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The paper deals with the characterization of a dummy 'output function' associated with the stable component of the zero-dynamics of a linear square multi-input multi-output system. With reference to the 4-Tank dynamics, it is shown how such a procedure, applied to the linear tangent model of a nonlinear plant, may be profitably applied to assure local stability in closed loop.

I. INTRODUCTION

As well known, most control problems are concerned with partial cancellation of the dynamics which is achieved by forcing unobservability [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF]- [START_REF] Di Giorgio | Robust output regulation for a class of linear differential-algebraic systems[END_REF]. In the linear case, this is achieved by designing a feedback assigning part of the eigenvalues coincident with the zeros of the system so making the corresponding dynamics unobservable. Such an approach is at the basis of feedback linearization which is achieved, in general, by cancelling the so-called zerodynamics whose stability is thus necessary for guaranteeing feasibility of the control system [START_REF] Isidori | Nonlinear Control Systems[END_REF].

The idea of employing factorization, properly introduced in [START_REF] Monaco | Multirate sampling and zero dynamics: from linear to nonlinear[END_REF] for studying the zero-dynamics of sampled-data systems, and consequently partial dynamic cancelation has been formalized and developed in [START_REF] Mattioni | On partially minimum-phase systems and disturbance decoupling with stability[END_REF] to deal with feedback linearization of nonlinear single-input single-output (SISO) non-minimum phase systems (i.e., whose zero-dynamics are unstable). The design approach represents a first generalization to the nonlinear context of the idea of assigning part of the eigenvalues over part of the zeros of the transfer function of a linear system (partial zero-pole cancelation). When considering dynamical systems, stability of the feedback system can be achieved when only a stable component of the zero-dynamics is cancelled. Such a stable component can be identified, in the SISO case, by considering the output associated with the minimum-phase factorization of the transfer function of the linear tangent model at the origin. However, when dealing with MIMO systems identifying such a stable component and hence the corresponding dummy output is still challenging.
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In this paper, the results in [START_REF] Mattioni | On partially minimum-phase systems and disturbance decoupling with stability[END_REF] are extended to the multi-input multi-output context by providing a systematic procedure for extracting, via factorization, a dummy output identifying the minumum-phase component of a dynamical system. In particular, focusing on linear time-invariant and right-invertible dynamics, we show how the Smith form can be suitably exploited for factorizing the matrix transfer function and extract, in the state-space representation, the output identifying the minimum-phase component of the original system. Then, the geometric relations among the original system and the one with the dummy output are investigated in terms of invariant subspaces and making reference to MIMO normal forms [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF]. In particular, it is shown that the new output identifies the largest control-invariant subspace contained in the kernel of the original one maximizing unobservability while, at the same time, preserving stability of the closed loop. This allows the definition of systematic solutions with stability of a large variety of control problems dealing with right-inversion (e.g., disturbance decoupling, tracking). The case of nonlinear systems is sketched through the simulated example of a four tanks dynamics dealt with at an academic level. The case of square systems is dealt with as the extension to larger number of inputs and outputs follows the same lines.

The paper is organized as follows. In Section II, recalls on MIMO systems are given and the problem is formulated. In III, the procedure for constructing an output associated to the minimum-phase component is presented and applied to several control problems in Section IV. In Section V, the example of a four tank dynamics serves, at an academic level, for sketching the extension to nonlinear dynamics with linear output while conclusions and perspectives are in Section VI.

Notations: R and N denote the set of real and natural numbers including 0, respectively. C + (resp. C -) denote the left-hand (resp. right-hand) side of the complex plane. Mat R (n, m) defines the group of real matrices of dimension n×m with, for short, Mat R (n) = Mat R (n, n). Given a matrix A ∈ Mat R (n), σ{A} defines its spectrum. For a sorted set of a i ∈ R with i = 1, . . . , n, diag{a 1 , . . . , a n } defines a diagonal matrix with a i being the diagonal elements. For a smooth vector field f , L f denotes the Lie derivative operator,

L f = n i=1 f i (•) ∂ ∂xi .

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear time invariant (LTI) system of the form

ẋ = Ax + Bu (1a) y = Cx (1b) with u, y ∈ R 2 , x ∈ R n , B = b 1 b 2 , C = c 1 c 2
and transfer function

P (s) = C(sI -A) -1 B. (2) 
The following standing assumptions are set.

A1. The pairs (A, B) and (C, A) are, respectively, controllable and observable. A2. The system (1) is right-invertible [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF], [START_REF] Marro | Teoria dei sistemi e del controllo[END_REF]. A3. The system (1) is partially minimum-phase; i.e., the zero polyonmial defined as

z(s) = det sI -A B -C 0 = z u (s)z s (s), s ∈ C
is non-Hurwitz with z s (s) denoting the corresponding Hurwitz component with roots in the left hand side of the complex plane.

In the following, general recalls for MIMO linear systems are given as instrumental for the problem we address.

A. The Smith form

Consider any p×p polynomial matrix N (s), then there exist elementrary row and column operations, or corresponding unimodular matrices {L -1 (s), R -1 (s)} such that

N (s) = L(s)N sm (s)R(s) (3) 
with

N sm (s) = diag{ 1 (s), . . . , p (s)} (4) 
where { i (s)} are unique monic polynomials verifying i (s) is a factor of i+1 (s) for all i = 1, . . . , p -1. Moreover, by denoting as ∆ i (s) the greatest common divisor of all i × i minors of N (s) for i = 1, . . . , p one gets that i (s) = ∆i(s) ∆i-1(s) with ∆ 0 (s) = 1 [START_REF] Kailath | Linear systems[END_REF]. Note that, although N ms (s) is unique, {L -1 (s), R -1 (s)} are not. Accordingly, one gets that the (rational) matrix transfer function (2) always admits a unique Smith form, that is

P (s) = L(s)N sm (s)D -1 (s)R(s) (5) 
with

M (s) = N sm (s)D -1 (s) = diag{ z1(s) d1(s) , . . . , zp (s) 
dp(s) } where from A1.: z(s) = z 1 (s) . . . z p (s) = z u (s)z s (s) corresponds to the zero-polynomial defined in A3.; d(s) = d 1 (s) . . . d p (s) is the pole-polynomial with the property that d 2 (s) is a factor of d 1 (s). For the sake of notational simplicity, and without loss of generality, we will assume in the sequel that p = 2.

Remark 2.1 ( [START_REF] Kailath | Linear systems[END_REF]): Two matrices sI -A and sI -A r possess the same Smith form if, and only if, A and A r are similar. This easily extends to the case of two realizations (A, B, C) and (A r , B r , C r ) (with the same dimension) sharing the same transfer function P (s).

B. Partial normal forms and the zero-dynamics

As (1) is invertible [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF]Chapter 9], one can pick constant r 2 ≥ r 1 > 0 such that

c i A B = 0, = 0, . . . r i -2, c i A ri-1 B = 0
and ν ≥ 0 such that there exist constant α r2 , . . . , α r2+ν-1 ∈ R verifying for j = 0, . . . , ν -1

c 2 A r2+j-1 B + c 1 A r1 (α r2+j I + • • • + α r2 A j-1 )B = 0. and M= c 1 A r1-1 B c 2 A r2+ν-1 B + c 1 A r1 (α r2+ν-1 I + • • • + α r2 A ν-1 )B det{M } = 0.
In this setting, one can define a coordinate transformation

         z 1 z 2 z 3 . . . z ν+2 η          =          T 1 T 2 T 3 . . . T ν+2 T η          x, z i =   z i,1 . . . z i,ri   (6) 
for i = 1, 2 and , for j = 0, . . . , ν -1 with

T i = c i . . . (c i A ri-1 ) , T η B = 0 T j+3 = c 2 A r2+j + c 1 A r1 (α r2+j I + • • • + α r2 A j ) such that żi, =z i, +1 , i = 1, 2, = 1, . . . , r i -1 ż1,r1 =c 1 A r1 x + c 1 A r1-1 Bu ż2,r2 =c 2 A r2 x + c 2 A r2-1 Bu =z 3 -α r2 c 1 A r1 x + c 1 A r1-1 Bu żj+3 =c 2 A r2+j+1 x + c 1 A r1+1 (α r2+j I + • • • + α r2 A j )x =z j+4 -α r2+j+1 c 1 A r1 x + c 1 A r1-1 Bu żν+2 =c 2 A r2+ν x + c 1 A r1+1 (α r2+ν-1 I + • • • + α r2 A ν-1 )x + c 2 A r2+ν-1 + c 1 A r1 (α r2+ν-1 I + • • • + α r2 A ν-1 )B u.
Accordingly, defining

R 1 z + S 1 η + b1 u := c 1 A r1 T -1 z η + c 1 A r1-1 Bu R 2 z + S 2 η := c 2 A r2+ν + c 1 A r1+1 (α r2+ν-1 I + • • • + α r2 A ν-1 ) T -1 z η b2 := c 2 A r2+ν-1 + c 1 A r1 (α r2+ν-1 + • • • + α r2 A ν-1 )B u one gets for i = 1, 2, i = 1, . . . , r i -1 and j = 0, . . . , ν -2 ż1, 1 =z 1, 1+1 , ż1,r1 = R 1 z + S 1 η + b1 u ż2, 2 =z 2, 2+1 ż2,r2 =z 3 -α r2 R 1 z + S 1 η + b1 u żj+3 =z j+4 -α r2+j+1 R 1 z + S 1 η + b1 u z ν+2 =R 2 z + S 2 η + b2 u η =P z + Qη y 1 =z 1,1 , y 2 = z 2,1 (7) 
that is the MIMO normal form associated to [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF].

As a straightforward consequence of [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF], one gets that the zero-dynamics of ( 1) is η = Qη with η ∈ R n-r1-r2-ν with n-r 1 -r 2 -ν being the excess poles-zeros and σ{Q} = {s ∈ C s.t. z(s) = 0} that is, the eigenvalues of Q correspond to the transmission zeros of (1).

From the properties described above it is hence immediate to state that the control

u =M -1 (v -Lx) (6) =M -1 v -M -1 R 1 z + S 1 η R 2 z + S 2 z (8) with v = col(v 1 , v 2 ) and L = c 1 A r1 c 2 A r2+ν + c 1 A r1+1 (α r2+ν-1 I + • • • + α r2 A ν-1 )
achieves right-invertibility of (1); namely, one gets

ż1, =z 1, +1 , ż1,r1 = v 1 ż2, =z 2, +1 , ż2,r2 = z 3 -α r2 v 1 żj+3 =z j+4 -α r2+j+1 v 1 z ν+2 =v 2 η =P z + Qη y 1 =z 1,1 , y 2 = z 2,1 . (9) 
Remark 2.2: In this setting, the largest control-invariant subspace contained in ker C is given by

V = ker    c 1 . . . c 1 A r1-1    ∩ ker    c 2 . . . c 2 A r2-1    ∩ ν-1 j=0 ker    c 2 A r2 +α r2 c 1 A r1 . . . c 2 A r2+ν-1 +c 1 A r1 (α r2+ν-1 I+. . .+α r2 A ν-1 )    .
Accordingly, the feedback law (8) represents the friend of V ⊂ ker C and thus the one achieving maximum unobservability via zeros cancellation. In general, we refer to V as the zero-dynamics subspace. Remark 2.3: We note that if ν = 0 one recovers the standard normal form issued when (1) possesses a welldefined relative degree with non-singular decoupling (and right-invertibiity) matrix provided by

M = c 1 A r1-1 B c 2 A r2-1 B .
In general, as ν > 0 the above form shows that non interaction (and input/output decoupling) cannot be achieved through static state-feedback. However, the same does not stand for disturbance decoupling.

III. STABLE ZERO FACTORIZATION OF MIMO SYSTEMS

In this section, we extend the approach proposed in [START_REF] Mattioni | On partially minimum-phase systems and disturbance decoupling with stability[END_REF] for extracting the minimum-phase component of a general non-minimum phase systems [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF]. The approach is based on output factorization; namely, starting from (1), we identify a new dummy output y s (t) = C s x(t) corresponding to the stable component of the zero-dynamics associated to (1) and related to (1b) through the differential equation

y(t) = Z u (d)y s (t) (10) 
with d = d dt and a suitably defined two dimensional square differential matrix

Z u (d) = z 1,1 (d) z 1,2 (d) z 2,1 (d) z 2,2 (d) . ( 11 
)
More in details, starting from (5), one can split the zero-matrix as

N sm (s) = N u (s)N s (s) with N u (s) = diag{z u,1 (s), z u,2 (s)} and N s (s) = diag{z s,1 (s), z s,2 (s)} such that z u (s) = z u,1 (s)z u,2 (s), z s (s) = z s,1 (s)z s,2 (s)
containing, respectively, the zeros on the right and left hand side of the complex plane; that is det(N s (s)) = z s (s) and det(N u (s)) = z u (s). Accordingly, the (5) rewrites as

P (s) =L(s)N u (s)N s (s)D -1 (s)R(s) =Z u (s)P s (s) (12) 
with Z u (s) = L(s)N u (s) and P s (s) = N s (s)D -1 (s)R(s).

In particular, Z u (s) is a polynomial matrix in s whereas P s (s) is transfer function matrix.

Remark 3.1: When (1) possesses distinct poles with unitary algebraic multiplicity the term N s (s)D -1 (s)R(s) is improper as (L(s), R(s)) introduce poles at s = ∞ [START_REF] Kailath | Linear systems[END_REF]. To handle this issue [START_REF] Kailath | Linear systems[END_REF], one can compute a matrix K(s) (the so-called right divisor) such that: Ps (s) = K(s)N s (s)D -1 (s)R(s) is proper and with the same poles as (2) and z s as zeros polynomial; Zu (s) = L(s)N u (s)K -1 (s) is a polynomial matrix in s ∈ C. Accordingly, (12) reads P (s) = Zu (s) Ps (s) [START_REF] Marro | Teoria dei sistemi e del controllo[END_REF] such that Ps (s) is strictly proper and verifying

Ps (s) = C s (sI -A) -1 B. (14) 
The computation of such K(s) might not be an easy task and needs to be performed through a vis-a-vis study. From now on, for the sake of clarity, we shall assume K(s) = I although all the results to come hold true in general as illustrated through the case study.

Proposition 3.1: Consider the system (1) under Assumptions A1 to A3 and let z(s) = z u (s)z s (s) be the zeropolynomial where z s (s) denotes the Hurwitz component. Let the transfer function P (s) be of the form [START_REF] Marro | Teoria dei sistemi e del controllo[END_REF] with P s (s) as in [START_REF] Kailath | Linear systems[END_REF] and y s = C s x solution to [START_REF] Monaco | Multirate sampling and zero dynamics: from linear to nonlinear[END_REF]. Then, the system

ẋ = Ax + Bu (15a) y s = C s x (15b)
identifies the minimum-phase component of (1) with zero polynomial given by z s (s).

Proof: The proof is a straightforward consequence of the Smith form associated to (2) and ( 12).

Remark 3.2:

The new output (15b) can be computed as follows. Let ( Â, B, Ĉ) with  ∈ Mat R (n) with n ≥ n be a realization of ( 14) and (  , B , Ĉ ) with  ∈ Mat R (n) the corresponding restriction onto the observable and controllable subspaces. Denote by T and T the non-singular transformations putting, respectively, (A, B) and (  , B ) into the eigenvalues assigmenent canonical form [START_REF] Marro | Teoria dei sistemi e del controllo[END_REF]. Then, because T AT -1 = T ÂT -1 and T B = T B one gets C s = Ĉ T -1 T .

IV. APPLICATIONS A. Right-invertibility with stability

As a consequence of the factorization in Section III, because of Assumption A2, one gets the following result.

Lemma 4.1: Consider the system (1) under Assumptions A1 to A3 and let (15) identify its minimum-phase component with transfer function [START_REF] Kailath | Linear systems[END_REF]. Then, ( 15) is right-invertible with indexes (r s 1 , r s 2 , ν s ) verifying r s 1 + r s 2 + ν s = n -deg(z s (s)). Proof: The proof is a straightforward consequence of the factorization [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF]. Indeed, as R(s) is unimodular, the result follows from [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF].

Remark 4.1: From the result above it is always possible to choose L(s) such that the components of the matrix Z u (s) in [START_REF] Mattioni | On partially minimum-phase systems and disturbance decoupling with stability[END_REF] are such that deg{z 1,1 (s

)} = r s 1 -r 1 , deg{z 1,2 (s)} = r s 2 + ν s -r 1 , deg{z 2,1 (s)} = r s 2 + ν s -r 1 , deg{z 2,2 (s)} = r s 2 + ν s -r 2 -
ν with deg{•} denoting the degree of the corresponding polynomial and (r 1 , r 2 , ν) being the invertibility indices associated to [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF].

By virtue of the result above and Section II-B, rightinvertibility of the stable component of (1) can be achieved through right-invertibility of the same system with dummy output (15b).

Proposition 4.1: Consider the system (1) under Assumptions A1 to A3. Let (15) identify the minimum phase component of (1) with invertibility indices (r s 1 , r s 2 , ν s ). Then, there exist α r s 2 +j ∈ R with j = 0, . . . , ν s -1 such that

c s 2 A r s 2 +j-1 B + c s 1 A r s 1 j-1 =0 α r s 2 + A j--1 B = 0 (16) 
and

M s = c s 1 A r s 1 -1 B c s 2 A r s 2 +ν s -1 B + c s 1 A r s 1 ν s -1 i=0 α r s 2 +i A ν s -i-1 B with det{M s } = 0. Accordingly, the feedback u = M -1 s (v -L s x) (17) 
with

L s = c s 1 A r s 1 -1 c s 2 A r2+ν + c s 1 A r s 1 +1 (α r s 2 +ν s -1 I + • • • + α r s 2 A ν s -1
) performs right-invertibility of the minimum-phase component of [START_REF] Isidori | Nonlinear decoupling via feedback: a differential geometric approach[END_REF].

Proof: Along the lines of Section II-B, we introduce the coordinate transformation

         z s 1 z s 2 z s 3 . . . z ν s +2 η          =          T s 1 T s 2 T s 3 . . . T s ν s +2 T η s          x, z s i =   z s i,1 . . . z s i,r s i   ( 18 
)
for i = 1, 2 and with, for j = 3, . . . , ν s + 2 so that, under the control (17), ( 15) gets the form

żs 1, =z s 1, +1 , żs 1,r1 = v 1 żs 2, =z s 2, +1 , ż2,r s 2 = z s 3 -α r s 2 v 1 żs j+3 =z s j+4 -α r s 2 +j+1 v 1 z s ν s +2 =v 2 ηs =P s z s + Q s η s y s 1 =z s 1,1 , y s 2 = z s 2,1
with ηs = Q s η s being the asymptotically stable zerodynamics with 10), one gets in the new coordinates

σ{Q s } = {s ∈ C s.t. z s (s) = 0} ⊆ {s ∈ C s.t. z(s) = 0}. From (
y = Z u (d)y s = Z u (d) z s 1,1 z s 2,1 = Ĉz s
and thus the result.

As a consequence, one gets the following result. Proposition 4.2: Consider the systems ( 1) and ( 15) and let V and V s be, respectively, the largest controlled (A,B)invariant subspaces contained in ker{C} and ker{C s }. Then, V s ⊂ V .

Proof: For the ease of the proof, assume that that for (1) ν = 0. By virtue of (10) one has, for i = 1, 2 and j = 0, . . . , r i -1

d j y i (t) = c i A j x = d j z i,1 (d)y s 2 + d j z i,2 (d)y s 2 = z i,1 (d)c s 1 A j x + d j z i,2 (d)c s s A j
x with, by definition of r 1 , r 2 , ∇ u (Z u (d))d j y s ) = 0. By exploiting [START_REF] Johansson | A multivariable laboratory process with an adjustable zero[END_REF], it is a matter of computations to deduce that

T 1 T 2 V = N    T s 1 . . . T s ν s +2    Vs .
with T i and T s j as in ( 6) and ( 18) for i = 1, 2 and j = 1, . . . , ν s + 2 and N being un upper triangular full rank matrix. From the equality above one gets that V s = ker{V s } ⊂ ker{V } = V and thus the result.

The feedback (17) is the one generating in closed loop the maximal unobservability constrained to stability; namely, (17) is the one canceling only the Hurwitz component of the zero dynamics of the original system (1). In other words, (17) is rendering only the stable component of V feedbackinvariant (that is V s ).

Remark 4.2: It must be noted that, albeit (1) possesses a well-defined relative degree (that is ν = 0), when introducing the new dummy output issued from Proposition 3.1 through the Smith form, one might get ν s ≥ 0. However, ν s defines the order of the dynamic extension that is necessary (over the control input u 1 ) for recovering a well-defined relative degree (r s 1 , r s 2 ). Remark 4.3: By virtue of Assumption A2 and Remark 2.3, one gets that the asymptotic tracking problem of a smooth reference y r (t) ∈ R 2 admits a solution with stability (under dynamical feedback if ν s > 0) by solving the equivalent problem over the partially minimum-phase system [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] and with respect to the dummy output reference y s r (t) ∈ R 2 solution to the differential equality y r (t) = Z u (d)y s r (t) with y r (t 0 ) = Z u (d)y s r (t 0 ).

B. DDP of non minimum-phase systems with stability

Let (1) be affected by a disturbance w ∈ R 2 that is is solvable for all P verifying Im{P } ⊂ V s ⊂ ker{C} where V s is the largest (A, B)-invariant subspace contained in ker{C s }. In addition, the corresponding feedback is (17).

ẋ = Ax + Bu + P w (19a) y = Cx (19b) with P ∈ Mat R (n, 2
Proof: The proof is a straightforward consequence of Proposition 4.2 ensuring V s ⊂ V ⊂ ker{C}.

Remark 4.4: By virtue of Remark 4.2, one gets that dynamical feedback extension is unnecessary for solving DDP whenever the system is right-invertible even if [START_REF] Sain | Invertibility of linear time-invariant dynamical systems[END_REF] do not possess a well-defined relative degree.

V. THE 4-TANKS AS AN EXAMPLE

Consider the case of a 4-tanks system [START_REF] Johansson | A multivariable laboratory process with an adjustable zero[END_REF] given by

ḣ = f (h) + Bu (20a) y = Ch (20b) with h = col{h 1 , h 2 , h 3 , h 4 }, f (h) = 2F (h)h F (h) =    -p1(h1) 0 A 3 A 1 p3(h3) 0 0 -p2(h2) 0 A 4 A 2 p4(h4) 0 0 -p3(h3) 0 0 0 0 -p4(h4)    B =      γ1k1 A1 0 0 γ2k2 A2 0 (1-γ2)k2 A3 (1-γ1)k1 A4 0      , C = κ t     1 0 0 1 0 0 0 0     p i (h i ) = ci √ 2ghi
2Aihi . For the sake of compactness, let b ij correspond to the element in position (i, j) of the inputstate matrix B. In particular, h i , A i and c i are, respectively, the level of water in the i th -tank, its cross-section area and the cross-section of the outlet hole for i = 1, 2, 3, 4. The control signals u j with j = 1, 2 correspond to the voltage applied to j th -pump with k j u j being the corresponding flow. We consider the problem of locally asymptotically tracking the output of (20) to a desired y = (h 1 , h 2 ) corresponding to make h = (h 1 , h 2 , h 3 , h 4 ) with

h 3 = (c 1 γ 2 h 1 -c 2 (1 -γ 2 ) h 2 ) 2 c 2 3 a 2 3 γ 2 2 h 4 = (c 2 γ 1 h 2 -c 1 (1 -γ 1 ) h 1 ) 2 c 2 4 a 2 4 γ 2 1 for a 3 = γ2 1-γ2 -1-γ1
γ1 and a 4 = γ1 1-γ1 -1-γ2 γ2 a locally asymptotically stable equilibrium for the closed-loop system under nonlinear feedback.

1) Analysis of the zero-dynamics: The vector relative degree of (20) is well defined and given by r = (1 1) so that it exhibits a two-dimensional zero-dynamics. Accordingly, for investigating minimum-phaseness of (20), one computes the linear tangent model (LTM) at h of the form (1) with x = h -h and A = 2F (h ) with corresponding transfer function matrix In the following we show how the procedure detailed in Section III allows to deduce a new output y s = C s h and a nonlinear feedback locally solving the regulation problem with stability for (20).

P (s) = κ t b11 s+p1 b32 p3 (s+p1) (s+p3) b41 p4 (s+p2) (s+p4) b22 s+p2 (21) p i = p i (h i ) > 0 for i = 1, 2, 3, 4 , Smith form as M (s) = diag{ 1 d(s) , z (s) 
2) The new dummy output: By virtue of Remark 3.1, because (A, B, C) possesses three distinct poles in general, one gets that the matrix P s (s) = diag{1, sz s }diag{d(s), 1}R(s) is improper for all choices of (L(s), R(s)). However, by suitably setting K(s) 1 so to make Ps (s) = K(s)P s (s) rational one gets the dummy output 3) Asymptotic tracking with stability: It is easily checked that, the nonlinear dynamics (20a) with output as in (22) possesses a well-defined relative degree r s = (1, 2) at h . Also, it is a matter of computations to verify that (20a) with output ( 22) is locally minimum-phase with zero-dynamics 1 For the sake of space, (L(s), R(s), K(s)) are reported at https:// hal.archives-ouvertes.fr/hal-02526676. ηs = q s (0, η s ) verifying ∂qs ∂ηs (0, η s ) = z s < 0. At this point, along the lines of Remark 4.3 and by exploiting the results in [9, Chapter 5], one gets that output tracking of (20) can be solved over the dummy output (22) by setting the constant y s = (y s 1, , y s 2, ) ∈ R 2 as solution to y = Z u (d)y s which is given by construction as y s = C s h . Accordingly, for all k 0 , k 1 > 0 the feedback u=-M -1 s (h)

y s = 1 0 0 0 -b32b41p4 2b11β b32 2 -b32(p3+p4) 2β -b22 2 -b22(p3+p4) 2β b32 p4 2β h ( 
c s 1 f (h) + y s 1 -y s 1, L f c s 2 f (h)+k 1 c s 2 f (h)+k 0 (y s 2 -y s 2, ) (23) 
with decoupling matrix

M -1 s (h) = c s 1 B L 2 f c s 2 f (h)B)
ensures local asymptotic regulation of y to the desired y while preserving internal stability. 4) Simulations: For completeness, simulations are reported in Figure 1 for the closed-loop system under the stabilizing feedback designed over the new dummy output highlighting the locally minimum-phase components of (20). Simulations are performed for the parameters fixed as in the In addition, we fixed y = (7.1, 6.2) corresponding to h = (7.1, 6.2, 3.58, 1.632) . In particular, with this choice of parameters, the plant is nonminum-phase with the zeros of LTM model at the desired equilibrium provided by z u = 0.018 and z s = -0.0789. The gains of the controller (23) are fixed as (k 0 , k 1 ) = (1, 2). Simulations report the story of the original and dummy outputs plus the real residual internaldynamics of the feedback plant (that is the water levels of the third and fourth tank with respect to the real output) while proving the effectiveness of the proposed design approach.

VI. CONCLUSIONS

In this paper, a systematic procedure for controlling MIMO non-minimum phase systems has been proposed based on output factorization. In particular, recurring to the Smith-MacMillan form, a dummy output associated with the stable component of the zero-dynamics is exhibited to perform inversion of the minimum-phase component. The results locally apply to the case of nonlinear dynamics with linear outputs. Perspectives concern the extension of this methodology to the case of nonlinear output mappings.

  }, with pole-polynomial d(s) = (s + p 1 )(s + p 2 )(s + p 3 )(s + p 4 ) and zero-polynomial z(s) = s 2 + (p 3 + p 4 )s + p3p4 b11b22 (b 11 b 22 -b 32 b 41 ). Thus, (20) is nonminimumphase if b 11 b 22 -b 32 b 41 < 0 so that one can factorize z(s) = (s-z u )(s-z s ) for z u ∈ R + and z s ∈ R -. As a consequence, if b 11 b 22 -b 32 b 41 < 0, output regulation to y cannot be achieved through classical right-inversion even if the relative degree is well-defined.

  22) with β = (p 3 + p 4 ) 2 -4 p3p4 b11b22 (b 11 b 22 -b 32 b 41 ) making the LTM model of (20a) minimum-phase.

Fig. 1 .

 1 Fig. 1. The four tank model under stable dynamic inversion.

  ). In this section, it is shown how disturbance decoupling (DDP) can be solved with stability by making use of the new output deduced in Section III. It is worth recalling that, in general and regardless stability, disturbance decoupling is solvable if and only if Im{P } ⊂ V ⊂ ker{C}. However, the corresponding solution guarantees stability of the closed loop if and only if the zerodynamics associated to (19) is asymptotically stable. The next result provides a new result ensuring the existence of a disturbance decoupling controller preserving stability of the internal dynamics. Theorem 4.1: Consider (19) under assumptions A1. to A3. and the dummy output (15b) defined by Proposition 3.1. Then, output disturbance decoupling with stability for (19)

Table below .

 below 

	A 1 [cm 2 ]	28	A 3 [cm 2 ]	28
	A 2 [cm 2 ]	32	A 4 [cm 2 ]	32
	c 1 [cm 2 ]	0.071	c 3 [cm 2 ]	0.071
	c 2 [cm 2 ]	0.057	c 4 [cm 2 ]	0.057
	k t [V /cm]	1	g [cm/s 2 ]	981
	γ 1	0.43	γ 2	0.34
	k 1	65.12	k 2	94.12
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