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ARTICLE

Antiferromagnetic textures in BiFeO3 controlled
by strain and electric field
A. Haykal1,9, J. Fischer 2,9, W. Akhtar1,8, J.-Y. Chauleau3, D. Sando 4, A. Finco 1, F. Godel 2,

Y. A. Birkhölzer 5, C. Carrétéro2, N. Jaouen 6, M. Bibes 2, M. Viret 3, S. Fusil2,7✉, V. Jacques1 &

V. Garcia 2

Antiferromagnetic thin films are currently generating considerable excitement for low dis-

sipation magnonics and spintronics. However, while tuneable antiferromagnetic textures form

the backbone of functional devices, they are virtually unknown at the submicron scale. Here

we image a wide variety of antiferromagnetic spin textures in multiferroic BiFeO3 thin films

that can be tuned by strain and manipulated by electric fields through room-temperature

magnetoelectric coupling. Using piezoresponse force microscopy and scanning NV magne-

tometry in self-organized ferroelectric patterns of BiFeO3, we reveal how strain stabilizes

different types of non-collinear antiferromagnetic states (bulk-like and exotic spin cycloids)

as well as collinear antiferromagnetic textures. Beyond these local-scale observations,

resonant elastic X-ray scattering confirms the existence of both types of spin cycloids. Finally,

we show that electric-field control of the ferroelectric landscape induces transitions either

between collinear and non-collinear states or between different cycloids, offering perspec-

tives for the design of reconfigurable antiferromagnetic spin textures on demand.
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In ferromagnetic materials, spin textures are conventionally
tweaked with a magnetic field. Antiferromagnetic spin tex-
tures, on the other hand, are intrinsically insensitive to

external magnetic fields, calling for alternative control knobs to
manipulate the antiferromagnetic order. The electrical manip-
ulation of antiferromagnetism was recently demonstrated in non-
centrosymmetric metallic antiferromagnets1–3; however, the spin
orbit torque required to either switch by 90° or reverse by 180°
the antiferromagnetic vector involves large current densities of
the order of 106–107 A cm−2. Furthermore, the efficiency of this
writing method faces limitations, since only a small fraction of
antiferromagnetic domains is actually switched4,5. An optimal
writing mechanism would demand low current densities (or
ideally no current) to generate a complete reversal of anti-
ferromagnetic domains or textures. Recent reports have for
instance demonstrated that piezoelectric strain can provide low
power control of antiferromagnetic memories6,7.

In some materials possessing both antiferromagnetic and
electrical orders, the magnetoelectric coupling is an additional
means expected to efficiently channel electric-field stimuli onto
the antiferromagnetic order. Yet, the fundamental ingredients
deterministically governing the imprint of the ferroelectric order
to the antiferromagnetic order remain poorly understood. Even in
the archetypal room-temperature multiferroic8, BiFeO3, the
details of the antiferromagnetic textures are virtually unknown at
the scale of ferroelectric domains. The seminal work of Zhao et al.
showed promise for the electric control of the antiferromagnetic
order in BiFeO3 thin films9. To date, its complex anti-
ferromagnetic order has been solely inferred from volume aver-
aged techniques such as neutron diffraction, Mössbauer
spectroscopy, or Raman spectroscopy. Depending on the strain,
growth conditions and crystal orientation, the magnetic state of
BiFeO3 thin films can either show different types of non-collinear
cycloids, canted G-type antiferromagnetic orders, or even a
mixture of these10,11. More generally, examples of anti-
ferromagnetic textures being imaged at the nanoscale are extre-
mely scarce in the literature12–14. Here we bring deep insight into
the strain-dependent interplay between the ferroelectric and
antiferromagnetic orders at the local scale and show that electric
field can be used to convert between various collinear and non-
collinear spin arrangements.

Results
Strain-engineered BiFeO3 with striped ferroelectric domains.
BiFeO3 thin films were grown using pulsed laser deposition on
various substrates (SrTiO3, DyScO3, TbScO3, GdScO3, SmScO3)
with a thin bottom electrode of SrRuO3 (Methods). X-ray dif-
fraction shows the high epitaxial quality of the films with Laue
fringes (Fig. 1a–e) attesting for their coherent growth. All films
display smooth surfaces with atomic steps, characteristic of a
layer-by-layer growth (insets of Fig. 1a–e). The (001) BiFeO3 peak
evolves from the left to the right of the substrate (001) peak upon
increase of the in-plane pseudo-cubic lattice parameter of the
substrate, as observed in the 2θ–ω scans. Reciprocal space maps
indicate that the films are fully strained (Supplementary Fig. 1)
with only two elastic variants of the BiFeO3 monoclinic phase
(Fig. 1f–j). Their peak positions enable us to determine a strain
value for each film ranging from −1.35% compressive strain
to +0.50% tensile strain (Fig. 1k, Supplementary Fig. 1 and
Methods).

With this set of structurally equivalent BiFeO3 thin films,
distinguishable only by their strain level, we now focus on the
evolution of the ferroelectric and magnetic textures (Fig. 2). In
BiFeO3, the displacement of Bi ions relative to the FeO6 octahedra
gives rise to a strong ferroelectric polarisation along one of the

<111> directions of the pseudo-cubic unit cell. The out-of-plane
and in-plane variants of polarisation were identified in each
sample using piezoresponse force microscopy (PFM; Methods).
For all the samples, the as-grown out-of-plane polarisation is
pointing downward, i.e. towards the bottom electrode (Supple-
mentary Fig. 2a). Figure 2a–e displays similar striped-domain
structures with two in-plane ferroelectric variants, which
correspond to the two elastic domains observed in reciprocal
space maps15. In contrast to the as-grown striped domain
patterns of the BiFeO3 films grown on the scandates, the
striped domain pattern of the BiFeO3 film on SrTiO3 was defined
by PFM (Supplementary Fig. 4). All the samples can be
considered as a periodic array of 71-degree domain walls,
separated by two ferroelectric variants (Supplementary Figs. 2
and 3). This ordered ferroelectric landscape greatly simplifies the
exploration and interpretation of the magnetic configuration for
each ferroelectric domain16.

Influence of the strain on the antiferromagnetic textures. For
each sample, the corresponding antiferromagnetic spin textures
were imaged in real space with a scanning NV (nitrogen-vacancy)
magnetometer17 operated in dual-iso-B imaging mode (Fig. 2g–k,
Methods, Supplementary Fig. 5). In the strain range of −1.35
to +0.05%, the NV images display a similar zig-zag pattern of
periodic stray fields generated by cycloidal antiferromagnetic
orders. More precisely, in each vertical ferroelectric domain
(separated by dashed lines in Fig. 2g–j), we observe a single
propagation direction of the spin cycloid. As the in-plane variant
of polarisation rotates from one domain to another, the spin
cycloid propagation direction rotates accordingly. This implies a
one-to-one correspondence between the ferroelectric and anti-
ferromagnetic domains. In contrast, for large tensile strain
(+0.5%) corresponding to BiFeO3 films grown on SmScO3 sub-
strates, the cycloidal order appears to be strongly destabilized
(Fig. 2k and Supplementary Fig. 6). In this specific case, the
ferroelectric periodicity is lost in the magnetic pattern, which may
suggest a weaker magnetoelectric coupling as compared to other
magnetic interactions. This strain dependence of the magnetic
textures is reminiscent of previous works where anti-
ferromagnetic order as a function of strain was studied by non-
local techniques such as Mössbauer and Raman spectro-
scopies10,11. Indeed, a canted G-type antiferromagnetic order
was identified for tensile strain over +0.5% and a cycloidal order
from −1.6% to +0.5%.

In the present sample set, the magnetic image of BiFeO3 films
grown on DyScO3 substrates (Fig. 2h) with −0.35% strain
corresponds to the configuration already observed by Gross
et al.16. The 90-degree in-plane rotation of the ferroelectric
polarisation imprints the 90-degree in-plane rotation of the
cycloidal propagation direction. This corresponds to one of the
three bulk-like cycloids (cycloid I) with propagation vectors
contained in the (111) plane orthogonal to the polarisation18,19

(Fig. 3a, b). Among them, the observed k1 vector lies in the (001)
plane of the film, for both ferroelectric variants (Fig. 2h). For
lower compressive strain (−0.10%, TbScO3), the magnetic
configuration is found to be identical (Fig. 2i), also corresponding
to the bulk-like cycloid (cycloid I, k1).

A subtle change of the strain towards the tensile side (+0.05%,
GdScO3) greatly influences the magnetic landscape. Indeed, the
spin texture can no longer be explained by the bulk-like cycloid as
the zig-zag features are no longer orthogonal to each other,
but rather at 120 ± 5 degrees (Fig. 2j). Interestingly, for (001)
BiFeO3 films grown under low tensile strain (+0.2%), previous
reports have shown evidence for exotic spin cycloids10,11. In these
works, Mössbauer and nuclear resonant scattering data suggested
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a propagation vector contained in the (1̄10) plane10,11. This result
was recently supported by neutron diffraction experiments on
Co-doped BiFeO3 films grown on SrTiO3(110), where the
propagation vector of the spin cycloid was found to be along
the [112̄] direction20. Guided by these observations, here we
consider three possible propagation directions (k1′, k2′, k3′) for
the cycloid II; namely along [2̄11], [12̄1], and [112̄], respectively
(Fig. 3c, d). In the case of BiFeO3 thin films on GdScO3 substrates
(Fig. 2j), the angle of the zig-zag pattern is only compatible with
alternating k1′, k2′ propagation vectors, giving rise to an angle of
127 degrees, as projected on the film surface. Surprisingly, a
similar scenario takes place for large compressive strain (−1.35%,
SrTiO3) as the zig-zag angle (Fig. 2g) is the same as for BiFeO3

grown on GdScO3. This unprecedented real-space observation of
the cycloid II under both large compressive strain and low tensile
strain calls for further theoretical input to explain the interplay
between strain and antiferromagnetic textures.

Insights into the different spin cycloids. To further corroborate
the nanoscale real-space images of the magnetic arrangements,
complementary macroscopic investigations were performed by X-
ray resonant elastic scattering on BiFeO3 samples21,22 grown on
both DyScO3 (cycloid I) and GdScO3 (cycloid II) substrates
(Fig. 4a, c). As the spin cycloid is a periodic magnetic object, it
gives rise to a diffracted pattern at the Fe resonant L-edge. In
order to select the diffracted signal of magnetic origin, the dif-
ference between left and right circularly polarized light is plotted
as a dichroic diffracted pattern (Fig. 4a, red and blue correspond
to positive and negative dichroism, respectively). In both diag-
onals from the specular spot, the inverted contrast between +q
and −q spots is a signature of chirality. Indeed, BiFeO3 spin
cycloids in which spins rotate in a plane defined by the polar-
isation (P) and the propagation vector (k) are chiral objects.

For BiFeO3 thin films grown on DyScO3, the presence of two
orthogonal cycloid propagation directions (red arrows in Fig. 4a)

with identical periods gives rise to two orthogonal lines of
diffracted spots, thus defining a square diffracted pattern. The fine
structure of this pattern is rendered more complex by additional
spots that arise from the modulation of the magnetic periodicity
by the ferroelectric domain structure;23 however, here our focus is
on the cycloid propagation direction and periodicity. The spacing
between the +q and −q spots corresponds to a cycloid period of
72 ± 5 nm for both spin cycloids with k1 propagation vector.
Consistently at the local scale, the combination of PFM and
scanning NV magnetometry allows to identify the relative
orientation of the ferroelectric polarisation (P, grey arrows in
Fig. 4b) and cycloid propagation direction (k1, red arrows in
Fig. 4b) on both sides of a domain wall. Thus, our microscopic
real-space experiments and macroscopic reciprocal-space obser-
vations both attest for a single cycloidal vector (k1) in BiFeO3 thin
films under moderate compressive strain.

In contrast, for BiFeO3 films grown on GdScO3 imposing slight
tensile strain, the dichroic diffracted pattern is no longer square
but rectangular (Fig. 4c). Hence, we preclude the above-mentioned
scenario with two bulk-like (cycloid I) orthogonal vectors. The two
diagonals of the rectangular pattern (green arrows in Fig. 4c) form
an angle of about 110 ± 5 degrees, in accordance with the typical
angles observed in NV magnetometry images. The only plausible
scenario, therefore, corresponds to two types of ferroelectric
domains respectively harbouring alternating k1′ and k2′ propaga-
tion vectors of the cycloid II, as observed in real space (Fig. 4d).
These two cycloid propagation variants appear to be energetically
degenerated and favoured over the more out-of-plane k3′ vector
(Fig. 3c). Consequently, these cycloidal BiFeO3 films, under either
compressive or tensile strain, exhibit a one-to-one imprint
between ferroelectric and antiferromagnetic order.

Electric-field control of antiferromagnetic textures. Beyond the
observations on pristine configurations of ferroelectric domains in
which the cycloid propagation is locked onto the polarisation, we
now manipulate the ferroelectric order using electric fields, with
the aim to design antiferromagnetic landscapes on demand. We
first use PFM to draw micron-size ferroelectric domains (Sup-
plementary Fig. 7) by virtue of the so-called trailing field24–26.
Using microdiffraction experiments, we checked that no strain
difference could be detected between artificially written and as-
grown striped-domains (Methods and Supplementary Fig. 8). NV
magnetometry is then performed on these artificial domains to
reveal the corresponding magnetic textures (Fig. 5 and Supple-
mentary Fig. 7). For strain states ranging from −0.35 to +0.50%,
single ferroelectric domains always correspond to a spin cycloid
with a single propagation vector. For BiFeO3 films grown on
DyScO3 (−0.35%, Fig. 5a) or TbScO3 (−0.10%, Fig. 5b), the spin
cycloid propagates in a direction perpendicular to the ferroelectric
polarisation. This implies that the in-plane k1 propagation is still
favoured, switching from two pristine cycloid Is to a single written
cycloid I. Interestingly, the spin cycloid period λ decreases from
about 78 ± 5 nm in the pristine (two domain) state to 65 ± 2 nm
for the switched (single domain) state. In single domains, the spin
cycloid period thus appears closer to that observed in bulk BiFeO3

(λbulk= 64 nm, ref. 19), suggesting that periodic electric/elastic
boundary conditions influence the cycloid period.

For BiFeO3 films grown on GdScO3 (+0.05%, Fig. 5c), the spin
cycloid propagates horizontally, i.e. at 45 degrees from the in-
plane polarisation variant of the single ferroelectric domain. This
implies that the cycloid I out-of-plane propagation vector (k2,
Fig. 3a, b) is selected, corresponding to a switching from two
cycloid IIs (k1′, k2′) to a single cycloid I (k2). In addition, the
apparent cycloid period of 92 ± 3 nm in the single domain is
compatible with its projection onto the sample surface
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(λsurf ¼
ffiffiffi

2
p

´ λ), giving rise to an intrinsic period of λ= 65 ±
2 nm, close to the bulk value. These experiments on single
domains suggest that strain primarily has an influence on the
direction of the bulk-like cycloid propagation (in-plane for
compressive and out-of-plane for tensile strains). In the case of
BiFeO3 films grown on SmScO3 (+0.50%, Fig. 5d), the cycloid is
observed to propagate in a direction almost parallel to the in-
plane variant of polarisation. Considering the three vectors of
each cycloid type (Fig. 3), this is only compatible with the k3′
propagation vector of cycloid II. In this case, we find an apparent
cycloid period of 146 ± 5 nm leading to an intrinsic period of
84 ± 3 nm (λsurf ¼

ffiffiffi

3
p

´ λ). The enhanced period compared to the
bulk value is here attributed to the significant tensile strain of
BiFeO3 films grown on SmScO3 (Ref. 11.). In this latter example,
we have demonstrated electric-field switching from a G-type
antiferromagnetic order to a cycloidal state.

In this work, we have shown real-space evidence of multiple
antiferromagnetic landscapes in BiFeO3 epitaxial thin films.
Depending on the strain level, bulk-like cycloids, exotic cycloids,
and G-type collinear order are observed. The exotic cycloid is,
rather unexpectedly, shown to exist for two very different strain
states: one being compressive and the other tensile. Combining
multiple scanning probe techniques, we provide direct corre-
spondence between ferroelectric domains and complex antiferro-
magnetic textures. These local observations are supported by
macroscopic resonant X-ray scattering on both types of cycloids.
Although the cycloid is often not considered in the literature of
BiFeO3 thin films27, our observations show that only the cycloidal
state enables a full one-to-one correspondence between ferroic
orders in the native striped-domains as well as in artificially-
designed single domains. The electric field enables toggling either
from one type of cycloid to another or from collinear to cycloidal
states. More specifically, we are now able to electrically design
single spin cycloids on demand with controlled propagation
either in the plane or out of the film plane. This fully mastered
magnetoelectric system is an ideal playground to investigate
reconfigurable low-power antiferromagnetic spintronic1,28,29 or
magnonic30 architectures at room temperature.

Methods
Sample fabrication. BiFeO3 thin films were grown by pulsed laser deposition on
various substrates using a KrF excimer laser (248 nm) with a fluence of 1 J cm−2.
Prior to film growth, the scandate substrates (DyScO3, TbScO3, GdScO3, SmScO3)
were ex-situ annealed for 3 h at 1000 °C under flowing oxygen. The SrTiO3 sub-
strate was chemically etched with a buffered HF solution before following the same
annealing procedure. For all the samples, a SrRuO3 bottom electrode (3–5 nm) was
first grown at 660 °C under 0.2 mbar of oxygen pressure with a laser repetition rate
of 5 Hz. The BiFeO3 thin film (30–60 nm) was subsequently grown at the same
temperature under 0.36 mbar of oxygen pressure and a repetition rate of 2 Hz.
Following the growth of the bilayer, the samples were cooled down to room
temperature under an oxygen pressure of 300 mbar.

Structural characterisations. The structural properties of the films were deter-
mined by X-ray diffraction (XRD) using a Panalytical Empyrean diffractometer
equipped with a hybrid monochromator for Cu Kα1 radiation and a PIXcel3D
detector. Full 2θ–ω XRD scans (not shown) indicate that all films are single phase
with a monoclinic (001) orientation. To gain further insight into the elastic
domains and strain of the films, we carried out reciprocal space maps (RSMs)
around the (103), (013), (113), and (1̄1̄3) substrate peaks (Fig. 1f–j and Supple-
mentary Fig. 1). The (110) orthorhombic scandates (XSO with X=Dy, Tb, Gd,
Sm) are all described in a (001) monoclinic (which is only a slight correction from
pseudo-cubic) notation for simplicity31. All the RSMs are consistent, with only two
monoclinic ferroelastic variants of BiFeO3 with the following epitaxial relationship:
(001)BFO|| (001)XSO, [100]BFO|| [110]XSO (green) and (001)BFO|| (001)XSO,
[100]BFO|| [11̄0]XSO (blue). The same epitaxial relationship is established for
BiFeO3 films grown on cubic (001)SrTiO3 substrates. The BiFeO3 thin films are
fully strained by the substrates as indicated by the alignment of the in-plane
reciprocal peaks with the (103) and (013) substrate peaks (Supplementary Fig. 1).
The monoclinic cell parameters (am,bm,cm,β) of each BiFeO3 film were calculated
independently from the peak positions around the (113) and (1̄1̄3) RSMs of XSO.
The strain values were then estimated by comparing the average in-plane lattice

parameter with the volume of the unit-cell as:

ε ¼

ffiffiffiffiffiffiffiffiffiffiffi

am ´ bm
2

q

�
ffiffiffi

V
2

3

q

ffiffiffi

V
2

3

q ;where V ¼ am ´ bm ´ cm ´ sinβ

Considering the small deviation from the cubic unit cell, cell, throughout the
manuscript, descriptions of the ferroelectric and magnetic properties are given in
the pseudo-cubic perovskite lattice for simplicity.

Piezoresponse force microscopy. The experiments were conducted with an
atomic force microscope (Nanoscope V multimode, Bruker) and two external lock-
in detectors (SR830, Stanford Research) for the simultaneous acquisition of in-plane
and out-of-plane responses. An external ac source (DS360, Stanford Research) was
used to excite the SrRuO3 bottom electrode at a frequency of 35 kHz while the
conducting Pt-coated tip was grounded. We used stiff cantilevers (40 Nm−1) for
accurate out-of-plane detection and softer ones (3-7 Nm−1) for the in-plane
detection. In all the BiFeO3 samples, the as-grown out-of-plane signal is homo-
geneous (Supplementary Fig. 2a) indicating a uniform out-of-plane component of
polarisation pointing downwards, i.e. towards the SrRuO3 bottom electrode. In
Fig. 2a–e and Supplementary Figs. 2–5 and Supplementary Fig. 7, the phase shift
between the in-plane and out-of-plane domains is 180 degrees and the phase scale is
fixed at 360 degrees to avoid saturation of the image. Before designing artificial
domains in the BiFeO3 thin films, a radio frequency antenna and markers are
defined by laser lithography and lift-off of a Au/Ti sputtered layer (Supplementary
Fig. 5). These markers are typically less than 10 μm away from the antenna and are
visible with an optical microscope. Optical microscopy allows for coarse reposi-
tioning, and maps provided by PFM measurements (including markers; Supple-
mentary Fig. 5) are used to precisely relocate NV imaging.

Scanning NV magnetometry. Scanning-NV magnetometry was performed under
ambient conditions with commercial all-diamond scanning-probe tips containing
single NV defects (QNAMI, Quantilever MX). The tip was integrated into a tuning-
fork-based atomic force microscope (AFM) combined with a confocal microscope
optimized for single NV defect spectroscopy. Magnetic fields emanating from the
sample are detected by recording the Zeeman shift of the NV defect’s electronic spin
sublevels through optical detection of the electron spin resonance17.

The scanning-NV magnetometer was operated in the dual-iso-B imaging mode
by monitoring the signal S= PL(υ2)−PL(υ1), corresponding to the difference of
photoluminescence (PL) intensity for two fixed microwave frequencies, υ1 and υ2,
applied consecutively at each point of the scan through a gold stripline antenna
directly fabricated onto the BiFeO3 sample (see the description before)17.
Experiments were performed with a NV-to-sample distance of 60 nm and a bias
magnetic field of 2 mT applied along the NV quantization axis. The standard error
of the cycloid period measurement is limited by the calibration of the scanner.

Resonant X-ray elastic scattering. Resonant X-ray scattering measurements were
performed at the Fe L and O K edges using the RESOXS diffractometer32 at the
SEXTANTS beamline33 of the SOLEIL synchrotron. Data were collected using
nearly fully circular left and right X-ray polarisations delivered by the HU44
Apple2 undulator located at the I14-M straight section of the storage ring.

Microdiffraction. The experiments were performed using a Bruker D8 Discover
diffractometer with a high brilliance microfocus Cu rotating anode generator, hybrid
Montel optics, a 20 µm diameter circular pinhole beam collimator, and an EIGER2 R
500 K area detector. No monochromator was used to maximize the flux from the
microfocus lab source, leading to the characteristic Kα1,2 peak splitting. Prior to the
microdiffraction experiments, a lithographically defined hard mask of 90 nm thick Au
with 30 µm wide square openings was applied by sputtering and lift-off for precise
alignment and orientation on the sample. Selected areas, written and pristine, with
different domain wall densities were first analysed by PFM and subsequently by
microdiffraction at the same area to obtain local structural information.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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