




Figure 1. Plots of relative kinetic data obtained from the NO₃ reaction with isoprene using cyclohexene as the reference, and NO₃ radical reaction with 2-carene and 3-carene using α -cedrene, 1,-cyclohexadiene as the reference.


Figure 2. Plots of relative kinetic data obtained from the NO_3 reaction with methyl vinyl ketone using methyl acrylate as the reference, and NO_3 radical reaction with methacrolein and crotonaldehyde using methyl methacrylate, 2-methyl propanal as the reference. Note: crotonaldehyde with reference 2-methyl propanal, methacrolein with reference methyl methacrylate, methyl vinyl ketone with reference methyl acrylate and crotonaldehyde with reference methyl methacrylate were shifted on the y-axis 0.05, 0.1, 0.15 and 0.2 respectively for clarity.

Figure 3 Linear free energy plot for the reactions of OH and NO₃ radicals with a series of 15 aliphatic aldehydes and studied unsaturated VOs. The correlation line for addition is given by: $log(k_{NO3}) = (3.43\pm0.24) \times log(k_{OH}) + (22.7\pm2.5)$ from D'Anna et al. (2001) and the correlation line for H-atom abstraction is given by: $log(k_{NO3}) = (1.78\pm0.57) \times log(k_{OH}) + (4.26\pm6.59)$ from the updated alkane data of Zhou et al., 2019.

Figure 4. The time profile (a / c) of 2-carene/3-carene (m/z 137.133), epoxide $(C_{10}H_{16}OH^+, m/z 153.127)$, nitrooxy-ketone $(C_{10}H_{16}O_4NH^+, m/z 215.115)$ and caronaldehyde $(C_{10}H_{16}O_2H^+, m/z 169.122)$ measured by PTR-TOF-MS. Plots (b, d) show product formation as function of 2-carene/3-carene consumption.

Figure 5. The proposed reaction mechanism of 2-carene (a) and 3-carene (b) reaction with NO_3 radical under the condition of this work: in the absence of NO and in excess of 2-carene/3-carene. The products identified in PTR-TOF-MS of this work were highlighted in red.

VOCs	structure	Mass charge ratio. H^+	detection sensitivity		
		(m/z)	(ncps/ppbv)		
Methacrolein		71.049	31.73		
Crotonaldehyde	O H	71.049	41.71		
Methyl vinyl ketone	°	71.049	34.83		
2-carene		137.133	19.58		
3-carene		137.133	15.93		
Isoprene		69.07	7.61		

Table 1. List of specific masses monitored to detect various studied VOCs using thePTR-TOF-MS along with detection sensitivities.

Table 2. The experimental conditions and rate constants for the reaction of isoprene, methacrolein, methyl vinyl ketone, crotonaldehyde, 2-carene and 3-carene with NO_3 radical by relative method.

VOC	$[VOC] (10^{12})$	ref ^a	No.	$\frac{k}{b}$ + arror b	$k\pm 2\sigma (\mathrm{cm}^3$
VUC	molecule cm ⁻³)	rei	runs	$\frac{k}{k_{ref}} \pm error^{b}$	molecule ⁻¹ s ⁻¹) ^c
methacrolein	1.7-4.1	2-methyl propanal	2	0.23±0.07	$(2.7\pm0.6)\times10^{-15}$
		methyl methacrylate	2	0.90 ± 0.27	$(2.7\pm0.5)\times10^{-15}$
				Average ^d	$(2.7\pm0.8) \times 10^{-15}$
crotonaldehyde	2.0-4.0	2-methyl propanal	2	0.42 ± 0.06	$(4.9\pm0.7)\times10^{-15}$
		methyl methacrylate	2	1.87 ± 0.29	(5.6±0.6) ×10 ⁻¹⁵
				Average ^d	(5.3±1.0) ×10 ⁻¹⁵
methyl vinyl ketone	1.0-4.0	methyl acrylate	2	1.11±0.15	(1.3±0.6) ×10 ⁻¹⁶
2-carene	0.8-1.7	1,3-cyclohexadiene	2	0.36 ± 0.04	(2.2±0.6) ×10 ⁻¹¹
		α-cedrene	2	1.66 ± 0.23	$(2.5\pm0.3)\times10^{-11}$
				Average ^d	(2.5±0.6) ×10 ⁻¹¹
3-carene	0.8-2.8	1,3-cyclohexadiene	2	0.39 ± 0.03	$(1.1\pm0.4) \times 10^{-11}$
		α-cedrene	2	1.71 ± 0.20	$(1.4\pm0.2) \times 10^{-11}$
				Average ^d	(1.3±0.4)×10 ⁻¹¹
isoprene	0.8-3.3	cyclohexene	2	$1.19{\pm}0.18$	$(6.8\pm1.0)\times10^{-13}$

 $^{a}\ k_{ref+NO3}$ was shown in the text

^b the error for $\frac{k}{k_{ref}}$ are 2 times of standard deviation in the least-squares fit of $\ln \frac{[VOC]_0}{[VOC]_t} - k_d * t$ vs $\ln \frac{[reference]_0}{[reference]_t} - k_d * t$, and then multiply 2.9 as the Student

t-distribution contribution due to the limited number of measurements.

^c the uncertainties for k were combined the precision of our measured values with the quoted uncertainties in the rate constant of references by using the propagation of uncertainty in Eq.2

^d Weighted average as shown in Eq.3 and Eq.4

	(MVK), crotonaldehyde (CA),	2-carene and 3-carene.		
	Technique ⁱ	k (cm ³ molecule ⁻¹ s ⁻¹) ^k	T (K)	Reference
Isoprene	relative, trans-2-butene	$(5.97 \pm 1.20) \times 10^{-13}$ a	295±1	Atkinson et al., 1984
	absolute, DF-MS	$(1.3\pm0.2)\times10^{-12}$	298	Benter and Schindler, 1988
	absolute, LIF	$(6.52\pm0.07)\times10^{-13}$	297	Dlugokencky and Howard, 1989
	relative, trans-2-butene	$(1.21\pm0.31)\times10^{-12}$ a	298±2	Barnes et al., 1990
	absolute, DF-MS	$(7.8\pm0.6)\times10^{-13}$	298	Wille et al., 1991
	absolute, PR-A	$(1.07\pm0.20)\times10^{-12}$	295±2	Ellermann et al., 1992
	relative, trans-2-butene	$(6.86\pm2.60)\times10^{-13}$	298	Berndt and Böge, 1997
	absolute, F-CIMS	$(7.3\pm0.2)\times10^{-13}$	298±2	Suh et al., 2001
	relative, trans-2-butene	$(5.3\pm1.1)\times10^{-13}$ a	206 1 2	Stabal at al. 2004
	relative, 2-buten-1-ol	$(5.75 \pm 0.47) \times 10^{-13}$ b	296±2	Stabel et al., 2004
	relative, trans-2-butene	$(6.16 \pm 1.24) \times 10^{-13}$ a	295±2	Zhao et al., 2011
	relative	$(6.8\pm1.0)\times10^{-13}$	297±2	This work
	recommended ^{e,f}	(6.6±0.8)×10 ⁻¹³		
MACR	absolute, F-A	<8×10 ⁻¹⁵	298	Rudich et al., 1996
	relative, propene	$(4.4\pm1.7)\times10^{-15}$	296±2	Kwok et al., 1996
	relative, propene	$(3.07 \pm 1.09) \times 10^{-15}$	200.0	Classes et al. 1009
	relative, but-1-ene	(3.50±1.06)×10 ⁻¹⁵	298±2	Chew et al., 1998
	relative, propene	$(3.7\pm1.0)\times10^{-15}$	296±2	Canosa-Mas et al. 1999
	relative	$(2.7\pm0.8)\times10^{-15}$	298±2	This work
	recommended ^e	(3.3±0.9)×10 ⁻¹⁵		
CA	relative, propene	(5.15±2.58)×10 ^{-15 c}	298	Atkinson et al. 1987
	relative, propene	(6.0±0.8)×10 ⁻¹⁵	297	Ullerstam et al. 2001
	absolute, DF-LIF	(16.0±1.9)×10 ⁻¹⁵	298	Cabanas et al. 2001
	absolute, LIF	(13.5±0.4)×10 ⁻¹⁵	298	Salgado et al. 2008
	relative	(5.3±1.0)×10 ⁻¹⁵	298±2	This work
	recommended ^{e, g}	(5.7±1.2)×10 ⁻¹⁵		
MVK	absolute, F-A	$\leq 1.2 \times 10^{-16}$	298	Rudich et al., 1996
	relative, propene	<6×10 ⁻¹⁶	296±2	Kwok et al., 1996
	relative, ethene	$(4.7\pm1.7)\times10^{-16}$	296±2	Canosa-Mas et al., 1999
	relative	$(1.3\pm0.6)\times10^{-16}$	298±2	This work
	Recommended ^h	$(1.3\pm0.6)\times10^{-16}$		
2-carene	absolute, DF-LIF	(1.66±0.18)×10 ⁻¹¹	298	Martínez et al., 1999
	relative, 2,3-dimethyl-2-butene	(2.15±0.46)×10 ⁻¹¹		
	relative, 2-methyl-2-butene	$(1.87\pm0.27)\times10^{-11}$	295	Corchnoy and Atkinson, 1990
	relative	(2.5±0.6)×10 ⁻¹¹	296±2	This study
	recommended ^{e, i}	$(1.8\pm0.6)\times10^{-11}$		•
3-carene	relative, 2-methyl-2-butene	$(1.01\pm0.35)\times10^{-11}$ d	295±1	Atkinson et al., 1984
	relative, 2-methyl-2-butene	(8.1±1.2)×10 ⁻¹²	298	Barnes et al., 1990
	relative	$(1.3\pm0.4)\times10^{-11}$	297±2	This study
	recommended ^{e, i}	(8.7±0.5)×10 ⁻¹²		5

Table 3. Kinetic results of this study and comparison with the literature for the reactions of NO₃ radical with isoprene, methacrolein (MACR), methyl vinyl ketone (MVK), crotonaldehyde (CA), 2-carene and 3-carene.

^{a, b, c, d} The values from the literatures were recalculated by using the rate constants as follow: ^a $k_{trans-2-butene} = (3.90\pm0.78) \times 10^{-13}$ (IUPAC), ^b $k_{2-buten-1-ol} = (3.23\pm0.12) \times 10^{-13}$ (Zhao et a., 2011), ^c $k_{propene} = (9.50\pm5.50) \times 10^{-15}$ (IUPAC), ^d $k_{2-methyl-2-butene} = (9.37\pm0.33) \times 10^{-12}$ (Calvert et al., 2000), unit in cm³ molecule⁻¹ s⁻¹ ^e the recommended value was weighted average in Eq.3 and Eq.4

^frecommended value included all the literatures excluded Benter and Schindler, 1988, Barnes et al., 1990 and Ellermann et al., 1992.

^g recommended value included all the literatures excluded Cabanas et al. 2001 and Salgado et al. 2008

^h recommended value was the one obtained in this work

ⁱrecommended value included all the literature data

^j DF-MS: discharge flow system and mass spectrometer; LIF: Laser Induced Fluorescence; DF-LIF: discharge flow system and Laser Induced Fluorescence; PR-A: pulse radiolysis combined with kinetic spectroscopy in the visible; F-CIMS: flow tube and chemical ionization mass spectrometer; F-A: flow tube coupled to a diode laser absorption system; CRDS: cavity ring-down spectroscopy

^k the uncertainties of the literature data were revised by including the quoted uncertainties in the rate constant of references by using the propagation of uncertainty in Eq.2

Table 4. Summary of rate constants and estimated atmospheric lifetimes of studied VOCs with respect to their reactions with OH, NO₃, O₃, and Cl at 298 \pm 2 K and atmospheric pressure.

VOCs	Rate constant (cm^3 molecule ⁻¹ s ⁻¹)				Lifetime (hours)			
	NO ₃ ^b	OH	O ₃	Cl	$ au_{NO3}$	τ _{OH}	_	_
		(×10 ⁻¹¹)	(×10 ⁻¹⁸)	(×10 ⁻¹⁰)			τ_{O3}	τ_{Cl}
Isoprene	6.6×10 ⁻¹³	10.2 ^c	11.3 ^e	4.00 ^h	0.84	2.7	35	69
methacrolein	3.3×10 ⁻¹⁵	3.20 ^d	0.71 ^e	3.30 ⁱ	170	8.7	559	84
methyl vinyl ketone	1.5×10 ⁻¹⁶	2.00 ^d	4.50 ^e	0.99 ⁱ	3736	13.9	88	281
crotonaldehyde	5.7×10 ⁻¹⁵	3.60 ^d	$1.58^{\rm f}$	2.20 ^j	98	7.7	251	126
2-carene	1.8×10 ⁻¹¹	7.95 °	239 ^g	5.80 ^k	0.03	3.5	1.7	48
3-carene	9.1×10 ⁻¹²	8.78 ^c	38.0 ^g	5.20 ^k	0.06	3.2	10	53

^a Assuming [OH] = 1×10^6 molecules cm⁻³ (Spivakovsky et al., 2000) , [NO₃]= 5×10^8 molecules cm⁻³ (Atkinson et al., 1991), [O₃]= 7×10^{11} molecules cm⁻³ (Monks et al., 2009) and [Cl] = 1×10^4 molecules cm⁻³ (Wingenter et al. 1996).

^b rate constants from this work; ^c rate constants from Calvert et al., 2002; ^d rate constants from Calvert et al., 2011; ^e rate constants from Ren et al., 2017; ^f rate constant from Sato et al., 2004; ^g rate constants from Chen et al., 2015; ^h rate constant from Suh et al., 2000; ⁱ rate constants from Canosa-Mas et al., 2001; ^j rate constant from Ullerstam et al., 2001; ^k rate constants from Timerghazin et al., 2001.