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Adaptive nonparametric estimation of a component density in a two-class mixture model

A two-class mixture model, where the density of one of the components is known, is considered. We address the issue of the nonparametric adaptive estimation of the unknown probability density of the second component. We propose a randomly weighted kernel estimator with a fully data-driven bandwidth selection method, in the spirit of the Goldenshluger and Lepski method. An oracletype inequality for the pointwise quadratic risk is derived as well as convergence rates over Hölder smoothness classes. The theoretical results are illustrated by numerical simulations.

Introduction

The following mixture model with two components:

gpxq " θ `p1 ´θqf pxq, @x P r0, 1s,

where the mixing proportion θ P p0, 1q and the probability density function f on r0, 1s are unknown, is considered in this article. It is assumed that n independent and identically distributed (i.i.d. in the sequel) random variables X 1 , . . . , X n drawn from density g are observed. The main goal is to construct an adaptive estimator of the nonparametric component f and to provide non-asymptotic upper bounds of the pointwise risk : the resulting estimator should automatically adapt to the unknown smoothness of the target function. The challenge arises from the fact that there is no direct observation coming from f . As an intermediate step, the estimation of the parametric component θ is addressed as well.

Model [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] appears in some statistical settings: robust estimation and multiple testing among others. The one chosen in the present article, as described above, comes from the multiple testing framework, where a large number n of independent hypotheses tests are performed simultaneously. p-values X 1 , . . . , X n generated by these tests can be modeled by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Indeed these are uniformly distributed on r0, 1s under null hypotheses while their distribution under alternative hypotheses, corresponding to f , is unknown. The unknown parameter θ is the asymptotic proportion of true null hypotheses. It can be needed to estimate f , especially to evaluate and control different types of expected errors of the testing procedure, which is a major issue in this context. See for instance Genovese and Wassermann [START_REF] Genovese | Operating characteristics and extensions of the false discovery rate procedure[END_REF], Storey [START_REF] Storey | A direct approach to false discovery rates[END_REF], Langaas et al. [START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF], Robin et al. [START_REF] Stéphane Robin | A semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF], Strimmer [START_REF] Strimmer | A unified approach to false discovery rate estimation[END_REF], Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF], and more fundamentally, Benjamini et al. [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] and Efron et al. [START_REF] Efron | Empirical bayes analysis of a microarray experiment[END_REF].

In the setting of robust estimation, different from the multiple testing one, model ( 1) can be thought of as a contamination model, where the unknown distribution of interest f is contaminated by the uniform distribution on r0, 1s, with the proportion θ. This is a very specific case of the Huber contamination model [START_REF] Peter | A robust version of the probability ratio test[END_REF]. The statistical task considered consists in robustly estimating f from contaminated observations X 1 , . . . , X n . But unlike our setting, the contamination distribution is not necessarily known while the contamination proportion θ is assumed to be known, and the theoretical investigations aim at providing minimax rates as functions of both n and θ. See for instance the preprint of Liu and Gao [START_REF] Liu | Density estimation with contaminated data: Minimax rates and theory of adaptation[END_REF], which addresses pointwise estimation in this framework.

Back to the setting of multiple testing, the estimation of f in model [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] has been addressed in several works. Langaas et al. [START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF] proposed a Grenander density estimator for f , based on a nonparametric maximum likelihood approach, under the assumption that f belongs to the set of decreasing densities on r0, 1s. Following a similar approach, Strimmer [START_REF] Strimmer | A unified approach to false discovery rate estimation[END_REF] also proposed a modified Grenander strategy to estimate f . However, the two aforementioned papers do not investigate theoretical features of the proposed estimators. Robin et al. [START_REF] Stéphane Robin | A semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF] and Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] proposed a randomly weighted kernel estimator of f , where the weights are estimators of the posterior probabilities of the mixture model, that is, the probabilities of each individual i being in the nonparametric component given the observation X i . [START_REF] Stéphane Robin | A semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF] proposes an EM-like algorithm, and proves the convergence to an unique solution of the iterative procedure, but they do not provide any asymptotic property of the estimator. Note that their model gpxq " θφpxq `p1 ´θqf pxq, where φ is a known density, is slightly more general, but our procedure is also suitable for this model under some assumptions on φ. Besides, [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] achieves a nonparametric rate of convergence n ´2β{p2β`1q for their estimator, where β is the smoothness of the unknown density f . However, their estimation procedure is not adaptive since the choice of their optimal bandwidth still depends on β.

In the present work, a complete inference strategy for both f and θ is proposed. For the nonparametric component f , a new randomly weighted kernel estimator is provided with a data-driven bandwidth selection rule. Theoretical results on the whole estimation procedure, especially adaptivity of the selection rule to unknown smoothness of f , are proved under a given identifiability class of the model, which is an original contribution in this framework. Major results derived in this paper are the oracle-type inequality in Theorem 1, and the rates of convergence over Hölder classes, which are adapted to the control of pointwise risk of kernel estimators, in Corollary 1.

Unlike the usual approach in mixture models, the weights of the proposed estimator are not estimates of the posterior probabilities. The proposed alternative principle is simple and consists in using weights based on a density change, from the target distribution f , which is not directly reachable, to the distribution of observed variables g. A function w is thus derived such that f pxq " wpθ, gpxqqgpxq, for all θ, x P r0, 1s. This type of link between one of the conditional distribution given hidden variables, f , to the distribution of observed variables g, is quite remarkable in the framework of mixture models. It is a key idea of our approach, since it implies a crucial equation for controlling the bias term of the risk, see Subsection 2.1 for more details. This is necessary to investigate adaptivity using the Goldenshluger and Lespki (GL) approach [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: orcale inequalities and adaptive minimax optimality[END_REF], which is known in other various contexts, see for instance, Comte et al. [START_REF] Comte | Nonparametric estimation for stochastic differential equations with random effects[END_REF], Comte and Lacour [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF], Doumic et al. [START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF], Reynaud-Bouret et al. [START_REF] Reynaud-Bouret | Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis[END_REF] who apply GL method in kernel density estimation, and Bertin et al. [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF], Chagny [START_REF] Chagny | Penalization versus goldenshluger-lepski strategies in warped bases regression[END_REF], Chichignoud et al. [START_REF] Chichignoud | Adaptive wavelet multivariate regression with errors in variables[END_REF] or Comte and Rebafka [START_REF] Comte | Nonparametric weighted estimators for biased data[END_REF].

Thus oracle weights are defined by wpθ, gpX i qq, i " 1, . . . , n, but g and θ are unknown. These oracle weights are estimated by plug-in, using preliminary estimators of g and θ, based on an additional sample X n`1 , . . . , X 2n . Some assumptions on these estimators are needed to prove the results on the estimator of f ; this paper also provides estimators of g and θ which satisfy these assumptions. Note that procedures of [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] and [START_REF] Stéphane Robin | A semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF] actually require preliminary estimates of g and θ as well, but they do not deal with additional uncertainty caused by the multiple use of the same observations in the estimates of θ, g and f .

Identifiability issues are reviewed in Section 1.1 in Nguyen and Matias [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF]. In the present work, f is assumed to be vanishing at a neighbourhood of 1 to ensure identifiability. Under this assumption, θ can be recovered as the infimum of g. Moreover, as shown above by the equation linking f to g and θ, f is actually uniquely determined by giving g and θ, even though the latter is not the infimum of g. Note that the theoretical results on the estimator of the nonparametric component f do not depend on the chosen identifiability class, and can be transposed to other cases. For that reason, the discussion on identifiability is postponed to Section 4.2, after results on the estimator of f . The paper is organized as follows. Our randomly weighted estimator of f is constructed in Section 2.1. Assumptions on f and on preliminary estimators of g and θ required for proving the theoretical results are in this section too. In Section 2, a bias-variance decomposition for the pointwise risk of the estimator of f is given as well as the convergence rate of the kernel estimator with a fixed bandwidth. In Section 3, an oracle inequality is given, which justifies our adaptive estimation procedure. Construction of the preliminary estimators of g and θ are to be found in Section 4. Numerical results illustrate the theoretical results in Section 5. Proofs of theorems, propositions and technical lemmas are postponed to Section 6.

Collection of kernel estimators for the target density

In this section, a family of kernel estimators for the density function f based on a sample pX i q i"1,...,n of i.i.d. variables with distribution g is defined. It is assumed that preliminary estimators of both the mixing proportion θ and the mixture density g are available, and respectively denoted by θn and ĝ. They are defined from an additional sample pX i q i"n`1,...,2n of independent variables also drawn from g but independent of the first sample pX i q i"1,...,n . Definitions, results and results on these preliminary estimates are the subject of Section 4.

Construction of the estimators

To define estimators for f , the challenge is that observations X 1 , . . . , X n are not drawn from f but from the mixture density g. Hence the density f cannot be estimated directly by a classical kernel density estimator. Thus we will build weighted kernel estimates This idea has been used in other contexts, see for example [START_REF] Comte | Nonparametric weighted estimators for biased data[END_REF]. The starting point is the following lemma whose proof is straightforward.

Lemma 1. Let X be a random variable from the mixture density g defined by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] and Y be an (unobservable) random variable from the component density f . Then for any measurable bounded function ϕ:

E " ϕpY q ‰ " E " wpθ, gpXqqϕpXq ‰ , (2) 
where wpθ, gpxqq :" 1 1 ´θ ˆ1 ´θ gpxq ˙, x P r0, 1s.

This result will be used as follows. Let K : R Ñ R be a kernel function, that is an integrable function such that ş R Kpxqdx " 1 and ş R K 2 pxqdx ă `8. For any h ą 0, let K h p¨q " Kp¨{hq{h. Then the choice ϕp¨q " K h px ´¨q in Lemma 1 gives:

E " K h px ´Y q ‰ " E " wpθ, gpXqqK h px ´Xq ‰ ,
This leads to define the following randomly weighted kernel estimator of f :

fh pxq " 1 n n ÿ i"1
wp θn , ĝpX i qqK h px ´Xi q, x P r0, 1s,

where:

wp θn , ĝpX i qq "

1 1 ´θ n ˜1 ´θ n ĝpX i q ¸, i " 1, . . . , n. (4) 
Therefore, fh is a randomly weighted kernel estimator of f . Note that the total sum of the weights may not equal 1, in comparison with the estimators proposed in Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] and Robin et al. [START_REF] Stéphane Robin | A semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF]. The main advantage of such weights, is that, if we replace ĝ and θn by their theoretical unknown counterparts g and θ in (3), we obtain, Er fh pxqs " K h ‹ f pxq, where ‹ stands for the convolution product. This relation, classical in nonparametric kernel estimation, is crucial to study the bias term in the risk of the estimator, and hence to reach adaptivity.

Risk bounds of the estimator

Here, upper bounds are derived for the pointwise mean-squared error of the estimator fh , defined in (3), with a fixed bandwidth h ą 0. Our objective is to study the pointwise risk for the estimation of the density f at a point x 0 P r0, 1s. Throughout the paper, the kernel K is chosen compactly supported on an interval r´A, As with A a positive real number, and such that sup xPr´A,As |Kpxq| ă 8. We denote by V n px 0 q the neighbourhood of x 0 used in the sequel and defined by

V n px 0 q " " x 0 ´2A α n , x 0 `2A α n  ,
where pα n q n is a positive sequence of numbers larger than 1, only depending on n such that α n Ñ `8 as n Ñ `8, chosen by the user. For any function u on R, and any interval I Ă R, let }u} 8,I " sup tPI |uptq|.

We also denote by γ " inf tPVnpx0q |gptq|. Thanks to (1), we have gptq ě θ ą 0 for any t P r0, 1s, and thus, γ ą 0.

In the sequel, we consider the following assumptions. Note that all assumptions are not simultaneously necessary for the results.

(A1) The density f is uniformly bounded on V n px 0 q for some n: }f } 8,Vnpx0q ă 8.

(A2) The preliminary estimator ĝ is bounded away from 0 on V n px 0 q a.s. : γ :" inf tPVnpx0q |ĝptq| ą 0.

(
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(A3) The preliminary estimate ĝ of g satisfies, for all ν ą 0

P ˜sup tPVnpx0q ˇˇˇĝ ptq ´gptq ĝptq ˇˇˇą ν ¸ď C g,ν exp ! ´plog nq 3{2 ) , (6) 
with C g,ν a constant only depending on g and ν.

(A4) The preliminary estimator θn is constructed such that θn P rδ{2, 1 ´δ{2s a.s., for a fixed δ P p0, 1q.

(A5) For any bandwidth h ą 0, we assume that a.s.

α n ď 1 h and 1 h ď min # γn log 3 pnq , 1 n + .
(A6) f belongs to the Hölder class of smoothness β and radius L on r0, 1s, defined by Σpβ, Lq " ! φ : φ has " tβu derivatives and @x, y P r0, 1s, |φ p q pxq ´φp q pyq| ă L|x ´y| β´

) ,

where txu denotes a smallest integer which is strictly smaller than the real number x.

(A7) K is a kernel of order : ş R x j Kpxqdx " 0 for 1 ď j ď and ş R |x| |Kpxq|dx ă 8.

Since g " θ `p1 ´θqf , Assumption (A1) implies that }g} 8,Vnpx0q ă 8. This assumption is needed to control the variance term, among others, of the bias-variance decomposition of the risk. Let us notice that the density g is automatically bounded from below by a positive constant in our model [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Assumption (A2) is required to bound the term 1{ĝp¨q that appears in the weight wp θn , ĝp¨qq, see [START_REF] Butucea | Two adaptive rates of convergence in pointwise density estimation[END_REF]. Assumption (A3) means that the preliminary ĝ has to be rather accurate. Assumptions (A2) and (A3) are also introduced by Bertin et al. [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] for conditional density estimation purpose : see (3.2) and (3.3) p.946. The methodology used in our proofs is close to their work : the role played by g here corresponds to the role played by the marginal density of their paper. They have also shown that an estimator of g satisfying these properties can be built, see Theorem 4, p. 14 of [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] and some details at Section 4.1. We also build an estimator θn that satisfies Assumption (A4) in Section 4.2. Assumption (A5) deals with the order of magnitude of the bandwidths and is also borrowed from [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] (see Assumption (CK) p.947). An example of bandwidth collection satisfying Assumption (A5) is given in the statement of Corollary 1. Assumptions (A6) and (A7) are classical for kernel density estimation, see [START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF] or [START_REF] Comte | Estimation non-paramétrique[END_REF]. The index β in Assumption (A6) is a measure of the smoothness of the target function. Such assumptions permit to control the bias term of the bias-variance decomposition of the risk, and thus to derive convergence rates. We will classically choose " tβu for Assumption (A7) in Corollary 1 below.

We first state an upper bound for the pointwise risk of the estimator fh . The proof can be found in Section 6.1.

Proposition 1. Assume that Assumptions (A1) to (A5) are satisfied. Then, for any x 0 P r0, 1s and δ P p0, 1q, the estimator fh defined by (3) satisfies

E " `f h px 0 q ´f px 0 q ˘2ı ď C 1 " }K h ‹ f ´f } 2 8,Vnpx0q `1 δ 2 γ 2 nh * `C2 δ 6 E " ˇˇθ n ´θˇˇ2 ı `C3 δ 2 γ 2 E " }ĝ ´g} 2 8,Vnpx0q ı `C4 n 2 , ( 7 
)
where C ˚ , " 1, . . . , 4 are positive constants such that : C 1 depends on }K} 2 and }g} 8,Vnpx0q , C 2 depends on }g} 8,Vnpx0q and }K} 1 , C 3 depends on }K} 1 and C 4 depends on }f } 8,Vnpx0q , g, δ, γ, and }K} 8 .

Proposition 1 is a bias-variance decomposition of the risk. The first term in the right-hand-side (r.h.s. in the sequel) of ( 7) is a bias term which decreases when the bandwidth h vanishes whereas the second one corresponds to the variance term and increases when h vanishes.

There are two additional terms Er}ĝ ´g} 2 8,Vnpx0q s and Er| θn ´θ| 2 s in the r.h.s. of [START_REF] Chichignoud | Adaptive wavelet multivariate regression with errors in variables[END_REF]. They are unavoidable since the estimator fh depends on the plug-in estimators ĝ and θn . However, as proved in Corollary 1, these two terms does not deteriorate the convergence rate provided that g and θ are estimated accurately. We define in Section 4 such estimators of g and θ. The term C 4 {pδ 2 n 2 q is a remaining term and is also negligible.

Adaptive pointwise estimation

Let H n be a finite family of possible bandwidths h ą 0, whose cardinality is bounded by the sample size n. The best estimator in the collection p fh q hPHn defined in (3) at the point x 0 is the one that have the smallest risk, or similarly, the smallest bias-variance decomposition. But since f is unknown, in practice it is impossible to minimize over H n the r.h.s. of inequality [START_REF] Chichignoud | Adaptive wavelet multivariate regression with errors in variables[END_REF] in order to select the best estimate. Thus, we propose a data-driven selection, with a rule in the spirit of Goldenshluger and Lepski (GL in the sequel) [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: orcale inequalities and adaptive minimax optimality[END_REF]. The idea is to mimic the bias-variance trade-off for the risk, with empirical counterparts for the unknown quantities. We first estimate the variance term of the trade-off by setting, for any h P H n

V px 0 , hq " κ }K} 2 1 }K} 2 2 }g} 8,Vnpx0q γ2 nh logpnq, (8) 
with κ ą 0 a tuning parameter. The principle of the GL method is then to estimate the bias term

}K h ‹ f ´f } 2 
8,Vnpx0q of fh px 0 q for any h P H n with Apx 0 , hq :" max

h 1 PHn ! `f h,h 1 px 0 q ´f h 1 px 0 q ˘2 ´V px 0 , h 1 q ) `, (9) 
where, for any h, h

1 P H n , fh,h 1 px 0 q " 1 n n ÿ i"1 wp θn , ĝpX i qqpK h ‹ K h 1 qpx 0 ´Xi q " pK h 1 ‹ fh qpx 0 q.
Heuristically, since fh is an estimator of f then fh,h 1 " K h 1 ‹ fh can be considered as an estimator of K h 1 ‹ f . The proof of Theorem 1 below in Section 6.2 then justifies that Apx 0 , hq is a good approximation for the bias term of the pointwise risk. Finally, our estimate at the point x 0 is f px 0 q :" fĥ px0q px 0 q,

where the bandwidth ĥpx 0 q minimizes the empirical bias-variance decomposition : ĥpx 0 q :" argmin hPHn Apx 0 , hq `V px 0 , hq ( .

The constants that appear in the estimated variance V px 0 , hq are known, except κ, which is a numerical constant calibrated by simulation (see practical tuning in Section 5), and except }g} 8,Vnpx0q , which is replaced by an empirical counterpart in practice (see also Section 5). It is also possible to justify the substitution from a theoretical point of view, but it adds cumbersome technicalities. Moreover, the replacement does not change the result of Theorem 1 below. We thus refer to Section 3.3 p.1178 in [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF] for example, for the details of a similar substitution. The risk of this estimator is controlled in the following result.

Theorem 1. Assume that Assumptions (A1) to (A4) are fulfilled, and that all h P H n satisfies (A5). Suppose in addition that the sample size n is larger than a constant that only depends on the kernel K. For any δ P p0, 1q, the estimator f px 0 q defined in (10) satisfies

E " `f px 0 q ´f px 0 q ˘2ı ď C 5 min hPHn " }K h ‹ f ´f } 2 8,Vnpx0q `logpnq δ 2 γ 2 nh * `C6 δ 6 sup θPrδ,1´δs E " ˇˇθ n ´θˇˇ2 ı `C7 δ 2 γ 2 E " }ĝ ´g} 2 8,Vnpx0q ı `C8 n 2 , ( 11 
)
where C ˚ , " 5, . . . , Theorem 1 is an oracle-type inequality. It holds whatever the sample size, larger than a fixed constant. It shows that the optimal bias variance trade-off is automatically achieved: the selection rule permits to select in a data-driven way the best estimator in the collection of estimators p fh q hPHn , up to a multiplicative constant C 5 . The last three remainder terms in the r.h.s. of ( 11) are the same as the ones in Proposition 1, and are unavoidable, as aforementioned. We have an additional logarithmic term in the second term of the r.h.s., compared to the analogous term in [START_REF] Chichignoud | Adaptive wavelet multivariate regression with errors in variables[END_REF]. It is classical in adaptive pointwise estimation (see for example [START_REF] Comte | Nonparametric weighted estimators for biased data[END_REF] or [START_REF] Butucea | Two adaptive rates of convergence in pointwise density estimation[END_REF]). In our framework, it does not deteriorate the adaptive convergence rate, see Section 4.3 below. To compute this rate, we now have to define estimators for the mixing density g and proportion θ, in such a way that the convergence rate which would be obtained by the minimisation of the first term in the r.h.s of ( 11) can be preserved.
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Estimation of the mixture density g and the mixing proportion θ

This section is devoted to the construction of the preliminary estimators ĝ and θn , required to build (3). To define them, we assume that we observe an additional sample pX i q i"n`1,...,2n distributed with density function g, but independent of the sample pX i q i"1,...,n . We explain how estimators ĝ and θn can be defined to satisfy the assumptions described at the beginning of Section 2.2, and also how we compute them in practice. The reader should bear in mind that other constructions are possible, but our main objective is the adaptive estimation of the density f . Thus, further theoretical studies are beyond the scope of this paper.

Preliminary estimator for the mixture density g

As already noticed, the role played by g to estimate f in our framework finds an analogue in the work of Bertin et al. [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] : the authors propose a conditional density estimation method that involves a preliminary estimator of the marginal density of a couple of real random variables. The assumptions (A2) and (A3) are borrowed from their paper. From a theoretical point of view, we thus also draw inspiration from them to build ĝ. Since we focus on kernel methods to recover f , we also use kernels for the estimation of g. Let L : R Ñ R be a function such that ş R Lpxqdx " 1 and ş R L 2 pxqdx ă 8. Let L b p¨q " b ´1Lp¨{bq, for any b ą 0. The function L is a kernel, but can be chosen differently from the kernel K used to estimate the density f . The classical kernel density estimate for g is

ĝb px 0 q " 1 n 2n ÿ i"n`1 L b px 0 ´Xi q, (12) 
Theorem 4 p.14 of [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] proves that it is possible to select an adaptive bandwidth b of ĝb in such a way that Assumptions (A2) and (A3) are fulfilled, and that the resulting estimate ĝb satisfies

E " › › ĝb ´g› › 2 8,Vnpx0q ı ď C ˆlog n n ˙2β 2β`1 , (13) 
if g P Σpβ, L 1 q, where C, L 1 ą 0 are some constants, and if the kernel L has an order " tβu. The idea of the result of Theorem 4 in [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF] is to select the bandwidth b with a classical Lepski method, and to apply results from Giné and Nickl [START_REF] Giné | An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation[END_REF]. Notice that, in our model, Assumption (A6) permits to obtain directly the required smoothness assumption, g P Σpβ, L 1 q. This guarantees that both the assumptions (A2) and (A3) on ĝ can be satisfied and that the additional term Er}ĝ ´g} For the simulation study below now, we start from the kernel estimators pĝ b q bą0 defined in [START_REF] Comte | Nonparametric weighted estimators for biased data[END_REF] and rather use a procedure in the spirit of the pointwise GL method to automatically select a bandwidth b. First, this choice permits to be coherent with the selection method chosen for the main estimators p fh q hPHn , see Section 3. Then, the construction also provides an accurate estimate of g, see for example [START_REF] Comte | Estimation non-paramétrique[END_REF]. Let B be a finite family of bandwidths. For any b, b 1 P B, we introduce the auxiliary functions ĝb,b 1 px 0 q " n ´1 ř 2n i"n`1 pL b ‹ L b 1 qpx 0 ´Xi q. Next, for any b P B, we set

A g pb, x 0 q " max b 1 PB ! `ĝ b,b 1 px 0 q ´ĝ b 1 px 0 q ˘2 ´Γ1 pb 1 q ) `,
where Γ 1 pbq " ε }L}

2 1 }L} 2 
2 }g} 8 logpnq{pnbq, with ε ą 0 a constant to be tuned. Then, the final estimator of g is given by ĝpx 0 q :" ĝb g px0q px 0 q, with bg px 0 q :" argmin bPB tA g pb, x 0 q `Γ1 pbqu. The tuning of the constant ε is presented in Section 5.

Estimation of the mixing proportion θ

A huge variety of methods have been investigated for the estimation of the mixing proportion θ of model [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] : see, for instance, [START_REF] Storey | A direct approach to false discovery rates[END_REF], [START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF], [START_REF] Stéphane Robin | A semi-parametric approach for mixture models: Application to local false discovery rate estimation[END_REF], [START_REF] Celisse | A cross-validation based estimation of the proportion of true null hypotheses[END_REF], [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF] and references therein. A common and performant estimator is the one proposed by Storey [START_REF] Storey | A direct approach to false discovery rates[END_REF]: θ is estimated by θτ,n " #tX i ą τ ; i " n `1, . . . , 2nu{pnp1 ´τ qq with τ a threshold to be chosen. The optimal value of τ is calculated with a boostrap algorithm. However, it seems difficult to obtain theoretical guarantees on θτ,n .

For a detailed discussion about possible identifiability conditions of model (1), we refer to Celisse and Robin [START_REF] Celisse | A cross-validation based estimation of the proportion of true null hypotheses[END_REF] or Nguyen and Matias [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF]. In the sequel we focus on a particular case of model [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF], which ensures the identifiability of the parameters pθ, f q (see for example Assumption A in [START_REF] Celisse | A cross-validation based estimation of the proportion of true null hypotheses[END_REF], or Section 1.1 in [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF]). The density f is assumed to belong to the family

F δ " ! f : r0, 1s Ñ R `, f is a density such that f |r1´δ,1s " 0 ) , (14) 
where δ P p0, 1q. Under this assumption, the main idea to recover θ is that it is the lower bound of the density g in model ( 1) : θ " inf xPr0,1s gpxq " gp1q. Celisse and Robin [START_REF] Celisse | A cross-validation based estimation of the proportion of true null hypotheses[END_REF] or Nguyen and Matias [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF] then define a histogram-based estimator ĝ for g, and estimate θ with the lower bound of ĝ, or with ĝp1q. The procedure we choose is still based on the same assumption, but, to be consistent with the other estimates, we use kernels to recover g instead of histograms. Nevertheless, since it is well-known that kernel density estimation methods suffer from boundary effects, which cause inaccurate estimate of gp1q, we cannot directly use the kernel estimates of g defined in [START_REF] Comte | Nonparametric weighted estimators for biased data[END_REF]. To deal with this issue, we apply a simple reflection method (see for example Schuster [START_REF] Schuster | Incorporating support constraints into nonparametric estimators of densities[END_REF]). From the random sample X n`1 , . . . , X 2n from density g, we introduce, for i " 1, . . . , n,

Y i " # X i`n if ε i " 1, 2 ´Xi`n if ε i " ´1, (15) 
where ε 1 , . . . , ε n are n i.i.d. random variables drawn from Rademacher distribution with parameter 1{2, and independent of the X i 's. The random variables Y 1 , . . . , Y n can be regarded as randomly symmetrized version of the X i 's, with support r0, 2s (see the first point of Lemma 2 below). Now, suppose that L is a symmetric kernel. For any b ą 0, define

ĝsym b pxq " 1 n n ÿ k"1 L b px ´Yk q, x P r0, 2s. (16) 
Instead of evaluating ĝsym b at the single point x " 1, we evaluate twice the average of all the values of the estimator ĝsym b on the interval r1 ´δ, 1 `δs, relying on the fact that θ " gpxq, for all x P r1 ´δ, 1s (under the assumption f P F δ ), to increase the accuracy of the resulting estimate. Thus, we set θn,b "

1 δ ż 1`δ 1´δ ĝsym b pxqdx. (17) 
Finally, for the estimation of f , we use a truncated estimator θn defined as θn,b :" max `minp θn,b , 1 ´δ{2q, δ{2 ˘.

The definition of θn,b permits to ensure that θn,b P rδ{2, 1 ´δ{2s : this is Assumption (A4). This permits to avoid possible difficulties in the estimation of f when θn,b is close to zero, see [START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF]. The following lemma establishes some properties of all these estimates. Its proof can be found in Section 6.3.

Lemma 2.

• The random variables Y k , k P t1, . . . , nu, are i.i.d., with density

g sym : x Þ ÝÑ " gpxq{2 if x P r0, 1s gp2 ´xq{2 if x P r1, 2s. • We have | θn,b ´θ| ď 2 › › ĝsym b ´gsym › › 8,r1´δ,1`δs . (19) 
• Moreover,

P ´θ n,b ‰ θn,b ¯ď 4 δ 2 E " | θn,b ´θ| 2 ı , (20) 
and there exists a constant C ą 0, which only depends on δ, such that

E " | θn,b ´θ| 2 ı ď CE " › › ĝsym b ´gsym › › 2 8,r1´δ,1`δs ı . (21) 
The first property of Lemma 2 permits to deal with ĝsym b as with a classical kernel density estimate defined from an i.i.d sample. Thus we have Erĝ sym b pxqs " L b ‹ g sym pxq. This permits to obtain an upperbound for the risk of ĝsym b as an estimator of g sym , and also to define an automatic bandwidth selection rule like for classical kernel density estimates (see paragraph just below). The second property [START_REF] Ildar | Has 1 minskiȋ. An estimate of the density of a distribution[END_REF] allows us to control the estimation risk of θn,b , while the third one, [START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF], justifies that the introduction of θn,b is reasonable.

To obtain a fully data-driven estimate θn,b , it remains to define a bandwidth selection rule for the (classical) kernel estimator ĝsym b . In view of ( 19), we introduce a data-driven procedure under sup-norm loss, inspired from Lepski [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF]. For any x P r0, 2s and any bandwidth b, b

1 in a collection B 1 , we set ĝsym b,b 1 pxq " pL b ‹ ĝsym b 1
qpxq, and Γ 2 pbq " λ }L} 8 logpnq{pnbq, with λ a tuning parameter. As for the other bandwidth selection device, we now define ∆pbq " max

b 1 PB 1 # sup xPr1´δ,1`δs `ĝ sym b,b 1 pxq ´ĝ sym b 1 pxq ˘2 ´Γ2 pb 1 q + `,
Finally, we choose b " argmin bPB 1 t∆pbq `Γ2 pbqu, which leads to ĝsym :" ĝsym b and θn :" θn, b. The results of [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF] prove that Er › › ĝsym b ´gsym › › 2 8,r1´δ,1`δs s ď Cplog n{nq 2β{p2β`1q , if g P Σpβ, L 1 q, where C, L 1 ą 0 are some constants, and if the kernel L has an order " tβu. Combined with Lemma 2, this ensures that θn satisfies

E " | θn ´θ| 2 ı ď C ˆlog n n ˙2β 2β`1 . ( 22 
)
Numerical simulations in Section 5 justify that our estimator has a good performance from the practical point of view, in comparison with those proposed in [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF] and [START_REF] Storey | A direct approach to false discovery rates[END_REF].

Convergence rate of the component density estimator

We have now everything we need to compute the convergence rate of our estimator f px 0 q at the point x 0 , with selected bandwidth, and defined with the preliminary estimates ĝ and θn introduced above (sections 4.2 and 4.1 respectively). Starting from the results of Theorem 1, we obtain the following rate of decrease for the pointwise risk of our estimate, over Hölder smoothness classes.

Corollary 1. Assume that (A1), (A6) and (A7) are satisfied, for β ą 0 and L ą 0, and for an index ą 0 such that ě tβu. We choose e.g. α n " logpnq and the bandwidth collection

H n :" " 1 k , k P t1, . . . , t ? nuu X rα n , p γn{ log 3 pnqs * .
Then, if f is defined with the preliminary estimates ĝ and θn introduced in sections 4.2 and 4.1 respectively, it satisfies

E " `f px 0 q ´f px 0 q ˘2ı ď C 9 ˆlog n n ˙2β 2β`1 , (23) 
where C 9 is a constant depending on }g} 8,Vnpx0q , }K} 1 , }K} 2 , L and }f } 8,Vnpx0q .

The estimator f , with data-driven bandwidth, now achieves the convergence rate plog n{nq 2β{p2β`1q over the class Σpβ, Lq as soon as β ď . The risk decreases at the optimal minimax rate of convergence (up to a logarithmic term) : the upper bound of Corollary 1 matches with the lower-bound for the minimax risk established by Ibragimov and Hasminskii [START_REF] Ildar | Has 1 minskiȋ. An estimate of the density of a distribution[END_REF]. Our procedure automatically adapts to the unknown smoothness of the function to estimate : the bandwidth ĥpx 0 q is computed in a fully data-driven way, without using the knowledge of the regularity index β, contrary to the estimator f rwk n of Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] (corollary 3.4).

Remark 1. In the present work, we focus on Model (1). However, the estimation procedure we develop can easily be extended to the model gpxq " θφpxq `p1 ´θqf pxq, x P R,

where the function φ is a known density, but not necessarily equal to the uniform one. In this case, a family of kernel estimates can be defined like in (3) replacing the weights wp θn , ĝp¨qq by wp θn , ĝp¨q, φpx 0 qq " 1 1 ´θ n

˜1

´θ n φpx 0 q ĝp¨q ¸.

If the density function φ is uniformly bounded on R, it is then possible to obtain analogous results (biasvariance trade-off for the pointwise risk, adaptive bandwidth selection rule leading to oracle-type inequality and optimal convergence rate) as we established for model (1).

5 Numerical study

Simulated data

We briefly illustrate the performance of the estimation method over simulated data, according the following framework. We simulate observations with density g defined by model (1) for sample size n P t500, 1000, 2000u. Three different cases of pθ, f q are considered:

• f 1 pxq " 4p1 ´xq 3 1 r0,1s pxq, θ 1 " 0.65.

• f 2 pxq " s 1 ´δ ˆ1 ´x 1 ´δ ˙s´1 1 r0,1´δs pxq with pδ, sq " p0.3, 1.4q, θ 2 " 0.45.

• f 3 pxq " λe ´λx `1 ´e´λb ˘´1 1 r0,bs pxq the density of truncated exponential distribution on r0, bs with pλ, bq " p10, 0.9q, θ 3 " 0.35.

The density f 1 is borrowed from [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] while the shape of f 2 is used both by [START_REF] Celisse | A cross-validation based estimation of the proportion of true null hypotheses[END_REF] and [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF]. Figure 1 represents those three cases with respect to each design density and associated proportion θ. Figure 1: Representation of f j and the corresponding g j in model ( 1) for pθ 1 " 0.65, f 1 q (left), pθ 2 " 0.45, f 2 q (middle) and pθ 3 " 0.35, f 3 q (right).

Implementation of the method

To compute our estimates, we choose Kpxq " Lpxq " p1 ´|x|q1 t|x|ď1u the triangular kernel. In the variance term ( 8) of the GL method used to select the bandwidth of the kernel estimator of f , we replace }g} 8,Vnpx0q by the 95 th percentile of max tPVnpx0q ĝh ptq, h P H n ( . Similarly, in the variance term Γ 1 used to select the bandwidth of the kernel estimate of g, we use the 95 th percentile of max tPr0,1s ĝh ptq, h P H n ( instead of }g} 8 . The collection of bandwidths H n , B, B 1 are equal to 1{k, k " 1, . . . , t ? nu ( . We shall settle the values of the constants κ, ε and λ involved in the penalty terms V px 0 , hq, Γ 1 phq and Γ 2 pbq respectively, to compute the selected bandwidths. Since the calibrations of these tuning parameters are carried out in the same fashion, we only describe the calibration for κ. Denote by fκ the estimator of f depending on the constant κ to be calibrated. We approximate the mean-squared error for the estimator fκ , defined by MSEp fκ px 0 qq " Erp fκ px 0 q ´f px 0 qq 2 s, over 100 Monte-Carlo runs, for different possible values tκ 1 , . . . , κ K u of κ, for the three densities f 1 , f 2 , f 3 calculated at several test points x 0 . We choose a value for κ that leads to small risks in all investigated cases. Figure 2(a) shows that κ " 0.78 is an acceptable choice even if other values can be also convenient. Similarly, we set ε " 0.52 and λ " 4.25 (see Figure 2(b) and 2(c) for the calibrations of ε and λ.

Simulation results

Estimation of the mixing proportion θ

We compare our estimator θn with the histogram-based estimator θNg-M n proposed in [START_REF] Van | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF] and the estimator θS n introduced in [START_REF] Storey | A direct approach to false discovery rates[END_REF]. Boxplots in Figure 3 represent the absolute errors of θn , θNg-M n and θS n , labeled respectively by "Sym-Ker", "Histogram" and "Bootstrap". The estimators θn and θNg-M n have comparable performances, and outperform θS n .
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Estimation of the target density f

We present in Tables 1, 2 and 3 the mean-squared error (MSE) for the estimation of f according to the three different models and the different sample sizes introduced in Section 5.1. The MSEs' are approximated over 100 Monte-Carlo replications. We shall choose the estimation points (to compute the pointwise risk): we propose x 0 P t0.1, 0.4, 0.6, 0.9u. The choices of x 0 " 0.4 and x 0 " 0.6 are standard. The choices of x 0 " 0.1 and x 0 " 0.9 allows to test the performance of f close to the boundaries of the domain of definition of f and g. We compare our estimator f with the randomly weighted estimator proposed in Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF]. In the sequel, the label "AWKE" (Adaptive Weighted Kernel Estimator) refers to our estimator f , whose bandwidth is selected by the Goldenshluger-Lepski method and "Ng-M" refers to the one proposed by [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF]. Resulting boxplots are displayed in Figure 4 for n " 2000.

Sample size Estimator x 0 " 0.1 x 0 " 0.4 x 0 " 0.6 x 0 " 0. 1: mean-squared error of the reconstruction of f 1 , for our estimator f (AWKE), and for the estimator of Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] (Ng-M).

Tables 1, 2, 3 and boxplots show that our estimator outperforms the one of [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF]. Notice that the errors are relatively large at the point x 0 " 0.1, for both estimators, which was expected (boundary effect).

Sample size Estimator x 0 " 0.1 x 0 " 0.4 x 0 " 0.6 x 0 " 0. 3: mean-squared error of the reconstruction of f 3 , for our estimator f (AWKE), and for the estimator of Nguyen and Matias [START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] (Ng-M).

Proofs

In the sequel, the notations P, Ẽ and Ṽar respectively denote the probability, the expectation and the variance associated with X 1 , . . . , X n , conditionally on the additional random sample X n`1 , . . . , X 2n .

Proof of Proposition 1

Let ρ ą 1, introduce the event

Ω ρ " ! ρ ´1γ ď γ ď ργ ) .
such that fh px 0 q ´f px 0 q " `f h px 0 q ´f px 0 q ˘1Ωρ ``f h px 0 q ´f px 0 q ˘1Ω c ρ .

We first evaluate the term `f h px 0 q ´f px 0 q ˘1Ωρ . Suppose now that we are on Ω ρ , then for any x 0 P r0, 1s, we have

`f h px 0 q ´f px 0 q ˘2 ď 3 ´`f h px 0 q ´Kh ‹ f px 0 q ˘2 ``K h ‹ f px 0 q ´f px 0 q ˘2 ``f px 0 q ´f px 0 q ˘2¯, (26) 
where we define f pxq " wp θn , ĝpxqqgpxq " 1 1 ´θ n

˜1

´θ n ĝpxq ¸gpxq.

Note that by definition of f , we have K h ‹ f px 0 q " Ẽ" fh px 0 q ‰ . Hence, `f h px 0 q ´Kh ‹ f px 0 q ˘2 " `f h px 0 q ´Ẽ " fh px 0 q ‰˘2 . q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q f3 -x0 = 0. It follows that

Ẽ " `f h px 0 q ´Ẽ " fh px 0 q ‰˘2 ı " Ṽar ´f h px 0 q ¯" Ṽar ˜1 n n ÿ i"1 wp θn , ĝpX i qqK h px 0 ´Xi q " 1 n Ṽar ´wp θn , ĝpX 1 qqK h px 0 ´X1 q ď 1 n Ẽ " ´wp θn , ĝpX 1 qqK h px 0 ´X1 q ¯2 .
On the other hand, for all i P t1, . . . , nu, thanks to (A4) and (A2), and since γ ě ρ ´1γ on Ω ρ , ˇˇwp θn , ĝpX i qqK h px 0 ´Xi q ˇˇ" ˇˇˇˇˇ1

1 ´θ n ˜1 ´θ n ĝpX i q ¸Kh px 0 ´Xi q ˇˇˇˇˇď 2 δ ˜1 `θ n |ĝpX i q| ¸|K h px 0 ´Xi q| ď 2 δ ˆ1 `1 γ ˙|K h px 0 ´Xi q| (27) 
ď 2 δ ˆ1 `ρ γ ˙|K h px 0 ´Xi q| " 2pρ `γq δγ |K h px 0 ´Xi q|. (28) 
For ( 27), as we use compactly supported kernel to construct the estimator fh , condition α n ď h ´1 in (A5) ensures that ˇˇ`ĝpXiq ˘´1 K h px 0 ´Xi q ˇˇis upper bounded by γ´1 |K h px 0 ´Xi q| even though we have no observation in the neighbourhood of x 0 .

Thus we obtain, on Ω ρ ,

Ẽ " `f h px 0 q ´Ẽ " fh px 0 q ‰˘2 ı ď 4pρ `γq 2 δ 2 γ 2 n Ẽ " K 2 h px 0 ´X1 q ı ď 4pρ `γq 2 }K} 2 2 }g} 8,Vnpx0q δ 2 γ 2 nh . (29) 
For the last two terms of ( 26), we apply the following proposition, which proof can be found in Section 6.5.1.

Proposition 2. Assume (A1) and (A3). On the set Ω ρ , we have the following results for any x 0 P r0, 1s

`f px 0 q ´f px 0 q ˘2 ď C 1 δ ´2γ ´2 }ĝ ´g} 2 8,Vnpx0q `C2 δ ´6ˇθ n ´θˇˇ2 , (30) 
`Kh ‹ f px 0 q ´f px 0 q ˘2 ď 6 }K h ‹ f ´f } 2 8,Vnpx0q `C3 δ ´2γ ´2 }ĝ ´g} 2 8,Vnpx0q `C4 δ ´6ˇθ n ´θˇˇ2 , (31) 
where C 1 and C 2 respectively depend on ρ and }g} 8,Vnpx0q , C 3 depends on ρ and }K} 1 and C 4 depends on }g} 8,Vnpx0q and }K} 1 .

Combining ( 29), ( 30) and (31), we obtain It remains to study the risk bound on Ω c ρ . To do so, we successively apply the following lemmas whose proofs are postponed to Section 6.5. Lemma 3. Suppose that Assumption (A3) is satisfied. Then we have for ρ ą 1

E " `f h px 0 q ´f px 0 q ˘21 Ωρ ı ď 18 }K h ‹ f ´f } 2 
P ´Ωc ρ ¯ď C g,ρ exp ! ´plog nq 3{2
) , with C g,ρ a positive constant depending on g and ρ.

Lemma 4. Assume (A1) to (A5). For any h P H n , we have

E " `f h px 0 q ´f px 0 q ˘21 Ω c ρ ı ď C 4 n 2 ,
with C 4 a positive constant depending on }f } 8,Vnpx0q , }K} 8 , g, δ and ρ.

This concludes the proof of Proposition 1.

Proof of Theorem 1

Suppose that we are on Ω ρ . Let f be the adaptive estimator defined in [START_REF] Comte | Nonparametric estimation for stochastic differential equations with random effects[END_REF], we have for any x 0 P r0, 1s, `f px 0 q ´f px 0 q ˘2 ď 2 ´`f px 0 q ´f px 0 q ˘2 ``f px 0 q ´f px 0 q ˘2T he second term is controlled by (30) of Proposition 2. Hence it remains to handle with the first term. For any h P H n , we have `f px 0 q ´f px 0 q ˘2 ď 3 ´`f ĥpx0q px 0 q ´f ĥpx0q,h px 0 q ˘2 ``f ĥpx0q,h px 0 q ´f h px 0 q ˘2 ``f h px 0 q ´f px 0 q ˘2"

3 ´`f ĥpx0q px 0 q ´f ĥpx0q,h px 0 q ˘2 ´V px 0 , ĥpx 0 qq ``f ĥpx0q,h px 0 q ´f h px 0 q ˘2 ´V px 0 , hq `V px 0 , ĥpx 0 qq `V px 0 , hq ``f h px 0 q ´f px 0 q ˘2ď 3 ´Apx 0 , ĥpx 0 qq `Apx 0 , hq `V px 0 , ĥpx 0 qq `V px 0 , hq ``f h px 0 q ´f px 0 q ˘2¯( 32)

ď 6Apx 0 , hq `6V px 0 , hq `3`f h px 0 q ´Kh ‹ f px 0 q ˘2 `3`K h ‹ f px 0 q ´f px 0 q ˘2. (33) 
To obtain (32), we use the definition of Apx 0 , hq, h P H n , see [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF], and also that fh,h 1 " fh 1 ,h , for any h, h 1 P H n . Then, (33) is a consequence of the definition of ĥpx 0 q, see [START_REF] Comte | Nonparametric estimation for stochastic differential equations with random effects[END_REF]. Next, we have Apx 0 , hq " max

h 1 PHn ! `f h,h 1 px 0 q ´f h 1 px 0 q ˘2 ´V px 0 , h 1 q ) ď 3 max h 1 PHn ! `f h,h 1 px 0 q ´Kh 1 ‹ pK h ‹ f qpx 0 q ˘2 ``f h 1 px 0 q ´Kh 1 ‹ f px 0 q ˘2 ``K h 1 ‹ pK h ‹ f qpx 0 q ´Kh 1 ‹ f px 0 q ˘2 ´V px 0 , h 1 q 3 * ď 3 `Bphq `D1 `D2 ˘,
where Bphq " max

h 1 PHn ´Kh 1 ‹ pK h ‹ f qpx 0 q ´Kh 1 ‹ f px 0 q ¯2 D 1 " max h 1 PHn " `f h 1 px 0 q ´Kh 1 ‹ f px 0 q ˘2 ´V px 0 , h 1 q 6 * D2 " max h 1 PHn " `f h,h 1 px 0 q ´Kh 1 ‹ pK h ‹ f qpx 0 q ˘2 ´V px 0 , h 1 q 6 * `.

Since

Bphq " max

h 1 PHn ´Kh 1 ‹ pK h ‹ f qpx 0 q ´Kh 1 ‹ f px 0 q ¯2 " max h 1 PHn ´Kh 1 ‹ pK h ‹ f ´f qpx 0 q ¯2 ď }K} 2 1 sup tPVnpx0q ˇˇK h ‹ f ptq ´f ptq ˇˇ2 ,
then we can rewrite (33) as ´f px 0 q ´f px 0 q ¯2 ď 18D 1 `18D 2 `6V px 0 , hq `3`f h px 0 q ´Kh ‹ f px 0 q ˘2 `p18 }K} The last two terms of (34) are controlled by ( 29) and (31) of Proposition 2. Hence it remains to deal with terms D 1 and D 2 .

For D 1 , we recall that K h ‹ f px 0 q " Ẽ" fh px 0 q ‰ and ẼrD 1 s " Ẽ « max hPHn " ´f h px 0 q ´Kh ‹ f px 0 q ¯2 ´V px 0 , hq 6

* `ff ď ÿ hPHn Ẽ « " ´f h px 0 q ´Ẽ " fh px 0 q ¯2 ´V px 0 , hq 6 
* `ff ď ÿ hPHn ż `8 0 P ˜"`f h px 0 q ´Ẽ " fh px 0 q ˘2 ´V px 0 , hq 6 
* `ą u ¸du ď ÿ hPHn ż `8 0 P ˜ˇf h px 0 q ´Ẽ " fh px 0 q ˇˇą c V px 0 , hq 6 `u ¸du. ( 35 
)
Now let us introduce the sequence of i.i.d. random variables Z 1 , . . . , Z n where we set Z i " wp θn , ĝpX i qqK h px 0 ´Xi q.

Then we have fh px 0 q ´Ẽ " fh px 0 q ‰ " 1 n

n ÿ i"1 `Zi ´ẼrZ i s ˘.
Moreover, we have by [START_REF] Schuster | Incorporating support constraints into nonparametric estimators of densities[END_REF] and recall that we are on Ω ρ " ρ ´1γ ď γ ď ργ ( , 

|Z i | "
where C 5 is a positive constant depending on }g} 8,Vnpx0q , }K} 8 , }K} 2 and ρ.

Similarly, we introduce U i " wp θn , ĝpX i qqK h 1 ‹ K h px 0 ´Xi q for i " 1, . . . , n. Then, fh,h 1 px 0 q ´Kh 1 ‹ pK h ‹ f qpx 0 q " fh,h 1 px 0 q ´Ẽ " fh,h 

1 px 0 q ‰ " 1 n n ÿ i"1 `Ui ´ẼrU i s ˘, and 
|U i | ď 4 
with C 6 a positive constant depends on }g} 8,Vnpx0q , }K} 8 , }K} 1 , }K} 2 and ρ. Finally, combining (34), (36), (37) and successively applying Lemma 3 and Lemma 4 allow us to conclude the result stated in Theorem 1.

Proof of Lemma 2

First, we prove that g sym is the density of Y i . To this aim, let ϕ be a measurable bounded function defined on R. We compute

ErϕpY i qs " ErErϕpX i q|ε i s1 t 1"1u s `ErErϕp2 ´Xi q|ε i s1 t 1"´1u s, " 1 2 `ErϕpX i qs `Erϕp2 ´Xi qs ˘, " 1 2 
˜ż 1 0 ϕpxqgpxqdx `ż 1 0 ϕp2 ´xqgpxqdx ¸, " 1 2 
˜ż 1 0 ϕpxqgpxqdx `ż 2 1 ϕpxqgp2 ´xqdx ¸, " ż 2 0 ϕpxqg sym pxqdx.
Since the equality holds for any test function ϕ, we obtain the first assumption of the lemma.

We prove now [START_REF] Ildar | Has 1 minskiȋ. An estimate of the density of a distribution[END_REF]. Under the identifiability condition, we have θ " gpxq for all x P r1 ´δ, 1s, and thus θ " 2g sym pxq for x P r1 ´δ, 1 `δs. Hence we have

| θn,b ´θ| " ˇˇˇˇ1 δ ż 1`δ 1´δ ĝsym b pxqdx ´1 δ ż 1`δ 1´δ g sym pxqdx ˇˇˇˇ" ˇˇˇˇ1 δ ż 1`δ 1´δ ĝsym b pxq ´gsym pxqdx ˇˇˇď 1 δ ż 1`δ 1´δ ˇˇĝ sym b pxq ´gsym pxq ˇˇdx ď 1 δ ż 1`δ 1´δ › › ĝsym b ´gsym › › 8,r1´δ,1`δs dx " 2 › › ĝsym b ´gsym › › 8,r1´δ,1`δs ,
which proves [START_REF] Ildar | Has 1 minskiȋ. An estimate of the density of a distribution[END_REF]. Then, thanks to the Markov Inequality

P ´θ n,b ‰ θn,b ¯" P ˜θ n,b R " δ 2 , 1 ´δ 2  ḑ P ˆ|θ n,b ´θ| ą δ 2 ˙ď 4 δ 2 E " | θn,b ´θ| 2 ı ,
which is [START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF]. Finally,

E " | θn,b ´θ| 2 ı " E « | θn,b ´θ| 2 ˆ1 θn,b " θn,b ( `1 θn,b ‰ θn,b ( ˙ff ď E " | θn,b ´θ| 2 1 θn,b Prδ{2,1´δ{2s (  `´| θn,b | `|θ| ¯2 P ´θ n,b ‰ θn,b ď E " | θn,b ´θ| 2 1 θn,b Prδ{2,1´δ{2s (  `4P ´θ n,b ‰ θn,b ď p1 `4 ˆ4 δ 2 qE " | θn,b ´θ| 2 ı , ď p1 `4 ˆ4 δ 2 q ˆ2E " › › ĝsym b ´gsym › › 2 8,r1´δ,1`δs ı .
thanks to [START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF] and then [START_REF] Ildar | Has 1 minskiȋ. An estimate of the density of a distribution[END_REF]. This concludes the proof of Lemma 2.

Proof of Corollary 1

Since Assumptions (A6) and (A7) are fulfilled. According to Proposition 1.2 of Tsybakov [START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF], we get for all x 0 P r0, 1s

|K h ‹ f px 0 q ´f px 0 q| ď C 7 Lh β ,
where C a constant depending on K and L. We obtain Implying that for all n ě npβ, γ, ρq,

min hPHn " }K h ‹ f ´f } 2 8,Vnpx0q `logpnq δ 2 γ 2 nh * ď min hPHn " C 7 Lh β `logpnq δ 2 γ 2 nh * . (38) 
Ω ρ Ď tγ ě γ{ρu Ď th ˚P H n u.
Finally, since we also have ( 13) and [START_REF] Liu | Density estimation with contaminated data: Minimax rates and theory of adaptation[END_REF], gathering [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] and (38). Since Assumption (A5) is verified by construction of H n , using again Lemma 4, we obtain, for all n, E " `f px 0 q ´f px 0 q ˘2ı ď C 8 ˆlog n n

˙2β 2β`1
, where C 8 is a constant depending on K, }f } 8,Vnpx0q , g, δ, γ, ρ, L and β.

6.5 Proofs of technical intermediate results 

˜1

´θ n gpxq ¸gpxq.

(39)

Then we have for x 0 P r0, 1s

`f px 0 q ´f px 0 q ˘2 ď 2 ´`f px 0 q ´f px 0 q ˘2 ``f px 0 q ´f px 0 q ˘2¯.

For the first term, on Ω ρ " ρ ´1γ ď γ ď ργ ( we have, by using (A4), `f px 0 q ´f px 0 q ˘2 " ´wp θn , ĝpx 0 qqgpx 0 q ´wp θn , gpx 0 qqgpx 0 q ¯2 " ¨1 1 ´θ n ˜1 ´θ n ĝpx 0 q ¸´1 1 ´θ n ˜1 ´θ n gpx 0 q ¸' 2 |gpx 0 q| 2 " θ2 n p1 ´θ n q 2 ˆ1 ĝpx 0 q ´1 gpx 0 q ˙2 |gpx 0 q| 2 ď 4 δ 2 ˆĝpx 0 q ´gpx 0 q ĝpx 0 qgpx 0 q ˙2 |gpx 0 q| 2 ď 4ρ 2 δ ´2γ ´2 }ĝ ´g} 

Moreover, thanks to (A1), `f px 0 q ´f px 0 q ˘2 " ´wp θn , gpx 0 qqgpx 0 q ´wpθ, gpx 0 qqgpx 0 q ¯2 " ¨1 1 ´θ n ˜1 ´θ n gpx 0 q ¸gpx 0 q ´1 1 ´θ ˜1 ´θ gpx 0 q ¸gpx 0 q 

'2 " ¨1 1 
Thus we obtain by gathering (40) and (41), `f px 0 q ´f px 0 q ˘2 ď 8ρ 2 δ ´2γ ´2 }ĝ ´g} Next, the term `Kh ‹ f px 0 q ´f px 0 q ˘2 can be treated by studying the following decomposition `Kh ‹ f px 0 q ´f px 0 q ˘2 ď 3 ˆ`K h ‹ f px 0 q ´Kh ‹ f px 0 q ˘2 ``K h ‹ f px 0 q ´Kh ‹ f px 0 q ˘2 ``K h ‹ f px 0 q ´f px 0 q ˘2" : 3 `A1 `A2 `A3 q.

For term A 1 , we have by using (40)

A 1 " `Kh ‹ p f ´f qpx 0 q ˘2 " ˆż K h px 0 ´uqp f puq ´f puqqdu By using (41) and following the same lines as for A 1 , we obtain A 2 " `Kh ‹ p f ´f qpx 0 q ˘2 ď 16 }g} ˇˇθ n ´θˇˇ2 .

For A 3 , using the upper bound obtained as above for p f px 0 q ´f px 0 qq 2 , we have A 3 ď 2 `Kh ‹ f px 0 q ´f px 0 q ˘2 `2`f px 0 q ´f px 0 q ˘2 ď 2 }K h ‹ f ´f } Finally, combining all the terms A 1 , A 2 and A 3 , we obtain (31). This ends the proof of Proposition 2.

Proof of Lemma 3

Lemma 3 is a consequence of [START_REF] Chagny | Penalization versus goldenshluger-lepski strategies in warped bases regression[END_REF]. Indeed, if condition (A3) is satisfied, we have for all t P V n px 0 q, |ĝptq ´gptq| ď ν|ĝptq| with probability 1 ´Cg,ν exp `´plog nq 3{2 ˘. This implies, p1 `νq ´1|gptq| ď |ĝptq| ď p1 ´νq ´1|gptq|.

Since γ " inf tPVnpx0q |gptq| and γ " inf tPVnpx0q |ĝptq|, by using (6) and taking ν " ρ ´1, ν " 1 ´ρ´1 , we obtain with probability 1 ´Cg,ν exp `´plog nq 3{2 ˘, p1 `νq ´1γ ď γ ď p1 ´νq ´1γ. This completes the proof of Lemma 3.

Proof of Lemma 4

We have for any x 0 P r0, 1s, E " `f h px 0 q ´f px 0 q ˘21 Ω c δ 2 n 2 ˆ1 `1 plog nq 3 ˙2 PpΩ c ρ q (using Assumption (A5)).

Finally, we apply Lemma 3 to establish the following bound

E " `f h px 0 q ´f px 0 q ˘21 Ω c ρ ı ď C g,ρ ˜8 }K} 2 8 δ 2 n 2 plog nq 6 `2 }f } 2 8,Vnpx0q ¸exp ! ´plog nq 3{2 ) ď C n 2 ,
where C depends on δ, }f } 8,Vnpx0q , }K} 8 , g and ρ, which ends the proof of Lemma 4.

2 8 ,

 8 Vnpx0q s can be bounded as required in the statement of Corollary 1.

λFigure 2 :

 2 Figure 2: values of the mean-squared error for (a) f px 0 q with respect to κ, (b) ĝpx 0 q with respect to ε. (c) : Values of the mean-absolute error for θn with respect to λ. The sample size is n " 2000 for all computations. The vertical line corresponds to the chosen value of κ (figure (a)), ε (figure (b)) and λ (figure (c)).

Figure 3 :

 3 Figure 3: errors for the estimation of θ in the three simulated settings (with sample size n " 2000).

Figure 4 :

 4 Figure 4: errors for the estimation of f 1 , f 2 and f 3 for x 0 P t0.1, 0.4, 0.6, 0.9u and sample size n " 2000.

2 1

 2 `3q sup tPVnpx0q ˇˇK h ‹ f ptq ´f ptq ˇˇ2 . (34)

6. 5 . 1

 51 Proof of Proposition 2Let us introduce the function f pxq :" wp θn , gpxqqgpxq " 1 1 ´θ n

2 8 ,

 8 Vnpx0q δ ´6ˇθ n ´θˇˇ2 .

2 8 ,

 8 Vnpx0q `32 }g} 2 8,Vnpx0q δ ´6ˇθ n ´θˇˇ2 .

˙2 ď ˆż |K h px 0 ´uq|| f puq ´f puq|du ˙2 ď 4ρ 2 δ ´2γ ´2 }ĝ ´g} 2 8,

 2 Vnpx0q ˆż |K h px 0 ´uq|du ˙2 ď 4ρ 2 δ ´2γ ´2 }K}

2 8 ,

 8 Vnpx0q δ ´6 }K} 2 1

2 8 , 2 8

 82 Vnpx0q `16ρ 2 δ ´2γ ´2 }ĝ ´g}

  are positive constants such that : C 5 depends on }g} 8,Vnpx0q , }K} 1 and }K} 2 , C 6 depends on }K} 1 , C 7 depends on }g} 8,Vnpx0q and }K} 1 , and C 8 depends on δ, γ, }f } 8,Vnpx0q , g, }K} 2 and }K} 8 .

Table 2 :

 2 mean-squared error of the reconstruction of f 2 , for our estimator f (AWKE), and for the estimator of Nguyen and Matias[START_REF] Van | Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. application to local false discovery rate estimation[END_REF] (Ng-M).

	9

  |wp θn , ĝpX i qqK h px 0 ´Xi q| ď On the other hand, by the definition of V px 0 , hq we have

	conditions ρ ´1γ ď γ and h ě 1{n,
	ẼrD 1 s ď	ÿ hPHn	ż `8 0	2n ´2 max	$ & %	exp	ˆ´nu 4v	˙, exp	2pγ `1q }K} 8 hδγ ˜´n ? ¸, . u -8b du	ď	2pργ `1q }K} 8 hδγ	": b,
	and	ď 2n	Ẽ" Z 2 1 ´2 ÿ hPHn	‰ ż `8 " Ẽ " wp θn , ĝpX i qq 2 K 2 h px 0 ´Xi q ı 0 max $ & % exp ¨´nh 16pργ `1q 2 }K} ď 4pργ `1q 2 }K} 2 2 }g} 8,Vnpx0q hδ 2 γ2 δ 2 γ2 2 2 }g} 8,Vnpx0q u ', exp ˜´nh	": v. 16pργ `1q }K} 8 δγ	?	-¸, . u	du
	Applying the Bernstein inequality (cf. Lemma 2 of Comte and Lacour [11]), we have for any u ą 0, P ˜ˇf h px 0 q ´Ẽ " fh px 0 q ˇˇą c V px 0 , hq 6 `u ¸" P ˜ˇˇ1 n n ÿ i"1 `Zi ´ẼrZ i s ˘ˇˇą c V px 0 , hq ď 2n ´2 ÿ hPHn ż `8 0 max $ & % exp ¨´nh δ 2 γ 2 16pργ `1q 2 ρ 2 }K} 2 2 }g} 8,Vnpx0q u ', exp ˜´nh δγ 16pργ `1qρ }K} 8 `u ḑ ¸, . ? u -du 6 2 max $ & % exp ˜´n 4v ˆV px 0 , hq 6 `u˙¸, exp ˜´n 4b c V px 0 , hq . ď 2n ´2 ÿ hPHn # + ż `8 0 max ! e ´π1u , e ´π2 ? u ) du ď 2n ´2 ÿ hPHn max 1 π 1 , 2 . π 2 2 `u¸, 6 -ď 2 max $ & % exp ˆ´n 24v V px 0 , hq ˙exp ˆ´nu 4v ˜´n c V px 0 , hq ¸exp ˜´n ? u ¸, . with π 1 :" δ 2 γ 2 16pργ `1q 2 ρ 2 }K} 2 2 }g} 8,Vnpx0q and π 2 :" δγ . 16pργ `1qρ }K} 8 ˙, exp 8b 6 8b -Since cardpH n q ď n, we finally obtain
													ẼrD 1 s ď C 5 δ ´2γ ´2n ´1,
				n 24v	V px 0 , hq "	nhγ 2 δ 2 96pργ `1q 2 }K} 2 2 }g} 8,Vnpx0q	ˆκ }K} 2 1 }K} 2 2 }g} 8,Vnpx0q γ2 nh	logpnq
										"	κδ 2 }K} 2 1 96pργ `1q 2 logpnq ě	κδ 2 96pργ `1q 2 logpnq.
	If we choose κ such that	κδ 2 96pργ `1q 2 ě 2, we get
													n 24v	V px 0 , hq ě 2 logpnq.
													b
					n 8b	c	V px 0 , hq 6	"	16	?	nhγδ 6pργ `1q }K} 8	ˆ}K} 1 }K} 2	κ }g} 8,Vnpx0q logpnq γ? nh
												"	1{2 δ }K} 1 }K} 2 }g} 8,Vnpx0q 16 ? 6pργ `1q }K} 8	a	κnh logpnq
												ě	16	?	δ }K} 1 }K} 2 6pργ `1qρ 1{2 γ 1{2 }K} 8	?	κ log 2 pnq ě 2 logpnq,
	if												16 ?	δ }K} 1 }K} 2 6pργ `1qρ 1{2 γ 1{2 }K} 8	?	κ logpnq ě 2
	which automatically holds for well-chosen value of κ, and n large enough. Then we have by using the

Moreover, using the assumption that γnh ě log 3 pnq and that γ ď ργ on Ω ρ , we have

  ´θ n ´1 1

						'2
			´θ	`˜θ 1 ´θ	´θ n 1 ´θ n ¸1 gpx 0 q	|gpx 0 q| 2
	"	|gpx 0 q| 2 p1 ´θq 2 p1 ´θ n q 2	˜θ n ´θ	`θ ´θ n gpx 0 q	¸2
	ď	4 }g} 2 8,Vnpx0q δ 4	˜θ n ´θ	`θ ´θ n gpx 0 q	¸2
	ď 16 }g}			
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