained by imposing the properties

U(t t t′) ' U(t) ⊗ U(t′) and U(∅) ' C,

where the second condition only means that a system with zero
particles must have a trivial space of states.

Now, notice that both categories Cob1 and VecC are equipped
with binary operations (respectively given by t and ⊗), which
are associative and commutative up do isomorphisms, together
with distinguished objects (given by ∅ and C), which behave as
neutral elements for these operations. A category with this kind
of structure is called a symmetric monoidal category. A functor
between monoidal categories which preserves the operations
and the distinguished object is called a monoidal functor (see
[5, 150, 73] for a formal definition of monoidal categories
and monoidal functors, and [209] for an interesting survey on

the different flavors of monoidal structures). Therefore, these
observations lead us to the following conclusion:

Conclusion. A system in quantum mechanics is a special flavor
of monoidal functor from the category Cob1 of 1-dimensional
cobordisms to the category VecC of complex vector spaces.

Consequently, eyeing Hilbert’s sixth problem we can use the
above characterization in order to axiomatize a quantum theory
of particles as being an arbitrary monoidal functor

U : (Cobp+1,t,∅)→ (C,⊗, 1) (4)

for p = 0 and taking values in some symmetric monoidal
category. This is precisely the 1-dimensional version of
the functorial topological quantum field theories (TQFT) of
Atiyah-Witten [7, 238], inspired in the functorial formulation
of Conformal Field Theories by Segal [207, 206, 36]. See also
[9] for a comprehensive introduction. For the classification
of the functors (4) in the case p = 1, see [2, 126, 132] and
compare with the 2-dimensional conformal case [206]. For
discussions on the beautiful math arising in the p = 2 case,
see [19, 41, 23, 125, 20].

A natural question is on the viability of using the same kind
of argument (and therefore the same background language)
in order to get an axiomatization of the classical theories of
particles. This really can be done, as we will outline following
ideas of Chapter 1 of [201]. We start by recalling that a
classical theory of particles is given by an action functional
S : Fields(M)→ R, defined in some space of fields. Therefore,
the first step is to axiomatize the notion of space of fields.
In order to do this, recall that it is generally composed by
smooth paths γ : I → M, representing the trajectories of the
particle into some spacetime M, and by the interacting fields,
corresponding to configurations of some kind of geometric
structure put in M. The canonical examples of interacting
fields are metrics (describing gravitational interaction) and
connections over bundles (describing gauge interactions), as
discussed in Section 3.

Now we ask: which property smooth functions, metrics and
connections have in common? The answer is: locality. In fact,
in order to conclude that a map γ : I → M is smooth, it is
enough to analyze it relative to an open cover Ui ↪→ M given
by coordinate charts ϕi : Ui → Rn. Similarly, a metric g on
M is totally determined by its local components gi j. Finally,
it can also be shown that to give a connection A : T P → g is
the same as giving a family of 1-forms Ai : Ui → g fulfilling
compatibility conditions at the intersections Ui∩U j. Therefore,
one can say that a space of fields over a fixed spacetime M is
some kind of set Fields(M) of structures which are local in the
sense that, for any cover Ui ↪→ M by coordinate systems, we
can reconstruct the total space Fields(M) from the subset of all
si ∈ Fields(Ui) that are compatible in the intersections Ui ∩U j.

Notice that we are searching for a notion of space of fields
(without mention of any spacetime), but up to this point we got
a notion of space of fields over a fixed spacetime. The main idea
is to consider the rule M 7→ Fields(M) from which follows the
immediate hypothesis that it is functorial. Therefore, we could
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axiomatize a space of fields as a functor

Fields : Diffop → Set

assigning to any manifold a set of local structures. This kind of
functor is called a sheaf on the site of manifolds and coordinate
coverings (or a smooth set, a smooth sheaf or even a generalized
smooth space). See [152, 117, 123] for general discussions
on sheaves on sites, and [11, 131, 201] for smooth sets and
generalized smooth spaces. See also [160].

This is still not the correct notion of space of fields, however.
Indeed, recall that in typical situations the set Fields(M)
contains geometric structures. But when doing geometry we
only consider the entities up to their natural equivalences (their
“congruences”). This means that for a fixed space M we should
take the quotient space

Fields(M)/congruences. (5)

In order to do calculations with a quotient space we
have to select an element within each equivalence class
(a representative) and then prove that the results of the
computations do not depend on this choice. The problem is
that when we select an element we are automatically privileging
it, but there is no physically privileged element. So, in order
to be physically correct we have to work with all elements
of the equivalence class simultaneously. This can be done
by replacing the set (5) with the category whose objects are
elements of Fields(M) and such that there is a mapping between
s, s′ iff they are equivalent. In this category, all mappings are
obviously isomorphisms, so that it is indeed a groupoid. The
sheaves on the site of manifolds which take values in Gpd are
called smooth stacks or smooth groupoids, and they finally give
the correct way of thinking about the space of fields for the
case of particles [165]. See Chapter 1 of [201] for a very nice
discussion and [160] for a pedagogical approach.

Therefore, in order to finish the axiomatization of the
"classical theory" notion for particles we need to define what
is the action functional. Given a spacetime M this should be
some kind of map between the space of fields Fields(M) to R.
Notice that R is a set, but we promoted the space of fields to
a groupoid. So, in order to define a map between these two
entities we also need to promote R to a groupoid. This is done
defining a groupoid whose objects are real numbers and having
only trivial morphisms.

We can then finally axiomatize a classical theory of particles
as being given by a smooth stack Fields of fields and a rule S
assigning to every manifold M the action functional

S M : Fields(M)→ R.

On the other hand, from the higher Yoneda embedding, every
smooth groupoid X can be regarded as a smooth ∞-stack y(X)
[147]. Thus, R itself can be regarded as smooth ∞-stack y(R)
and the action functional is just a morphism S : Fields ⇒ y(R)
between smooth∞-stacks [201].

5. The Need of Highering

Up to this point we have seen that starting with categorical
logic as the background language we can effectively axiomatize
the notions of classical and quantum theories for particles.
Indeed, a quantum theory is a symmetric monoidal functor
U : Cob1 → VecC, while a classical theory is given by a
smooth stack Fields and by an action functional

S : Fields(−)→ R.

On the other hand, the nonexistence of clues that strings
and higher dimensional objects are the correct building blocks
of nature cannot be used to completely exclude them. Thus,
any approach to Hilbert’s sixth problems which intends to be
stable under new physics should be based on a background
language which allows the axiomatization of classical and
quantum theories not only for particles, but for objects of
arbitrary dimension. In this regard, categorical logic fails as
background language. Indeed, we have at least the following
problems (see also [201, 191, 15, 219, 160]):

• in quantum theories. Recall that for any p we have the
category Cobp+1, so that we could immediately extend
the notion of quantum theory for particles by defining a
quantum theory for p-branes as a symmetric monoidal
functor U : Cobp+1 → VecC, which coincides with
the Atiyah-Witten p-dimensional TQFT [7, 238]. The
problem is that in this case we are only replacing the
assumption that particles are the correct building blocks
of nature with the assumption that p-branes are the correct
building blocks of nature. Indeed, in both cases we can
only talk about quantum theories for a specific kind of
object, while Hilbert’s sixth problem requires an absolute
notion of quantum theory (this is related with the locality
principle and with the principle of general covariance
[9, 200, 197, 203]);

• in classical theories. The trajectories of particles (which
are 0-dimensional objects) on a spacetime M is described
by smooth paths ϕ : I → M, which are smooth maps
defined on a 1-dimensional manifold I. Therefore we
can easily define the trajectory of p-branes (which are p-
dimensional objects) on M as smooth maps ϕ : Σ → M
defined on a (p + 1)-dimensional manifold Σ, leading
us to sigma-model theories [58]. The problem is that
in the space of fields of a classical theory we have to
consider not only the trajectories but also the interactions
which act on the object. For particles we could consider
these interactions as modeled by connections because the
notion of connection is equivalent to the notion of parallel
transport along paths. But, to the best of our knowledge,
there is no obvious global notion of parallel transport along
arbitrary higher dimensional manifolds5.

5Actually, all attempts to higher dimensional parallel transport that we know
make use, at least implicitly, of higher categorical structures [151, 205, 204, 12,
92, 217, 124].
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Conclusion. In order to axiomatize the notions of classical and
quantum theories for higher dimensional objects we need to
start with a language which is more abstract than categorical
language.

The immediate idea that comes in mind is to try building
some kind of process which takes a language and returns a more
abstract language in such a way that set-theoretical things are
replaced by their categorical analogue. Before discussing how
this can be done, recall that for a selected background language,
the first step in solving Hilbert’s sixth problem is to consider the
loop (3) involving naive math, the language itself and physics.
So, having constructed a more abstract language from a given
one, we would like to consider loops for the new language as
arising by extensions of the loop for the starting language, as in
the diagram below.

naive
math

�&
language +3

+3

2:
abstract
language

8@

physicsks

This condition is very important, because it ensures that
the physics axiomatized by the initial language is contained
in the physics axiomatized by the new language. So, this
means that when applying the process of “abstractification” we
are getting languages that axiomatize more and more physics.
Consequently, by iterating the process and taking the limit one
hopes to get a background language which is abstract enough
to axiomatize the whole physics. See the discussion at the
introduction and section 2.3 of [160].

naive
math

�%
language

)1

19
+3 abstract
language

*2

19
+3

more
abstract
language

+3

,4

/7· · ·

<D

physicsks

6. Highering

In the last sections we saw that category theory is useful
to axiomatize particle physics, but not string physics and
physics of higher-dimensional objects, so that we need to
build some “abstractification process” which will be used
to replace category theory by other more abstract theory.
Notice that categorical language is more abstract than classical
language, so that learning how to characterize the passage
from classical logic to categorical logic should help knowing
how to iterate the construction, getting languages more abstract
than categorical language. In other words, the main approach
to the “abstractification process” should be some kind of
categorification process.

In order to get some feeling for this categorification process,
notice that a set contains less information than a category.

Indeed, sets consist of only one type of information: their
elements. On the other hand, categories have three layers of
information: objects, morphisms and compositions. Thus, we
can understood the passage from set theory to category theory
(and, therefore, from classical logic to categorical logic) as
the addition of information layers (see [14] for an interesting
discussion; see also Part 2 of [160]).

When iterating this process we expect to get a language
describing entities containing more information than usual
categories. Indeed, we expect to have not only objects,
morphisms between objects and compositions between
morphisms, but also morphisms between morphisms (called 2-
morphisms) and compositions of 2-morphisms. Thus, if we call
such entities 2-categories, adding another information layer we
get 3-categories, and so on. Taking the limit we then get ∞-
category. The basic example, which reveals the connection
between higher category theory and homotopy theory, it the∞-
categories of topological spaces, continuous maps, homotopies,
homotopies between homotopies, and so on.

Similarly, if a functor between categories maps objects
into objects and morphisms into morphisms, then a k-
functor between k-categories maps objects into objects and i-
morphisms into i-morphisms for every 1 ≤ i ≤ k. Taking
the limit k → ∞, we can define ∞-functors. Since the
categorical language is about categories and functors (and
natural transformations), then we obtain a ∞-categorical
language, consisting of ∞-categories and ∞-functors (and
higher natural transformations), which by constructions is
arbitrarily abstract. See Part 3 of [160] for a more detailed
intuitive discussion on this new language. We then have the
following conclusion:

Conclusion. A natural candidate for a background language
sufficient to solve Hilbert’s sixth problem is ∞-categorical
language.

With this conclusion in mind we need to build a math-
language-physics loop (3) for the ∞-categorical language
by means of extending the loop obtained using categorical
language. This can be done as follows:

• in quantum theories: Recall that the problem with the
definition of quantum theories as symmetric monoidal
functors U : Cobp+1 → VecC involves the fact that such
functors take into account only p-branes for a fixed p,
implying that we need to know previously what are the
correct building blocks of nature. This can be avoided
in the ∞-categorical context. Indeed, we can define a
∞-category Cob(∞) having 0-manifolds as objects, 1-
cobordisms (i.e., cobordisms between 0-manifolds) as
morphisms, 2-cobordisms (i.e., cobordisms between 1-
cobordisms) as 2-morphisms and so on. Notice that
differently from Cobp+1 (which contains only p-manifolds
and cobordisms between them), the defined ∞-category
Cob(∞) contains cobordisms of all orders and, therefore,
describe p-branes for every p simultaneously. Thus, one
can define an absolute (or extended) quantum theory (as
required by Hilbert’s sixth problem) as some kind of ∞-
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functor U : Cob(∞) → ∞VecC, where ∞VecC is some
∞-categorical version of VecC (i.e, is some∞-category of
∞-vector spaces). See [81, 13, 149].

• in classical theories: The problem with the axiomatization
of classical theories via categorical language was that in
the space of fields we have to consider interacting fields.
For particles, these fields are modeled by connections
on bundles, which are equivalent to parallel transport
along paths. But, as commented, there is no canonical
notion of transportation along arbitrary higher dimensional
manifolds [151, 205, 204, 12, 92, 217, 124]. Another way
to motivate the problem is the following: in order to define
a connection A locally (i.e, in terms of data over an open
covering Ui ↪→ M) we need a family of 1-forms Ai on
Ui subject to compatibility conditions on Ui ∩ U j. The
information Ui and Ui ∩ U j belong to an usual category
Č(Ui), whose objects are elements xi ∈ Ui and there is a
morphism xi → x j iff xi, x j ∈ Ui ∩ U j. On the other hand,
if we try to define higher transportation locally we need to
take into account data on Ui which is compatible not only
on Ui∩U j, but also on Ui∩U j∩Uk, on Ui∩U j∩Uk∩Ul, and
so on. Thus, we need to consider much more information
layers than can be put inside an usual category, justifying
the nonexistence of connections along arbitrary higher
dimensional manifolds. But they can be put inside a
∞-category Č∞(Ui), meaning that we actually have a
notion of ∞-connection when we consider ∞-categorical
language (see [12, 204, 195, 205]). More precisely, the
initial problem is avoided if we define the space of fields
not as a smooth stack, but as a smooth∞-stack (or smooth
∞-groupoid: a ∞-functor Fields : Diffop → ∞Gpd such
that for any M the quantity Fields(M) is determined not
only by Fields(Ui) and Fields(Ui ∩ U j), but also by (see
[197, 203, 201, 202, 160]):

Fields(Ui ∩ U j ∩ Uk) (6)
Fields(Ui ∩ U j ∩ Uk ∩ Ul) (7)

and so on. (8)

Remark. In parts, the difficulties with this approach to
Hilbert’s sixth problem arise from the fact that the ∞-
categorical language is still in development. Recall that a
groupoid is a category such that all morphisms are invertible.
When we are in a higher category we have higher morphisms,
so that given a k-morphism, it can be invertible (in the classical
sense) or invertible up to k + 1-morphisms. A ∞-groupoid is
a ∞-category such that each k-morphism is invertible up to
k + 1-morphism, for every k > 0. The theory for this kind
of∞-category is well-studied and in some cases it is equivalent
to the homotopy theory of topological CW-complexes, which
since [10] is known as the Homotopy Hypothesis [182, 101]
(see Section 8.4 of [160] for a discussion on its role in physics).
More generally, we can define a (∞, n)-category as a ∞-
category such that each k-morphism is invertible up to k + 1-
morphisms, for every k > n. Thus, ∞-groupoids are the same
thing as (∞, 0)-categories. The theory of (∞, 1)-categories is

also well-studied [118, 120, 119, 27, 140, 48, 147, 148]. But,
in order to describe extended TQFT and higher prequantization
we need to work on (∞, n)-categories for n > 1 [149, 202, 197,
203, 201], whose theory is not as well developed as the theory
for n = 0, 1 [24, 25, 26].

7. The Cohomological Description

In theoretical physics, the concept of “cohomology” is more
well known as the cohomology groups Hn(X•; Q) induced by
a nilpotent operator Q : X• → X• (i.e., such that Q2 = 0),
defined in a graded vector space X• = ⊕Xn (or in a graded
algebra) which is typically related to the conservation of some
gauge charge [218, 219, 21]. In mathematics, on the other
hand, it has not only this fully algebraic meaning (which
arises from homological algebra [237, 90]), but also a more
topological one: the generalized cohomology theories. These
consist of sequences of functors Hn, assigning abelian groups
to topological spaces, subjected to the so-called Eilenberg-
Steenrod axioms. Examples include the ordinary cohomology
theory (which in real coefficients is equivalent to de Rham
cohomology), K-theory, cobordism theory and topological
modular forms [143, 4, 72]. The facts that particles are
charged in ordinary cohomology and that D-brane charges can
be described by K-theory show that generalized cohomology
theoy is also important in physics. Thus, in view of Hilbert’s
sixth problem, it is natural to search for an axiomatization
to cohomology which contains both flavors of cohomology as
particular examples.

By Brown’s representability theorem, generalized
cohomologies are fully determined by sequences E = (En)n

of topological spaces known as spectra [143, 4, 72]. More
precisely, for every n ≥ 0 there is a topological space En such
that for every topological space X we have Hn(X) ' [X; En],
where the right-hand side denotes the set of homotopy classes.
Via Dold-Kan correspondence N, the algebraic cohomology
groups Hn(X•; Q) are also determined by a sequence of entities
En such that Hn(X•; Q) ' [N(X•); En], where X• is the dual
chain sequence of X• (see Chapter 1 of [201] and Chapter 9
of [160]). The only difference is that now the representing
objects are higher-categorical entities and therefore belong to a
(∞, 1)-category instead of to a classical category, but recall that
topological spaces, continuous maps, homotopies and higher
homotopies also define a (∞, 1)-category, so that in the first
case we also are in the context of∞-categories.

Another similarity between both flavors of cohomology is
the following. We say that a topological space Y is deloopable
if there is another topological space BY whose loop space
is (weak) homotopic to Y , i.e., such that ΩBY ' Y . In a
generalized cohomology theory each En is deloopable, with
BEn = En+1. In particular, En = BnE0 = B(B...(BE0)...)
[162, 3]. We note that in every suitable6 (∞, 1)-category
we can also consider loop spaces ΩY , so that we can also

6With (∞, 1)-pullbacks or homotopy pullbacks.
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talk about deloopable objects [93, 147, 201]. But via Dold-
Kan correspondence the spaces En characterizing algebraic
cohomology are also deloopable, with BEn ' En+1, so that
again we have En = BnE0. This motivates us to axiomatize
the notion of cohomology in any (∞, 1)-category as follows
[40, 68, 147, 201, 160]. Given an object E0 in an (∞, 1)-
category, for every other object X, the 0th cohomology of
X with coefficients in E0 is given by H0(X; E0) := [X; E0].
Analogously, if E0 has deloopings BnE0 we define the nth
cohomology as Hn(X; E0) := [X; En].

The amazing fact of this abstract axiomatization is that it
does not only unify different flavors of cohomology, but also
sets classical theories in a new powerful language [201]. More
precisely, recall that, as discussed in Section 6 the space of
fields is supposed to be a smooth∞-stack Fields(−) : Diffop →

∞Grpd. Via higher Yoneda embedding [147], each smooth
manifold M can itself be regarded as a smooth ∞-stack y(M)
and Fields(M) ' [y(M); Fields], so that the space of fields
are actually the coefficients of a cohomology in the (∞, 1)-
category of all smooth ∞-stacks [201]. On the other hand,
y(R)(M) = [y(M); y(R)] = H0(M;R). Therefore, the action
functional S : Fields ⇒ y(R) is secretly a morphism between
cohomology theories. In homotopy theory, this is known as a
cohomology operation.

Let us look at a particular example. Every Lie group G
is deloopable and by the classification theorem of principal
bundles, the cohomology H1(M; G) := [M; BG] classifies
precisely G-bundles over M [161, 56]. The interacting fields
acting on particles are not G-bundles, but G-bundles with
connections, so that it is natural to ask if this classification
theorem cannot be lifted to the context of bundles with
connections. This is really the case if we look at the
language of smooth ∞-stacks. Indeed, by the higher Yoneda
embedding, we have H1(M; G) ' [y(M); BG]. On the
other hand, there is another smooth ∞-stack BGdiff such that
fixing a connection A in the G-bundle classified by a map
f : y(M) → B(G) is equivalent to giving a lifing f̂ :
y(M)→ Bdiff(G) of f . Consequently, the abstract cohomology
H1

diff(M; G) := H0(M; Bdiff(G) = [y(M); Bdiff(G)], called
nonabelian differential G-cohomology describes the space of
all gauge fields [199, 42, 211, 109]. Thus, gauge theories in the
classical sense are the same thing as cohomology operations on
nonabelian differential cohomology.

If G is only a group, then the smooth ∞-stack B(G) needs
not be deloopable. On the other hand, if G is a more general
higher group, then B2(G) exists and, in similar way, there also
exists the differential refinement B2

diff(G), leading us to define
the 2th differential cohomology H2(M; G) := [y(M); B2

diff(G)]
[199, 201]. Similarly, if G admits higher deloopings we
can define higher-degree differential cohomology. Notice
that if cohomology operations in 1th differential cohomology
describes gauge theoris, cohomology operations in higher
differential cohomology should describe higher gauge theory,
i.e, classical theories whose interacting fields are not vectorial,
but tensorial, as typically string theory (with the B-field) and
supergravity/M-theory (with C-field). This is really the case
[82, 199, 201, 225, 169, 17].

Finally, recall that cohomology theories are the natural
environments in which obstruction theory can be developed
[105, 161, 28]. On the other hand, there are typical anomaly
cancellation conditions in (higher) gauge theories, which
typically can be interpreted as obstructions to the preservation
of some symmetry at the quantum level or as a charge
quantization condition. Examples such as the quantization
of D-brane charges in (twisted) K-theories [239, 39, 167, 84,
98, 99], the Freed-Witten anomaly as pull-push operations in
(twisted) K-theory [86, 121, 45, 176], the fermionic anomaly
as the trivialization of a line bundle [78, 80], the Green-
Schwarz mechanism and its description in terms of liftings
to twisted differential cohomology [82, 53, 196] and, more
recently, the Hypothesis H, about the quantization of the C-
field on (twisted) cohomotoy cohomology theory and its many
consequences [76, 75, 193, 43, 192, 194, 77] seem to reveal that
this cohomological approach to physics, where the meaning of
obstruction is very clear, is not only formal, but very fruitful.

8. Quantization

In the previous sections we discussed that ∞-categorical
language is abstract enough to provides suitable axiomatization
of classical and quantum physics, making it a natural candidate
to attack Hilbert’s sixth problem. Thus, using this class of
languages, we need to build a quantization process linking
any classical theory to a corresponding quantum theory.
Besides the problematics involving the current development
of (∞, n)-categorical languages for higher n, building this full
quantization process remains an open problem. Discussing
complete details is beyond the scope of this paper. See [202] for
a concise discussion, [160] for a guide and [201] for a complete
reference. Even so, let us say a few words.

With the axiomatization of classical and quantum theories
on hand we can a priori build∞-categories Class and Quant, so
that it is expected that a quantization process should be some
kind of∞-functor

Q : Class→ Quant

such that it assigns to each system of Classical Mechanics
a corresponding system of quantum mechanics. Since as
discussed in Section 3 these disciplines can be axiomatized
using 1-categorical language, one should expect that, when
restricted to them, the quantization ∞-functor Q becomes a
functor. But, by counterexamples of van Hove and others
[234, 100, 95, 94, 96], this quantization 1-functor does not exist,
forcing us to take into account higher layers even in the simple
case.

On the other hand, there is a canonical way to map classical
mechanics into quantum mechanics given by the so-called
geometric quantization [240, 216], where the main idea was
to incorporate the higher layer on it. The first step was to
observe that part of the data needed to apply that quantization
corresponds to an orientation in complex K-theory [166, 129].
The second one was the extension of geometric quantization
from symplectic manifolds to symplectic groupoids (and
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therefore from set-theoretic objects to categorical-theoretic
entities) [38, 106, 187]. The higher geometric quantization is
then a program aiming to join both observations and build a
quantization for higher groupoids by means of cohomological
methods, which is a natural strategy in virtue of the discussion
in Section 7. A very promising approach which has been
more extensively developed in the last decade is the so-
called cohomological quantization, also known as pull-push
quantization or motivic quantization. See [197, 203, 177, 187,
202, 201] and the references therein.

9. Conclusion

In this paper we described and surveyed in a pedagogical
way a formal approach to Hilbert’s sixth problem based on
works of Urs Schreiber, John Baez, Daniel Freed, Jacob Lurie
and many other researchers. We discussed that the problem
requires languages which are arbitrarily abstract and synthetic,
so that higher categorical languages were presented as natural
candidates. We saw that these higher languages seem to be
abstract enough to axiomatize classical and quantum physics,
leaving open the problem of building a global quantization ∞-
functor. Some comments on recent cohomological quantization
were made.
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