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Abstract

Inferring the potential consequences of an unobserved event is a fundamental scientific question.
To this end, Pearl’s celebrated do-calculus provides a set of inference rules to derive an interventional
probability from an observational probability. In this framework, the primitive causal relations are
encoded on a Directed Acyclic Graph (DAG), which can be limitative for some applications. In this
paper, we capture causality without reference to a graph and we extend the rules of do-calculus to
systems that do not possess a fixed causal ordering. For this purpose, we introduce a new framework
which relies on the theory developed by Witsenhausen for multi-agent stochastic control. The mapping
from graphs to so called Witsenhausen’s intrinsic model is natural: the primitives of the problem are the
agents’ information fields; the random variables are synthesized by the agents whose strategies encode
the informational constraints. All in all, our framework offers a richer language than DAGs and provides
a generalized do-calculus.

1 Introduction

1.1 Causality and do-calculus

As the world shifts toward more and more data-driven decision making, causal inference is taking more
space in applied sciences, statistics and machine learning. This is because it allows for better, more robust
decision making, and provides a way to interpret the data that goes beyond correlation [12]. For instance,
causal inference provides a language and tools to describe and solve Simpson’s paradox, which embodies
the "correlation is not causation" principle as can be found in any “Statistics 101” basic course. The main
concern in causal inference is to compute post-intervention probabilities distribution from pre-intervention
data. For this purpose, graphical models are practical because they allow to represent assumptions easily
and benefit from an extensive scientific literature.

In his seminal work, Pearl builds on graphical models [3] to introduce the so-called do-calculus. Several
extensions to this do-calculus have been proposed recently [19, 9, 17, 2]. As asserted by Pearl, language is
an important element in this research program [10]:

Another ramification of the sharp distinction between associational and causal concepts is that
any mathematical approach to causal analysis must acquire new notation for expressing causal
relations – probability calculus is insufficient.

We completely concur with this idea. Moreover, our contribution is based on the work of another scholar,
Witsenhausen, who developed a mathematical framework to capture the notion of causality and who wrote

The main difficulty is one of notations.
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Witsenhausen introduced the intrinsic model that turns the focus from dependencies represented by functions
to dependencies represented by σ-fields and measurability constraints (this will be clarified thereafter) in
multi-agent stochastic control problems.

Causal graphical models move the focus from joint probability distributions to functional dependencies
thanks to the Structural Causal Model (SCM). It is our hope that the intrinsic model will move the focus
from functional dependencies to informational relations, hence bringing a new, complementary view to the
causal reasoning toolbox.

So, we introduce a general, unifying framework for causal inference that may be used for both recursive
and non-recursive systems [5]. The cost for this generalization is a bit of abstraction: in what we propose,
the structure is implicit, and there are no arrows. In particular, while DAG modeling does not rely directly
on the notion of random variable but on the joint, pushforward probability distribution ([11], footnote 3 or
[13] Appendix A), our approach requires to go back to the primitives of the probabilistic model: sample
set, sigma-fields, measurable maps. This is why we depart from the usual presentation of causal inference
papers.

1.2 Our contributions

We generalise causal modeling thanks to the notion of information fields. In this new abstraction, we rede-
fine the notion of d-separation and provide a rigorous analysis of the model structure. Our main results are
Theorem 9, which is a characterization of this extended d-separability notion, Theorem 10 which expresses
that independence induces a factorization property of the solution map, and Theorem 12, which is a gener-
alization of do-calculus, and which subsumes several recent results. All proofs and examples are provided in
the companion paper.

2 The Witsenhausen’s intrinsic model and formalism for causality

We present the so-called Witsenhausen’s intrinsic model, followed by its formalism for causality.

2.1 The Witsenhausen’s intrinsic model

As Witsenhausen’s intrinsic model was introduced some five decades ago in the control community [20, 21],
it may not be familiar to all readers. We provide tentative correspondences between Pearl’s DAG and
Witsenhausen’s intrinsic model in Table 1.

Pearl Witsenhausen

Structure DAG Nature and agents decision sets, with their respective fields
Parent relation → precedence relation

node agent
edge agents related by the precedence relation

Dependence SCM agents information fields
functional relation policy profiles measurable w.r.t. information fields

Resolution induction solution map
random variable policy profile composed with solution map

Intervention Do operator change of information fields
Causal ordering fixed existence depends on agents’ information fields

Table 1: Correspondences between Pearl’s DAG and Witsenhausen’s intrinsic model

Witsenhausen used the language of σ-fields to handle the concept of information in control theory. We
present it below using the more general notion of field. A field (resp. σ-field) over the set D is a subset

D ⊂ 2
D
, containing D, and which is stable under complementation and union (resp. countable union). The
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trivial field over the set D is {∅,D}. The complete field over the set D is 2
D
. When D

′
⊂ D are two fields

over the set D, we say that D
′
is a subfield of D.

Definition 1. (Adapted from [20, 21]) A W-model is a collection (A, (Ω,F), (Ua,Ua)a∈A, (Ia)a∈A), where

• A is a finite set, whose elements are called agents;

• Ω is a set made of states of Nature; F is a field over Ω;

• for any a ∈ A, Ua is a set, the set of decisions for agent a; Ua is a field over Ua;

• for any a ∈ A, Ia is a subfield of the following product field

Ia ⊂ F ⊗⨂
b∈A

Ub , ∀a ∈ A (1)

and is called the information field of the agent a.

The configuration space is the product space (also called hybrid space, hence the H notation)

H = Ω ×∏
a∈A

Ua . (2a)

The following product configuration field is a field over H

H = F ⊗⨂
a∈A

Ua . (2b)

A policy, of agent a ∈ A is a mapping

λa ∶ (H,H) → (Ua,Ua) (3a)

from configurations to decisions, which satisfies the following measurability property

λ
−1
a (Ua) ⊂ Ia . (3b)

Condition (3b) expresses the property that any policy of agent a may only depend upon the information Ia

available to the agent. We denote by Λa the set of all policies of agent a ∈ A. A policy profile λ is a collection
of policies, one per agent a ∈ A:

λ = (λa)a∈A ∈ ∏
a∈A

Λa . (3c)

In what follows, we will need some notations. For any subset B ⊂ A of agents, we define

HB = F ⊗⨂
b∈B

Ub ⊗⨂
a/∈B

{∅,Ua} ⊂ H , (4a)

λB = (λb)b∈B ∈ Ω ×∏
b∈B

Ub , ∀λ = (λa)a∈A ∈ ∏
a∈A

Λa . (4b)

2.2 Solvability and solution map

With any given policy profile λ = (λa)a∈A ∈ ∏a∈A Λa we associate the set-valued mapping

Mλ ∶ Ω ⇉ ∏
b∈A

Ub , ω ↦ {(ub)b∈A ∈ ∏
b∈A

Ub

»»»»»»ua = λa(ω, (ub)b∈A) , ∀a ∈ A} . (5)

With this definition, we slightly reformulate below how Witsenhausen introduced solvability.
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Definition 2. ([20, 21]) The solvability property holds true for the W-model of Definition 1 (or the W-
model is solvable) when, for any policy profile λ = (λa)a∈A ∈ ∏a∈A Λa, the set-valued mapping Mλ in (5) is
a mapping whose domain is Ω, that is, the cardinal of Mλ(ω) is equal to one, for any state of nature ω ∈ Ω.

Thus, under solvability property, for any state of nature ω ∈ Ω, there exists one, and only one, decision
profile (ub)b∈A ∈ ∏b∈A Ub which is a solution of the closed-loop equations

ua = λa(ω, (ub)b∈A) , ∀a ∈ A . (6a)

In this case, we define the solution map

Sλ ∶ Ω → H , Sλ(ω) = (ω,Mλ(ω)) (6b)

where Mλ(ω) is the unique element contained in the image set Mλ(ω) that is, for all (ub)b∈A ∈ ∏b∈A Ub,
Mλ(ω) = (ub)b∈A ⟺ Mλ(ω) = {(ub)b∈A}.

2.3 Causality

In his articles [20, 21], Witsenhausen introduces a notion of causality that relies on suitable configuration-
orderings. Here, we introduce our own notations, as they make possible a compact formulation of the
causality property.

Let ∣A∣ denote the cardinal of the set A, that is, ∣A∣ is the number of agents. For k ∈ {1, . . . , ∣A∣},
let Σ

k
= {κ ∶ {1, . . . , k} → A ∣κ is an injection } denote the set of k-orderings, that is, injective mappings

from {1, . . . , k} to A. The set Σ
∣A∣

is the set of total orderings of agents in A, that is, bijective mappings

from {1, . . . , ∣A∣} to A. We define the set of all partial orderings by Σ = ⋃k∈{0,...,∣A∣} Σ
k
, where Σ

0
= {∅}.

For any k ∈ {1, . . . , ∣A∣}, any ordering κ ∈ Σ
k
, and any integer ℓ ≤ k, κ∣{1,...,ℓ} is the restriction of the

ordering κ to the first ℓ integers, and we introduce the mapping ψk ∶ Σ
∣A∣

→ Σ
k
, ρ ↦ ρ∣{1,...,k} which

performs the restriction of any total ordering of A to {1, . . . , k}. For any k ∈ {1, . . . , ∣A∣}, and any partial

k-ordering κ ∈ Σ
k
, we define the range ∥κ∥ = {κ(1), . . . , κ(k)} ⊂ A, the cardinal ∣κ∣ = k ∈ {1, . . . , ∣A∣}, the

last element κ
⋆
= κ(k) ∈ A, and the restriction κ

−
= κ∣{1,...,k−1} ∈ Σ

k−1
.

The next definition can be interpreted as follows. In a causal W-model, there exists a configuration-
ordering with the following property: when an agent is called to play — as he is the last one in a partial
ordering — what he knows cannot depend on decisions made by agents that are not his predecessors (in the
range of the partial ordering under consideration).

Definition 3. ([20, 21]) A W-model (as in Definition 1) is causal if there exists (at least) one configuration-

ordering ϕ ∶ H → Σ
∣A∣

with the property that

H
ϕ
κ ∩H ∈ H∥κ−∥ , ∀H ∈ Iκ⋆ , ∀κ ∈ Σ , (7)

where the subset H
ϕ
κ ⊂ H of configurations is defined by (by convention, we put H

ϕ
∅ = H)

H
ϕ
κ = {h ∈ H ∣ψ∣κ∣(ϕ(h)) = κ} , ∀κ ∈ Σ . (8)

The set H
ϕ
κ contains all the configurations for which the agent κ(1) is acting first, the agent κ(2) is acting

second,. . . , till the last agent κ
⋆
= κ(∣κ∣) acting at stage ∣κ∣. Hence, otherwise said, causality means that,

once we know the first ∣κ∣ agents, the information of the agent κ
⋆

depends at most on the decisions of the
agents in the range ∥κ−∥, as represented by the subfield (see Equation (4a))

H∥κ−∥ = F ⊗ ⨂
a∈∥κ−∥

Ua ⊗ ⨂
b/∈∥κ−∥

{∅,Ub} ⊂ H . (9)

In [20], Witsenhausen proves that causal W-models are solvable. He also shows that there exist solvable
W-models that are not causal.
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3 Generalizing causal graphical models concepts with the intrinsic

model

We are now going to show how the basic notions of causal graphical models can be recovered and extended
with the intrinsic model. Then, we will show an equivalence between three notions in the intrinsic model,
namely blocking, directional separability and topological separability.

We recall that a (binary) relation R on A is a subset R ⊂ A
2

and that aR b means (a, b) ∈ R. For

any subset B ⊂ A, the (sub)diagonal relation is ∆B = {(a, b) ∈ A
2 ∣ a = b ∈ B} and the diagonal relation is

∆ = ∆A. A foreset of a relation R is any set of the form R b = {a ∈ A ∣aR b} or, by extension, of the form
RB = {a ∈ A ∣∃b ∈ B , aR b}, where B ⊂ A. The opposite or complementary R

c
of a binary relation R is

the relation R
c
= A

2 \R, that is, defined by aR
c
b ⟺ ¬(aR b). The converse R

−1
of a binary relation R

is defined by aR
−1
b ⟺ bR a (and R is symmetric if R

−1
= R). The composition RR

′
of two binary

relations R,R
′
is defined by a(RR

′)b ⟺ ∃δ ∈ A, aR δ and δR
′
b. The transitive closure of a binary

relation R is R
∞

= ∪
∞

k=1R
k

(and R is transitive if R
∞

= R) and the reflexive and transitive closure is
R
∗
= R

∞
∪∆.

3.1 Definition of conditional parentality in the intrinsic model

We suppose to be given a W-model as in Definition 1. Witsenhausen defines the precedence relation P on
the set A of agents by

Pa = ⋂
B∈A;Ia⊂HB

B , ∀a ∈ A and bPa ⟺ b ∈ Pa . (10)

When the precedence relation P is acyclic, we recover a DAG. However, a W-model is much richer than
the DAG it can induce. Instead of the limited precedence relation P in (10), we introduce a new and more
flexible definition of parentality.

Definition 4. For any subset H ⊂ H of configurations, and any subset W ⊂ A of agents, we set

PW,Ha = ⋂
B∈A;Ia∩H⊂HB∪W

B , ∀a ∈ A , (11a)

and we define the (conditional) parental relation PW,H on A (w.r.t. (W,H)) by

bPW,H a ⟺ b ∈ PW,Ha , ∀(a, b) ∈ A
2
. (11b)

Thus, when bPW,Ha, it means that the information available to agent a, on the subset H ⊂ H of config-
urations, necessarily involves the decisions of the agent b and, possibly of the agents in W . Witsenhausen’s
precedence relation P is the special case P∅,H . We have that PW,HA ⊂ W

c
by construction, and it can be

shown that PW,H = ∆W cP∅,H .

3.2 Definitions of conditional blocking, and of directional and topological sepa-

ration in the intrinsic model

We take inspiration from Pearl to define the two following notions of conditional blocking and of conditional
directional separation. Then, we introduce a suitable topology on the set of agents, and we define a new
notion of conditional topological separation.

3.2.1 Definition of conditional blocking

We define conditional blocking using the language of relations.
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Definition 5. We suppose given a subset H ⊂ H of configurations, and a subset W ⊂ A of agents.
We define the (conditional) genealogical relation AW,H (w.r.t. (W,H)) as the transitive and reflexive

closure of the conditional parental relation PW,H in Definition 4, that is,

AW,H = P
∞

W,H ∪∆ = P
∗

W,H , (12a)

the (conditional) common cause relation KW,H (w.r.t. (W,H)) as the symmetric relation

KW,H = A
−1
W,H∆W cAW,H , (12b)

the (conditional) connection relation CW,H (w.r.t. (W,H)) as the symmetric relation

CW,H = (KW,H(∆WKW,H∆W ∪∆W )∞KW,H) ∪ KW,H , (12c)

and finally the (conditional) blocking relation BW,H (w.r.t. (W,H)) as the complementary relation

BW,H = C
c
W,H . (12d)

3.2.2 Definition of conditional directional separation

Now we propose a reinterpretation of Dawid’s notation [4] to define conditional directional separation in our
context.

Definition 6. We suppose given a subset H ⊂ H of configurations, and a subset W ⊂ A of agents.

1. Using the precedence relation P∅,H , which is a subset of A×A, we introduce the oriented graph GH =

(A,P∅,H) and the undirected graph ĜH = (A,P∅,H ∪ P
−1
∅,H) (obtained by considering the symmetric

closure of the relation P∅,H). The nodes of the graphs GH and ĜH are the agents in A. The arcs of the

graph GH are the couples of nodes in P∅,H ⊂ A×A. The arcs of the graph ĜH are the couples of nodes

in P∅,H ∪ P
−1
∅,H ⊂ A×A.

2. Let b, c ∈ A be two agents. Let π be a path in the undirected graph ĜH that joins b and c (considered
as two nodes in the set A of nodes of the undirected graph ĜH). We say that the path π directionally
separates (w.r.t. (W,H)) the two nodes b and c if all the paths in the oriented graph GH that give rise
to the path π in the undirected graph ĜH contain a subpath of three consecutive nodes b

′
, w, c

′
∈ A

satisfying one of the following four conditions:

• w ∈W and b
′
P∅,Hw and wP∅,Hc

′
,

• w ∈W and b
′
P
−1
∅,Hw and wP

−1
∅,Hc

′
,

• w ∈W and b
′
P
−1
∅,Hw and wP∅,Hc

′
,

• w /∈P
∗

∅,H W and b
′
P∅,Hw and wP

−1
∅,Hc

′
.

3. Let b, c be two agents in A. We say that the two agents b and c are (conditionally) directionally
separated (w.r.t. (W,H)), denoted by b ∥

d
c ∣ (W,H), if any path joining the two nodes b and c in the

undirected graph ĜH directionally separates the two nodes.

4. For two subsets B,C ⊂ A such that

B ∩ C = ∅ , B ∩W = ∅ , C ∩W = ∅ , (13a)

we say that B and C are (conditionally) directionally separated (w.r.t. (W,H)), denoted by B ∥
d
C ∣

(W,H), when for any agent b ∈ B and any agent c ∈ C, the two agents b and c are (conditionally)
directionally separated (w.r.t. (W,H)).

6



3.2.3 Definition of conditional topological separation

We introduce a suitable topology on the set of agents, extending the topology introduced in [21], and we
define a new notion of conditional topological separation.

Proposition 7. The following subset TW,H of 2
A

is a topology on the set A of agents:

TW,H = {B ⊂ A ∣AW,H(A \B) ⊂ A \B} , (14)

where the genealogical relation AW,H has been defined in (12a). In this topology, the subset W is open, a

subset C ⊂ A is closed iff AW,HC ⊂ C iff AW,HC = C, and the topological closure B
W,H

of a subset B ⊂ A

is the foreset

B
W,H

= AW,HB . (15)

For any subsets B ⊂ A and Bj ⊂ A, j = 1, . . . , n, we write B1 ⊔ ⋯ ⊔ Bn = B when we have both
Bj ∩ Bk = ∅ for all j ≠ k and B1 ∪⋯∪ Bn = B.

Definition 8. We suppose given a subset H ⊂ H of configurations, and a subset W ⊂ A of agents. We say
that two subsets B,C ⊂ A are (conditionally) topologically separated (w.r.t. (W,H)), denoted by B ∥

t
C ∣

(W,H), if there exists WB,WC ⊂W such that

WB ⊔WC =W and B ∪WB

W,H

∩ C ∪WC

W,H

= ∅ . (16)

When B = {b} and C = {c}, we say that b and c are topologically separated, denoted by b ∥
t
c ∣ (W,H), as a

shorthand for {b} and {c} are topologically separated.

When B,C ⊂ A are topologically separated, we necessarily have that B ∩ C = ∅.

3.3 Equivalence between blocking, directional and topological separation in the

intrinsic model

With the above definitions, we now show that the notions of conditional blocking, conditional directional
separability and conditional topological separation are equivalent.

Theorem 9. For any pair of agents b, c ∈ A such that

b ≠ c , b /∈W , c /∈W , (17)

the following statements are equivalent: the two agents b and c are

1. conditionally blocked (w.r.t. (W,H)), that is, b BW,H c,

2. conditionally directionally separated (w.r.t. (W,H)), that is, b ∥
d
c ∣ (W,H),

3. conditionally topologically separated (w.r.t. (W,H)), that is, b ∥
t
c ∣ (W,H).

Hence, in any of the three equivalent cases, we will say that the two agents b and c are conditionally
separated (w.r.t. (W,H)), denoted by b ∥ c ∣ (W,H), and the same for two subsets B,C ⊂ A satisfying (13a).

4 Conditional separation, factorization and do-calculus in intrinsic

models

In this section, where we deal with probability, we consider a finite W-model (as in Definition 1), that is,
where all sets are finite, to avoid technical measurability issues. Moreover, we suppose that the set Ω of
states of Nature, and its field F have the following product form:

Ω = ∏
a∈A

Ωa , F = ⨂
a∈A

Fa . (18a)
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For any subset B ⊂ A of agents, we denote

ΩB = ∏
b∈B

Ωb , FB = ⨂
b∈B

Fb , UB = ∏
b∈B

Ub , UB = ⨂
b∈B

Ub , (18b)

and we denote by πB the projection from H to its factors in B as follows:

πB ∶ H = ΩB × ΩBc × UB × UBc → UB . (18c)

4.1 Conditional separation implies factorization

We are now going to show how conditional separation induces a factorization of the solution map.

Theorem 10. We consider a solvable W-model, where the set Ω of states of Nature has the product
form (18a), where each information field Ia in (1) is such that

Ia ⊂ Fa ⊗⨂
b≠a

{∅,Ωb}⊗⨂
c∈A

Uc , ∀a ∈ A . (19)

We also consider a policy profile λ = (λa)a∈A ∈ ∏a∈A Λa, a subset H ⊂ H of configurations, and Y , W and
Z three disjoint subsets of A, such that (see the comment following Theorem 9)

Y ∥ Z ∣ (W,H) . (20)

Then, there exist five subsets Y
′
, Z

′
, WY ,WZ , ⟨∅⟩ ⊂ A such that

A = Ỹ ⊔ Z̃ ⊔ ∅̃ where Ỹ = Y ⊔ Y
′
⊔WY , Z̃ = Z ⊔ Z

′
⊔WZ , W =WY ⊔WZ , (21a)

and there exist three mappings (reduced solution maps)

M̃λỸ
∶ ΩỸ × UWZ

→ UỸ , M̃λZ̃
∶ ΩZ̃ × UWY

→ UZ̃ , M̃λ⟨∅⟩ ∶ Ω⟨∅⟩ × UỸ ∪Z̃ → U⟨∅⟩ (21b)

such that the solution map (6b) splits in three factors as follows: ∀ω ∈ S
−1
λ (H), we have that

Mλ(ω) = M̃λỸ
(ωỸ , λWZ

(Sλ(ω))) × M̃λZ̃
(ωZ̃ , λWY

(Sλ(ω))) × M̃λ⟨∅⟩(ω⟨∅⟩, λỸ ∪Z̃(Sλ(ω))) . (21c)

More precisely, with the notation (18c), Equation (21c) has to be understood as πỸ (Mλ(ω)) = M̃λỸ
(ωỸ , λWZ

(Sλ(ω))),
πZ̃(Mλ(ω)) = M̃λZ̃

(ωZ̃ , λWY
(Sλ(ω))), and π⟨∅⟩(Mλ(ω)) = M̃λ⟨∅⟩(ω⟨∅⟩, λỸ ∪Z̃(Sλ(ω))).

4.2 Probabilistic implications and Do-calculus in intrinsic models

Theorem 11. We suppose that the assumptions of Theorem 10 are satisfied, and that all fields are σ-fields.
Moreover, we suppose that the set Ω in (18a) is equipped with a probability P = ⨂a∈A Pa where each Pa is a
probability on (Ωa,Fa) .

We define the following pushforward probability Qλ on (H,H) by

Qλ = P ◦ S
−1

λ . (22)

Then, (H,H,Qλ) is a probability space, and the two projections π
Y

W,H ∶ (H,H) → (U
Y

W,H ,U
Y

W,H) and
π
Z

W,H ∶ (H,H) → (U
Z

W,H ,U
Z

W,H) as in (18c) are independent under Qλ, conditionally on the subset H ⊂ H

and on the projection πW ∶ (H,H) → (UW ,UW ).
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4.3 Intervention variables, Do-calculus

We now introduce the possibility to intervene on a variable. We can encode this possibility in the model
using a simple procedure. Suppose we are interested in an intervention policy profile λ̂Z for a subset Z ⊂ A

of agents. For this purpose, we consider a new family of fields Îz ⊂ H, for z ∈ Z, as in (1), and we suppose

that λ̂Z is Îz-measurable, for any z ∈ Z, as in (3b). Then, we enrich the W-model as follows (detailed in the
companion paper): (1) we introduce a new intervention agent I, equipped with ΩI = {0, 1} and UI = {0, 1},
and who only has access to her/his private information in ΩI ; (2) we straightforwardly adapt the information

fields for A \ (Z ∪ I) and the probability P; (3) we replace the information field Iz by {0} ⊗ Iz ∪ {1} ⊗ Îz,
for z ∈ Z.

Theorem 12. Under the assumptions of Theorem 11, we have that the projection πY has the same condi-
tional distribution under Qλ, whether the conditioning is w.r.t. the subset H ⊂ H, the projection πW and the
projection π

Z
W,H , or is only w.r.t. the subset H ⊂ H and the projection πW .

This rule subsumes Pearl’s do-calculus.

We have proved, loosely speaking, that

Y ∥ Z ∣ (W,H) ⟹ Qλ(hY ∣hW , h
Z

W,H , H) = Qλ(hY ∣hW , H) . (23)

We stress the conciseness of Theorem 12 — permitted by the notions introduced in this paper — that implies
the three rules of Pearl and also the following two recent results.

Proposition 13. Rule 1 from [17] and Theorem 1 from [2] can be deduced from Theorem 12.

5 Discussion

In this paper, we simplify and generalize the do-calculus by leveraging the concepts of information field and
solution map. The do-calculus is reduced to one rule. Causality is presented as a property of the W-model,
and is not encoded by design. The intrinsic model is richer than DAGs, and allows for cycles, conditioning,
and even noncausality as we only suppose the more general assumption of solvability, while DAGs warrant
the modeling of situations that do not possess a fixed causal ordering [7]. Statistical independence follows
from the factorization property of the solution map implied by separation (related to a form of informational
independence). We underline that the results come from the information structure, not the probability. Also,
because our approach is not based on graphical models, our work provides a new proof of Pearl’s original
result.

Also, it is notable that one of Witsenhausen’s motivation was Kuhn’s extensive games [8, 18], where
information plays a central role, and the question of information modeling is still debated [1, 6].

Further work includes drawing connections with other research programs, such as Proposition 13 or
questions related to identification [14, 15, 16], using the framework developed in this paper.
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