
HAL Id: hal-02909408
https://hal.science/hal-02909408

Submitted on 30 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On stable right-inversion of non-minimum-phase systems
Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothée

Normand-Cyrot

To cite this version:
Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothée Normand-Cyrot. On stable right-
inversion of non-minimum-phase systems. 59th IEEE Conference on Decision and Control, Dec 2020,
Jeju Island, South Korea. �10.1109/cdc42340.2020.9303851�. �hal-02909408�

https://hal.science/hal-02909408
https://hal.archives-ouvertes.fr


On stable right-inversion of non-minimum-phase systems

Mohamed Elobaid1,2, Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— The paper deals with the characterization of a
dummy ’output function’ associated with the stable component
of the zero-dynamics of a linear square multi-input multi-output
system. With reference to the 4-Tank dynamics, it is shown
how such a procedure, applied to the linear tangent model of
a nonlinear plant, may be profitably applied to assure local
stability in closed loop.

Index Terms— Algebraic/geometric methods; Linear systems;
Stability of nonlinear systems

I. INTRODUCTION

As well known, most control problems are concerned
with partial cancellation of the dynamics which is achieved
by forcing unobservability [1]–[8]. In the linear case, this
is achieved by designing a feedback assigning part of the
eigenvalues coincident with the zeros of the system so
making the corresponding dynamics unobservable. Such an
approach is at the basis of feedback linearization which
is achieved, in general, by cancelling the so-called zero-
dynamics whose stability is thus necessary for guaranteeing
feasibility of the control system [9].

The idea of employing factorization, properly introduced
in [10] for studying the zero-dynamics of sampled-data
systems, and consequently partial dynamic cancelation has
been formalized and developed in [11] to deal with feedback
linearization of nonlinear single-input single-output (SISO)
non-minimum phase systems (i.e., whose zero-dynamics are
unstable). The design approach represents a first generaliza-
tion to the nonlinear context of the idea of assigning part of
the eigenvalues over part of the zeros of the transfer function
of a linear system (partial zero-pole cancelation). When
considering dynamical systems, stability of the feedback
system can be achieved when only a stable component of
the zero-dynamics is cancelled. Such a stable component
can be identified, in the SISO case, by considering the
output associated with the minimum-phase factorization of
the transfer function of the linear tangent model at the origin.
However, when dealing with MIMO systems identifying such
a stable component and hence the corresponding dummy
output is still challenging.
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In this paper, the results in [11] are extended to the
multi-input multi-output context by providing a systematic
procedure for extracting, via factorization, a dummy output
identifying the minumum-phase component of a dynamical
system. In particular, focusing on linear time-invariant and
right-invertible dynamics, we show how the Smith form can
be suitably exploited for factorizing the matrix transfer func-
tion and extract, in the state-space representation, the output
identifying the minimum-phase component of the original
system. Then, the geometric relations among the original
system and the one with the dummy output are investigated
in terms of invariant subspaces and making reference to
MIMO normal forms [12]. In particular, it is shown that the
new output identifies the largest control-invariant subspace
contained in the kernel of the original one maximizing
unobservability while, at the same time, preserving stability
of the closed loop. This allows the definition of systematic
solutions with stability of a large variety of control problems
dealing with right-inversion (e.g., disturbance decoupling,
tracking). The case of nonlinear systems is sketched through
the simulated example of a four tanks dynamics dealt with
at an academic level. The case of square systems is dealt
with as the extension to larger number of inputs and outputs
follows the same lines.

The paper is organized as follows. In Section II, recalls
on MIMO systems are given and the problem is formulated.
In III, the procedure for constructing an output associated
to the minimum-phase component is presented and applied
to several control problems in Section IV. In Section V, the
example of a four tank dynamics serves, at an academic level,
for sketching the extension to nonlinear dynamics with linear
output while conclusions and perspectives are in Section VI.

Notations: R and N denote the set of real and natural
numbers including 0, respectively. C+ (resp. C−) denote
the left-hand (resp. right-hand) side of the complex plane.
MatR(n,m) defines the group of real matrices of dimension
n×m with, for short, MatR(n) = MatR(n, n). Given a matrix
A ∈ MatR(n), σ{A} defines its spectrum. For a sorted set
of ai ∈ R with i = 1, . . . , n, diag{a1, . . . , an} defines a
diagonal matrix with ai being the diagonal elements. For a
smooth vector field f , Lf denotes the Lie derivative operator,
Lf =

∑n
i=1 fi(·)

∂
∂xi

.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear time invariant (LTI) system of the form

ẋ = Ax+Bu (1a)
y = Cx (1b)



with u, y ∈ R2, x ∈ Rn, B =
(
b1 b2

)
, C> =

(
c>1 c>2

)
and transfer function

P (s) = C(sI −A)−1B. (2)

The following standing assumptions are set.

A1. The pairs (A,B) and (C,A) are, respectively, con-
trollable and observable.

A2. The system (1) is right-invertible [12], [13].
A3. The system (1) is partially minimum-phase; i.e., the

zero polyonmial defined as

z(s) = det

(
sI −A B
−C 0

)
= zu(s)zs(s), s ∈ C

is non-Hurwitz with zs(s) denoting the correspond-
ing Hurwitz component with roots in the left hand
side of the complex plane.

In the following, general recalls for MIMO linear systems
are given as instrumental for the problem we address.

A. The Smith form

Consider any p×p polynomial matrix N(s), then there ex-
ist elementrary row and column operations, or corresponding
unimodular matrices {L−1(s), R−1(s)} such that

N(s) = L(s)Nsm(s)R(s) (3)

with

Nsm(s) = diag{ε1(s), . . . , εp(s)} (4)

where {εi(s)} are unique monic polynomials verifying εi(s)
is a factor of εi+1(s) for all i = 1, . . . , p − 1. Moreover,
by denoting as ∆i(s) the greatest common divisor of all
i× i minors of N(s) for i = 1, . . . , p one gets that εi(s) =

∆i(s)
∆i−1(s) with ∆0(s) = 1 [14]. Note that, although Nms(s)

is unique, {L−1(s), R−1(s)} are not. Accordingly, one gets
that the (rational) matrix transfer function (2) always admits
a unique Smith form, that is

P (s) = L(s)Nsm(s)D−1(s)R(s) (5)

with M(s) = Nsm(s)D−1(s) = diag{ z1(s)
d1(s) , . . . ,

zp(s)
dp(s)}

where from A1.: z(s) = z1(s) . . . zp(s) = zu(s)zs(s)
corresponds to the zero-polynomial defined in A3.; d(s) =
d1(s) . . . dp(s) is the pole-polynomial with the property
that d2(s) is a factor of d1(s). For the sake of notational
simplicity, and without loss of generality, we will assume in
the sequel that p = 2.

Remark 2.1 ( [14]): Two matrices sI − A and sI − Ar
possess the same Smith form if, and only if, A and Ar are
similar. This easily extends to the case of two realizations
(A,B,C) and (Ar, Br, Cr) (with the same dimension) shar-
ing the same transfer function P (s).

B. Partial normal forms and the zero-dynamics
As (1) is invertible [12, Chapter 9], one can pick constant

r2 ≥ r1 > 0 such that

ciA
`B = 0, ` = 0, . . . ri − 2, ciA

ri−1B 6= 0

and ν ≥ 0 such that there exist constant αr2 , . . . , αr2+ν−1 ∈
R verifying for j = 0, . . . , ν − 1

c2A
r2+j−1B + c1A

r1(αr2+jI + · · ·+ αr2A
j−1)B = 0.

and

M=

(
c1A

r1−1B
c2A

r2+ν−1B + c1A
r1(αr2+ν−1I + · · ·+ αr2A

ν−1)B

)
det{M} 6= 0.

In this setting, one can define a coordinate transformation

z1

z2

z3

...
zν+2

η


=



T1

T2

T3

...
Tν+2

Tη


x, zi =

 zi,1
. . .
zi,ri

 (6)

for i = 1, 2 and , for j = 0, . . . , ν − 1 with

Ti =
(
c>i . . . (ciA

ri−1)>
)>
, TηB = 0

Tj+3 = c2A
r2+j + c1A

r1(αr2+jI + · · ·+ αr2A
j)

such that

żi,` =zi,`+1, i = 1, 2, ` = 1, . . . , ri − 1

ż1,r1 =c1A
r1x+ c1A

r1−1Bu

ż2,r2 =c2A
r2x+ c2A

r2−1Bu

=z3 − αr2
(
c1A

r1x+ c1A
r1−1Bu

)
żj+3 =c2A

r2+j+1x+ c1A
r1+1(αr2+jI + · · ·+ αr2A

j)x

=zj+4 − αr2+j+1

(
c1A

r1x+ c1A
r1−1Bu

)
żν+2 =c2A

r2+νx+ c1A
r1+1(αr2+ν−1I + · · ·+ αr2A

ν−1)x

+
(
c2A

r2+ν−1 + c1A
r1(αr2+ν−1I + · · ·+ αr2A

ν−1)B
)
u.

Accordingly, defining

R1z + S1η + b̂1u := c1A
r1T−1

(
z
η

)
+ c1A

r1−1Bu

R2z + S2η :=
(
c2A

r2+ν

+ c1A
r1+1(αr2+ν−1I + · · ·+ αr2A

ν−1)
)
T−1

(
z
η

)
b̂2 :=

(
c2A

r2+ν−1 + c1A
r1(αr2+ν−1 + · · ·+ αr2A

ν−1)B
)
u

one gets for i = 1, 2, `i = 1, . . . , ri−1 and j = 0, . . . , ν−2

ż1,`1 =z1,`1+1, ż1,r1 = R1z + S1η + b̂1u

ż2,`2 =z2,`2+1

ż2,r2 =z3 − αr2
(
R1z + S1η + b̂1u

)
żj+3 =zj+4 − αr2+j+1

(
R1z + S1η + b̂1u

)
zν+2 =R2z + S2η + b̂2u

η̇ =Pz +Qη

y1 =z1,1, y2 = z2,1

(7)



that is the MIMO normal form associated to (1).
As a straightforward consequence of (7), one gets that the

zero-dynamics of (1) is η̇ = Qη with η ∈ Rn−r1−r2−ν with
n−r1−r2−ν being the excess poles-zeros and σ{Q} = {s ∈
C s.t. z(s) = 0} that is, the eigenvalues of Q correspond to
the transmission zeros of (1).

From the properties described above it is hence immediate
to state that the control

u =M−1(v − Lx)

(6)
=M−1v −M−1

(
R1z + S1η
R2z + S2z

)
(8)

with v = col(v1, v2) and

L =

(
c1A

r1

c2A
r2+ν + c1A

r1+1(αr2+ν−1I + · · ·+ αr2A
ν−1)

)
achieves right-invertibility of (1); namely, one gets

ż1,` =z1,`+1, ż1,r1 = v1

ż2,` =z2,`+1, ż2,r2 = z3 − αr2v1

żj+3 =zj+4 − αr2+j+1v1

zν+2 =v2

η̇ =Pz +Qη

y1 =z1,1, y2 = z2,1.

(9)

Remark 2.2: In this setting, the largest control-invariant
subspace contained in kerC is given by

V? = ker

 c1
...

c1A
r1−1

 ∩ ker

 c2
...

c2A
r2−1


∩ν−1
j=0 ker

 c2A
r2+αr2c1A

r1

...
c2A

r2+ν−1+c1A
r1(αr2+ν−1I+. . .+αr2A

ν−1)

 .

Accordingly, the feedback law (8) represents the friend of
V? ⊂ kerC and thus the one achieving maximum unobserv-
ability via zeros cancellation. In general, we refer to V? as
the zero-dynamics subspace.

Remark 2.3: We note that if ν = 0 one recovers the
standard normal form issued when (1) possesses a well-
defined relative degree with non-singular decoupling (and
right-invertibiity) matrix provided by

M =

(
c1A

r1−1B
c2A

r2−1B

)
.

In general, as ν > 0 the above form shows that non
interaction (and input/output decoupling) cannot be achieved
through static state-feedback. However, the same does not
stand for disturbance decoupling.

III. STABLE ZERO FACTORIZATION OF MIMO SYSTEMS

In this section, we extend the approach proposed in [11]
for extracting the minimum-phase component of a general
non-minimum phase systems (1). The approach is based on
output factorization; namely, starting from (1), we identify
a new dummy output ys(t) = Csx(t) corresponding to the

stable component of the zero-dynamics associated to (1) and
related to (1b) through the differential equation

y(t) = Zu(d)ys(t) (10)

with d = d
dt and a suitably defined two dimensional square

differential matrix

Zu(d) =

(
z1,1(d) z1,2(d)
z2,1(d) z2,2(d)

)
. (11)

More in details, starting from (5), one can split the
zero-matrix as Nsm(s) = Nu(s)Ns(s) with Nu(s) =
diag{zu,1(s), zu,2(s)} and Ns(s) = diag{zs,1(s), zs,2(s)}
such that zu(s) = zu,1(s)zu,2(s), zs(s) = zs,1(s)zs,2(s)
containing, respectively, the zeros on the right and left hand
side of the complex plane; that is det(Ns(s)) = zs(s) and
det(Nu(s)) = zu(s). Accordingly, the (5) rewrites as

P (s) =L(s)Nu(s)Ns(s)D
−1(s)R(s)

=Zu(s)Ps(s)
(12)

with Zu(s) = L(s)Nu(s) and Ps(s) = Ns(s)D
−1(s)R(s).

In particular, Zu(s) is a polynomial matrix in s whereas
Ps(s) is transfer function matrix.

Remark 3.1: When (1) possesses distinct poles with uni-
tary algebraic multiplicity the term Ns(s)D

−1(s)R(s) is
improper as (L(s), R(s)) introduce poles at s = ∞ [14].
To handle this issue [14], one can compute a matrix
K(s) (the so-called right divisor) such that: P̃s(s) =
K(s)Ns(s)D

−1(s)R(s) is proper and with the same poles as
(2) and zs as zeros polynomial; Z̃u(s) = L(s)Nu(s)K−1(s)
is a polynomial matrix in s ∈ C. Accordingly, (12) reads

P (s) =Z̃u(s)P̃s(s) (13)

such that P̃s(s) is strictly proper and verifying

P̃s(s) = Cs(sI −A)−1B. (14)

The computation of such K(s) might not be an easy task
and needs to be performed through a vis-a-vis study. From
now on, for the sake of clarity, we shall assume K(s) =
I although all the results to come hold true in general as
illustrated through the case study.

Proposition 3.1: Consider the system (1) under Assump-
tions A1 to A3 and let z(s) = zu(s)zs(s) be the zero-
polynomial where zs(s) denotes the Hurwitz component. Let
the transfer function P (s) be of the form (13) with Ps(s) as
in (14) and ys = Csx solution to (10). Then, the system

ẋ = Ax+Bu (15a)
ys = Csx (15b)

identifies the minimum-phase component of (1) with zero
polynomial given by zs(s).

Proof: The proof is a straightforward consequence of
the Smith form associated to (2) and (12).

Remark 3.2: The new output (15b) can be computed as
follows. Let (Â, B̂, Ĉ) with Â ∈ MatR(n̂) with n̂ ≥ n be
a realization of (14) and (Â?, B̂?, Ĉ?) with Â? ∈ MatR(n)



the corresponding restriction onto the observable and con-
trollable subspaces. Denote by T and T? the non-singular
transformations putting, respectively, (A,B) and (Â?, B̂?)
into the eigenvalues assigmenent canonical form [13]. Then,
because TAT−1 = T?ÂT

−1
? and TB = T?B̂? one gets

Cs = Ĉ?T
−1
? T .

IV. APPLICATIONS

A. Right-invertibility with stability
As a consequence of the factorization in Section III,

because of Assumption A2, one gets the following result.
Lemma 4.1: Consider the system (1) under Assumptions

A1 to A3 and let (15) identify its minimum-phase component
with transfer function (14). Then, (15) is right-invertible with
indexes (rs1, r

s
2, ν

s) verifying rs1 +rs2 +νs = n−deg(zs(s)).
Proof: The proof is a straightforward consequence of

the factorization (12). Indeed, as R(s) is unimodular, the
result follows from [15].

Remark 4.1: From the result above it is always possible
to choose L(s) such that the components of the matrix
Zu(s) in (11) are such that deg{z1,1(s)} = rs1 − r1,
deg{z1,2(s)} = rs2 + νs − r1, deg{z2,1(s)} = rs2 + νs − r1,
deg{z2,2(s)} = rs2 + νs − r2 − ν with deg{·} denoting the
degree of the corresponding polynomial and (r1, r2, ν) being
the invertibility indices associated to (1).

By virtue of the result above and Section II-B, right-
invertibility of the stable component of (1) can be achieved
through right-invertibility of the same system with dummy
output (15b).

Proposition 4.1: Consider the system (1) under Assump-
tions A1 to A3. Let (15) identify the minimum phase
component of (1) with invertibility indices (rs1, r

s
2, ν

s). Then,
there exist αrs2+j ∈ R with j = 0, . . . , νs − 1 such that

cs2A
rs2+j−1B + cs1A

rs1

j−1∑
`=0

αrs2+`A
j−`−1B = 0 (16)

and

Ms=

(
cs1A

rs1−1B

cs2A
rs2+νs−1B + cs1A

rs1
∑νs−1
i=0 αrs2+iA

νs−i−1B

)
with det{Ms} 6= 0. Accordingly, the feedback

u = M−1
s (v − Lsx) (17)

with

Ls =

(
cs1A

rs1−1

cs2A
r2+ν + cs1A

rs1+1(αrs2+νs−1I + · · ·+ αrs2A
νs−1)

)
performs right-invertibility of the minimum-phase compo-
nent of (1).

Proof: Along the lines of Section II-B, we introduce
the coordinate transformation

zs1
zs2
zs3
...

zνs+2

η


=



T s1
T s2
T s3
...

T sνs+2

Tηs


x, zsi =

 zsi,1
. . .
zsi,rsi

 (18)

for i = 1, 2 and with, for j = 3, . . . , νs + 2 so that, under
the control (17), (15) gets the form

żs1,` =zs1,`+1, żs1,r1 = v1

żs2,` =zs2,`+1, ż2,rs2
= zs3 − αrs2v1

żsj+3 =zsj+4 − αrs2+j+1v1

zsνs+2 =v2

η̇s =P szs +Qsηs

ys1 =zs1,1, ys2 = zs2,1

with η̇s = Qsηs being the asymptotically stable zero-
dynamics with σ{Qs} = {s ∈ C s.t. zs(s) = 0} ⊆ {s ∈
C s.t. z(s) = 0}. From (10), one gets in the new coordinates

y = Zu(d)ys = Zu(d)

(
zs1,1
zs2,1

)
= Ĉzs

and thus the result.

As a consequence, one gets the following result.

Proposition 4.2: Consider the systems (1) and (15) and
let V? and V?s be, respectively, the largest controlled (A,B)-
invariant subspaces contained in ker{C} and ker{Cs}. Then,
V?s ⊂ V?.

Proof: For the ease of the proof, assume that that for
(1) ν = 0. By virtue of (10) one has, for i = 1, 2 and
j = 0, . . . , ri − 1

djyi(t) = ciA
jx = djzi,1(d)ys2 + djzi,2(d)ys2

= zi,1(d)cs1A
jx+ djzi,2(d)cssA

jx

with, by definition of r1, r2, ∇u(Zu(d))djys) = 0. By
exploiting (16), it is a matter of computations to deduce that

(
T1

T2

)
︸ ︷︷ ︸
V

= N

 T s1
...

T sνs+2


︸ ︷︷ ︸

Vs

.

with Ti and T sj as in (6) and (18) for i = 1, 2 and
j = 1, . . . , νs + 2 and N being un upper triangular full
rank matrix. From the equality above one gets that V?s =
ker{Vs} ⊂ ker{V } = V? and thus the result.

The feedback (17) is the one generating in closed loop
the maximal unobservability constrained to stability; namely,
(17) is the one canceling only the Hurwitz component of the
zero dynamics of the original system (1). In other words,
(17) is rendering only the stable component of V? feedback-
invariant (that is V?s ).

Remark 4.2: It must be noted that, albeit (1) possesses a
well-defined relative degree (that is ν = 0), when introducing
the new dummy output issued from Proposition 3.1 through
the Smith form, one might get νs ≥ 0. However, νs defines
the order of the dynamic extension that is necessary (over
the control input u1) for recovering a well-defined relative
degree (r̂s1, r

s
2).

Remark 4.3: By virtue of Assumption A2 and Remark
2.3, one gets that the asymptotic tracking problem of a
smooth reference yr(t) ∈ R2 admits a solution with stability



(under dynamical feedback if νs > 0) by solving the equiv-
alent problem over the partially minimum-phase system (15)
and with respect to the dummy output reference ysr(t) ∈ R2

solution to the differential equality yr(t) = Zu(d)ysr(t) with
yr(t0) = Zu(d)ysr(t0).

B. DDP of non minimum-phase systems with stability

Let (1) be affected by a disturbance w ∈ R2 that is

ẋ = Ax+Bu+ Pw (19a)
y = Cx (19b)

with P ∈ MatR(n, 2). In this section, it is shown how
disturbance decoupling (DDP) can be solved with stability
by making use of the new output deduced in Section III.
It is worth recalling that, in general and regardless stability,
disturbance decoupling is solvable if and only if Im{P} ⊂
V? ⊂ ker{C}. However, the corresponding solution guar-
antees stability of the closed loop if and only if the zero-
dynamics associated to (19) is asymptotically stable. The
next result provides a new result ensuring the existence of a
disturbance decoupling controller preserving stability of the
internal dynamics.

Theorem 4.1: Consider (19) under assumptions A1. to A3.
and the dummy output (15b) defined by Proposition 3.1.
Then, output disturbance decoupling with stability for (19)
is solvable for all P verifying Im{P} ⊂ V?s ⊂ ker{C}
where V?s is the largest (A,B)-invariant subspace contained
in ker{Cs}. In addition, the corresponding feedback is (17).

Proof: The proof is a straightforward consequence of
Proposition 4.2 ensuring V?s ⊂ V? ⊂ ker{C}.

Remark 4.4: By virtue of Remark 4.2, one gets that dy-
namical feedback extension is unnecessary for solving DDP
whenever the system is right-invertible even if (15) do not
possess a well-defined relative degree.

V. THE 4-TANKS AS AN EXAMPLE

Consider the case of a 4-tanks system [16] given by

ḣ = f(h) +Bu (20a)
y = Ch (20b)

with h = col{h1, h2, h3, h4}, f(h) = 2F (h)h

F (h) =

−p1(h1) 0 A3
A1

p3(h3) 0

0 −p2(h2) 0 A4
A2

p4(h4)
0 0 −p3(h3) 0
0 0 0 −p4(h4)



B =


γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

 , C = κt


1 0
0 1
0 0
0 0


>

pi(hi) = ci
√

2ghi

2Aihi
. For the sake of compactness, let bij

correspond to the element in position (i, j) of the input-
state matrix B. In particular, hi, Ai and ci are, respectively,
the level of water in the ith-tank, its cross-section area and
the cross-section of the outlet hole for i = 1, 2, 3, 4. The

control signals uj with j = 1, 2 correspond to the voltage
applied to jth-pump with kjuj being the corresponding flow.
We consider the problem of locally asymptotically tracking
the output of (20) to a desired y? = (h?1, h

?
2) corresponding

to make h? = (h?1, h
?
2, h

?
3, h

?
4)> with

h?3 =
(c1γ2

√
h?1 − c2(1− γ2)

√
h?2)2

c23a
2
3γ

2
2

h?4 =
(c2γ1

√
h?2 − c1(1− γ1)

√
h?1)2

c24a
2
4γ

2
1

for a3 = γ2
1−γ2 −

1−γ1
γ1

and a4 = γ1
1−γ1 −

1−γ2
γ2

a locally
asymptotically stable equilibrium for the closed-loop system
under nonlinear feedback.

1) Analysis of the zero-dynamics: The vector relative
degree of (20) is well defined and given by r = (1 1) so that
it exhibits a two-dimensional zero-dynamics. Accordingly,
for investigating minimum-phaseness of (20), one computes
the linear tangent model (LTM) at h? of the form (1) with
x = h − h? and A = 2F (h?) with corresponding transfer
function matrix

P (s) = κt

(
b11
s+p1

b32 p3
(s+p1) (s+p3)

b41 p4
(s+p2) (s+p4)

b22
s+p2

)
(21)

pi = pi(h
?
i ) > 0 for i = 1, 2, 3, 4 , Smith form as M(s) =

diag{ 1
d(s) , z(s)}, with pole-polynomial d(s) = (s+ p1)(s+

p2)(s+ p3)(s+ p4) and zero-polynomial z(s) = s2 + (p3 +
p4)s+ p3p4

b11b22
(b11b22 − b32b41). Thus, (20) is nonminimum-

phase if b11b22−b32b41 < 0 so that one can factorize z(s) =
(s−zu)(s−zs) for zu ∈ R+ and zs ∈ R−. As a consequence,
if b11b22 − b32b41 < 0, output regulation to y? cannot be
achieved through classical right-inversion even if the relative
degree is well-defined.

In the following we show how the procedure detailed in
Section III allows to deduce a new output ys = Csh and
a nonlinear feedback locally solving the regulation problem
with stability for (20).

2) The new dummy output: By virtue of Remark 3.1,
because (A,B,C) possesses three distinct poles in gen-
eral, one gets that the matrix Ps(s) = diag{1, s −
zs}diag{d(s), 1}R(s) is improper for all choices of
(L(s), R(s)). However, by suitably setting K(s)1 so to make
P̃s(s) = K(s)Ps(s) rational one gets the dummy output

ys =

(
1 0 0 0

− b32b41p42b11β
b32
2 −

b32(p3+p4)
2β − b222 −

b22(p3+p4)
2β

b32 p4
2β

)
h

(22)
with β =

√
(p3 + p4)2 − 4 p3p4

b11b22
(b11b22 − b32b41) making

the LTM model of (20a) minimum-phase.
3) Asymptotic tracking with stability: It is easily checked

that, the nonlinear dynamics (20a) with output as in (22)
possesses a well-defined relative degree rs = (1, 2) at h?.
Also, it is a matter of computations to verify that (20a) with
output (22) is locally minimum-phase with zero-dynamics

1For the sake of space, (L(s), R(s),K(s)) are reported at https://
hal.archives-ouvertes.fr/hal-02526676.

https://hal.archives-ouvertes.fr/hal-02526676
https://hal.archives-ouvertes.fr/hal-02526676
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Fig. 1. The four tank model under stable dynamic inversion.

η̇s = qs(0, η
s) verifying ∂qs

∂ηs
(0, ηs?) = zs < 0. At this point,

along the lines of Remark 4.3 and by exploiting the results
in [9, Chapter 5], one gets that output tracking of (20) can be
solved over the dummy output (22) by setting the constant
ys? = (ys1,?, y

s
2,?)
> ∈ R2 as solution to y? = Zu(d)y?s which

is given by construction as ys? = Csh
?. Accordingly, for all

k0, k1 > 0 the feedback

u=−M−1
s (h)

(
cs1f(h) + ys1 − ys1,?

Lfc
s
2f(h)+k1c

s
2f(h)+k0(ys2 − ys2,?)

)
(23)

with decoupling matrix

M−1
s (h) =

(
cs1B

L2
fc
s
2f(h)B)

)
ensures local asymptotic regulation of y to the desired y?

while preserving internal stability.
4) Simulations: For completeness, simulations are re-

ported in Figure 1 for the closed-loop system under the
stabilizing feedback designed over the new dummy output
highlighting the locally minimum-phase components of (20).
Simulations are performed for the parameters fixed as in the
Table below.

A1 [cm2] 28 A3 [cm2] 28
A2 [cm2] 32 A4 [cm2] 32
c1 [cm2] 0.071 c3 [cm2] 0.071
c2 [cm2] 0.057 c4 [cm2] 0.057
kt [V/cm] 1 g [cm/s2] 981

γ1 0.43 γ2 0.34
k1 65.12 k2 94.12

In addition, we fixed y? = (7.1, 6.2)> corresponding to
h? = (7.1, 6.2, 3.58, 1.632)>. In particular, with this choice
of parameters, the plant is nonminum-phase with the zeros
of LTM model at the desired equilibrium provided by zu =
0.018 and zs = −0.0789. The gains of the controller (23) are
fixed as (k0, k1) = (1, 2). Simulations report the story of the
original and dummy outputs plus the real residual internal-
dynamics of the feedback plant (that is the water levels of the
third and fourth tank with respect to the real output) while
proving the effectiveness of the proposed design approach.

VI. CONCLUSIONS

In this paper, a systematic procedure for controlling
MIMO non-minimum phase systems has been proposed
based on output factorization. In particular, recurring to the
Smith-MacMillan form, a dummy output associated with
the stable component of the zero-dynamics is exhibited to
perform inversion of the minimum-phase component. The
results locally apply to the case of nonlinear dynamics with
linear outputs. Perspectives concern the extension of this
methodology to the case of nonlinear output mappings.

REFERENCES

[1] A. Isidori, A. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear
decoupling via feedback: a differential geometric approach,” IEEE
Transactions on Automatic Control, vol. 26, no. 2, pp. 331–345, 1981.

[2] A. Isidori and C. I. Byrnes, “Output regulation of nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 35, no. 2, pp. 131–140,
Feb 1990.

[3] A. De Luca, Zero Dynamics in Robotic Systems. Boston, MA:
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