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Kernel density estimation and kernel regression are powerful but computationally expensive techniques: a direct evaluation of kernel density estimates at M evaluation points given N input sample points requires a quadratic O(M N ) operations, which is prohibitive for large scale problems. For this reason, approximate methods such as binning with Fast Fourier Transform or the Fast Gauss Transform have been proposed to speed up kernel density estimation. Among these fast methods, the Fast Sum Updating approach is an attractive alternative, as it is an exact method and its speed is independent of the input sample and the bandwidth. Unfortunately, this method, based on data sorting, has for the most part been limited to the univariate case. In this paper, we revisit the fast sum updating approach and extend it in several ways. Our main contribution is to extend it to the general multivariate case for general input data and rectilinear evaluation grid. Other contributions include its extension to a wider class of kernels, including the triangular, cosine and Silverman kernels, its combination with parsimonious additive multivariate kernels, and its combination with a fast approximate k-nearest-neighbors bandwidth for multivariate datasets. Our numerical tests of multivariate regression and density estimation confirm the speed, accuracy and stability of the method. We hope this paper will renew interest for the fast sum updating approach and help solve largescale practical density estimation and regression problems.

Introduction

Let (x 1 , y 1 ), (x 2 , y 2 ), . . . , (x N , y N ) be a sample of N input points x i and output points y i drawn from a joint distribution (X, Y ). The kernel density estimator (aka Parzen-Rosenblatt estimator) of the density of X at the evaluation point z is given by: fKDE (z) := 1

N N i=1 K h (x i -z) (1)
where K h (u) := 1 h K u h with kernel K and bandwidth h. The Nadaraya-Watson kernel regression estimator of E [Y |X = z ] is given by: fNW (z) :

= N i=1 K h (x i -z)y i N i=1 K h (x i -z) (2)
The estimator fNW (z) performs a kernel-weighted local average of the response points y i that are such that their corresponding inputs x i are close to the evaluation point z. It can be described as a locally constant regression. More generally, locally linear regressions can be performed:

fL (z) := min α(z),β(z) N i=1 K h (x i -z) [y i -α(z) -β(z)x i ] 2 (3) 
In this case, a weighted linear regression is performed for each evaluation point z This formulation can be generalized to quadratic and higher-order local polynomial regressions. Discussions about the properties and performance of these classical kernel smoothers (1)-( 2)-(3) can be found in various textbooks, such as [START_REF] Loader | Local Regression and Likelihood[END_REF], [START_REF] Härdle | Nonparametric and Semiparametric Models[END_REF], [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] and [START_REF] Scott | Multivariate density estimation: theory, practice and visualization[END_REF].

The well known computational problem with the implementation of the kernel smoothers (1)-( 2)-( 3) is that their direct evaluation on a set of M evaluation points requires O(M × N ) operations. In particular, when the evaluation points coincide with the input points x 1 , x 2 , . . . , x N , a direct evaluation requires a quadratic O(N 2 ) number of operations. To cope with this computational limitation, several approaches have been proposed over the years. Data binning consists in summarizing the input sample into a set of equally spaced bins, so as to compute the kernel smoothers more quickly on the binned data. This data preprocessing allows for significant speedup, either by Fast Fourier Transform [START_REF] Wand | Fast computation of multivariate kernel estimators[END_REF], [START_REF] Gramacki | FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices[END_REF]) or by direct computation, see [START_REF] Silverman | Algorithm AS 176: Kernel density estimation using the Fast Fourier Transform[END_REF], [START_REF] Scott | Averaged shifted histograms: effective nonparametric density estimators in several dimensions[END_REF], [START_REF] Fan | Fast implementation of nonparametric curve estimators[END_REF], [START_REF] Turlachand | Fast computation of auxiliary quantities in local polynomial regression[END_REF], [START_REF] Bowman | Computational aspects of nonparametric smoothing with illustrations from the sm library[END_REF].

The fast sum updating method is based on the sorting of the input data and on a translation of the kernel from one evaluation point to the next, updating only the input points which do not belong to the intersection of the bandwidths of the two evaluation points, see [START_REF] Gasser | Discussion: linear smoothers and additive models[END_REF], [START_REF] Seifert | Fast algorithms for nonparametric curve estimation[END_REF], [START_REF] Fan | Fast implementation of nonparametric curve estimators[END_REF], [START_REF] Werthenbach | A fast and stable updating algorithm for bivariate nonparametric curve estimation[END_REF], [START_REF] Chen | Fast kernel density independent component analysis[END_REF].

The Fast Gauss Transform, also known as Fast Multipole Method, is based on the expansion of the Gaussian kernel to disentangle the input points from the evaluation points and speed up the evaluation of the resulting sums, see [START_REF] Greengard | The Fast Gauss Transform[END_REF], [START_REF] Greengard | A new version of the Fast Gauss Transform[END_REF], [START_REF] Lambert | Efficient on-line nonparametric kernel density estimation[END_REF], [START_REF] Yang | Improved Fast Gauss Transform and efficient kernel density estimation[END_REF], [START_REF] Morariu | Automatic online tuning for fast Gaussian summation[END_REF], [START_REF] Raykar | Fast computation of kernel estimators[END_REF], [START_REF] Sampath | Parallel Fast Gauss Transform[END_REF], [START_REF] Spivak | The Fast Generalized Gauss Transform[END_REF].

The dual-tree method is based on space partitioning trees for both the input sample and the evaluation points. These tree structures are then used to compute distances between input points and evaluation points more quickly, see [START_REF] Gray | n-body' problems in statistical learning[END_REF], [START_REF] Gray | Nonparametric density estimation: Toward computational tractability[END_REF], [START_REF] Lang | Empirical testing of fast kernel density estimation algorithms[END_REF], [START_REF] Lee | Dual-tree Fast Gauss Transforms[END_REF], [START_REF] Ram | Linear-time algorithms for pairwise statistical problems[END_REF], [START_REF] Curtin | Tree-independent dual-tree algorithms[END_REF], [START_REF] Griebel | Fast approximation of the discrete Gauss transform in higher dimensions[END_REF], [START_REF] Lee | A distributed kernel summation framework for general-dimension machine learning[END_REF]. Among all these methods, the fast sum updating is the only one which is exact (no extra approximation is introduced) and whose speed is independent of the input data, the kernel and the bandwidth. Its main drawback is that the required sorting of the input points has mostly limited this literature to the univariate case. [START_REF] Werthenbach | A fast and stable updating algorithm for bivariate nonparametric curve estimation[END_REF] attempted to extend the method to the bivariate case, under strong limitations, namely rectangular input sample, evaluation grid and kernel support.

In this paper, we revisit the fast sum updating approach and extend it to the general multivariate case. This extension requires a rectilinear evaluation grid and kernels with box support, but has no restriction on the input sample and can accommodate adaptive bandwidths. Moreover, it maintains the desirable properties of the fast sum updating approach, making it, so far, the only fast and exact algorithm for multivariate kernel smoothing under general input sample and general bandwidth.

Fast sum updating

Univariate case

In this section, we recall the fast sum updating algorithm in the univariate case. Let (x 1 , y 1 ), (x 2 , y 2 ),. . .,(x N , y N ) be a sample of N input (source) points x i and output points y i , and let z 1 , z 2 , . . . , z M be a set of M evaluation (target) points. We first sort the input points and evaluation points: x 1 ≤ x 2 ≤ . . . ≤ x N and z 1 ≤ z 2 ≤ . . . ≤ z M . In order to compute the kernel density estimator (1), the kernel regression (2) and the locally linear regression (3) for every evaluation point z j , one needs to compute sums of the type

S j = S p,q j := 1 N N i=1 K h (x i -z j )x p i y q i = 1 N h N i=1 K x i -z j h
x p i y q i , p = 0, 1, q = 0, 1 (4) for every j ∈ {1, 2, . . . , M }. The direct, independent evaluation of these sums would require O(N × M ) operations (a sum of N terms for each j ∈ {1, 2, . . . , M }). The idea of fast sum updating is to use the information from the sum S j to compute the next sum S j+1 without going through all the N input points again. We illustrate the idea with the Epanechnikov (parabolic) kernel K(u) = 3 4 (1 -u 2 )1{|u| ≤ 1}. With this choice of kernel:

S p,q j = 1 N h N i=1 3 4 1 - x i -z j h 2 x p i y q i 1{z j -h ≤ x i ≤ z j +h} = 1 N h 3 4 N i=1 1 - z 2 j h 2 + 2 z j h 2 x i - 1 h 2 x 2 i x p i y q i 1{z j -h ≤ x i ≤ z j +h} = 3 4N h 1- z 2 j h 2 S p,q ([z j -h, z j +h]) + 2 z j h 2 S p+1,q ([z j -h, z j +h]) - 1 h 2 S p+2,q ([z j -h, z j +h]) (5) 
where

S p,q ([L, R]) := N i=1 x p i y q i 1{L ≤ x i ≤ R} (6)
These sums S p,q ([z j -h, z j + h]) can be evaluated quickly from j = 1 to j = M as long as the input points x i and the evaluation points z j are sorted in increasing order. Indeed,

S p,q ([z j+1 -h, z j+1 +h]) = N i=1 x p i y q i 1{z j+1 -h ≤ x i ≤ z j+1 +h} = N i=1 x p i y q i 1{z j -h ≤ x i ≤ z j +h} - N i=1 x p i y q i 1{z j -h ≤ x i < z j+1 -h} + N i=1 x p i y q i 1{z j +h < x i ≤ z j+1 +h} = S p,q ([z j -h, z j +h]) -S p,q ([z j -h, z j+1 -h[) + S p,q (]z j +h, z j+1 +h]) (7) 
Therefore one can simply update the sum S p,q ([z j -h, z j+1 + h]) for the evaluation point z j to obtain the next sum S p,q ([z j+1 -h, z j+1 + h]) for the next evaluation point z j+1 by subtracting the terms x p i y q i for which x i lie between z j -h and z j+1 -h, and adding the terms x p i y q i for which x i lie between z j +h and z j+1 +h. This can be achieved in a fast O(M +N ) operations by going through the input points x i , stored in increasing order at a cost of O(N log N ) operations, and through the evaluation points z j , stored in increasing order at a cost of O(M log M ) operations. Algorithm 1 summarizes the whole procedure to compute equations ( 1), ( 2) and (3) in the case of the Epanechnikov kernel.

In the case of the Epanechnikov kernel, the expansion of the quadratic term x i -z j h 2 separates the sources x i from the targets z j (equation ( 5)), which makes the fast sum updating approach possible. Such a separation occurs with other classical kernels as well, including the rectangular kernel, the triangular kernel, the cosine kernel and the Silverman kernel. Table 1 provides a list of ten kernels for which fast sum updating can be implemented, and Appendix A provides the detail of the updating formulas for these kernels. While most of these kernels have finite support [-1, 1], some such as the Laplacian kernel and Silverman kernel have infinite support. Not every kernel admits such a separation between sources and targets, the most prominent example being the Gaussian kernel K(u) = 1 √ 2π exp(-u 2 /2), for which the cross term exp(x i z j /h) cannot be split between one source term (depending on i only) and one target term (depending on j only). Approximating the cross-term to obtain such a separation is the path followed by the Fast Gauss Transform approach [START_REF] Greengard | The Fast Gauss Transform[END_REF]). 1 can be used for fast sum updating, we choose to use for the rest of the paper the Epanechnikov kernel K(u) = 3 4 (1 -u 2 )1{|u| ≤ 1} for two reasons: this popular kernel is optimal in the sense that it minimizes the asymptotic mean integrated squared error (cf. [START_REF] Epanechnikov | Non-parametric estimation of a multivariate probability density[END_REF]), and it supports fast sum updating with adaptive bandwidth h = h i or h = h j (see Algorithm 1, Appendix A and subsection 3.2).

While any kernel in Table

Algorithm 1: Fast univariate kernel smoothing

Input:

X: sorted vector of N inputs X[1] ≤ . . . ≤ X[N ] Y: vector of N outputs Y [1], . . . , Y [N ] Z: sorted vector of M evaluation points Z[1] ≤ . . . ≤ Z[M ] H: vector of M bandwidths H[1], . . . , H[M ]
Z and H should be such that the vectors Z-H and Z+H are increasing iL = 1

The indices 1 ≤ iL ≤ iR ≤ N will be such that the current 

iR = 1 bandwidth [Z[m] -H[m], Z[m] + H[m]] contains the points X[iL], X[iL + 1], . . . , X[iR] S[p 1 , p 2 ] = 0, p 1 = 0, 1, . . . , 4, p 2 = 0, 1 Will contain the sum iR i=iL X[i] p 1 × Y [i] p 2 for m = 1, ..., M do while (iR≤N) and (X[iR]<(Z[m]+H[m])) do S[p 1 , p 2 ] = S[p 1 , p 2 ] + X[iR] p 1 ×Y[iR] p 2 , p 1 = 0, 1, . . . , 4, p 2 = 0, 1 iR = iR + 1 end while (iL≤N) and (X[iL]<(Z[m]-H[m])) do S[p 1 , p 2 ] = S[p 1 , p 2 ] -X[iL] p 1 ×Y[iL] p 2 , p 1 = 0, 1, . . . , 4, p 2 = 0, 1 iL = iL + 1 end Here S[p 1 , p 2 ]= iR i=iL X[i] p 1 Y [i] p 2 , which can be used to compute SK[p 1 , p 2 ]= iR i=iL X[i] p 1 Y [i] p 2 K(Z[m], X[i]) C0 = 1.0 -Z[m] 2 /H[m] 2 ; C1 = 2.0 × Z[m]/H[m] 2 ; C2 = 1/H[m] 2 SK[p 1 , p 2 ] = C0×S[p 1 , p 2 ] + C1×S[p 1 + 1, p 2 ] -C2×S[p 1 + 2, p 2 ] D[m] = 0.75×SK[0,0]/(H[m]×N) R0[m] = SK[0,1]/SK[0,0] R1[m]= 1 Z[m] SK[0, 0] SK[1, 0] SK[1, 0] SK[2, 0] -1 SK[0, 1] SK[1, 1] end return D,
K(u) = 1 2 1{|u| ≤ 1} Triangular K(u) = (1 -|u|)1{|u| ≤ 1} Parabolic (Epanechnikov) K(u) = 3 4 (1 -u 2 )1{|u| ≤ 1} Biweight (Quartic) K(u) = 15 16 (1 -u 2 ) 2 1{|u| ≤ 1} Triweight K(u) = 35 32 (1 -u 2 ) 3 1{|u| ≤ 1} Tricube K(u) = 70 81 (1 -|u| 3 ) 3 1{|u| ≤ 1} Cosine K(u) = π 4 cos π 2 u 1{|u| ≤ 1} Hyperbolic cosine K(u) = 1 4-2 sinh(log(2+ √ 3)) log(2+ √ 3) 2 -cosh(log(2 + √ 3)u) 1{|u|≤1} Laplacian K(u) = 1 2 exp(-|u|) Silverman K(u) = 1 2 exp -|u| √ 2 sin |u| √ 2 + π 4
Table 1: Kernels compatible with fast sum updating

Numerical stability

In [START_REF] Seifert | Fast algorithms for nonparametric curve estimation[END_REF], the direct fast sum updating approach described in Algorithm 1 was discarded for numerical stability reasons. With floating-point arithmetic, the difference (x + y) -x is in general equal to y ± ε, where ε corresponds to the floating point rounding error.

In addition, the greater the scale difference between two floating numbers x and y, the greater the rounding error when computing x + y. Consequently, adding and subtracting N numbers in sequence has a worst-case rounding error that grows proportional to N .

In this paper, we argue that the advances in floating-point accuracy and stable floating-point summation in the past decades have made the direct fast sum updating approach viable and immune to numerical error. In addition to simple precautions such as normalization of input data and use of accurate floating-point formats such as quadruple-precision floating-point, a long list of stable summation algorithms have been proposed in the past fifty years, see among others [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF], [START_REF] Kahan | Pracniques: further remarks on reducing truncation errors[END_REF], [START_REF] Linnainmaa | Analysis of some known methods of improving the accuracy of floatingpoint sums[END_REF], [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF][START_REF] Higham | The accuracy of floating point summation[END_REF], [START_REF] Demmel | Accurate and efficient floating point summation[END_REF], [START_REF] Mcnamee | A comparison of methods for accurate summation[END_REF] and [START_REF] Boldo | On the robustness of the 2sum and fast2sum algorithms[END_REF]. The usual idea is to keep track of the current amount of floating-point rounding error, and to propagate it when adding new terms in the sum. Recently, a number of exact summation algorithms have been proposed, see [START_REF] Rump | Accurate floating-point summation Part I: Faithful rounding[END_REF], [START_REF] Pan | A new error-free floating-point summation algorithm[END_REF], [START_REF] Zhu | Algorithm 908: Online exact summation of floating-point streams[END_REF] and [START_REF] Neal | Fast exact summation using small and large superaccumulators[END_REF]. These algorithms are exact in the sense that the final result is the closest floating-point number, within the precision of the chosen floating-point format, to the exact mathematical sum of the inputs. Importantly, the computational complexity of exact summation remains linear in the number N of data points to sum. For example, for the recent [START_REF] Neal | Fast exact summation using small and large superaccumulators[END_REF], exact summation is less than a factor two slower than naive summation.

To sum up, with little modification, fast sum updating algorithms such as Algorithm 1 and its multivariate version 3 can be made completely immune to numerical instability. As a simple illustration, Algorithm 5 in Appendix shows how to combine Algorithm 3 with the stable Møller-Kahan summation algorithm [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF]). For simplicity and clarity, the fast sum updating algorithms presented in this paper omit the stabilisation components. All of them can be implemented with perfect numerical stability using the stable summation algorithms mentioned in this subsection.

Multivariate case

We now turn to the multivariate case. Let d be the dimension of the inputs. We consider again a sample (x 1 , y 1 ), (x 2 , y 2 ), . . . , (x N , y N ) of N input points x i and output points y i , where the input points are now multivariate:

x i = (x 1,i , x 2,i , . . . , x d,i ) , i ∈ {1, 2, . . . , N }

Multivariate kernel smoothers

The kernel smoothers (1), ( 2) and (3) can be extended to the multivariate case. A general form for a multivariate kernel is

K d,H (u) = |H| -1/2 K d (H -1/2 u), where u = (u 1 , u 2 , . . . , u d ) ∈ R d
and where H is a symmetric positive definite d × d bandwidth matrix (see [START_REF] Wand | Kernel Smoothing[END_REF] 

(u) = 1 Π d k=1 h k K d ( u 1 h 1 , u 2 h 2 , . . . , u d h d
) after a rotation of the input points x i and the evaluation points z j using R. Subsection 3.1 will discuss the choice of data rotation and subsection 2.3.3 will discuss the possible choices of multivariate kernels K d compatible with fast sum updating. One can show (cf. Appendix C) that the computation of the multivariate version of the kernels smoothers (1), ( 2) and (3) boils down to the computation of the following sums:

S j = S p 1 ,p 2 ,q k 1 ,k 2 ,j := 1 N N i=1 K d,h (x i -z j )x p 1 k 1 ,i x p 2 k 2 ,i y q i = 1 N Π d k=1 h k N i=1 K d x 1,i -z 1,j h 1 , x 2,i -z 2,j h 2 , . . . , x d,i -z d,j h d x p 1 k 1 ,i x p 2 k 2 ,i y q i (8)
for each evaluation point z j = (z 1,j , z 2,j , . . . , z d,j ) ∈ R d , j ∈ {1, 2, . . . , M }, for powers p 1 , p 2 , q = 0, 1 and for dimension indices k 1 , k 2 = 1, 2, . . . , d.

Before expanding the sum (8) as was done in (5) in the univariate case, we first introduce the two conditions required for fast multivariate sum updating (subsection 2.3.2) and then discuss the choice of multivariate kernel (subsection 2.3.3).

Conditions

In order to extend the fast sum updating algorithm to the multivariate case, we require the following two conditions:

Condition 1. [Evaluation grid] We require the evaluation grid to be rectilinear, i.e., the M evaluation points z 1 , z 2 , . . . , z M lie on a regular grid with possibly non-uniform mesh, of dimension Condition 2. [Kernel support] We allow the bandwidths to vary with the evaluation points (balloon estimators, see subsection 3.2) but require them to follow the shape of the evaluation grid. In other words, each evaluation point z j = (z 1,j 1 , z 2,j 2 , . . . , z d,j d ) is associated with its own bandwidth h j = (h 1,j 1 , h 2,j 2 , . . . , h d,j d ). For kernels with finite support (first eight kernels in Table 1), this means that the kernel support must be a hyperrectangle, i.e. the box

M 1 × M 2 × . . . × M d = M : (z 1,j 1 , z 2,j 2 , . . . , z d,j d ) ∈ R d , j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . , d}
d k=1 [z k,j k -h k,j k , z k,j k + h k,j k ] := (u 1 , u 2 , . . . , u d ) ∈ R d |u k ∈ [z k,j k -h k,j k , z k,j k + h k,j k ] , k = 1, 2, . . . , d where j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . d}.
The reason for these two conditions will become clear after the description of the multivariate sweeping algorithm for multivariate sum updating. In the rest of this section, we assume these two conditions are satisfied. The next subsection discusses the choice of multivariate kernel, and show that two simple types of multivariate kernels satisfy Condition 2: product kernels (equation ( 10)) and average kernels (equation ( 11)).

Multivariate kernel

To extend the definitions of the smoothing kernels (1), ( 2) and (3) to the multivariate case, one needs kernel functions defined in a multivariate setting. There exists different ways to extend a univariate kernel to the multivariate case, see [START_REF] Härdle | Multivariate and semiparametric kernel regression[END_REF] for example.

As an illustration, Figure 1 displays three different ways to extend the Epanechnikov kernel K 1 (u) = 3 4 1 -u 2 to the multivariate (bivariate) case.

Figure 1: Bivariate parabolic kernels

The left-side kernel in Figure 1 corresponds to the spherical or radially symmetric kernel:

K S d (u 1 , . . . , u d ) = Γ 2 + d 2 π d 2 1 -u 2 1{ u ≤ 1} (9)
for which the norm of the vector u is used as an input in the univariate kernel (with a proper normalization constant, see [START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF]). This multivariate kernel is the most efficient in terms of asymptotic mean integrated squared error (see [START_REF] Wand | Kernel Smoothing[END_REF] for example). Unfortunately, this kernel is not compatible with fast sum updating, as its support is a hypersphere, while Condition 2 requires a hyperrectangle support. The middle kernel in Figure 1 corresponds to the multiplicative or product kernel:

K P d (u 1 , . . . , u d ) = d k=1 K 1 (u k ) = 3 4 d d k=1 1 -u 2 k 1{|u k | ≤ 1} (10) 
obtained by multiplying univariate kernels. Its support is a hyperrectangle. Finally, the rightside kernel in Figure 1 corresponds to the additive or arithmetic average kernel:

K A d (u 1 , . . . , u d ) = 1 d2 d-1 d k=1 K 1 (u k ) d k 0 =1 k 0 =k 1{|u k 0 | < 1} = 3 d2 d+1 d k=1 1 -u 2 k d k 0 =1 1{|u k 0 | < 1} (11)
which is obtained by averaging univariate kernels, and is another general way of producing multivariate kernels. The support of this kernel is also a hyperrectangle. As Condition 2 rules out the spherical kernel (9), we have to make a choice between the product kernel (10) and the average kernel (11). When it comes to choosing a kernel, the following quote from [START_REF] Silverman | Algorithm AS 176: Kernel density estimation using the Fast Fourier Transform[END_REF] summarizes the general consensus in the literature: "Both theory and practice suggest that the choice of kernel is not crucial to the statistical performance of the method and therefore it is quite reasonable to choose a kernel for computational efficiency". In our context, this observation means that the average kernel ( 11) is to be preferred over the product kernel (10) for its greater computational efficiency. Indeed, while average kernels are not as efficient 1 as product kernels (see Table 2) they contain much fewer sums to track down for the fast sum updating algorithm (after expanding the squared terms (x k,i -z k,j ) 2 /h 2 k , the sum ( 8) is composed of 3 d different sums over i = 1, . . . , N for the product kernel (10), compared to only 2d + 1 sums for the average kernel ( 11)). In the end, to achieve the same accuracy, the average kernel ( 11) is vastly faster than the product kernel (10) when using the fast sum updating approach (around 80% faster for bivariate problems, more than 18 times faster for five-dimensional problems, see 

Kernel expansion

Using the multivariate kernel (11), one can expand the sum (8) as follows:

S j := S p 1 ,p 2 ,q k 1 ,k 2 ,j = 1 N d k=1 h k N i=1 K d x 1,i -z 1,j h 1 , x 2,i -z 2,j h 2 , . . . , x d,i -z d,j h d x p 1 k 1 ,i x p 2 k 2 ,i y q i = 3 d2 d+1 N d k=1 h k N i=1 d k=1 1 - (x k,i -z k,j ) 2 h 2 k x p 1 k 1 ,i x p 2 k 2 ,i y q i d k 0 =1 1{|x k 0 ,i -z k 0 ,j | ≤ 1} = 3 d2 d+1 N d k=1 h k d k=1 N i=1 1 - z 2 k,j h 2 k + 2 z k,j h 2 k x k,i - 1 h 2 k x 2 k,i x p 1 k 1 ,i x p 2 k 2 ,i y q i d k 0 =1 1{|x k 0 ,i -z k 0 ,j | ≤ 1} = 3 d2 d+1 N d k=1 h k d k=1 1 - z 2 k,j h 2 k S [0,p 1 ,p 2 ],q [k,k 1 ,k 2 ] ([z j -h j , z j + h j ])+ = 2 z k,j h 2 k S [1,p 1 ,p 2 ],q [k,k 1 ,k 2 ] ([z j -h j , z j + h j ]) - 1 h 2 k S [2,p 1 ,p 2 ],q [k,k 1 ,k 2 ] ([z j -h j , z j + h j ]) ( 12 
)
1 The efficiency eff(K) of a kernel K is defined as the ratio R(K S )µ

d/2 2 (K S )/(R(K)µ d/2 2 (K)) where R(K) := • • • K 2 (u1, . . . , u d )du1 . . . du d , µ2(K) := • • • u 2 1 K(u1, . . . , u d )du1
. . . du d and K S is the spherical kernel (9), see [START_REF] Wand | Kernel Smoothing[END_REF]. The speedup of K A over K P to achieve the same accuracy (Table 2), is defined as

3 d eff(K P )/((2d + 1)eff(K A )) = (18/5) d (3d/(5d -2)) d/2 5d/((2d + 1)(5d + 1)).
where for any hyperrectangle

[L, R] := [L 1 , R 1 ] × [L 2 , R 2 ] × . . . × [L d , R d ] ⊆ R d : S idx ([L, R]) := S p,q k ([L, R]) := N i=1 3 l=1 (x k l ,i ) p l y q i d k 0 =1 1{L k 0 ≤ x k 0 ,i ≤ R k 0 } (13)
for powers p := (p 1 , p 2 , p 3 ) ∈ N 3 , q ∈ N and indices k := (k 1 , k 2 , k 3 ) ∈ {1, 2, . . . , d} 3 , and where

[z j -h j , z j + h j ] := [z 1,j -h 1,j , z 1,j + h 1,j ] × . . . × [z d,j -h d,j , z d,j + h d,j ].
To simplify notations, we make use of the multi-index idx := (p, q, k).

To sum up what has been obtained so far, computing multivariate kernel smoothers (kernel density estimation, kernel regression, locally linear regression) boils down to computing sums of the type (13) on hyperrectangles of the type [z j -h j , z j + h j ] for every evaluation point j ∈ {1, 2, . . . , M }. In the univariate case, these sums could be computed efficiently by sorting the input points x i , i ∈ {1, 2, . . . , N } and updating the sums from one evaluation point to the next (equation ( 7)). Our goal is now to set up a similar efficient fast sum updating algorithm for the multivariate sums (13). To do so, we first partition the input data into a multivariate rectilinear grid (subsection 2.3.5), by taking advantage of the fact that the evaluation grid is rectilinear (Condition 1) and that the support of the kernels has a hyperrectangle shape (Condition 2). Then, we set up a fast sweeping algorithm using the sums on each hyperrectangle of the partition as the unit blocks to be added and removed (subsection 2.3.6), unlike the univariate case where the input points themselves were being added and removed iteratively. Finally, the computational speed of this new algorithm is discussed in subsection 2.4.

Data partition

The first stage of the multivariate fast sum updating algorithm is to partition the sample of input points into boxes. To do so, define the sorted lists

Gk = {g k,1 , gk,2 , . . . , gk,2M k } := sort {z k,j k -h k,j k } j k ∈{1,2,...,M k } {z k,j k + h k,j k } j k ∈{1,2,...,M k }
in each dimension k ∈ {1, 2, . . . , d}, and define the partition intervals Ĩk,l := [g k,l , gk,l+1 ] for l ∈ {1, 2, . . . , 2M k -1}. The second row of Figure 2 illustrates this partition on a set of 4 points, where for simplicity the evaluation points are the same as the input points. By definition of Gk , all the bandwidths edges z

k,j k -h k,j k and z k,j k + h k,j k , j k ∈ {1, 2, . . . , M k }, belong to Gk .
Therefore, there exists some indices Lk,j k and Rk,j k such that

[z k,j k -h k,j k , z k,j k + h k,j k ] = [g k, Lk,j k , gk, Rk,j k +1 ] = l k ∈{ Lk,j k ,..., Rk,j k } Ĩk,l k .
From there, for any evaluation point

z j = (z 1,j 1 , z 2,j 2 , . . . , z d,j d ) ∈ R d , the box [z j -h j , z j +h j ] ⊂ R d can be decomposed into a union of smaller boxes: [z j -h j , z j + h j ] = [z 1,j 1 -h 1,j 1 , z 1,j 1 + h 1,j 1 ] × . . . × [z d,j d -h d,j d , z d,j d + h d,j d ] = g1, L1,j 1 , g1, R1,j 1 +1 × . . . × gd, Ld,j d , gd, Rd,j d +1 = (l 1 ,...,l d )∈{ L1,j 1 ,..., R1,j 1 }×...×{ Ld,j d ,..., Rd,j d } Ĩ1,l 1 × . . . × Ĩd,l d (14)
In other words, the set of boxes Ĩ1,

l 1 × Ĩ2,l 2 × . . . × Ĩd,l d s.t. l k ∈ { Lk,j k , Lk,j k + 1, . . . , Rk,j k } in each dimension k ∈ {1, 2, . . . , d} forms a partition of the box [z j -h j , z j + h j ].
Consequently, the sum (13) evaluated on the box [z j -h j , z j + h j ] can be decomposed as follows:

S idx ([z j -h j , z j + h j ]) = (l 1 ,...,l d )∈{ L1,j 1 ,..., R1,j 1 }×...×{ Ld,j d ,..., Rd,j d } S idx Ĩ1,l 1 × . . . × Ĩd,l d ( 15 
)
where we assume without loss of generality that the bandwidth grid

h j = (h 1,j 1 ,h 2,j 2 ,. . .,h d,j d ), j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . .
. d} is such that the list Gk does not contain any input x k,i , i ∈ {1, 2, . . . , N } (as such boundary points would be counted twice in the right-hand side of ( 15)). This simple condition is easy to satisfy, as shown by the adaptive bandwidth example provided in subsection 3.2. The sum decomposition ( 15) is the cornerstone of the fast multivariate sum updating algorithm, but before going further, one can simplify the partitions Gk , k ∈ {1, 2, . . . , d} while maintaining a sum decomposition of the type (15). Indeed, in general some intervals Ĩk,l might be empty (i.e. they might not contain any input point x k,i , cf. the grey intervals on the second row of Figure 2). To avoid keeping track of sums S idx on boxes known to be empty, one can trim the partitions Gk by replacing each succession of empty intervals by one new partition threshold. For example, if Ĩk,l = [g k,l , gk,l+1 ] is empty, one can remove the two points gk,l and gk,l+1 and replace them by, for example, (g k,l + gk,l+1 )/2 (cf. the final partition on the third row of Figure 2). Denote by 

G k = {g k,1 , g k,2 , . . . , g k,m k } the sorted simplified list, where 2 ≤ m k ≤ 2M k , k ∈ {1, 2, . . . ,
j = (z 1,j 1 , z 2,j 2 , . . . , z d,j d ) ∈ R d , j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . d} , there exists indices (L 1,j 1 , L 2,j 2 , . . . , L d,j d ) and (R 1,j 1 , R 2,j 2 , . . . , R d,j d ), where L k,j k ∈ {1, 2, . . . , m k -1} and R k,j k ∈ {1, 2, . . . , m k -1} with L k,j k ≤ R k,j k , k ∈ {1, 2, . . . d}, such that S idx ([z j -h j , z j + h j ]) = (l 1 ,...,l d )∈{L 1,j 1 ,...,R 1,j 1 }×...×{L d,j d ,...,R d,j d } S idx (I 1,l 1 × . . . × I d,l d ) (16)
For later use, we introduce the compact notation S idx l 1 ,l 2 ,...,l d := S idx (I 1,l 1 ×. . .× I d,l d ). Recalling equation (13), the sum S idx l 1 ,l 2 ,...,l d corresponds to the sum of the polynomials ( 3 l=1 (x k l ,i ) p l )y q i over all the data points within the box I 1,l 1 × . . . × I d,l d . To complement the illustration of univariate partition given by Figure 2, Figure 3 provides a bivariate partition example. There are four points, each at the center of their respective rectangular kernel (in orange). On the left-hand side, the bandwidths boundaries are used to produce the partitions Gk in each dimension. One can see that most of the resulting rectangles are empty. On the right-hand side, the empty rectangles are removed/merged, resulting in the trimmed partitions G k in each dimension. Remark that this is a simple example for which every final rectangle only contains one point.

Fast multivariate sweeping algorithm

So far, we have shown that computing multivariate kernel smoothers is based on the computation of the kernel sums (8), which can be decomposed into sums of the type (13), which can themselves be decomposed into the smaller sums ( 16) by decomposing every kernel support of every evaluation point onto the box partition described in the previous subsection 2.3.5. The final task is to define an efficient algorithm to traverse all the hyperrectangle unions (l 1 ,...,l d )∈{L 1,j 1 ,...,R 1,j 1 }×...×{L d,j d ,...,R d,j d } I 1,l 1 × . . . × I d,l d , so as to compute the right-hand side sums in equation ( 16) (Lemma 2.1) in an efficient fast sum updating way similar to the univariate updating (7). We precompute all the sums S idx l 1 ,l 2 ,...,l d with idx = (p, q, k) ∈ {0, 1, 2} × {0, 1} 3 × {1, 2, . . . , d} 3 , and use them as input material for fast multivariate sum updating.

We start with the bivariate case, summarized in Algorithm 2, with the help of Figures 12 and13. We first provide an algorithm to compute the sums

T idx 1,l 2 := R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 , for every l 2 ∈ {1, 2, . . . , m 2 -1} and every index interval [L 1,j 1 , R 1,j 1 ], j 1 ∈ {1, 2, . . . , M 1 }. Starting with j 1 = 1, we first compute T idx 1,l 2 = R 1,1 l 1 =L 1,1 S idx l 1 ,l 2 for every l 2 ∈ {1, 2, . . . , m 2 -1}.
Then we iteratively increment j 1 from j 1 = 1 to j 1 = M 1 . After each incrementation of j 1 , we update T idx 1,l 2 by fast sum updating

R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 = R 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 + R 1,j 1 l 1 =R 1,j 1 -1 +1 S idx l 1 ,l 2 - L 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 (17) 
The second stage is to perform a fast sum updating in the second dimension, with the sums

T idx 1,l 2 = R 1,j 1 l 1 =L 1,j 1
S idx l 1 ,l 2 as input material. Our goal is to compute the sums

T idx 2 := R 2,j 2 l 2 =L 2,j 2 T idx 1,l 2 for every index interval [L 2,j 2 , R 2,j 2 ], j 2 ∈ {1, 2, . . . , M 2 }.
In a similar manner, we start from j 2 = 1 with the initial sum

T idx 2 = R 2,1 l 2 =L 2,1 T idx 1,l 2 .
We then increment j 2 from j 2 = 1 to j 2 = M 2 iteratively. After each incrementation of j 2 , we update T idx 2 by fast sum updating:

R 2,j 2 l 2 =L 2,j 2 T idx 1,l 2 = R 2,j 2 -1 l 2 =L 2,j 2 -1 T idx 1,l 2 + R 2,j 2 l 2 =R 2,j 2 -1 +1 T idx 1,l 2 - L 2,j 2 -1 l 2 =L 2,j 2 -1 T idx 1,l 2 (18) 
Using Lemma 2.1 (equation ( 16)), the resulting sum

R 2,j 2 l 2 =L 2,j 2 T idx 1,l 2 = R 1,j 1 l 1 =L 1,j 1 R 2,j 2 l 2 =L 2,j 2 S idx l 1 ,l 2 is equal to S idx ([z j -h j , z j + h j ]
), which can be used to compute the kernel sums S j using equation ( 12), from which the bivariate kernel smoothers (kernel density estimator, kernel regression, locally linear regression) can be computed.

This ends the description of the fast sum updating algorithm in the bivariate case. A graphical description of it is available in Appendix D. The reason for enforcing Condition 1 and Condition 2 is now clear: they pave the way for the box partition described in subsection 2.3.5, from which the iterative fast sum updating, one dimension at a time, displayed on Figures 12 and13, can cover all the multivariate bandwidths of all the evaluation points on the evaluation grid.

Finally, the general multivariate case is a straightforward extension of the bivariate case, and is summarized in Algorithm 3.

Algorithm 2: Fast bivariate kernel smoothing

Input: precomputed sums S idx l 1 ,l 2 iL 1 = 1 iR 1 = 1 T idx 1,l 2 = 0 for j 1 = 1, ..., M 1 do while ( iR 1 < m 1 ) and ( iR 1 ≤ R 1,j 1 ) do T idx 1,l 2 = T idx 1,l 2 + S idx iR 1 ,l 2 , ∀l 2 ∈ {1, 2, . . . , m 2 -1} iR 1 = iR 1 + 1 end while ( iL 1 < m 1 ) and ( iL 1 < L 1,j 1 ) do T idx 1,l 2 = T idx 1,l 2 -S idx iL 1 ,l 2 , ∀l 2 ∈ {1, 2, . . . , m 2 -1} iL 1 = iL 1 + 1 end Here T idx 1,l 2 = R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 , ∀l 2 ∈ {1, 2, . . . , m 2 -1} iL 2 = 1 iR 2 = 1 T idx 2 = 0 for j 2 = 1, ..., M 2 do while ( iR 2 < m 2 ) and ( iR 2 ≤ R 2,j 2 ) do T idx 2 = T idx 2 + T idx 1,iR 2 iR 2 = iR 2 + 1 end while ( iL 2 < m 2 ) and ( iL 2 < L 2,j 2 ) do T idx 2 = T idx 2 -T idx 1,iL 2 iL 2 = iL 2 + 1 end Here T idx 2 = R 1,j 1 l 1 =L 1,j 1 R 2,j 2 l 2 =L 2,j 2 S idx l 1 ,l 2 = S p,q k ([z j -h j , z j + h j ]
) from equation (16) Compute S j using T idx 2 and equation ( 12) Compute multivariate kernel smoothers using S j end end Output: Bivariate kernel smoothers Algorithm 3: Fast multivariate kernel smoothing

Input: precomputed sums S idx l 1 ,l 2 ,...,l d iL 1 = 1, iR 1 = 1, T idx 1,l 2 ,l 3 ,...,l d = 0 for j 1 = 1, ..., M 1 do while ( iR 1 < m 1 ) and ( iR 1 ≤ R 1,j 1 ) do T idx 1,l 2 ,l 3 ,...,l d = T idx 1,l 2 ,l 3 ,...,l d + S idx iR 1 ,l 2 ,l 3 ,...,l d ,∀l k ∈{1,2,...,m k -1},k∈{2,3,...,d} iR 1 = iR 1 + 1 end while ( iL 1 < m 1 ) and ( iL 1 < L 1,j 1 ) do T idx 1,l 2 ,l 3 ,...,l d = T idx 1,l 2 ,l 3 ,...,l d -S idx iL 1 ,l 2 ,l 3 ,...,l d ,∀l k ∈{1,2,...,m k -1},k∈{2,3,...,d} iL 1 = iL 1 + 1 end Here T idx 1,l 2 ,l 3 ,...,l d = R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 ,...,l d ,∀l k ∈{1,2,...,m k -1},k∈{2,3,...,d} iL 2 = 1, iR 2 = 1, T idx 2,l 3 ,...,l d = 0 for j 2 = 1, ..., M 2 do while ( iR 2 < m 2 ) and ( iR 2 ≤ R 2,j 2 ) do T idx 2,l 3 ,...,l d = T idx 2,l 3 ,...,l d + T idx 1,iR 2 ,l 3 ,...,l d , ∀l k ∈{1,2,...,m k -1}, k∈{3,...,d} iR 2 = iR 2 + 1 end while ( iL 2 < m 2 ) and ( iL 2 < L 2,j 2 ) do T idx 2,l 3 ,...,l d = T idx 2,l 3 ,...,l d -T idx 1,iL 2 ,l 3 ,...,l d , ∀l k ∈{1,2,...,m k -1}, k∈{3,...,d} iL 2 = iL 2 + 1 end T idx 2,l 3 ,...,l d = R 1,j 1 l 1 =L 1,j 1 R 2,j 2 l 2 =L 2,j 2
S idx l 1 ,l 2 ,...,l d ,∀l k ∈{1,...,m k -1},k∈{3,...d} . . . 

iL d = 1, iR d = 1, T d = 0 for j d = 1, ..., M d do while ( iR d < m d ) and ( iR d ≤ R d,j d ) do T idx d = T idx d + T idx d-1,iR d iR d = iR d + 1 end while ( iL d < m d ) and ( iL d < L d,j d ) do T idx d = T idx d -T idx d-1,iL d iL d = iL d + 1 end Here T idx d = R 1,j 1 l 1 =L 1,j 1 R 2,j 2 l 2 =L 2,j 2 • • • R d,j d l d =L d,j d S idx l 1 ,l 2 ,...,l d = S p,q k ([z j -h j , z j + h j ])

Complexity

Computational complexity

One can verify that the number of operations in the multivariate fast sum updating algorithm 3 is proportional to the number of evaluation points M = M 1 × M 2 × . . . × M d . Indeed, recall from subsection 2.3.5 that in each dimension k ∈ {1, 2, . . . , d}, m k -1 is the number of intervals in the k-th dimension of the data partition, with 2 ≤ m k ≤ 2M k . The first two while loops over iR 1 and iL 1 in Algorithm 3 generate 2(m 1 -1) updates of the sums T idx 1,l 2 ,l 3 ,...,l d of size (m 2 -1) × . . . × (m d -1), for a total of O(M ) operations. Then, the two subsequent while loops over iR 2 and iL 2 generate M 1 × 2(m 2 -1) updates of the sums T idx 2,l 3 ,...,l d of size (m 3 -1) × . . . × (m d -1), for a total of O(M ) operations. The final while loops over iR d and iL

d generate M 1 × . . . × M d-1 × 2(m d -1) = O(M ) updates of the sum T idx d of size 1. The computational complexity of Algorithm 3 is therefore O(M ).
In addition to this cost, Algorithm 3 requires the construction of the partition G k and of the threshold indices L k,j k ∈ {1, 2, . . . , m k -1} and R k,j k ∈ {1, 2, . . . , m k -1} (recall Lemma 2.1), which costs O(M ) operations or O(M log M ) is the evaluation points are not sorted. The precomputation of the sums S idx l 1 ,l 2 ,...,l d costs O(N ) operations once the input sample (x 1,i , x 2,i , . . . , x d,i ), i ∈ {1, 2, . . . , N } has been sorted in each dimension independently, at a cost of O(N log N ) operations. The total computational complexity of the multivariate fast sum updating algorithm described in this section is therefore O(M log M + N log N ), which is a considerable improvement over the O(M × N ) complexity of the naive approach.

Memory complexity

The memory comsumption of Algorithm 3 stems from the simultaneous storage of the sums S idx l 1 ,l 2 ,...,l d , T idx 1,l 2 ,l 3 ,...,l d , T idx 2,l 3 ,...,l d , . . ., T idx d for every l k ∈ {1, 2,. . ., m k -1}, k ∈ {2, 3, . . . , d} and idx = (p, q, k) ∈ {0, 1, 2} × {0, 1} 3 × {1, 2, . . . , d} 3 , resulting in a memory complexity of O(M ).

Dependence in d

Finally, we look at the dependence in the dimension d of the constant in the computational and memory complexities of the algorithm. In the worst case, m k is equal to its upper bound 2M k in every dimension k ∈ {1, 2, . . . , d}. In such a case, Algorithm 3 generates O(2 d M ) operations for a single index calculation resulting in a global cost in O(d 3 2 d M ), where d 3 comes from the dimension of the multi-index idx = (p, q, k) ∈ {0, 1, 2}×{0, 1} 3 ×{1, 2, . . . , d} 3 as well as the fact that solving the regression system (23) costs O(d 3 ) operations for each evaluation point z j , j ∈ {1, 2, . . . , M }. In practice, the constant 2 d can be greatly reduced depending on the size of the slimmed down partition {G k } k=1,...,d compared to the initial partition { Gk } k=1,...,d . Similarly, the worst case memory storage needed for the sums S idx l 1 ,l 2 ,...,l d and the terms T idx 1,l 2 ,l 3 ,...,l d , T idx 2,l 3 ,...,l d , . . .,

T idx d is O(d 3 2 d M )
where again the constant 2 d can be greatly reduced in practice. The sorting of the input points and evaluation points in each dimension and the precomputation of sums and indices generate altogether O(dM log M + dN log N ) operations. The total computational complexity is therefore O(dM (log M + d 2 2 d ) + dN log N ) in the worst case, with the term 2 d possibly smaller in practice.

By contrast, the naive approach requires O(d 2 M ×(N +d)) operations: for each j ∈ {1, 2, . . . , M }, one needs O(dN ) for computing K d,h (x i -z j ) for each i ∈ {1, 2, . . . , N } (equation ( 11)), O(d 2 N ) for computing all the sums in (23) and O(d 3 ) for solving the system (23). This shows that the multivariate fast sum updating is faster than the naive approach whenever d2 d N , and still likely to be faster beyond this case as the 2 d constant only occurs in the unlikely worst case scenario for which m k = 2M k in each dimension k ∈ {1, 2, . . . , d}.

Evaluation grid and adaptive bandwidth

This section suggests some suitable choices of evaluation grid and adaptive bandwidth compatible with the two conditions 1 and 2, so as to ensure a wide applicability of the fast kernel smoothers described in this paper.

Shape of evaluation grid

As explained in 2.3.1, kernel smoothing estimates can generally be improved by prerotating the input dataset into a better basis. Rotating the dataset before performing kernel density estimations has been advocated in [START_REF] Wand | Fast computation of multivariate kernel estimators[END_REF] and [START_REF] Scott | Multivariate density estimation[END_REF] for example. Condition 1 adds another motivation for rotating the dataset. Indeed, when the natural evaluation sample is not a grid, for example when the evaluation points z 1 , z 2 , . . ., z M are equal to the input points x 1 , x 2 , . . ., x N , one needs to build a suitable intermediate evaluation grid to properly cover the input sample. The left-side of Figure 4 illustrates on a bivariate example with N = 100 input points the potential problem of rectilinear evaluation grids when the dimensions of the input dataset are dependent: some evaluation points can be left away from the dataset. As some evaluation points are located in empty areas, the effective number of evaluation points is decreased. A rotation of the input dataset can mitigate or eliminate this problem, as shown on the right-side of Figure 4. To construct the rotation, several techniques can be used. One possible choice is to rotate the dataset onto its principal components (as shown on Figure 4). To define the evaluation grid

{(z 1,j 1 , z 2,j 2 , . . . , z d,j d ), j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . , d}}, one can first set each M k to M 1 d and define z k,j k = x k,round 1+(N -1)× j k -1 M k -1
where round(u) is the closest integer to u ∈ R and the input set x 1 , x 2 , . . ., x N is sorted in increasing order. Such a grid is illustrated on the left-side of Figure 4 (original dataset without rotation). One alternative choice for M k is to set it proportional to the k-th singular value associated with the k-th principal component. In addition to improving the coverage of the input dataset by the evaluation grid (more evaluation points along the more variable input dimensions), this choice of M k can reduce the dimension of the problem whenever some M k are set to one due to a small singular value. This choice of M k is illustrated on the right-side of Figure 4 (after the rotation of the input dataset), and is the one we use in the numerical section 4. Once the kernel density estimates have been obtained on the intermediate evaluation grid using the fast algorithm described in Section 2, one can interpolate the estimates from the grid to the evaluation points of interest by simple multilinear interpolation. Alternatively, one can interpolate by Inverse Distance Weighting [START_REF] Shepherd | A two-dimensional interpolation function for irregularly-spaced data[END_REF]). When the weights are chosen as kernels from Appendix A, this interpolation bears some similarity with kernel density estimation, and can benefit from the fast sum updating algorithm described in Section 2.

Fast adaptive bandwidth

The kernel smoothers (1), ( 2) and ( 3) can be defined with a fixed bandwidth h, or with an adaptive bandwidth which varies with either the input points or the evaluation points. When the input design is random as on Figure 4, some areas might be sparse while others will be dense.

In such cases, the benefit of adaptive bandwidth is that one can maintain a uniform quality of density estimates by using a larger bandwidth in sparse areas and a smaller bandwidth in dense areas. There exists two main ways to define adaptive bandwidths: balloon bandwidths h = h j which vary with the evaluation point j ∈ {1, 2, . . . , M }, and sample point bandwidths h = h i which vary with the input point i ∈ {1, 2, . . . , N }, see [START_REF] Terrell | Variable kernel density estimation[END_REF] or [START_REF] Scott | Multivariate density estimation[END_REF]. While many univariate kernels in Table 1 are compatible with both balloon bandwidths and sample point bandwidths (see Appendix A), the data partition from subsection 2.3.5, which is required in the multivariate case, has been tailored for the balloon formulation (Condition 2), which is the one we adopt in this paper.

For the construction of the adaptive bandwidth, we adopt the K-nearest neighbor bandwidth suggested in [START_REF] Loftsgaarden | A nonparametric estimate of a multivariate density function[END_REF], as it was shown in [START_REF] Terrell | Variable kernel density estimation[END_REF] to perform well in multivariate settings. In addition, such a choice of bandwidth ensures that the bandwidth boundaries

{z k,j k -h k,j k } j k =1,...,M k and {z k,j k + h k,j k } j k =1,...,M k , k = {1, 2, .
. . , d} remain in increasing order, which was implicitly assumed in Algorithms 2 and 3 for simplicity (one can easily adjust the loops to decrement instead of increment the grid indices iL k and iR k whenever the bandwidth boundaries are not in increasing order).

We now describe how to build these bandwidths in a fast O(M + N ) from sorted datasets in the univariate case (O(M log M + N log N ) if the datasets need to be sorted beforehand), and then discuss the extension to the multivariate case.

Let x 1 ≤ x 2 ≤ . . . ≤ x N be a sorted set of N sample points, and z 1 ≤ z 2 ≤ . . . ≤ z M be a sorted set of M evaluation points. Algorithm 4 describes an efficient algorithm to build M adaptive bandwidths h j centered around the points z j , j = 1, . . . , M , such that each bandwidth [z j -h j , z j + h j ] contains exactly K sample points.

Algorithm 4: Fast univariate K-Nearest Neighbors bandwidth

Input:

X: sorted vector of N real points X[1] ≤ . . . ≤ X[N ] Z: sorted vector of M evaluation points Z[1] ≤ . . . ≤ Z[M ] K: number of points that each bandwidth should include (1 ≤ K ≤ N )
The indices iL and iR define a subset X

[iL], X[iL + 1], ..., X[iR] of K points iL = 1 Left index iR = K Right index cM = (X[iL] + X[iR + 1])/2 Middle cut dmax = X[N ] -X[1] Maximum distance between 2 sample points for i = 1, ..., M do while (iR+1<N) and (Z[i]>cM) do iL = iL+1 iR = iR+1 cM = 0.5 * (X[iL] + X[iR + 1]) end Hmin = max { Z[i] -X[iL] , X[iR] -Z[i] } Hmax = min { (Z[i] -X[iL -1]) × 1{iL > 1} + dmax × 1{iL = 1} , (X[iR + 1] -Z[i]) × 1{iR < N } + dmax × 1{iR = N } } H[i] = (Hmin+Hmax)/2 end return H

Output: H: for each point i, the interval [Z[i] -H[i], Z[i] + H[i]] contains exactly K points

Define i L ∈ [1, . . . , N -K + 1] and i R = i L + K -1. The subset x i L , x i L +1 , . . . , x i R contains exactly K points. The idea of the algorithm is to enumerate all such possible index ranges

[i L , i R ] from left (i L = 1, i R = K) to right (i L = N -K + 1, i R = N )
, and to match each evaluation point z j , j ∈ {1, 2, . . . , N } with its corresponding K-nearest-neighbors subsample

x i L , x i L +1 , . . . , x i R .
Matching each index j to its corresponding [i L , i R ] range is simple. When i L = 1, all the points z j such that z j ≤ (x i L + x i R +1 )/2 are such that the subsample x i L , x i L +1 , . . . , x i R corresponds to their K nearest neighbors. Indeed, any point greater than (x i L + x i R +1 )/2 is closer to x i R +1 than to x i L , and therefore its K nearest neighbors are not

x i L , x i L +1 , . . . , x i R .
Once all such z j are matched to the current [i L , i R ] range, i L and i R are incremented until (x i L + x i R +1 )/2 is greater than the next evaluation point z j to assign. The same procedure is then repeated until all the points are assigned to their K nearest neighbors.

Finally, once each point z j is assigned to its K nearest neighbors x i L , x i L +1 , . . . , x i R , one still needs to choose the bandwidth h j such that [z j -h j , z j + h j ] contains these K nearest neighbors. Such a bandwidth h j exists but is not unique. We choose to set h j to the average between the smallest possible h j (equal to max {z j -x i L , x i R -z j }) and the largest possible h j (equal to min {z j -

x i L -1 , x iR+1 -z j } when i L -1 ≥ 1 and i R + 1 ≤ N ).
Figure 5 illustrates the resulting bandwidths on a random sample of 11 points, where the evaluation points and the sample points are set to be the same for simplicity. Each row repeats the whole sample, and shows the bandwidth centered around one of the 11 points, and containing k = 5 points. 

Numerical tests

In this section, we test the fast kernel summation algorithm introduced in Section 2 and compare it to naive summation in terms of speed and accuracy. We consider a sample of N input points, choose the number of evaluation points M approximately equal to N , and build the evaluation grid and the bandwidths as described in Section 3.

From subsection 2.4, we expect a runtime proportional to N log(N ). We are going to verify this result numerically. Then, we are going to compare the estimates obtained by fast kernel summation to those obtain by naive summation. As discussed in subsection 2.2, we expect small differences coming from the rounding of floats, which can be reduced or removed altogether by the use of stable summation algorithm. As a simple illustration, we measure the accuracy improvement provided by the simple Møller-Kahan algorithm [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF], [START_REF] Linnainmaa | Analysis of some known methods of improving the accuracy of floatingpoint sums[END_REF], [START_REF] Ozawa | Analysis and improvement of Kahan's summation algorithm[END_REF], see Appendix B). Beyond this simple stability improvement , one can instead use exact summation algorithms to remove any float rounding errors while maintaining the O(N log(N )) complexity (cf. subsection 2.2).

The input sample can be chosen arbitrarily as it does not affect the speed or accuracy of the two algorithms. We therefore simply choose to simulate N points from a d-dimensional Gaussian random variable X ∼ N(0, 0.61 d ). In addition to the input sample x 1 , x 2 , . . ., x N , we need an output sample y 1 , y 2 , . . ., y N , in order to test the locally linear regression. Similarly to the input sample, the output sample can be chosen arbitrarily. We choose to define the output as

Y = f (X) + W f (x) = d i=1 x i + exp   -16 d i=1 x i 2  
where the univariate Gaussian noise W ∼ N(0, 0.7) is independent of X.

The various tables in this section report the following values:

Fast kernel time stands for the computational time in seconds taken by the fast kernel summation algorithm;

Naive time stands for the computational time in seconds of the naive version;

Accur Worst stands for the maximum relative error of the fast sum algorithm on the whole grid. For each evaluation point, this relative error is computed as

|E fast -E naive |/|E naive |
where E fast and E naive are the estimates obtained by the fast sum updating algorithm and the naive summation algorithm, respectively;

Accur Worst Stab stands for the maximum relative error of the fast sum algorithm with Møller-Kahan stabilization on the whole grid;

Accur Aver stands for the average relative error on the grid.

Accur Aver Stab stands for the average relative error of the fast sum algorithm with stabilization on the whole grid.

We perform the tests on an Intel® Xeon® CPU E5-2680 v4 @ 2.40GHz (Broadwell)1 . The code was written in C++ and is available in the StOpt2 library [START_REF] Gevret | STochastic OPTimization library in C++[END_REF]). Subsection 4.1 focuses on kernel density estimation, while subsection 4.2 considers locally linear regression.

Fast kernel density estimation

This subsection focuses on kernel density estimation (equation ( 20)). We implement and compare the fast kernel summation and the naive summation algorithms for different sample sizes N . Recalling from subsection 3.2 that our adaptive bandwidths are defined by the proportion p of neighboring sample points to include in each evaluation bandwidth, we test the two proportions p = 15% and p = 25%.

Univariate case

We first consider the univariate case. Tables 3 and4 summarize the results obtained by Algorithm 1 with the two different bandwidths. The results are very good even without stabilization, and the use of the Møller-Kahan summation algorithm improves the accuracy by two digits for the same computational cost. As expected the computational time of the fast summation algorithm is far better than the one obtained by naive summation (less than half a second versus more than three hours for 1.28 million points for example).

Nb particles 20,000 40,000 80,000 160,000 320,000 640,000 1,280,000 The runtime of the fast summation algorithm is nearly independent of the size of the bandwidth. It is not the case for the naive implementation. Indeed the larger the bandwidth, the more input points contribute to the kernel summation (1) resulting in more operations for larger bandwidths. This independence with respect to bandwidth size is another advantage of the fast sum updating approach over alternative methods such as naive summation or dual-tree methods.

Figure 6: Speed and accuracy of fast univariate kernel summation Figure 6 (left-hand side) clearly demonstrates that the computational time is in N log N as expected (subsection 2.4), while the right-hand side clearly demonstrates the efficiency of the stabilization. As expected, the cumulative float-rounding error slowly grows with the sample size N , but remains negligible even on the largest sample sizes.

Multivariate case

Tables 5 and6 report our speed and accuracy results in the bivariate case. Once again, the fast summation algorithm is vastly faster than naive summation (less than one second versus more than seven hours for 1, 28 million points for example), and the runtime of the fast summation algorithm is independent of the size of the bandwidth. Moreover, we observe a very good accuracy (much better than the univariate case for example), even without using any summation stabilization algorithm (subsection 2.2).

Nb particles 20,000 40,000 80,000 160,000 320,000 640,000 1,280,000 Figures 7 and 8 report multidimensional results up to dimension 6. Figure 7 demonstrates once again that the computational runtime is clearly in N log N , while Figure 8 shows that the accuracy is very good, even without summation stabilization. 

Fast locally linear regression

For comprehensiveness, we now verify that our numerical observations from subsection 4.1 still hold for the harder locally linear regression problem (equations ( 3) and ( 22)).

Univariate case

Once again, we first consider the univariate case. Tables 7 and8 summarize the results obtained by Algorithm 1 with the two different bandwidths. The results are very similar to the kernel density estimation case.

Figure 9 demonstrates that, as in the kernel density estimation case, the computational runtime is clearly in N log N and that the simple summation stabilization we implemented is very effective (the numerical accuracy is improved by a factor 1, 500 on average). Note however that compared to the kernel density estimation case, the runtime grows much more quickly with the dimension of the problem. This is due to the higher number of terms to track to perform the locally linear regressions (23) compared to one single kernel density estimation. 

Conclusion

Fast and exact kernel density estimation can be achieved by the fast sum updating algorithm [START_REF] Gasser | Discussion: linear smoothers and additive models[END_REF], [START_REF] Seifert | Fast algorithms for nonparametric curve estimation[END_REF]).

With N input points drawn from the density to estimate, and M evaluation points where this density needs to be estimated, the fast sum updating algorithm requires O(M log M + N log N ) operations, which is a vast improvement over the O(M N ) operations required by direct kernel summation. This paper revisits the fast sum updating algorithm and extends it in several ways.

The main contribution is the extension, for the first time, of the fast sum updating algorithm to the general multivariate case, opening the door to a vast class of practical density estimation and regression problems. The original concern in [START_REF] Seifert | Fast algorithms for nonparametric curve estimation[END_REF] with floating-point summation instability due to float-rounding errors can be completely addressed by the use of exact floatingpoint summation algorithms. Our numerical tests show that the cumulative float-rounding error is already negligible when using double-precision floats (in line with [START_REF] Fan | Fast implementation of nonparametric curve estimators[END_REF]), and that very simple compensated summation algorithms such as the Møller-Kahan algorithm can already bring significant accuracy improvements.

In addition, we show that fast sum updating is compatible with a larger list of kernels, including the triangular kernel, the Silverman kernel, the cosine kernel, and the newly introduced hyperbolic cosine kernel, than what was usually assumed in the literature. We introduce the multivariate additive kernel, which greatly improves the speed of fast sum updating in high dimension compared to product kernels. Importantly, we describe how fast sum updating is compatible with balloon adaptive bandwidths, and propose a fast approximate k-nearest-neighbor algorithm for the adaptive bandwidth.

The proposed multivariate extension does not impose any restriction on the input or output samples, but does require the evaluation points to lie on a possibly non-uniform grid. We describe how to prerotate the input data and construct a suitable grid to ease the interpolation of density estimates to any evaluation sample by multilinear interpolation or fast inverse distance weighting.

Our multivariate kernel density and locally linear regression tests confirm numerically the vastly improved computational speed compared to naive kernel summation, as well as the accuracy and stability of the method. A natural area for future research would be to examine density estimation or regression applications for which computational speed is a major issue. It would in particular be worth investigating how this algorithm compares, in terms of speed and accuracy, to alternative fast but approximate density estimation algorithms such as the Fast Fourier Transform with binning or the Fast Gauss Transform.

A. Kernels compatible with fast sum updating

This Appendix details how to implement the fast sum updating algorithm for the kernels listed in Table 1. Three classes of kernels admit the type of separation between sources and targets required for the fast sum updating algorithm: polynomial kernels (subsection A.1), absolute kernels (subsection A.2) and cosine kernels (subsection A.3). In addition, fast sum updating is still applicable to kernels which combine features from these three classes (subsection A.4). In the literature, [START_REF] Seifert | Fast algorithms for nonparametric curve estimation[END_REF] covered the case of polynomial kernels, while [START_REF] Chen | Fast kernel density independent component analysis[END_REF] covered the Laplacian kernel. The present paper extends the applicability of fast sum updating to the triangular kernel, cosine kernel, hyperbolic cosine kernel, and combinations such as the tricube and Silverman kernels. Specifically, we detail how to decompose the sums

1 N N i=1 K h (x i -z j )x p i y q i = 1 N h j N i=1 K x i -z j h x p i y q i , j ∈ {1, 2, . . . , M }
into fast updatable sums of the type

S p,q (f, [L, R]) : = N i=1 f (x i )x p i y q i 1{L ≤ x i ≤ R} (19)
Equation ( 19) is a generalization of the sum (6) used in Section 2 for the Epanechnikov kernel. The additional f (x i ) term in the sum is necessary for such kernels as the cosine or Laplacian ones.

Whenever possible, we will use adaptive kernels h = h j (balloon estimator, cf. subsection 3.2). Some kernels, such as polynomial kernels, can combine adaptive bandwidths with fast sum updating, but some other kernels cannot, as explained in the subsections below.

A.1. Polynomial kernels

The class of polynomial kernels, in particular the class of symmetric beta kernels

K(u) = (1 -u 2 ) α 2 2α+1 Γ(α+1)Γ(α+1) Γ(2α+2) 1{|u| ≤ 1}
includes several classical kernels: the uniform/rectangular kernel (α = 0), the Epanechnikov/parabolic kernel (α = 1), the quartic/biweight kernel (α = 2) and the triweight kernel (α = 3). We recall from Section 2 how to decompose the Epanechnikov kernel K(u) = 3 4 (1 -u 2 )1{|u| ≤ 1}. By expanding the square term:

N i=1 K x i -z j h j x p i y q i 1 x i -z j h j ≤ 1 = 3 4 N i=1 1 - z 2 j h 2 j + 2z j h 2 j x i - 1 h 2 j x 2 i x p i y q i 1 {z j -h j ≤ x i ≤ z j +h j } = 3 4 1 - z 2 j h 2 j S p,q (1, [z j -h j , z j +h j ]) + 3 4 2z j h 2 j S p+1,q (1, [z j -h j , z j +h j ]) - 3 4 1 h 2 j S p+2,q (1, [z j -h j , z j +h j ])
The other kernels within this class can be decomposed in a similar manner by expanding the power terms.

A.2. Absolute kernels

The class of absolute kernels contains kernels based on the absolute value |u|, such as the triangular kernel and the Laplacian kernel.

For the triangular kernel, K(u) = (1 -|u|)1{|u| ≤ 1} and

N i=1 K x i -z j h j x p i y q i 1 x i -z j h j ≤ 1 = N i=1 1 - x i -z j h j x p i y q i 1 {z j ≤ x i ≤ z j +h j } + N i=1 1 - z j -x i h j x p i y q i 1 {z j -h j ≤ x i < z j } = 1 + z j h j S p,q (1, [z j , z j +h j ]) - 1 h j S p+1,q (1, [z j , z j +h j ]) + 1 - z j h j S p,q (1, [z j -h j , z j [) + 1 h j S p+1,q (1, [z j -h j , z j [) For the Laplacian kernel, K(u) = 1 2 exp(-|u|) and N i=1 K x i -z j h x p i y q i = 1 2 N i=1 exp - x i -z j h x p i y q i 1 {z j ≤ x i } + 1 2 N i=1 exp - z j -x i h x p i y q i 1 {x i < z j } = 1 2 exp z j h S p,q (exp(-./h), [z j , ∞[) + 1 2 exp - z j h S p,q (exp(./h), ] -∞, z j [)
where exp(±./h) denotes the function u → exp(±u/h). Remark that we used a constant bandwidth h, as neither a balloon bandwidth h = h j nor a sample point bandwidth h = h i can separate the term exp

x i -z j h
into a product of a term depending on i only and a term depending on j only. Note that an intermediate adaptive bandwidth approach of the type

x i h i - z j
h j would maintain the ability to separate sources and targets for this kernel.

A.3. Cosine kernels

For the cosine kernel, K(u) = π 4 cos π 2 u 1{|u| ≤ 1} and By solving the minimization problem ( 22), the multivariate locally linear regression estimate fL (z) is explicitly given by:

N i=1 K x i -z j h x p i y q i 1 x i -z j h ≤ 1 = π 4 N i=1 cos π 2 x i h cos π 2 z j h + sin π 2 x i h sin π 2 z j h x p i y q i 1 {z j -h ≤ x i ≤ z j +h} = π 4 cos π 2 z j h S p,q cos π 2 . h , [z j -h, z j +h] + π 4 sin π 2 z j h S p,q sin π 2 . h , [z j -h, z j +h] _ Algorithm 
]= iR i=iL X[i] p 1 Y [i] p 2 K(Z[m], X[i]) C0 = 1.0 -Z[m] 2 /H[m] 2 ; C1 = 2.0 × Z[m]/H[m] 2 ; C2 = 1/H[m] 2 SK[p 1 , p 2 ] = C0×S[p 1 , p 2 ] + C1×S[p 1 + 1, p 2 ] -C2×S[p 1 + 2,
fL (z) =         1 z 1 z 2 . . . z d         T            N i=1 K d,H (z,x i ) N i=1 x 1,i K d,H (z,x i ) • • • N i=1 x d,i K d,H (z,x i ) N i=1 x 1,i K d,H (z,x i ) N i=1
x 1,i x 1,i K d,H (z,x i ) 

x d,i x 1,i K d,H (z,x i ) • • • N i=1 x d,i x d,i K d,H (z,x i )            -1            N i=1 y i K d,H (z,x i ) N i=1 y i x 1,i K d,H (z,x i )
. . .

N i=1 y i x d,i K d,H (z,x i )           
(23) To sum up, computing fKDE (z) requires one sum, computing fNW (z) requires two sums, and finally one can check that computing fL (z) requires a total of (d + 1)(d + 4)/2 sums.

Remark that this paper focuses on the three kernel smoothers (20), ( 21) and ( 23), but more general kernel smoothers can be implemented with the same fast multivariate sum updating algorithm described in this paper. For example, beyond the locally linear regression (23), one can consider locally quadratic or locally polynomial regressions. Another example is to use the matrices in (23) to implement more general regressions that ordinary least squares, for example penalized regressions such as locally linear Ridge regression or locally linear Lasso regression.

D. Fast bivariate sweeping algorithm

This Appendix illustrates the fast bivariate sweeping algorithm 2 with the help of Figures 12 and 13. As explained in subsection 2.3.6, we start from j 1 = 1 and T idx 1,l 2 = R 1,1 l 1 =L 1,1 S idx l 1 ,l 2 and iteratively increment j 1 and update T idx 1,l 2 using equation (17). Figure 12 illustrates this fast sum updating in the first dimension. The partition contains m 1 -1 = 10 columns and m 2 -1 = 6 rows. Each rectangle in the partition is associated with its sum S idx l 1 ,l 2 . On the left-side picture, the orange segment on each row l 2 corresponds to the sum R 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 . The middle picture represents the fast sum updating (17): for each row l 2 , the green sum R 1,j 1 l 1 =R 1,j 1 -1 +1 S idx l 1 ,l 2 is added to R 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 and the red sum L 1,j 1 -1 l 1 =L 1,j 1 -1 S idx l 1 ,l 2 is subtracted from it. The right-side picture show the result of the fast sum updating: the orange segment on each row l 2 corresponds to the updated sum R 1,j 1 l 1 =L 1,j 1 S idx l 1 ,l 2 . We next turn to the inner loop over j 2 and T idx 2 . In a similar manner, we start from j 2 = 1 and the initial sum T idx 2 = R 2,1 l 2 =L 2,1 T idx 1,l 2 , and iteratively increment j 2 and update T idx 2 using equation (18). Figure 13 illustrates this fast sum updating in the second dimension. On the left-side picture, for each row l 2 , the orange segment is associated with its sum T idx 1,l 2 . The middle picture represents the fast sum updating (18): the green sum R 2,j 2 l 2 =R 2,j 2 -1 +1 T idx 1,l 2 is added to R 2,j 2 l 2 =L 2,j 2

T idx 1,l 2 and the red sum L 2,j 2 -1 l 2 =L 2,j 2 -1 T idx 1,l 2 is subtracted from it. The right-hand side T idx 1,l 2 = R 1,j 1 l 1 =L 1,j 1 R 2,j 2 l 2 =L 2,j 2 S idx l 1 ,l 2 . Using Lemma 2.1 (equation ( 16)), this sum is equal to S p,q k ([z j -h j , z j + h j ]) which can be used to compute the kernel sums S j = S p 1 ,p 2 ,q k 1 ,k 2 ,j using equation ( 12), from which the bivariate kernel smoothers (kernel density estimator (20), kernel regression (21), locally linear regression ( 22)) can be computed. 
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Figure 4

 4 Figure 4 on page 18 provides two examples of rectilinear evaluation grids in the bivariate case.
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 2 Figure 2: From bandwidths to partition (1D)

  d}, and m := d k=1 m k ≤ 2 d M . Define the new partition intervals I k,l := [g k,l , g k,l+1 ], l ∈ {1, 2, . . . , m k -1}. Because the trimming from Gk to G k only affects the empty intervals, the following still holds: Lemma 2.1. For any evaluation point z
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 5 Figure 5: 1D nearest neighbour bandwidth (N = 11, K = 5)
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 7 Figure 7: Runtime of fast kernel summation (left: bandwidth 15%; right: bandwidth 25%)
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 8 Figure 8: log10 of maximum relative error w.r.t. logN (left: bandwidth 15%; right: 25%)
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 10 Figure 10: Runtime of fast kernel summation (left: bandwidth 15%; right: bandwidth 25%)

  end return D, R0, R1 Output: D[m]: kernel density estimate of X R0[m]: locally constant regression of Y on X (kernel regression) R1[m]: locally linear regression of Y on X The three estimates D[m], R0[m] and R1[m] are evaluated at point Z[m] with bandwidth H[m] and Epanechnikov kernel, for each m=1,. . . ,M where y i , i ∈ {1, 2, . . . , N } are the output points. Finally, the multivariate version of the locally linear regression (3) is given by: fL (z) := min α(z),β 1 (z),...,β d (z) N i=1 K d,H (x i -z) y i -α(z) -
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 12 Figure 12: Bivariate fast sum updating: outer loop
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 13 Figure 13: Bivariate fast sum updating: inner loop

  

  for example). The eigenvalue decomposition of H yields H = R∆ 2 R where R is a rotation matrix and ∆ = diag(h) is a diagonal matrix with strictly positive diagonal elements h = (h 1 , h 2 , . . . , h d ) ∈ R d . Therefore, without loss of generality, one can focus on the diagonal bandwidth case K d,h

Table 2 )

 2 . For this reason, we henceforth use the average multivariate kernel (11) in the rest of the paper.

	dimension	2D	3D	4D	5D
	K P efficiency	98.2% 95.3% 91.6% 87.4%
	K A efficiency	96.5% 88.9% 80.4% 71.8%
	K P number of sums	9	27	81	243
	K A number of sums	5	7	9	11
	speedup factor of K A over K P 1.8	3.6	7.9	18.2

Table 2

 2 

: product kernel K P vs. average kernel K A

  E-09 1.1 E-09 8.2 E-09 1.1 E-07 3.2 E-07 1.7 E-06 5.0 E-07 Accur Worst Stab 4.8 E-12 5.1 E-13 8.3 E-12 6.9 E-12 1.5 E-11 3.9 E-10 3.1 E-11 Accur Aver 1.9 E-12 1.2 E-12 1.4 E-12 9.4 E-12 1.1 E-11 6.9 E-12 1.8 E-11 Accur Aver Stab 3.8 E-15 1.8 E-15 2.0 E-15 1.9 E-15 1.9 E-15 2.5 E-15 1.9 E-15

	Fast kernel time	0.01	0.01	0.02	0.04	0.10	0.20	0.43
	Naive time	2.90	12	47	190	750	3,000	12,000
	Accur Worst	1.7						

Table 3

 3 

	: 1D, bandwidth 15%

Table 4 :

 4 1D, bandwidth 25%

  E-12 1.9 E-12 3.0 E-10 4.5 E-10 4.0 E-11 7.2 E-08 3.5 E-09 Accur Worst Stab 4.4 E-13 1.6 E-13 3.3 E-12 1.7 E-11 4.1 E-13 1.1 E-10 3.0 E-11

	Fast kernel time	0.02	0.02	0.04	0.09	0.20	0.43	0.89
	Naive time	6.50	26	100	420	1,700	6,700	27,000
	Accur Worst 3.2 Accur Aver 8.3 E-15 3.2 E-15 2.3 E-14 8.0 E-15 1.8 E-14 1.8 E-13 5.3 E-14
	Accur Aver Stab	3.7 E-16 3.0 E-16 4.5 E-16 4.9 E-16 3.0 E-16 6.4 E-16 4.3 E-16

Table 5

 5 E-11 6.0 E-12 6.9 E-11 8.3 E-11 1.6 E-09 1.1 E-09 4.2 E-09 Accur Worst Stab 6.5 E-13 4.2 E-13 2.7 E-13 1.9 E-11 8.2 E-12 9.7 E-12 3.4 E-11 Accur Aver 8.5 E-15 3.8 E-15 8.7 E-15 4.6 E-15 2.7 E-14 2.1 E-14 4.8 E-14 Accur Aver Stab 3.3 E-16 3.1 E-16 2.7 E-16 6.7 E-16 4.4 E-16 2.9 E-16 5.1 E-16

	: 2D, bandwidth 15%

Table 6 :

 6 2D, bandwidth 25%

  E-09 2.0 E-09 9.6 E-08 4.4 E-07 1.4 E-07 7.4 E-06 7.8 E-05 Accur Worst Stab 3.1 E-12 7.2 E-12 9.2 E-11 1.4 E-10 2.4 E-10 2.5 E-09 1.6 E-08 Accur Aver 4.4 E-12 2.1 E-12 9.1 E-12 1.4 E-11 6.1 E-12 2.9 E-11 8.5 E-11 Accur Aver Stab 5.2 E-15 5.5 E-15 6.2 E-15 5.8 E-15 6.4 E-15 9.5 E-15 2.1 E-14

	Nb particles	20,000	40,000	80,000	160,000 320,000 640,000 1,280,000
	Fast kernel time	0.02	0.03	0.05	0.1	0.23	0.45	0.98
	Naive time	4.50	18	71	280	1,100	4,500	18,000
	Accur Worst	5.3						

Table 7

 7 

			: 1D results, bandwidth 15%		
	Nb particles	20,000	40,000	80,000	160,000 320,000 640,000 1,280,000
	Fast kernel time	0.01	0.03	0.05	0.1	0.21	0.44	0.95
	Naive time	6.60	26	100	420	1,700	6,700	27,000
	Accur Worst	1.1 E-08 9.4 E-10 1.1 E-07 9.4 E-06 8.1 E-07 1.1 E-07 1.2 E-06
	Accur Worst Stab 1.3 E-11 9.8 E-12 4.2 E-11 7.8 E-10 8.5 E-10 2.1 E-11 3.7 E-10
	Accur Aver	2.3 E-12 6.6 E-13 4.3 E-12 6.9 E-11 5.8 E-12 4.6 E-12 9.4 E-12
	Accur Aver Stab	2.7 E-15 2.2 E-15 2.3 E-15 8.6 E-15 4.7 E-15 1.9 E-15 2.3 E-15

Table 8 :

 8 1D results, bandwidth 25% Figure 9: Speed and accuracy of fast univariate kernel summation

4.2.2. Multivariate case

  Tables 9 and 10 report our speed and accuracy results in the bivariate locally linear regression case. The results are once again qualitatively very similar to the kernel density estimation case.

	Nb particles	20,000	40,000	80,000	160,000 320,000 640,000 1,280,000
	Fast kernel time 0.03	0.06	0.12	0.26	0.52	1.1	2.22
	Naive time	9.80	40	160	630	2,500	10,000	40,000
	Accur Worst	8.6 E-11 2.3 E-11 5.6 E-10 4.9 E-10 2.6 E-09 2.7 E-09 4.9 E-09
	Accur Aver	5.3 E-14 1.1 E-14 5.1 E-14 2.4 E-14 7.1 E-14 9.2 E-14 1.3 E-13

Table 9

 9 

			: 2D results, bandwidth 15%		
	Nb particles	20,000	40,000	80,000	160,000 320,000 640,000 1,280,000
	Fast kernel time 0.02	0.06	0.13	0.25	0.51	1.06	2.17
	Naive time	14	54	220	870	3,500	14,000	56,000
	Accur Worst	9.5 E-11 7.6 E-11 8.0 E-11 5.7 E-11 2.3 E-09 2.5 E-09 3.5 E-09
	Accur Aver	1.7 E-14 6.3 E-15 2.4 E-14 7.3 E-15 5.9 E-14 7.2 E-14 5.0 E-14

Table 10 :

 10 2D results, bandwidth 25%Finally, Figures 10 and 11 report multivariate locally linear regression results up to dimension 6, demonstrating once again the N log N computational complexity and the very good accuracy.

  5: Fast univariate kernel smoothing with stable Møller-Kahan summation The indices 1 ≤ iL ≤ iR ≤ N will be such that the current bandwidthiR = 1 [Z[m] -H[m], Z[m] + H[m]] contains X[iL], X[iL + 1], . . . , X[iR] S[p 1 , p 2 ] = 0, p 1 = 0, 1, . . . , 4, p 2 = 0, 1 Will contain the sum iR i=iL X[i] p 1 × Y [i] p 2 run[p 1 , p 2 ] = 0, p 1 = 0, 1, . . . , 4, p 2 = 0, 1 running float-rounding error for m = 1, ..., M do while (iR≤N) and (X[iR]<(Z[m]+H[m])) do aux[p 1 , p 2 ] = X[iR] p 1 ×Y[iR] p 2 -run[p 1 , p 2 ] , p 1 = 0, 1, . . . , 4, p 2 = 0, 1 temp[p 1 , p 2 ] = S[p 1 , p 2 ] + aux[p 1 , p 2 ] if abs(S[p 1 , p 2 ])>abs(aux[p 1 , p 2 ]) then run[p 1 , p 2 ] = (temp[p 1 , p 2 ] -S[p 1 , p 2 ]) -aux[p 1 , p 2 ] else run[p 1 , p 2 ] = (temp[p 1 , p 2 ] -aux[p 1 , p 2 ]) -S[p 1 , p 2 ] end S[p 1 , p 2 ] = temp[p 1 , p 2 ] iR = iR + 1 end while (iL≤N) and (X[iL]<(Z[m]-H[m])) do aux[p 1 , p 2 ] = -X[iL] p 1 ×Y[iL] p 2 -run[p 1 , p 2 ] , p 1 = 0, 1, . . . , 4, p 2 = 0, 1 temp[p 1 , p 2 ] = S[p 1 , p 2 ] + aux[p 1 , p 2 ] if abs(S[p 1 , p 2 ])>abs(aux[p 1 , p 2 ]) then run[p 1 , p 2 ] = (temp[p 1 , p 2 ] -S[p 1 , p 2 ]) -aux[p 1 , p 2 ] else run[p 1 , p 2 ] = (temp[p 1 , p 2 ] -aux[p 1 , p 2 ]) -S[p 1 , p 2 ] end S[p 1 , p 2 ] = temp[p 1 , p 2 ] iL = iL + 1 end Here S[p 1 , p 2 ]= iR i=iL X[i] p 1 Y [i] p 2 , which can be used to compute SK[p 1 , p 2

	Input:
	X: sorted vector of N inputs X[1] ≤ . . . ≤ X[N ]
	Y: vector of N outputs Y [1], . . . , Y [N ]
	Z: sorted vector of M evaluation points Z[1] ≤ . . . ≤ Z[M ]
	H: vector of M bandwidths H[1], . . . , H[M ]
	Z and H should be such that the vectors Z-H and Z+H are increasing
	iL = 1

  • • •

				N	
				x 1,i x d,i K d,H (z,x i )
	. . .	. . .	. . .	i=1	. . .

N i=1 x d,i K d,H (z,x i ) N i=1

https://ark.intel.com/products/91754/Intel-Xeon-Processor-E5-2680-v4-35M-Cache-2_40-GHz

https://gitlab.com/stochastic-control/StOpt
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where we used that cos(α -β) = cos(α) cos(β) + sin(α) sin(β). In a similar manner, one can define a new kernel based on the hyperbolic cosine function

and use the identity cosh(α -β) = cosh(α) cosh(β) -sinh(α) sinh(β) to obtain a similar decomposition.

A.4. Combinations

Finally, one can combine the polynomial, absolute, and cosine approaches together to generate additional kernels compatible with fast sum updating. This combination approach contains the tricube kernel K(u) = 70

81 (1 -|u| 3 ) 3 1{|u| ≤ 1} (polynomial + absolute value) and the Silverman kernel

New kernels can be created by combining cosine kernels with polynomials, or the three approaches together. Obtaining the updating equations for these combined kernels is a straight application of the decomposition tools used in the previous subsections A.1, A.2 and A.3.

B. Stable fast sum updating

As observed in [START_REF] Fan | Fast implementation of nonparametric curve estimators[END_REF] and in the numerical section 4, the numerical rounding errors are invisible when using double-precision floating-point format. Nevertheless, it is possible to greatly reduce or remove altogether the residual floating-point rounding errors by implementing alternative summation algorithms, as discussed in subsection 2.2. As an illustration, Algorithm 5 below shows how to modify the univariate fast sum updating algorithm 1 to use the stable Møller-Kahan summation algorithm [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF], [START_REF] Linnainmaa | Analysis of some known methods of improving the accuracy of floatingpoint sums[END_REF], [START_REF] Ozawa | Analysis and improvement of Kahan's summation algorithm[END_REF]). The multivariate case can be adapted in a similar manner. Note that this stable version multiplies the computational effort by a constant, and in the multivariate case, the same is true of the memory consumption.

C. Multivariate kernel smoothers

In a multivariate setting, the kernel density estimator (1) becomes

where x i = (x 1,i , x 2,i , . . . , x d,i ), i ∈ {1, 2, . . . , N } are the input points, z = (z 1 , z 2 , . . . , z d ) is the evaluation point, and