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Adaptive nonparametric estimation of a component density in a
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Gaëlle Chagny∗, Antoine Channarond†, Van Hà Hoang‡, Angelina Roche§

February 5, 2021

Abstract

A two-class mixture model, where the density of one of the components is known, is considered.
We address the issue of the nonparametric adaptive estimation of the unknown probability density
of the second component. We propose a randomly weighted kernel estimator with a fully data-driven
bandwidth selection method, in the spirit of the Goldenshluger and Lepski method. An oracle-
type inequality for the pointwise quadratic risk is derived as well as convergence rates over Hölder
smoothness classes. The theoretical results are illustrated by numerical simulations.

1 Introduction

The following mixture model with two components:

gpxq “ θ ` p1´ θqfpxq, @x P r0, 1s, (1)

where the mixing proportion θ P p0, 1q and the probability density function f on r0, 1s are unknown,
is considered in this article. It is assumed that n independent and identically distributed (i.i.d. in the
sequel) random variables X1, . . . , Xn drawn from density g are observed. The main goal is to construct
an adaptive estimator of the nonparametric component f and to provide non-asymptotic upper bounds
of the pointwise risk : the resulting estimator should automatically adapt to the unknown smoothness of
the target function. The challenge arises from the fact that there is no direct observation coming from
f . As an intermediate step, the estimation of the parametric component θ is addressed as well.

Model (1) appears in some statistical settings: robust estimation and multiple testing among oth-
ers. The one chosen in the present article, as described above, comes from the multiple testing frame-
work, where a large number n of independent hypotheses tests are performed simultaneously. p-values
X1, . . . , Xn generated by these tests can be modeled by (1). Indeed these are uniformly distributed on
r0, 1s under null hypotheses while their distribution under alternative hypotheses, corresponding to f , is
unknown. The unknown parameter θ is the asymptotic proportion of true null hypotheses. It can be
needed to estimate f , especially to evaluate and control different types of expected errors of the testing
procedure, which is a major issue in this context. See for instance Genovese and Wassermann [15], Storey
[28], Langaas et al. [20], Robin et al. [26], Strimmer [29], Nguyen and Matias [23], and more fundamentally,
Benjamini et al. [1] and Efron et al. [14].

In the setting of robust estimation, different from the multiple testing one, model (1) can be thought of
as a contamination model, where the unknown distribution of interest f is contaminated by the uniform
distribution on r0, 1s, with the proportion θ. This is a very specific case of the Huber contamination model
[18]. The statistical task considered consists in robustly estimating f from contaminated observations
X1, . . . , Xn. But unlike our setting, the contamination distribution is not necessarily known while the
contamination proportion θ is assumed to be known, and the theoretical investigations aim at providing
minimax rates as functions of both n and θ. See for instance the preprint of Liu and Gao [22], which
addresses pointwise estimation in this framework.
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Back to the setting of multiple testing, the estimation of f in model (1) has been addressed in several
works. Langaas et al. [20] proposed a Grenander density estimator for f , based on a nonparametric
maximum likelihood approach, under the assumption that f belongs to the set of decreasing densities
on r0, 1s. Following a similar approach, Strimmer [29] also proposed a modified Grenander strategy
to estimate f . However, the two aforementioned papers do not investigate theoretical features of the
proposed estimators. Robin et al. [26] and Nguyen and Matias [23] proposed a randomly weighted kernel
estimator of f , where the weights are estimators of the posterior probabilities of the mixture model, that
is, the probabilities of each individual i being in the nonparametric component given the observation Xi.
[26] proposes an EM-like algorithm, and proves the convergence to an unique solution of the iterative
procedure, but they do not provide any asymptotic property of the estimator. Note that their model
gpxq “ θφpxq ` p1 ´ θqfpxq, where φ is a known density, is slightly more general, but our procedure is
also suitable for this model under some assumptions on φ. Besides, [23] achieves a nonparametric rate
of convergence n´2β{p2β`1q for their estimator, where β is the smoothness of the unknown density f .
However, their estimation procedure is not adaptive since the choice of their optimal bandwidth still
depends on β.

In the present work, a complete inference strategy for both f and θ is proposed. For the nonparametric
component f , a new randomly weighted kernel estimator is provided with a data-driven bandwidth
selection rule. Theoretical results on the whole estimation procedure, especially adaptivity of the selection
rule to unknown smoothness of f , are proved under a given identifiability class of the model, which is an
original contribution in this framework. Major results derived in this paper are the oracle-type inequality
in Theorem 1, and the rates of convergence over Hölder classes, which are adapted to the control of
pointwise risk of kernel estimators, in Corollary 1.

Unlike the usual approach in mixture models, the weights of the proposed estimator are not estimates
of the posterior probabilities. The proposed alternative principle is simple and consists in using weights
based on a density change, from the target distribution f , which is not directly reachable, to the dis-
tribution of observed variables g. A function w is thus derived such that fpxq “ wpθ, gpxqqgpxq, for all
θ, x P r0, 1s. This type of link between one of the conditional distribution given hidden variables, f , to
the distribution of observed variables g, is quite remarkable in the framework of mixture models. It is a
key idea of our approach, since it implies a crucial equation for controlling the bias term of the risk, see
Subsection 2.1 for more details. This is necessary to investigate adaptivity using the Goldenshluger and
Lespki (GL) approach [17], which is known in other various contexts, see for instance, Comte et al. [10],
Comte and Lacour [11], Doumic et al. [13], Reynaud-Bouret et al. [25] who apply GL method in kernel
density estimation, and Bertin et al. [3], Chagny [6], Chichignoud et al. [7] or Comte and Rebafka [12].

Thus oracle weights are defined by wpθ, gpXiqq, i “ 1, . . . , n, but g and θ are unknown. These oracle
weights are estimated by plug-in, using preliminary estimators of g and θ, based on an additional sample
Xn`1, . . . , X2n. Some assumptions on these estimators are needed to prove the results on the estimator of
f ; this paper also provides estimators of g and θ which satisfy these assumptions. Note that procedures
of [23] and [26] actually require preliminary estimates of g and θ as well, but they do not deal with
additional uncertainty caused by the multiple use of the same observations in the estimates of θ, g and
f .

Identifiability issues are reviewed in Section 1.1 in Nguyen and Matias [24]. In the present work, f
is assumed to be vanishing at a neighbourhood of 1 to ensure identifiability. Under this assumption, θ
can be recovered as the infimum of g. Moreover, as shown above by the equation linking f to g and
θ, f is actually uniquely determined by giving g and θ, even though the latter is not the infimum of g.
Note that the theoretical results on the estimator of the nonparametric component f do not depend on
the chosen identifiability class, and can be transposed to other cases. For that reason, the discussion on
identifiability is postponed to Section 4.2, after results on the estimator of f .

The paper is organized as follows. Our randomly weighted estimator of f is constructed in Section
2.1. Assumptions on f and on preliminary estimators of g and θ required for proving the theoretical
results are in this section too. In Section 2, a bias-variance decomposition for the pointwise risk of the
estimator of f is given as well as the convergence rate of the kernel estimator with a fixed bandwidth. In
Section 3, an oracle inequality is given, which justifies our adaptive estimation procedure. Construction
of the preliminary estimators of g and θ are to be found in Section 4. Numerical results illustrate the
theoretical results in Section 5. Proofs of theorems, propositions and technical lemmas are postponed to
Section 6.
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2 Collection of kernel estimators for the target density

In this section, a family of kernel estimators for the density function f based on a sample pXiqi“1,...,n

of i.i.d. variables with distribution g is defined. It is assumed that preliminary estimators of both the
mixing proportion θ and the mixture density g are available, and respectively denoted by θ̃n and ĝ.
They are defined from an additional sample pXiqi“n`1,...,2n of independent variables also drawn from
g but independent of the first sample pXiqi“1,...,n. Definitions, results and results on these preliminary
estimates are the subject of Section 4.

2.1 Construction of the estimators

To define estimators for f , the challenge is that observations X1, . . . , Xn are not drawn from f but from
the mixture density g. Hence the density f cannot be estimated directly by a classical kernel density
estimator. Thus we will build weighted kernel estimates This idea has been used in other contexts, see
for example [12]. The starting point is the following lemma whose proof is straightforward.

Lemma 1. Let X be a random variable from the mixture density g defined by (1) and Y be an (un-
observable) random variable from the component density f . Then for any measurable bounded function
ϕ:

E
“

ϕpY q
‰

“ E
“

wpθ, gpXqqϕpXq
‰

, (2)

where

wpθ, gpxqq :“
1

1´ θ

ˆ

1´
θ

gpxq

˙

, x P r0, 1s.

This result will be used as follows. Let K : RÑ R be a kernel function, that is an integrable function
such that

ş

RKpxqdx “ 1 and
ş

RK
2pxqdx ă `8. For any h ą 0, let Khp¨q “ Kp¨{hq{h. Then the choice

ϕp¨q “ Khpx´ ¨q in Lemma 1 gives:

E
“

Khpx´ Y q
‰

“ E
“

wpθ, gpXqqKhpx´Xq
‰

,

This leads to define the following randomly weighted kernel estimator of f :

f̂hpxq “
1

n

n
ÿ

i“1

wpθ̃n, ĝpXiqqKhpx´Xiq, x P r0, 1s, (3)

where:

wpθ̃n, ĝpXiqq “
1

1´ θ̃n

˜

1´
θ̃n

ĝpXiq

¸

, i “ 1, . . . , n. (4)

Therefore, f̂h is a randomly weighted kernel estimator of f . Note that the total sum of the weights
may not equal 1, in comparison with the estimators proposed in Nguyen and Matias [23] and Robin et
al. [26]. The main advantage of such weights, is that, if we replace ĝ and θ̃n by their theoretical unknown

counterparts g and θ in (3), we obtain, Erf̂hpxqs “ Kh ‹fpxq, where ‹ stands for the convolution product.
This relation, classical in nonparametric kernel estimation, is crucial to study the bias term in the risk
of the estimator, and hence to reach adaptivity.

2.2 Risk bounds of the estimator

Here, upper bounds are derived for the pointwise mean-squared error of the estimator f̂h, defined in (3),
with a fixed bandwidth h ą 0. Our objective is to study the pointwise risk for the estimation of the
density f at a point x0 P r0, 1s. Throughout the paper, the kernel K is chosen compactly supported on
an interval r´A,As with A a positive real number, and such that supxPr´A,As |Kpxq| ă 8. We denote by
Vnpx0q the neighbourhood of x0 used in the sequel and defined by

Vnpx0q “

„

x0 ´
2A

αn
, x0 `

2A

αn



,

where pαnqn is a positive sequence of numbers larger than 1, only depending on n such that αn Ñ `8 as
nÑ `8, chosen by the user. For any function u on R, and any interval I Ă R, let }u}8,I “ suptPI |uptq|.
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We also denote by γ “ inf
tPVnpx0q

|gptq|. Thanks to (1), we have gptq ě θ ą 0 for any t P r0, 1s, and thus,

γ ą 0.

In the sequel, we consider the following assumptions. Note that all assumptions are not simultaneously
necessary for the results.

(A1) The density f is uniformly bounded on Vnpx0q for some n: }f}8,Vnpx0q
ă 8.

(A2) The preliminary estimator ĝ is bounded away from 0 on Vnpx0q a.s. :

γ̂ :“ inf
tPVnpx0q

|ĝptq| ą 0. (5)

(A3) The preliminary estimate ĝ of g satisfies, for all ν ą 0

P

˜

sup
tPVnpx0q

ˇ

ˇ

ˇ

ˇ

ĝptq ´ gptq

ĝptq

ˇ

ˇ

ˇ

ˇ

ą ν

¸

ď Cg,ν exp
!

´plog nq3{2
)

, (6)

with Cg,ν a constant only depending on g and ν.

(A4) The preliminary estimator θ̃n is constructed such that θ̃n P rδ{2, 1´ δ{2s a.s., for a fixed δ P p0, 1q.

(A5) For any bandwidth h ą 0, we assume that a.s.

αn ď
1

h
and

1

h
ď min

#

γ̂n

log3
pnq

,
1

n

+

.

(A6) f belongs to the Hölder class of smoothness β and radius L on r0, 1s, defined by

Σpβ,Lq “
!

φ : φ has ` “ tβu derivatives and @x, y P r0, 1s, |φp`qpxq ´ φp`qpyq| ă L|x´ y|β´`
)

,

where txu denotes a smallest integer which is strictly smaller than the real number x.

(A7) K is a kernel of order ` :
ş

R x
jKpxqdx “ 0 for 1 ď j ď ` and

ş

R |x|
`|Kpxq|dx ă 8.

Since g “ θ`p1´ θqf , Assumption (A1) implies that }g}8,Vnpx0q
ă 8. This assumption is needed to

control the variance term, among others, of the bias-variance decomposition of the risk. Let us notice that
the density g is automatically bounded from below by a positive constant in our model (1). Assumption
(A2) is required to bound the term 1{ĝp¨q that appears in the weight wpθ̃n, ĝp¨qq, see (4). Assumption
(A3) means that the preliminary ĝ has to be rather accurate. Assumptions (A2) and (A3) are also
introduced by Bertin et al. [3] for conditional density estimation purpose : see (3.2) and (3.3) p.946. The
methodology used in our proofs is close to their work : the role played by g here corresponds to the role
played by the marginal density of their paper. They have also shown that an estimator of g satisfying
these properties can be built, see Theorem 4, p. 14 of [2] and some details at Section 4.1. We also build
an estimator θ̃n that satisfies Assumption (A4) in Section 4.2. Assumption (A5) deals with the order of
magnitude of the bandwidths and is also borrowed from [3] (see Assumption (CK) p.947). An example of
bandwidth collection satisfying Assumption (A5) is given in the statement of Corollary 1. Assumptions
(A6) and (A7) are classical for kernel density estimation, see [30] or [8]. The index β in Assumption
(A6) is a measure of the smoothness of the target function. Such assumptions permit to control the
bias term of the bias-variance decomposition of the risk, and thus to derive convergence rates. We will
classically choose ` “ tβu for Assumption (A7) in Corollary 1 below.

We first state an upper bound for the pointwise risk of the estimator f̂h. The proof can be found in
Section 6.1.
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Proposition 1. Assume that Assumptions (A1) to (A5) are satisfied. Then, for any x0 P r0, 1s and

δ P p0, 1q, the estimator f̂h defined by (3) satisfies

E
”

`

f̂hpx0q ´ fpx0q
˘2
ı

ď C˚1

"

}Kh ‹ f ´ f}
2
8,Vnpx0q

`
1

δ2γ2nh

*

`
C˚2
δ6

E
”

ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
ı

`
C˚3
δ2γ2

E
”

}ĝ ´ g}
2
8,Vnpx0q

ı

`
C˚4
n2

, (7)

where C˚` , ` “ 1, . . . , 4 are positive constants such that : C˚1 depends on }K}2 and }g}8,Vnpx0q
, C˚2 depends

on }g}8,Vnpx0q
and }K}1, C˚3 depends on }K}1 and C˚4 depends on }f}8,Vnpx0q

, g, δ, γ, and }K}8.

Proposition 1 is a bias-variance decomposition of the risk. The first term in the right-hand-side (r.h.s.
in the sequel) of (7) is a bias term which decreases when the bandwidth h vanishes whereas the second
one corresponds to the variance term and increases when h vanishes.

There are two additional terms Er}ĝ ´ g}28,Vnpx0q
s and Er|θ̂n ´ θ|2s in the r.h.s. of (7). They are

unavoidable since the estimator f̂h depends on the plug-in estimators ĝ and θ̃n. However, as proved in
Corollary 1, these two terms does not deteriorate the convergence rate provided that g and θ are estimated
accurately. We define in Section 4 such estimators of g and θ. The term C˚4 {pδ

2n2q is a remaining term
and is also negligible.

3 Adaptive pointwise estimation

Let Hn be a finite family of possible bandwidths h ą 0, whose cardinality is bounded by the sample size
n. The best estimator in the collection pf̂hqhPHn defined in (3) at the point x0 is the one that have the
smallest risk, or similarly, the smallest bias-variance decomposition. But since f is unknown, in practice
it is impossible to minimize over Hn the r.h.s. of inequality (7) in order to select the best estimate. Thus,
we propose a data-driven selection, with a rule in the spirit of Goldenshluger and Lepski (GL in the
sequel) [17]. The idea is to mimic the bias-variance trade-off for the risk, with empirical counterparts for
the unknown quantities. We first estimate the variance term of the trade-off by setting, for any h P Hn

V px0, hq “
κ }K}

2
1 }K}

2
2 }g}8,Vnpx0q

γ̂2nh
logpnq, (8)

with κ ą 0 a tuning parameter. The principle of the GL method is then to estimate the bias term
}Kh ‹ f ´ f}

2
8,Vnpx0q

of f̂hpx0q for any h P Hn with

Apx0, hq :“ max
h1PHn

!

`

f̂h,h1px0q ´ f̂h1px0q
˘2
´ V px0, h

1q

)

`
, (9)

where, for any h, h1 P Hn,

f̂h,h1px0q “
1

n

n
ÿ

i“1

wpθ̃n, ĝpXiqqpKh ‹Kh1qpx0 ´Xiq “ pKh1 ‹ f̂hqpx0q.

Heuristically, since f̂h is an estimator of f then f̂h,h1 “ Kh1 ‹ f̂h can be considered as an estimator of
Kh1 ‹f . The proof of Theorem 1 below in Section 6.2 then justifies that Apx0, hq is a good approximation
for the bias term of the pointwise risk. Finally, our estimate at the point x0 is

f̂px0q :“ f̂ĥpx0q
px0q, (10)

where the bandwidth ĥpx0q minimizes the empirical bias-variance decomposition :

ĥpx0q :“ argmin
hPHn

 

Apx0, hq ` V px0, hq
(

.

The constants that appear in the estimated variance V px0, hq are known, except κ, which is a numerical
constant calibrated by simulation (see practical tuning in Section 5), and except }g}8,Vnpx0q

, which is
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replaced by an empirical counterpart in practice (see also Section 5). It is also possible to justify the
substitution from a theoretical point of view, but it adds cumbersome technicalities. Moreover, the
replacement does not change the result of Theorem 1 below. We thus refer to Section 3.3 p.1178 in [9] for
example, for the details of a similar substitution. The risk of this estimator is controlled in the following
result.

Theorem 1. Assume that Assumptions (A1) to (A4) are fulfilled, and that all h P Hn satisfies (A5).
Suppose in addition that the sample size n is larger than a constant that only depends on the kernel K.
For any δ P p0, 1q, the estimator f̂px0q defined in (10) satisfies

E
”

`

f̂px0q ´ fpx0q
˘2
ı

ď C˚5 min
hPHn

"

}Kh ‹ f ´ f}
2
8,Vnpx0q

`
logpnq

δ2γ2nh

*

`
C˚6
δ6

sup
θPrδ,1´δs

E
”

ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
ı

`
C˚7
δ2γ2

E
”

}ĝ ´ g}
2
8,Vnpx0q

ı

`
C˚8
n2

, (11)

where C˚` , ` “ 5, . . . , 8 are positive constants such that : C˚5 depends on }g}8,Vnpx0q
, }K}1 and }K}2, C˚6

depends on }K}1, C˚7 depends on }g}8,Vnpx0q
and }K}1, and C˚8 depends on δ, γ, }f}8,Vnpx0q

, g, }K}2
and }K}8.

Theorem 1 is an oracle-type inequality. It holds whatever the sample size, larger than a fixed con-
stant. It shows that the optimal bias variance trade-off is automatically achieved: the selection rule
permits to select in a data-driven way the best estimator in the collection of estimators pf̂hqhPHn

, up
to a multiplicative constant C˚5 . The last three remainder terms in the r.h.s. of (11) are the same as
the ones in Proposition 1, and are unavoidable, as aforementioned. We have an additional logarithmic
term in the second term of the r.h.s., compared to the analogous term in (7). It is classical in adaptive
pointwise estimation (see for example [12] or [4]). In our framework, it does not deteriorate the adaptive
convergence rate, see Section 4.3 below. To compute this rate, we now have to define estimators for the
mixing density g and proportion θ, in such a way that the convergence rate which would be obtained by
the minimisation of the first term in the r.h.s of (11) can be preserved.

4 Estimation of the mixture density g and the mixing propor-
tion θ

This section is devoted to the construction of the preliminary estimators ĝ and θ̃n, required to build
(3). To define them, we assume that we observe an additional sample pXiqi“n`1,...,2n distributed with

density function g, but independent of the sample pXiqi“1,...,n. We explain how estimators ĝ and θ̃n can
be defined to satisfy the assumptions described at the beginning of Section 2.2, and also how we compute
them in practice. The reader should bear in mind that other constructions are possible, but our main
objective is the adaptive estimation of the density f . Thus, further theoretical studies are beyond the
scope of this paper.

4.1 Preliminary estimator for the mixture density g

As already noticed, the role played by g to estimate f in our framework finds an analogue in the work of
Bertin et al. [3] : the authors propose a conditional density estimation method that involves a preliminary
estimator of the marginal density of a couple of real random variables. The assumptions (A2) and (A3)
are borrowed from their paper. From a theoretical point of view, we thus also draw inspiration from
them to build ĝ.

Since we focus on kernel methods to recover f , we also use kernels for the estimation of g. Let
L : R Ñ R be a function such that

ş

R Lpxqdx “ 1 and
ş

R L
2pxqdx ă 8. Let Lbp¨q “ b´1Lp¨{bq, for any

b ą 0. The function L is a kernel, but can be chosen differently from the kernel K used to estimate the
density f . The classical kernel density estimate for g is

ĝbpx0q “
1

n

2n
ÿ

i“n`1

Lbpx0 ´Xiq, (12)

6



Theorem 4 p.14 of [2] proves that it is possible to select an adaptive bandwidth b of ĝb in such a way that
Assumptions (A2) and (A3) are fulfilled, and that the resulting estimate ĝb̂ satisfies

E
”

›

›ĝb̂ ´ g
›

›

2

8,Vnpx0q

ı

ď C

ˆ

log n

n

˙

2β
2β`1

, (13)

if g P Σpβ,L1q, where C,L1 ą 0 are some constants, and if the kernel L has an order ` “ tβu. The idea of

the result of Theorem 4 in [2] is to select the bandwidth b̂ with a classical Lepski method, and to apply
results from Giné and Nickl [16]. Notice that, in our model, Assumption (A6) permits to obtain directly
the required smoothness assumption, g P Σpβ,L1q. This guarantees that both the assumptions (A2) and

(A3) on ĝ can be satisfied and that the additional term Er}ĝ ´ g}28,Vnpx0q
s can be bounded as required

in the statement of Corollary 1.
For the simulation study below now, we start from the kernel estimators pĝbqbą0 defined in (12) and

rather use a procedure in the spirit of the pointwise GL method to automatically select a bandwidth
b. First, this choice permits to be coherent with the selection method chosen for the main estimators
pf̂hqhPHn

, see Section 3. Then, the construction also provides an accurate estimate of g, see for example
[8]. Let B be a finite family of bandwidths. For any b, b1 P B, we introduce the auxiliary functions

ĝb,b1px0q “ n´1
ř2n
i“n`1pLb ‹ Lb1qpx0 ´Xiq. Next, for any b P B, we set

Agpb, x0q “ max
b1PB

!

`

ĝb,b1px0q ´ ĝb1px0q
˘2
´ Γ1pb

1q

)

`
,

where Γ1pbq “ ε }L}
2
1 }L}

2
2 }g}8 logpnq{pnbq, with ε ą 0 a constant to be tuned. Then, the final estimator

of g is given by ĝpx0q :“ ĝb̂gpx0q
px0q, with b̂gpx0q :“ argmin bPBtA

gpb, x0q ` Γ1pbqu. The tuning of the

constant ε is presented in Section 5.

4.2 Estimation of the mixing proportion θ

A huge variety of methods have been investigated for the estimation of the mixing proportion θ of model
(1) : see, for instance, [28], [20], [26], [5], [24] and references therein. A common and performant estimator

is the one proposed by Storey [28]: θ is estimated by θ̂τ,n “ #tXi ą τ ; i “ n` 1, . . . , 2nu{pnp1´ τqq with
τ a threshold to be chosen. The optimal value of τ is calculated with a boostrap algorithm. However, it
seems difficult to obtain theoretical guarantees on θ̂τ,n.

For a detailed discussion about possible identifiability conditions of model (1), we refer to Celisse and
Robin [5] or Nguyen and Matias [24]. In the sequel we focus on a particular case of model (1), which
ensures the identifiability of the parameters pθ, fq (see for example Assumption A in [5], or Section 1.1
in [24]). The density f is assumed to belong to the family

Fδ “
!

f : r0, 1s Ñ R`, f is a density such that f|r1´δ,1s “ 0
)

, (14)

where δ P p0, 1q. Under this assumption, the main idea to recover θ is that it is the lower bound of the
density g in model (1) : θ “ infxPr0,1s gpxq “ gp1q. Celisse and Robin [5] or Nguyen and Matias [24] then
define a histogram-based estimator ĝ for g, and estimate θ with the lower bound of ĝ, or with ĝp1q. The
procedure we choose is still based on the same assumption, but, to be consistent with the other estimates,
we use kernels to recover g instead of histograms.

Nevertheless, since it is well-known that kernel density estimation methods suffer from boundary
effects, which cause inaccurate estimate of gp1q, we cannot directly use the kernel estimates of g defined
in (12). To deal with this issue, we apply a simple reflection method (see for example Schuster [27]).
From the random sample Xn`1, . . . , X2n from density g, we introduce, for i “ 1, . . . , n,

Yi “

#

Xi`n if εi “ 1,

2´Xi`n if εi “ ´1,
(15)

where ε1, . . . , εn are n i.i.d. random variables drawn from Rademacher distribution with parameter 1{2,
and independent of the Xi’s. The random variables Y1, . . . , Yn can be regarded as randomly symmetrized
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version of the Xi’s, with support r0, 2s (see the first point of Lemma 2 below). Now, suppose that L is a
symmetric kernel. For any b ą 0, define

ĝsymb pxq “
1

n

n
ÿ

k“1

Lbpx´ Ykq, x P r0, 2s. (16)

Instead of evaluating ĝsymb at the single point x “ 1, we evaluate twice the average of all the values of
the estimator ĝsymb on the interval r1 ´ δ, 1 ` δs, relying on the fact that θ “ gpxq, for all x P r1 ´ δ, 1s
(under the assumption f P Fδ), to increase the accuracy of the resulting estimate. Thus, we set

θ̂n,b “
1

δ

ż 1`δ

1´δ

ĝsymb pxqdx. (17)

Finally, for the estimation of f , we use a truncated estimator θ̃n defined as

θ̃n,b :“ max
`

minpθ̂n,b, 1´ δ{2q, δ{2
˘

. (18)

The definition of θ̃n,b permits to ensure that θ̃n,b P rδ{2, 1´ δ{2s : this is Assumption (A4). This permits

to avoid possible difficulties in the estimation of f when θ̂n,b is close to zero, see (3). The following lemma
establishes some properties of all these estimates. Its proof can be found in Section 6.3.

Lemma 2.

• The random variables Yk, k P t1, . . . , nu, are i.i.d., with density

gsym : x ÞÝÑ

"

gpxq{2 if x P r0, 1s
gp2´ xq{2 if x P r1, 2s.

• We have
|θ̂n,b ´ θ| ď 2

›

›ĝsymb ´ gsym
›

›

8,r1´δ,1`δs
. (19)

• Moreover,

P
´

θ̃n,b ‰ θ̂n,b

¯

ď
4

δ2
E
”

|θ̂n,b ´ θ|
2
ı

, (20)

and there exists a constant C ą 0, which only depends on δ, such that

E
”

|θ̃n,b ´ θ|
2
ı

ď CE
”

›

›ĝsymb ´ gsym
›

›

2

8,r1´δ,1`δs

ı

. (21)

The first property of Lemma 2 permits to deal with ĝsymb as with a classical kernel density estimate
defined from an i.i.d sample. Thus we have Erĝsymb pxqs “ Lb ‹g

sympxq. This permits to obtain an upper-
bound for the risk of ĝsymb as an estimator of gsym, and also to define an automatic bandwidth selection
rule like for classical kernel density estimates (see paragraph just below). The second property (19) allows

us to control the estimation risk of θ̂n,b, while the third one, (20), justifies that the introduction of θ̃n,b
is reasonable.

To obtain a fully data-driven estimate θ̃n,b, it remains to define a bandwidth selection rule for the
(classical) kernel estimator ĝsymb . In view of (19), we introduce a data-driven procedure under sup-norm
loss, inspired from Lepski [21]. For any x P r0, 2s and any bandwidth b, b1 in a collection B1, we set
ĝsymb,b1 pxq “ pLb ‹ ĝ

sym
b1 qpxq, and Γ2pbq “ λ }L}8 logpnq{pnbq, with λ a tuning parameter. As for the other

bandwidth selection device, we now define

∆pbq “ max
b1PB1

#

sup
xPr1´δ,1`δs

`

ĝsymb,b1 pxq ´ ĝ
sym
b1 pxq

˘2
´ Γ2pb

1q

+

`

,

Finally, we choose b̃ “ argmin bPB1t∆pbq`Γ2pbqu, which leads to ĝsym :“ ĝsym
b̃

and θ̃n :“ θ̃n,b̃. The results

of [21] prove that Er
›

›ĝsymb ´ gsym
›

›

2

8,r1´δ,1`δs
s ď Cplog n{nq2β{p2β`1q, if g P Σpβ,L1q, where C,L1 ą 0 are

some constants, and if the kernel L has an order ` “ tβu. Combined with Lemma 2, this ensures that θ̃n
satisfies

E
”

|θ̃n ´ θ|
2
ı

ď C

ˆ

log n

n

˙

2β
2β`1

. (22)

Numerical simulations in Section 5 justify that our estimator has a good performance from the practical
point of view, in comparison with those proposed in [24] and [28].
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4.3 Convergence rate of the component density estimator

We have now everything we need to compute the convergence rate of our estimator f̂px0q at the point x0,
with selected bandwidth, and defined with the preliminary estimates ĝ and θ̃n introduced above (sections
4.2 and 4.1 respectively). Starting from the results of Theorem 1, we obtain the following rate of decrease
for the pointwise risk of our estimate, over Hölder smoothness classes.

Corollary 1. Assume that (A1), (A6) and (A7) are satisfied, for β ą 0 and L ą 0, and for an index
` ą 0 such that ` ě tβu. We choose e.g. αn “ logpnq and the bandwidth collection

Hn :“

"

1

k
, k P t1, . . . , t

?
nuu X rαn, pγn{ log3

pnqs

*

.

Then, if f̂ is defined with the preliminary estimates ĝ and θ̃n introduced in sections 4.2 and 4.1
respectively, it satisfies

E
”

`

f̂px0q ´ fpx0q
˘2
ı

ď C˚9

ˆ

log n

n

˙

2β
2β`1

, (23)

where C˚9 is a constant depending on }g}8,Vnpx0q
, }K}1, }K}2, L and }f}8,Vnpx0q

.

The estimator f̂ , with data-driven bandwidth, now achieves the convergence rate plog n{nq2β{p2β`1q

over the class Σpβ,Lq as soon as β ď `. The risk decreases at the optimal minimax rate of convergence (up
to a logarithmic term) : the upper bound of Corollary 1 matches with the lower-bound for the minimax
risk established by Ibragimov and Hasminskii [19]. Our procedure automatically adapts to the unknown

smoothness of the function to estimate : the bandwidth ĥpx0q is computed in a fully data-driven way,

without using the knowledge of the regularity index β, contrary to the estimator f̂rwkn of Nguyen and
Matias [23] (corollary 3.4).

Remark 1. In the present work, we focus on Model (1). However, the estimation procedure we develop
can easily be extended to the model

gpxq “ θφpxq ` p1´ θqfpxq, x P R, (24)

where the function φ is a known density, but not necessarily equal to the uniform one. In this case, a
family of kernel estimates can be defined like in (3) replacing the weights wpθ̃n, ĝp¨qq by

wpθ̃n, ĝp¨q, φpx0qq “
1

1´ θ̃n

˜

1´
θ̃nφpx0q

ĝp¨q

¸

.

If the density function φ is uniformly bounded on R, it is then possible to obtain analogous results (bias-
variance trade-off for the pointwise risk, adaptive bandwidth selection rule leading to oracle-type inequality
and optimal convergence rate) as we established for model (1).

5 Numerical study

5.1 Simulated data

We briefly illustrate the performance of the estimation method over simulated data, according the
following framework. We simulate observations with density g defined by model (1) for sample size
n P t500, 1000, 2000u. Three different cases of pθ, fq are considered:

• f1pxq “ 4p1´ xq31r0,1spxq, θ1 “ 0.65.

• f2pxq “
s

1´ δ

ˆ

1´
x

1´ δ

˙s´1

1r0,1´δspxq with pδ, sq “ p0.3, 1.4q, θ2 “ 0.45.

• f3pxq “ λe´λx
`

1´ e´λb
˘´1

1r0,bspxq the density of truncated exponential distribution on r0, bs with
pλ, bq “ p10, 0.9q, θ3 “ 0.35.

The density f1 is borrowed from [23] while the shape of f2 is used both by [5] and [24]. Figure 1 represents
those three cases with respect to each design density and associated proportion θ.
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Figure 1: Representation of fj and the corresponding gj in model (1) for pθ1 “ 0.65, f1q (left), pθ2 “

0.45, f2q (middle) and pθ3 “ 0.35, f3q (right).

5.2 Implementation of the method

To compute our estimates, we choose Kpxq “ Lpxq “ p1 ´ |x|q1t|x|ď1u the triangular kernel. In the
variance term (8) of the GL method used to select the bandwidth of the kernel estimator of f , we replace
}g}8,Vnpx0q by the 95th percentile of

 

maxtPVnpx0q ĝhptq, h P Hn
(

. Similarly, in the variance term Γ1 used

to select the bandwidth of the kernel estimate of g, we use the 95th percentile of
 

maxtPr0,1s ĝhptq, h P Hn
(

instead of }g}8. The collection of bandwidths Hn,B,B1 are equal to
 

1{k, k “ 1, . . . , t
?
nu
(

.

0 1 2 3 4 5

0.
00

0.
02

0.
04

0.
06

0.
08

κ

f̂ 1(0.2)
f̂2(0.4)
f̂3(0.6)
f̂3(0.9)

0 1 2 3 4 5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

ε

M
S

E
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Figure 2: values of the mean-squared error for (a) f̂px0q with respect to κ, (b) ĝpx0q with respect to ε.

(c) : Values of the mean-absolute error for θ̂n with respect to λ. The sample size is n “ 2000 for all
computations. The vertical line corresponds to the chosen value of κ (figure (a)), ε (figure (b)) and λ
(figure (c)).

We shall settle the values of the constants κ, ε and λ involved in the penalty terms V px0, hq,Γ1phq and
Γ2pbq respectively, to compute the selected bandwidths. Since the calibrations of these tuning parameters

are carried out in the same fashion, we only describe the calibration for κ. Denote by f̂κ the estimator
of f depending on the constant κ to be calibrated. We approximate the mean-squared error for the
estimator f̂κ, defined by MSEpf̂κpx0qq “ Erpf̂κpx0q ´ fpx0qq

2s, over 100 Monte-Carlo runs, for different
possible values tκ1, . . . , κKu of κ, for the three densities f1, f2, f3 calculated at several test points x0. We
choose a value for κ that leads to small risks in all investigated cases. Figure 2(a) shows that κ “ 0.78 is
an acceptable choice even if other values can be also convenient. Similarly, we set ε “ 0.52 and λ “ 4.25
(see Figure 2(b) and 2(c) for the calibrations of ε and λ.
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5.3 Simulation results

5.3.1 Estimation of the mixing proportion θ

We compare our estimator θ̂n with the histogram-based estimator θ̂Ng-M
n proposed in [24] and the estimator

θ̂Sn introduced in [28]. Boxplots in Figure 3 represent the absolute errors of θ̂n, θ̂Ng-M
n and θ̂Sn , labeled

respectively by ”Sym-Ker”, ”Histogram” and ”Bootstrap”. The estimators θ̂n and θ̂Ng-M
n have comparable

performances, and outperform θ̂Sn .
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Figure 3: errors for the estimation of θ in the three simulated settings (with sample size n “ 2000).

5.3.2 Estimation of the target density f

We present in Tables 1, 2 and 3 the mean-squared error (MSE) for the estimation of f according to
the three different models and the different sample sizes introduced in Section 5.1. The MSEs’ are
approximated over 100 Monte-Carlo replications. We shall choose the estimation points (to compute the
pointwise risk): we propose x0 P t0.1, 0.4, 0.6, 0.9u. The choices of x0 “ 0.4 and x0 “ 0.6 are standard.

The choices of x0 “ 0.1 and x0 “ 0.9 allows to test the performance of f̂ close to the boundaries of the
domain of definition of f and g. We compare our estimator f̂ with the randomly weighted estimator
proposed in Nguyen and Matias [23]. In the sequel, the label ”AWKE” (Adaptive Weighted Kernel

Estimator) refers to our estimator f̂ , whose bandwidth is selected by the Goldenshluger-Lepski method
and ”Ng-M” refers to the one proposed by [23]. Resulting boxplots are displayed in Figure 4 for n “ 2000.

Sample size Estimator x0 “ 0.1 x0 “ 0.4 x0 “ 0.6 x0 “ 0.9

n “ 500 AWKE 0.1683 0.0119 0.0256 0.0059

Ng-M 0.2869 0.0450 0.1046 0.0433

n “ 1000 AWKE 0.0632 0.0087 0.0118 0.0063

Ng-M 0.1643 0.0469 0.0651 0.0279

n “ 2000 AWKE 0.0314 0.0118 0.0098 0.0038

Ng-M 0.0982 0.0246 0.0326 0.0164

Table 1: mean-squared error of the reconstruction of f1, for our estimator f̂ (AWKE), and for the
estimator of Nguyen and Matias [23] (Ng-M).

Tables 1, 2, 3 and boxplots show that our estimator outperforms the one of [23]. Notice that the errors
are relatively large at the point x0 “ 0.1, for both estimators, which was expected (boundary effect).

11



Sample size Estimator x0 “ 0.1 x0 “ 0.4 x0 “ 0.6 x0 “ 0.9

n “ 500 AWKE 0.0430 0.0126 0.0311 0.0002

Ng-M 0.0560 0.0540 0.0306 0.0138

n “ 1000 AWKE 0.0183 0.0061 0.0240 0.0005

Ng-M 0.0277 0.0209 0.0123 0.0069

n “ 2000 AWKE 0.0061 0.0034 0.0076 0.0002

Ng-M 0.0164 0.0159 0.0113 0.0038

Table 2: mean-squared error of the reconstruction of f2, for our estimator f̂ (AWKE), and for the
estimator of Nguyen and Matias [23] (Ng-M).

Sample size Estimator x0 “ 0.1 x0 “ 0.4 x0 “ 0.6 x0 “ 0.9

n “ 500 AWKE 0.0737 0.0090 0.0039 0.0016

Ng-M 0.1308 0.0247 0.0207 0.0096

n “ 1000 AWKE 0.0296 0.0051 0.0026 0.0009

Ng-M 0.0566 0.0106 0.0096 0.0060

n “ 2000 AWKE 0.0224 0.0022 0.0012 0.0007

Ng-M 0.0342 0.0059 0.0062 0.0021

Table 3: mean-squared error of the reconstruction of f3, for our estimator f̂ (AWKE), and for the
estimator of Nguyen and Matias [23] (Ng-M).

6 Proofs

In the sequel, the notations P̃, Ẽ and Ṽar respectively denote the probability, the expectation and the
variance associated with X1, . . . , Xn, conditionally on the additional random sample Xn`1, . . . , X2n.

6.1 Proof of Proposition 1

Let ρ ą 1, introduce the event

Ωρ “
!

ρ´1γ ď γ̂ ď ργ
)

.

such that
f̂hpx0q ´ fpx0q “

`

f̂hpx0q ´ fpx0q
˘

1Ωρ `
`

f̂hpx0q ´ fpx0q
˘

1Ωcρ
. (25)

We first evaluate the term
`

f̂hpx0q ´ fpx0q
˘

1Ωρ . Suppose now that we are on Ωρ, then for any
x0 P r0, 1s, we have

`

f̂hpx0q ´ fpx0q
˘2
ď 3

´

`

f̂hpx0q ´Kh ‹ f̌px0q
˘2
`
`

Kh ‹ f̌px0q ´ f̌px0q
˘2
`
`

f̌px0q ´ fpx0q
˘2
¯

, (26)

where we define

f̌pxq “ wpθ̃n, ĝpxqqgpxq “
1

1´ θ̃n

˜

1´
θ̃n
ĝpxq

¸

gpxq.

Note that by definition of f̌ , we have Kh ‹ f̌px0q “ Ẽ
“

f̂hpx0q
‰

. Hence,

`

f̂hpx0q ´Kh ‹ f̌px0q
˘2
“
`

f̂hpx0q ´ Ẽ
“

f̂hpx0q
‰˘2

.
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Figure 4: errors for the estimation of f1, f2 and f3 for x0 P t0.1, 0.4, 0.6, 0.9u and sample size n “ 2000.

It follows that

Ẽ
”

`

f̂hpx0q ´ Ẽ
“

f̂hpx0q
‰˘2

ı

“ Ṽar
´

f̂hpx0q

¯

“ Ṽar

˜

1

n

n
ÿ

i“1

wpθ̃n, ĝpXiqqKhpx0 ´Xiq

¸

“
1

n
Ṽar

´

wpθ̃n, ĝpX1qqKhpx0 ´X1q

¯

ď
1

n
Ẽ
„

´

wpθ̃n, ĝpX1qqKhpx0 ´X1q

¯2


.

On the other hand, for all i P t1, . . . , nu, thanks to (A4) and (A2), and since γ̂ ě ρ´1γ on Ωρ,

ˇ

ˇ

ˇ
wpθ̃n, ĝpXiqqKhpx0 ´Xiq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

1´ θ̃n

˜

1´
θ̃n

ĝpXiq

¸

Khpx0 ´Xiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

δ

˜

1`
θ̃n

|ĝpXiq|

¸

|Khpx0 ´Xiq|

ď
2

δ

ˆ

1`
1

γ̂

˙

|Khpx0 ´Xiq| (27)

ď
2

δ

ˆ

1`
ρ

γ

˙

|Khpx0 ´Xiq| “
2pρ` γq

δγ
|Khpx0 ´Xiq|. (28)

For (27), as we use compactly supported kernel to construct the estimator f̂h, condition αn ď h´1 in

(A5) ensures that
ˇ

ˇ

ˇ

`

ĝpXiq
˘´1

Khpx0 ´Xiq

ˇ

ˇ

ˇ
is upper bounded by γ̂´1|Khpx0´Xiq| even though we have

no observation in the neighbourhood of x0.
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Thus we obtain, on Ωρ,

Ẽ
”

`

f̂hpx0q ´ Ẽ
“

f̂hpx0q
‰˘2

ı

ď
4pρ` γq2

δ2γ2n
Ẽ
”

K2
hpx0 ´X1q

ı

ď
4pρ` γq2}K}22 }g}8,Vnpx0q

δ2γ2nh
. (29)

For the last two terms of (26), we apply the following proposition, which proof can be found in Section
6.5.1.

Proposition 2. Assume (A1) and (A3). On the set Ωρ, we have the following results for any x0 P r0, 1s

`

f̌px0q ´ fpx0q
˘2
ď C1δ

´2γ´2 }ĝ ´ g}
2
8,Vnpx0q

` C2δ
´6

ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
, (30)

`

Kh ‹ f̌px0q ´ f̌px0q
˘2
ď 6 }Kh ‹ f ´ f}

2
8,Vnpx0q

` C3δ
´2γ´2 }ĝ ´ g}

2
8,Vnpx0q

` C4δ
´6

ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
, (31)

where C1 and C2 respectively depend on ρ and }g}8,Vnpx0q
, C3 depends on ρ and }K}1 and C4 depends

on }g}8,Vnpx0q
and }K}1.

Combining (29), (30) and (31), we obtain

E
”

`

f̂hpx0q ´ fpx0q
˘2
1Ωρ

ı

ď 18 }Kh ‹ f ´ f}
2
8,Vnpx0q

` 3pC1 ` C3qδ
´2γ´2E

“

}ĝ ´ g}
2
8,Vnpx0q

‰

` 3pC2 ` C4qδ
´6E

“
ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2‰
`

12pρ` γq2 }K}
2
2 }g}8,Vnpx0q

δ2γ2nh
.

It remains to study the risk bound on Ωcρ. To do so, we successively apply the following lemmas whose
proofs are postponed to Section 6.5.

Lemma 3. Suppose that Assumption (A3) is satisfied. Then we have for ρ ą 1

P
´

Ωcρ

¯

ď Cg,ρ exp
!

´plog nq3{2
)

,

with Cg,ρ a positive constant depending on g and ρ.

Lemma 4. Assume (A1) to (A5). For any h P Hn, we have

E
”

`

f̂hpx0q ´ fpx0q
˘2
1Ωcρ

ı

ď
C˚4
n2

,

with C˚4 a positive constant depending on }f}8,Vnpx0q
, }K}8, g, δ and ρ.

This concludes the proof of Proposition 1.

6.2 Proof of Theorem 1

Suppose that we are on Ωρ. Let f̂ be the adaptive estimator defined in (10), we have for any x0 P r0, 1s,

`

f̂px0q ´ fpx0q
˘2
ď 2

´

`

f̂px0q ´ f̌px0q
˘2
`
`

f̌px0q ´ fpx0q
˘2
¯

The second term is controlled by (30) of Proposition 2. Hence it remains to handle with the first
term. For any h P Hn, we have

`

f̂px0q ´ f̌px0q
˘2
ď 3

´

`

f̂ĥpx0q
px0q ´ f̂ĥpx0q,h

px0q
˘2
`
`

f̂ĥpx0q,h
px0q ´ f̂hpx0q

˘2
`
`

f̂hpx0q ´ f̌px0q
˘2
¯

“ 3
´

`

f̂ĥpx0q
px0q ´ f̂ĥpx0q,h

px0q
˘2
´ V px0, ĥpx0qq `

`

f̂ĥpx0q,h
px0q ´ f̂hpx0q

˘2
´ V px0, hq

`V px0, ĥpx0qq ` V px0, hq `
`

f̂hpx0q ´ f̌px0q
˘2
¯

ď 3
´

Apx0, ĥpx0qq `Apx0, hq ` V px0, ĥpx0qq ` V px0, hq `
`

f̂hpx0q ´ f̌px0q
˘2
¯

(32)

ď 6Apx0, hq ` 6V px0, hq ` 3
`

f̂hpx0q ´Kh ‹ f̌px0q
˘2
` 3

`

Kh ‹ f̌px0q ´ f̌px0q
˘2
. (33)
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To obtain (32), we use the definition of Apx0, hq, h P Hn, see (9), and also that f̂h,h1 “ f̂h1,h, for any

h, h1 P Hn. Then, (33) is a consequence of the definition of ĥpx0q, see (10). Next, we have

Apx0, hq “ max
h1PHn

!

`

f̂h,h1px0q ´ f̂h1px0q
˘2
´ V px0, h

1q

)

`

ď 3 max
h1PHn

!

`

f̂h,h1px0q ´Kh1 ‹ pKh ‹ f̌qpx0q
˘2
`
`

f̂h1px0q ´Kh1 ‹ f̌px0q
˘2

`
`

Kh1 ‹ pKh ‹ f̌qpx0q ´Kh1 ‹ f̌px0q
˘2
´
V px0, h

1q

3

*

`

ď 3
`

Bphq `D1 `D2

˘

,

where

Bphq “ max
h1PHn

´

Kh1 ‹ pKh ‹ f̌qpx0q ´Kh1 ‹ f̌px0q

¯2

D1 “ max
h1PHn

"

`

f̂h1px0q ´Kh1 ‹ f̌px0q
˘2
´
V px0, h

1q

6

*

`

D2 “ max
h1PHn

"

`

f̂h,h1px0q ´Kh1 ‹ pKh ‹ f̌qpx0q
˘2
´
V px0, h

1q

6

*

`

.

Since

Bphq “ max
h1PHn

´

Kh1 ‹ pKh ‹ f̌qpx0q ´Kh1 ‹ f̌px0q

¯2

“ max
h1PHn

´

Kh1 ‹ pKh ‹ f̌ ´ f̌qpx0q

¯2

ď }K}
2
1 sup
tPVnpx0q

ˇ

ˇKh ‹ f̌ptq ´ f̌ptq
ˇ

ˇ

2
,

then we can rewrite (33) as

´

f̂px0q ´ f̌px0q

¯2

ď 18D1 ` 18D2 ` 6V px0, hq ` 3
`

f̂hpx0q ´Kh ‹ f̌px0q
˘2

` p18 }K}
2
1 ` 3q sup

tPVnpx0q

ˇ

ˇKh ‹ f̌ptq ´ f̌ptq
ˇ

ˇ

2
. (34)

The last two terms of (34) are controlled by (29) and (31) of Proposition 2. Hence it remains to deal
with terms D1 and D2.

For D1, we recall that Kh ‹ f̌px0q “ Ẽ
“

f̂hpx0q
‰

and

ẼrD1s “ Ẽ

«

max
hPHn

"

´

f̂hpx0q ´Kh ‹ f̌px0q

¯2

´
V px0, hq

6

*

`

ff

ď
ÿ

hPHn

Ẽ

«

"

´

f̂hpx0q ´ Ẽ
“

f̂hpx0q

¯2

´
V px0, hq

6

*

`

ff

ď
ÿ

hPHn

ż `8

0

P̃

˜

"

`

f̂hpx0q ´ Ẽ
“

f̂hpx0q
˘2
´
V px0, hq

6

*

`

ą u

¸

du

ď
ÿ

hPHn

ż `8

0

P̃

˜

ˇ

ˇf̂hpx0q ´ Ẽ
“

f̂hpx0q
ˇ

ˇ ą

c

V px0, hq

6
` u

¸

du. (35)

Now let us introduce the sequence of i.i.d. random variables Z1, . . . , Zn where we set

Zi “ wpθ̃n, ĝpXiqqKhpx0 ´Xiq.

Then we have

f̂hpx0q ´ Ẽ
“

f̂hpx0q
‰

“
1

n

n
ÿ

i“1

`

Zi ´ ẼrZis
˘

.
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Moreover, we have by (27) and recall that we are on Ωρ “
 

ρ´1γ ď γ̂ ď ργ
(

,

|Zi| “ |wpθ̃n, ĝpXiqqKhpx0 ´Xiq| ď
2pγ̂ ` 1q }K}8

hδγ̂
ď

2pργ ` 1q }K}8
hδγ̂

“: b,

and

Ẽ
“

Z2
1

‰

“ Ẽ
”

wpθ̃n, ĝpXiqq
2K2

hpx0 ´Xiq

ı

ď
4pργ ` 1q2 }K}

2
2 }g}8,Vnpx0q

hδ2γ̂2
“: v.

Applying the Bernstein inequality (cf. Lemma 2 of Comte and Lacour [11]), we have for any u ą 0,

P̃

˜

ˇ

ˇf̂hpx0q ´ Ẽ
“

f̂hpx0q
ˇ

ˇ ą

c

V px0, hq

6
` u

¸

“ P̃

˜

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

`

Zi ´ ẼrZis
˘

ˇ

ˇ

ˇ
ą

c

V px0, hq

6
` u

¸

ď 2 max

$

&

%

exp

˜

´
n

4v

ˆ

V px0, hq

6
` u

˙

¸

, exp

˜

´
n

4b

c

V px0, hq

6
` u

¸

,

.

-

ď 2 max

$

&

%

exp

ˆ

´
n

24v
V px0, hq

˙

exp

ˆ

´
nu

4v

˙

, exp

˜

´
n

8b

c

V px0, hq

6

¸

exp

˜

´
n
?
u

8b

¸

,

.

-

On the other hand, by the definition of V px0, hq we have

n

24v
V px0, hq “

nhγ̂2δ2

96pργ ` 1q2 }K}
2
2 }g}8,Vnpx0q

ˆ
κ }K}

2
1 }K}

2
2 }g}8,Vnpx0q

γ̂2nh
logpnq

“
κδ2 }K}

2
1

96pργ ` 1q2
logpnq ě

κδ2

96pργ ` 1q2
logpnq.

If we choose κ such that
κδ2

96pργ ` 1q2
ě 2, we get

n

24v
V px0, hq ě 2 logpnq.

Moreover, using the assumption that γ̂nh ě log3
pnq and that γ̂ ď ργ on Ωρ, we have

n

8b

c

V px0, hq

6
“

nhγ̂δ

16
?

6pργ ` 1q }K}8
ˆ

}K}1 }K}2

b

κ }g}8,Vnpx0q
logpnq

γ̂
?
nh

“
δ }K}1 }K}2 }g}

1{2
8,Vnpx0q

16
?

6pργ ` 1q }K}8

a

κnh logpnq

ě
δ }K}1 }K}2

16
?

6pργ ` 1qρ1{2γ1{2 }K}8

?
κ log2

pnq ě 2 logpnq,

if
δ }K}1 }K}2

16
?

6pργ ` 1qρ1{2γ1{2 }K}8

?
κ logpnq ě 2

which automatically holds for well-chosen value of κ, and n large enough. Then we have by using the
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conditions ρ´1γ ď γ̂ and h ě 1{n,

ẼrD1s ď
ÿ

hPHn

ż `8

0

2n´2 max

$

&

%

exp

ˆ

´
nu

4v

˙

, exp

˜

´
n
?
u

8b

¸

,

.

-

du

ď 2n´2
ÿ

hPHn

ż `8

0

max

$

&

%

exp

¨

˝´nh
δ2γ̂2

16pργ ` 1q2 }K}
2
2 }g}8,Vnpx0q

u

˛

‚, exp

˜

´nh
δγ̂

16pργ ` 1q }K}8

?
u

¸

,

.

-

du

ď 2n´2
ÿ

hPHn

ż `8

0

max

$

&

%

exp

¨

˝´nh
δ2γ2

16pργ ` 1q2ρ2 }K}
2
2 }g}8,Vnpx0q

u

˛

‚, exp

˜

´nh
δγ

16pργ ` 1qρ }K}8

?
u

¸

,

.

-

du

ď 2n´2
ÿ

hPHn

ż `8

0

max
!

e´π1u, e´π2
?
u
)

du ď 2n´2
ÿ

hPHn

max

#

1

π1
,

2

π2
2

+

.

with π1 :“
δ2γ2

16pργ ` 1q2ρ2 }K}
2
2 }g}8,Vnpx0q

and π2 :“
δγ

16pργ ` 1qρ }K}8
.

Since cardpHnq ď n, we finally obtain

ẼrD1s ď C5δ
´2γ´2n´1, (36)

where C5 is a positive constant depending on }g}8,Vnpx0q
, }K}8, }K}2 and ρ.

Similarly, we introduce Ui “ wpθ̃n, ĝpXiqqKh1 ‹Khpx0 ´Xiq for i “ 1, . . . , n. Then,

f̂h,h1px0q ´Kh1 ‹ pKh ‹ f̌qpx0q “ f̂h,h1px0q ´ Ẽ
“

f̂h,h1px0q
‰

“
1

n

n
ÿ

i“1

`

Ui ´ ẼrUis
˘

,

and

|Ui| ď
4 }K}1 }K}8

h1δγ̂
“: b̄, and Ẽ

“

U2
1

‰

ď
16 }K}

2
1 }K}

2
2 }g}8,Vnpx0q

h1δ2γ̂2
“: v̄.

Following the same lines as for obtaining (36), we get by using Bernstein inequality

ẼrD2s ď C6δ
´2γ´2n´1, (37)

with C6 a positive constant depends on }g}8,Vnpx0q
, }K}8, }K}1, }K}2 and ρ.

Finally, combining (34), (36), (37) and successively applying Lemma 3 and Lemma 4 allow us to
conclude the result stated in Theorem 1.

6.3 Proof of Lemma 2

First, we prove that gsym is the density of Yi. To this aim, let ϕ be a measurable bounded function
defined on R. We compute

ErϕpYiqs “ ErErϕpXiq|εis1tε1“1us ` ErErϕp2´Xiq|εis1tε1“´1us,

“
1

2

`

ErϕpXiqs ` Erϕp2´Xiqs
˘

,

“
1

2

˜

ż 1

0

ϕpxqgpxqdx`

ż 1

0

ϕp2´ xqgpxqdx

¸

,

“
1

2

˜

ż 1

0

ϕpxqgpxqdx`

ż 2

1

ϕpxqgp2´ xqdx

¸

,

“

ż 2

0

ϕpxqgsympxqdx.

Since the equality holds for any test function ϕ, we obtain the first assumption of the lemma.
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We prove now (19). Under the identifiability condition, we have θ “ gpxq for all x P r1 ´ δ, 1s, and
thus θ “ 2gsympxq for x P r1´ δ, 1` δs. Hence we have

|θ̂n,b ´ θ| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

δ

ż 1`δ

1´δ

ĝsymb pxqdx´
1

δ

ż 1`δ

1´δ

gsympxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

δ

ż 1`δ

1´δ

ĝsymb pxq ´ gsympxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

δ

ż 1`δ

1´δ

ˇ

ˇĝsymb pxq ´ gsympxq
ˇ

ˇ dx

ď
1

δ

ż 1`δ

1´δ

›

›ĝsymb ´ gsym
›

›

8,r1´δ,1`δs
dx “ 2

›

›ĝsymb ´ gsym
›

›

8,r1´δ,1`δs
,

which proves (19). Then, thanks to the Markov Inequality

P
´

θ̃n,b ‰ θ̂n,b

¯

“ P

˜

θ̂n,b R

„

δ

2
, 1´

δ

2



¸

ď P
ˆ

|θ̂n,b ´ θ| ą
δ

2

˙

ď
4

δ2
E
”

|θ̂n,b ´ θ|
2
ı

,

which is (20). Finally,

E
”

|θ̃n,b ´ θ|
2
ı

“ E

«

|θ̃n,b ´ θ|
2

ˆ

1 
θ̂n,b“θ̃n,b

( ` 1 
θ̂n,b‰θ̃n,b

(

˙

ff

ď E
„

|θ̂n,b ´ θ|
21 

θ̂n,bPrδ{2,1´δ{2s
(



`

´

|θ̃n,b| ` |θ|
¯2

P
´

θ̂n,b ‰ θ̃n,b

¯

ď E
„

|θ̂n,b ´ θ|
21 

θ̂n,bPrδ{2,1´δ{2s
(



` 4P
´

θ̂n,b ‰ θ̃n,b

¯

ď p1` 4ˆ
4

δ2
qE

”

|θ̂n,b ´ θ|
2
ı

,

ď p1` 4ˆ
4

δ2
q ˆ 2E

”

›

›ĝsymb ´ gsym
›

›

2

8,r1´δ,1`δs

ı

.

thanks to (20) and then (19). This concludes the proof of Lemma 2.

6.4 Proof of Corollary 1

Since Assumptions (A6) and (A7) are fulfilled. According to Proposition 1.2 of Tsybakov [30], we get
for all x0 P r0, 1s

|Kh ‹ fpx0q ´ fpx0q| ď C7Lhβ ,

where C a constant depending on K and L. We obtain

min
hPHn

"

}Kh ‹ f ´ f}
2
8,Vnpx0q

`
logpnq

δ2γ2nh

*

ď min
hPHn

"

C7Lhβ `
logpnq

δ2γ2nh

*

. (38)

Taking

h˚ “
1

k˚
with k˚ “

[

ˆ

n

logpnq

˙1{p2β`1q
_

,

there exists npβ, γ, ρq such that, for all n ě npβ, γ, ρq,

γ

ρ

n

log3
pnq

ě

[

ˆ

n

logpnq

˙1{p2β`1q
_

ě logpnq “ αn.

Implying that for all n ě npβ, γ, ρq,

Ωρ Ď tγ̂ ě γ{ρu Ď th˚ P Hnu.
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Finally, since we also have (13) and (22), gathering (11) and (38). Since Assumption (A5) is verified
by construction of Hn, using again Lemma 4, we obtain, for all n,

E
”

`

f̂px0q ´ fpx0q
˘2
ı

ď C8

ˆ

log n

n

˙

2β
2β`1

,

where C8 is a constant depending on K, }f}8,Vnpx0q
, g, δ, γ, ρ, L and β.

6.5 Proofs of technical intermediate results

6.5.1 Proof of Proposition 2

Let us introduce the function

f̃pxq :“ wpθ̃n, gpxqqgpxq “
1

1´ θ̃n

˜

1´
θ̃n
gpxq

¸

gpxq. (39)

Then we have for x0 P r0, 1s

`

f̌px0q ´ fpx0q
˘2
ď 2

´

`

f̌px0q ´ f̃px0q
˘2
`
`

f̃px0q ´ fpx0q
˘2
¯

.

For the first term, on Ωρ “
 

ρ´1γ ď γ̂ ď ργ
(

we have, by using (A4),

`

f̌px0q ´ f̃px0q
˘2
“

´

wpθ̃n, ĝpx0qqgpx0q ´ wpθ̃n, gpx0qqgpx0q

¯2

“

¨

˝

1

1´ θ̃n

˜

1´
θ̃n
ĝpx0q

¸

´
1

1´ θ̃n

˜

1´
θ̃n
gpx0q

¸

˛

‚

2

|gpx0q|
2

“
θ̃2
n

p1´ θ̃nq2

ˆ

1

ĝpx0q
´

1

gpx0q

˙2

|gpx0q|
2

ď
4

δ2

ˆ

ĝpx0q ´ gpx0q

ĝpx0qgpx0q

˙2

|gpx0q|
2

ď 4ρ2δ´2γ´2 }ĝ ´ g}
2
8,Vnpx0q

. (40)

Moreover, thanks to (A1),

`

f̃px0q ´ fpx0q
˘2
“

´

wpθ̃n, gpx0qqgpx0q ´ wpθ, gpx0qqgpx0q

¯2

“

¨

˝

1

1´ θ̃n

˜

1´
θ̃n
gpx0q

¸

gpx0q ´
1

1´ θ

˜

1´
θ

gpx0q

¸

gpx0q

˛

‚

2

“

¨

˝

1

1´ θ̃n
´

1

1´ θ
`

˜

θ

1´ θ
´

θ̃n

1´ θ̃n

¸

1

gpx0q

˛

‚

2

|gpx0q|
2

“
|gpx0q|

2

p1´ θq2p1´ θ̃nq2

˜

θ̃n ´ θ `
θ ´ θ̃n
gpx0q

¸2

ď
4 }g}

2
8,Vnpx0q

δ4

˜

θ̃n ´ θ `
θ ´ θ̃n
gpx0q

¸2

ď 16 }g}
2
8,Vnpx0q

δ´6
ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
. (41)

Thus we obtain by gathering (40) and (41),

`

f̌px0q ´ fpx0q
˘2
ď 8ρ2δ´2γ´2 }ĝ ´ g}

2
8,Vnpx0q

` 32 }g}
2
8,Vnpx0q

δ´6
ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
.
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Next, the term
`

Kh ‹ f̌px0q ´ f̌px0q
˘2

can be treated by studying the following decomposition

`

Kh ‹ f̌px0q ´ f̌px0q
˘2
ď 3

ˆ

`

Kh ‹ f̌px0q ´Kh ‹ f̃px0q
˘2
`
`

Kh ‹ f̃px0q ´Kh ‹ fpx0q
˘2

`
`

Kh ‹ fpx0q ´ f̌px0q
˘2
˙

“: 3
`

A1 `A2 `A3q.

For term A1, we have by using (40)

A1 “
`

Kh ‹ pf̌ ´ f̃qpx0q
˘2
“

ˆ
ż

Khpx0 ´ uqpf̌puq ´ f̃puqqdu

˙2

ď

ˆ
ż

|Khpx0 ´ uq||f̌puq ´ f̃puq|du

˙2

ď 4ρ2δ´2γ´2 }ĝ ´ g}
2
8,Vnpx0q

ˆ
ż

|Khpx0 ´ uq|du

˙2

ď 4ρ2δ´2γ´2 }K}
2
1 }ĝ ´ g}

2
8,Vnpx0q

.

By using (41) and following the same lines as for A1, we obtain

A2 “
`

Kh ‹ pf̃ ´ fqpx0q
˘2
ď 16 }g}

2
8,Vnpx0q

δ´6 }K}
2
1

ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
.

For A3, using the upper bound obtained as above for pf̌px0q ´ fpx0qq
2, we have

A3 ď 2
`

Kh ‹ fpx0q ´ fpx0q
˘2
` 2

`

fpx0q ´ f̌px0q
˘2

ď 2 }Kh ‹ f ´ f}
2
8,Vnpx0q

` 16ρ2δ´2γ´2 }ĝ ´ g}
2
8,Vnpx0q

` 64 }g}
2
8,Vnpx0q

δ´6
ˇ

ˇθ̃n ´ θ
ˇ

ˇ

2
.

Finally, combining all the terms A1, A2 and A3, we obtain (31). This ends the proof of Proposition 2.

6.5.2 Proof of Lemma 3

Lemma 3 is a consequence of (6). Indeed, if condition (A3) is satisfied, we have for all t P Vnpx0q,
|ĝptq ´ gptq| ď ν|ĝptq| with probability 1´ Cg,ν exp

`

´ plog nq3{2
˘

.
This implies,

p1` νq´1|gptq| ď |ĝptq| ď p1´ νq´1|gptq|.

Since γ “ inf
tPVnpx0q

|gptq| and γ̂ “ inf
tPVnpx0q

|ĝptq|, by using (6) and taking ν “ ρ´ 1, ν “ 1´ ρ´1, we obtain

with probability 1 ´ Cg,ν exp
`

´ plog nq3{2
˘

, p1 ` νq´1γ ď γ̂ ď p1 ´ νq´1γ. This completes the proof of
Lemma 3.

6.5.3 Proof of Lemma 4

We have for any x0 P r0, 1s,

E
”

`

f̂hpx0q ´ fpx0q
˘2
1Ωcρ

ı

ď 2E
“

|f̂hpx0q|
21Ωcρ

‰

` 2 }f}
2
8,Vnpx0q

PpΩcρq.
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E
“

|f̂hpx0q|
21Ωcρ

‰

“ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

nh

n
ÿ

i“1

wpθ̃n, ĝpXiqqK

ˆ

x0 ´Xi

h

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

1Ωcρ

fi

fl

ď E

»

—

–

¨

˝

1

nh

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

wpθ̃n, ĝpXiqqK

ˆ

x0 ´Xi

h

˙

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

2

1Ωcρ

fi

ffi

fl

ď
4

δ2
E

»

—

–

¨

˝

1

nh

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

K

ˆ

x0 ´Xi

h

˙

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

2
ˆ

1`
1

γ̂

˙2

1Ωcρ

fi

ffi

fl

(using (27))

ď
4

δ2
E

»

—

–

¨

˝

1

nh

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

K

ˆ

x0 ´Xi

h

˙

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚

2
fi

ffi

fl

E

«

ˆ

1`
1

γ̂

˙2

1Ωcρ

ff

(by independence)

ď
4 }K}

2
8

δ2h2
E

«

ˆ

1`
1

γ̂

˙2

1Ωcρ

ff

ď
4 }K}

2
8

δ2
n2

ˆ

1`
1

plog nq3

˙2

PpΩcρq (using Assumption (A5)).

Finally, we apply Lemma 3 to establish the following bound

E
”

`

f̂hpx0q ´ fpx0q
˘2
1Ωcρ

ı

ď Cg,ρ

˜

8 }K}
2
8

δ2

n2

plog nq6
` 2 }f}

2
8,Vnpx0q

¸

exp
!

´plog nq3{2
)

ď
C

n2
,

where C depends on δ, }f}8,Vnpx0q
, }K}8, g and ρ, which ends the proof of Lemma 4.
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