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Abstract—In robotics, methods and softwares usually require
optimizations of hyperparameters in order to be efficient for
specific tasks, for instance industrial bin-picking from homoge-
neous heaps of different objects. We present a developmental
framework based on long-term memory and reasoning modules
(Bayesian Optimisation, visual similarity and parameters bounds
reduction) allowing a robot to use meta-learning mechanism
increasing the efficiency of such continuous and constrained
parameters optimizations. The new optimization, viewed as a
learning for the robot, can take advantage of past experiences
(stored in the episodic and procedural memories) to shrink the
search space by using reduced parameters bounds computed
from the best optimizations realized by the robot with similar
tasks of the new one (e.g. bin-picking from an homogenous heap
of a similar object, based on visual similarity of objects stored
in the semantic memory). As example, we have confronted the
system to the constrained optimizations of 9 continuous hyper-
parameters for a professional software (Kamido) in industrial
robotic arm bin-picking tasks, a step that is needed each time
to handle correctly new object. We used a simulator to create
bin-picking tasks for 8 different objects (7 in simulation and one
with real setup, without and with meta-learning with experiences
coming from other similar objects) achieving goods results despite
a very small optimization budget, with a better performance
reached when meta-learning is used (84.3% vs 78.9% of success
overall, with a small budget of 30 iterations for each optimization)
for every object tested (p-value=0.036).

Index Terms—developmental robotics, long-term memory,
meta learning, hyperparmeters automatic optimization, case-
based reasoning

I. INTRODUCTION

In the field of robotics, many frameworks and algorithms
require optional parameters settings in order to achieve strong
performance (e.g. Deep Neural Networks [1], Reinforcement
Learning [2]). Even if a human expert can manually optimized
them, the task is tedious and error-prone, in addition to being
costly in term of time and money when applied to the private
industrial sector, in particular in situations where the hyper-
parameters have to be defined frequently (e.g. for each object
to be manipulated or for each manipulation task). Optimization
processes can be used to overcome these challenges on con-
strained numerical hyper-parameters search, such as Bayesian

This work was supported by the EU FEDER funding through the FUI
PIKAFLEX project and by the French National Research Agency (ANR),
through the ARES labcom project under grant ANR 16-LCV2-0012-01, and
by the CHIST-ERA EU project ”Learn-Real”

Fig. 1. Real robotics setup with an industrial Fanuc robot for a grasping task
from homogeneous highly cluttered heap of elbowed rubber tubes.

Optimization [3]–[5]. This method is especially suited where
running the software (treated as black-box function) to be
optimized will be expensive in time and will produce noisy
score (the case for real robotics grasping applications). These
methods are classically used before the deployment of the
system in-situ, or launched manually when needed: they are
separated from the autonomous ”life” of the robot’s experience
(i.e. they are used offline). Therefore the optimizations are
always starting from scratch (i.e. cold-start) because they
are not taking advantage of the knowledge from previous
experiences of the system (i.e. warm-start [6]).

Our contribution consists of an enhanced version of the
work from Petit et al. [7]: a developmental cognitive architec-
ture providing a robot with a long-term memory and reasoning
modules. It is allowing the robot to store optimization runs for
bin-picking tasks using a professional grasping software, and
utilize such experiences to increase the performance of new
optimizations. In their initial works, when confronted to a new
object for the bin-picking for which the grasping software

Preprint version. Accepted at IEEE ICDL-Epirob 2020. 1 This version is WITHOUT the improvements suggested by reviewers.



Preprint version. Accepted at IEEE ICDL-Epirob 2020. This version is WITHOUT the improvements suggested by reviewers.

Long-Term Memory

Episodic Memory

Seman�c Memory

Procedural Memory

Bayesian Op�misa�on

Visual Similarity

Reasoning Modules

Robot learning phase (without Meta Learning)

Addi�onal flow when Meta Learning (Bounds Reduc�ons)

init design

infill_eqi

final eval

score

parameters

op�mized

parameters

gear1:

storing {name,

3D point cloud}

gear1,run1: {p1(1), p2(1), ..., pn(1)}, score1

gear1,run1: {p1(2), p2(2), ..., pn(2)}, score2

gear1,run1: {p1(m), p2(m), ..., pn(m)}, scorem

...

name of

 similar obj.

cog1:

gear1:

gear1:

storing {name

, param., score}

query similarity

...

...

gear1,run1: {P1,1, p2,1, ..., pn,1}^ ^ ^

gear1,run2: {p1,2, p2,2, ..., pn,2}^ ^ ^

Black-Box 
Algorithm

...
gear1: P in {[b :B ], ..., [b :B ]}

...

Param. Bounds Reduc�on
gear1

^
1 1 n n

^ ^ ^

p1 in [b1:B1]

p2 in [b2:B2]

...

pn in [bn:Bn]

p1 in [b1:B1]

p2 in [b2:B2]

...

pn in [bn:Bn]

^ ^
^ ^

^ ^

Large 

Bounds
Reduced

 Bounds

query param
s and score

storing {name,

Reduced Bounds}

Re
d.

 B
ou

nd
s

of
 s

im
ila

r 
ob

j.

Fig. 2. Architecture of the extended cognitive developmental framework, based on Long-Term Memory (with episodic, procedural and semantic memories)
and Reasoning Modules (Bayesian Optimisation, Visual Similarity and the new Parameters Bounds Reduction) allowing a robot to learn how to grasp objects.
This learning consists of guiding an efficient continuous hyper-parameters constrained optimization of black-box algorithm controlling the robot. The blue
arrows represent the data flows during a learning phase without meta-learning (i.e. without taking advantage of the Long-Term Memory, just storing the
experiences). The red arrows shows the additional queries and exchanges of information during a learning phase with meta-learning, based on the visual
similarity between objects the robot knows how to grasp and the new one.

parameters will have to be optimized, the robot is able to
find a better solution faster with a transfer-learning strategy.
This consists of extracting the best sets of parameters already
optimized from a similar object and forcing the reasoning
module to try it at the beginning of the optimization. Our
contribution is the design of a meta-learning method for such
optimization, in order to reduce the search space initially,
thus avoiding unnecessary explorations in some areas. More
specifically, we will use reduced parameters bounds that are
extracted from the best previous optimization iterations of task
or object that are similar to the new one, leading to a more
efficient learning.

II. RELATED WORK

Bayesian Optimization (BO) is a common method in the
robotic field for optimizing quickly and efficiently constrained
numerical parameters [8]–[10]. In particular, Cully et al im-
plemented an extended version allowing a robot to quickly
adjust its parametric gait after been damaged [11] by taking
advantages of previous simulated experiences with damaged

legs. The best walking strategies among them were stored in
a 6-dimensional behavioural grid (discretized with 5 values
per dimension representing the portion of time of each leg
in contact with the floor). We take inspiration from this
work, where the behavioural space will be represented by
the similarity between objects the robot will have to learn to
manipulate.

The meta-learning concept of this work, focusing on re-
ducing the initial search space of constrained numerical pa-
rameters optimization is inspired by the work of Maesani
et al. [12], [13] known as the Viability Evolution principle.
It consists, during evolutionary algorithms, of eliminating
beforehand newly evolved agents that are not satisfying a
viability criteria, defined as bounds on constraints that are
made more stringent over the generations. This is forcing the
generated agents to evolve within a smaller and promising
region at each step, increasing the efficiency of the overall
algorithm. We follow here the same principle by reducing
the hyperparameters bounds based on past similar experience
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before the beginning of the optimization process, providing to
it a smaller search space.

III. METHODOLOGY

The architecture of the cognitive robotics framework (see
Fig. 2) is based upon the work of Petit et al. [7]. It consists
of the construction and exploitation with different reasoning
capacities of a Long-Term Memory storing information in 3
sub-memories as described by Tulving [14]: 1) the episodic
memory storing data from personal experiences and events,
then linked to specific place and time, 2) the procedural
memory containing motor skills and action strategies learnt
during the lifetime and 3) the semantic memory filled with
facts and knowledge about the world. The developmental
optimization with meta-learning will use this framework as
followed: the Bayesian Optimization will provide all the data
about its exploration and store them in the episodic memory,
with the optimized set of parameters stored in the procedural
memory. Parameters Bounds Reduction module will analyze
the data for each task from the episodic memory in order to
compute reduced parameters bounds still containing the best
values for each parameters. A Visual Similarity module will
be able to compare the similarity between different tasks (e.g.
grasping an object O1 and an object O2) in order to have
access to previous knowledge stored in the procedural memory
and linked to a known similar task when confronted to a
new one. This will allow the robot to use a smaller search
optimization space when trying to learn how to achieve a task
A by using the reduced parameters bounds computed from a
similar and already explored and optimized task B.

A. Bayesian Optimisation module

We have chosen Bayesian Optimization as method for con-
strained optimization process of the robotic algorithm black-
box, implemented using the R package mlrMBO [15] with
Gaussian Process as surrogate model. A BO run optimizes a
number of parameters with iterations (i.e. trials) where the set
of parameters is selected (and tested) differently depending on
the current phase, out of 3, of the process:

• ”initial design”: selecting points independently to draw
a first estimation of the objective function.

• Bayesian search mechanism (”infill eqi”), balancing ex-
ploitation and exploration. It is done by extracting the
next point from the acquisition function (constructed from
the posterior distribution over the objective function) with
a specific criteria. We have chosen to use the Expected
Quantile Improvement (EQI) criteria from Pichney et al.
[16] because the function to optimize is heterogeneously
noisy. EQI is an extension of the Expected Improvement
(EI) criteria where the improvement is measured in the
model rather than on the noisy data, and so is actually
designed to deal with such difficult functions.

• final evaluation (”final eval”), where the best predicted
set of hyper-parameters (prediction of the surrogate,
which reflects the mean and is less affected by the noise)

is used several times in order to provide an adequate
performance estimation of the optimization.

B. Memory

Similarly to others implementations of a long-term memory
system [17], [18], the experience and knowledge of the robot
are stored in a PostgreSQL database. The episodic memory
stores each experience of the robot, and consists for this
work of the information available after each iteration i of
the Bayesian Optimization’s run r: the label of the task
(e.g. the name of the object for which the robot has to
optimize parameters in order to manipulate it), the set of
m hyper-parameters tested {p1(i), p2(i), ..., pm(i)} and the
corresponding score si obtained with such setup. The semantic
memory is filled and accessed by the Visual Similarity module
and contains the visual information about the objects that the
robot used during its optimization runs, and are stored as point
clouds. The procedural memory is composed by 2 types of
data: 1) optimized sets of parameters of each run of each
object are stored by the Bayesian Optimisation module, in
order to be quickly loaded by the robot if needed, and 2)
reduced parameters bounds for each object, corresponding of
constrained boundaries for each parameters values obtained
when looking at the parameters values distribution from the
best iterations of a specific task/object. This information is
pushed here by the Parameters Bounds Reduction module, that
we will describe later.

C. Visual Similarity module

The Visual Similarity module is retrieving the most similar
object from the semantic memory (i.e. CAD model of known
object, meaning the robot has already optimized the corre-
sponding parameters) where confronted to CAD models of a
new objects to be optimized. It is based on an extension of the
deep learning method for 3D classification and segmentation
PointNet [19] which provides a numerical metrics for the
similarity between 2 objects as the distance of the 1024
dimensions global features from the models. The most similar
object corresponds to the minimal distance.

D. Meta Learning: Parameters Bounds Reductions

The Meta Learning aspect is realized with the use of
reduced, more adequate, promising and efficient parameters
bounds when launching the constrained optimization of a
novel task (i.e. bin-picking a new object), using the reduced
parameters bounds extracted from the experience of the robot
with bin-picking a similar object to the new one. When looking
at the distribution of the parameters values explored during the
iterations that provided the best results, an efficient parameters
bounds would provide roughly a uniform distribution of the
parameters values among the best iteration, meaning that they
are many parameters values within that provide good results.
On the opposite, a very thin distribution means that a huge part
of the search landscape for the parameters are sub-optimized
and will cost optimization budget to be explored futilely. We
want then to reduce the parameters bounds in order to force the
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Fig. 3. Distribution of the scaled values of 9 parameters from the best
35% optimizations iterations of the object to be grasped called m782. Some
parameters have a uniform [0:1] distribution (e.g. p1) but some do not and
their median is either around 0.5 (e.g. p7), higher (e.g. p5) or smaller (e.g.
p9). See Table I for the corresponding new reduced parameter bounds.

Algorithm 1 Algorithm for bounds Reduction
Input: All iterations of all runs for object O with scaled

parameters values (∈ [0 : 1])
Output: New reduced bounds for object O

1: Select In(O) the n% best iterations for O
2: for each parameters pj(O) do
3: Compute pdm, p-value of Dudewicz-van der Meulen

test for uniformity for pj(O) values from In(O)
4: if (pdm < αdm) then
5: Compute pw, p-value of Wilcoxon test (H0: µ = 0.5)
6: if (pw < αw and median(pj(O))> 0.5) then
7: Increase lower bound for pj(O) to the 5% per-

centile of pi(O) values from In(O)
8: else if (pw < αw median(pj(O))< 0.5) then
9: Reduce upper bound for pj(O) to the 95% per-

centile of pj(O) values from In(O)
10: else
11: Reduce upper & increase lower bounds for pi(O)
12: end if
13: end if
14: end for
15: return Modified Parameters bounds

optimization process to focus on the more promising search
space. We describe here how the module is able to reduced
the parameters bounds from past optimization of an object O,
summarized in Alg. 1 in order to increase the efficiency of
future optimization runs for the same or similar object.

First, the module is checking the episodic memory of the
robot to retrieve every results of past optimization iterations for
the object O, I(O). Among them, we only keep the iterations

that provided the best results, filtering to have the n% best re-
maining and obtain In(O), a subset of I(O). Then the module
will analyze the distribution of every parameters pj explored
for the object O and scaled in [0:1], where an example of such
distribution is shown in Fig. 3 under the form of boxplots. For
each parameter, we check the uniformity of the distribution
in [0:1] using the Dudewicz-van der Meulen test [20], an
entropy-based test for uniformity over this specific distribution.
If the p-value pdm is below the alpha risk αdm, we can
reject the uniformity hypothesis for the current distribution: we
can eliminate some range values for the parameter. However,
it can goes several ways: we can lower the upper bounds,
increasing the lower bounds, or doing both. This decision
will be based on the result on a non-parametric (we cannot
assume the normality of the distribution) one-sample Wilcoxon
signed rank test against an expected median of µ = 0.5
producing a p-value pw and using another alpha risk αw. If
the pw < αw we can reject the hypothesis that the distribution
is balanced and centered around 0.5. If that is the case and the
distribution is not uniform, that means that both bounds can
to be reduced (lowering the upper bounds and increasing the
lower one). If not, that means the distribution is favoring one
side (depending on the median value) and only the bounds
from the opposite side will be more constrained: the lower
bounds will be increased if the median is greater than 0.5, or
the upper bounds will be smaller if the median is lower than
0.5. The bounds are modified to the xth percentile value of
the parameters for the lower bounds and to the Xth percentile
for the upper bounds, with 0 ≤ x < X ≤ 1. Eventually,
they are stored in the procedural memory and linked to their
corresponding object, in order to be easily accessible in the
future and used by future optimization process instead of the
default and larger parameters bounds.

IV. EXPERIMENTS

The experiment setup is similar to the describe in [7]
allowing to compare some of their results with ours. We are
indeed aiming at optimizing some parameters of a professional
software called Kamido1 (from Sileane) that we are treating as
a black-box. The parameters are used by Kamido to analyze
RGB-D images from a fixed camera on top of a bin and
extract an appropriate grasping target for an industrial robotic
arm with parallel-jaws gripper in a bin-picking task from an
homogeneous heap (i.e. clutter composed by several instances
of the same object).

We use real-time physics PyBullet simulations where ob-
jects are instantiated from Wavefront OBJ format on which
we apply a volumetric hierarchical approximate convex de-
composition [21]. The function to be optimized will be the
percentage of success at bin-picking, where an iteration of the
task consist of 15 attempts to grasp cluttered objects in the bin
and to release the catch in a box. We also introduce a partial
reward (0.5 instead of 1) when the robot is grasping an object
but fails to drop it into the deposit box.

1http://www.sileane.com/en/solution/gamme-kamido
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To be able to compare each learning run with the same
learning condition, we authorize a finite budget for the BO
process of 35 iterations, decomposed as follows: 10 for the
”initial design”, 20 for the core BO process and 5 as repe-
titions of the optimized set of parameters in order to provide
a more precise estimation of the performance. As opposed to
the experiment done in [7], we decided to constrain more the
learning setup, providing only 30 (10+20) iterations instead
of 68 (18+50). Indeed, the learning curve seemed to flattened
around this number of iterations in their work, so we wanted to
compare the quality of the optimization at an earlier stage. For
the bounds reduction algorithm, we use a selection of the best
35% iterations for each object thus allowing a good range of
potential efficient set of parameters from a very noisy objective
function, and alpha risk of 0.15 for both the Dudewicz-van
der Meulen and Wilcoxon tests (i.e. αdm = αw = 0.15).
The percentile used for the bounds reductions are x=0.05 and
X=0.95 in order to discard any potential outliers that might
otherwise forbid a strong reduction in boundaries.

The other aspect of the setup are unchanged. Indeed, during
the initial design phase, the set of parameters are selected using
a Maximin Latin Hypercube function [22] allowing a better
exploration by maximizing the minimum distance between
them. The kernel for the GP is the classic Matern 3/2 and the
criteria for the bayesian search mechanism on the acquisition
function is an EQI with a quantile level of β = 0.65. The
infill criterion is optimized using a stochastic derivative-free
numerical optimization algorithm known as the Covariance
Matrix Adapting Evolutionary Strategy (CMA-ES) [23], [24]
from the package cmaes.

For the experiments presented in this work, we used some
objects from [7], namely the reference A, C1, C2, D and D’ in
order to compare the performance of the method with a smaller
learning budget as explained earlier. We also introduce new
objects, some from a CAD database of real industrial reference
(P1 and P2), and some from other common databases, such
as hammer t and hammer j from turbosquid, m782 and m784
from Princeton Shape Benchmark [25], and bathDetergent and
cokeSmallGrasp from KIT [26]. New objects are shown in
Fig. 4, along the objects (C2, C2, D’, P2, hammer t and m782)

TABLE I
BOUNDS FOR EACH PARAMETER TO BE OPTIMIZED, WITH THE LARGER

”DEFAULT” AND THE REDUCED BOUNDS OBTAINED FROM SEVERAL
OBJECTS USING THE PARAMETERS BOUNDS REDUCTIONS MODULE.

Obj. p1 p2 p3 p4 p5 p6 p7 p8 p9

Def. -20:20 5:15 16:100 5:30 5:30 5:40 30:300 5:20 1:10
C2 -20:20 8:15 46:92 5:30 13:30 24:37 100:220 5:15 3:9
D’ -18:10 5:15 49:99 8:23 5:30 5:40 30:300 8:20 2:8
P 2 -20:20 6:14 20:69 5:30 5:30 18:37 114:267 5:19 1:10
ham t -20:20 5:15 46:100 8:30 5:30 17:40 30:300 5:20 1:10
m782 -20:20 5:15 68:96 7:23 12:30 9:37 30:300 5:19 1:8
bathDet. -15:9 9:15 69:100 10:30 18:30 27:40 30:276 5:20 1:10

that has been optimized previously by the robot and that is the
most similar, using the Visual Similarity module.

The experiments will consist of the optimization process for
7 objects (A, C1, D, P1, hammer j, m784 and cokeSmall) taken
from 4 different object databases) when the method has been
applied 6 times independently (i.e. runs) with 2 conditions:
one optimization without any prior knowledge use, and one
using meta-learning. This last condition involves retrieving the
most similar and already optimized object known by the robot
when confronted to the optimization of a new unknown object.
Then the robot extracts the reduced boundaries of the best set
of parameters it already tried with the similar object (the best
35% set of parameters) using the appropriate reasoning module
described earlier. It then constrains the parameters values with
these new reduced bounds during the optimization process.
The reduced parameters bounds of each object similar to the
references are presented in Table I.

V. RESULTS

In this section, we present the results from the experiments,
focusing first on the performance during the optimization
process, at both initial design and infill eqi criteria phase, with
the Fig. 5. We can see that using the meta-learning (i.e. using
prior information about the performance of set of parameters
from similar object to the new one) allows the optimization
process to have a warmstart during the initial design phase
with a mean performance of already more than 75% compared
to ∼65% when the parameters bounds are not restricted.
It means that the algorithm process is avoiding spending
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optimization budget to explore parameters values that are
inside the default bounds, but outside the bounds of interests
from similar object, thus exploring un-optimized parameters
values. This leads to a search space with more promising areas
densities that the Bayesian Optimization process is able to
explore more efficiently during the infill eqi criteria phase.
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We then look at the final performances of every runs
for every objects, split in two sets (without and with meta-
learning) shown in Fig. 6. The mean performance overall
increases from 78.9% (Q1: 73.1, median: 83.3, Q3:86.7)
without the bounds reduction step to 84.3% (Q1: 78.1, median:
85, Q3:89.2) when the Bayesian Optimization is using meta-
learning (Wilcoxon test). In addition, the worst performance
after optimization among every runs and objects, even with
a very short learning budget (30 iterations to optimize 9
continuous hyper-parameters), is at a decent 70.6% when using
this meta-learning technique (vs 28.3% otherwise).

Detailed and numerical results of the experiments, split
among all objects, are shown in Table II. First, we can
compare the performance of the optimization method for
object A, C1 and D at an earlier stage (after 30 learning
iteration instead of 68) than the experiments from [7]. We
indeed achieved similar performance for these objects under
this harsher experiment design but with meta-learning, with
respectively a mean success among all runs of 75.9%, 79.4%
and 89.4% (30 iterations learning) vs 76.1%, 81.3% and 87.3%
(68 iterations learning).
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Fig. 6. Boxplot of the final performance after Bayesian Optimization on
all objects for all runs, without and with meta-learning (Parameters Bounds
Reduction applied to new objects from the bounds of a similar optimized
object). Each dot is the mean final performance after an optimization run.

Looking at every object’s performance, shown also in a
paired graph from Fig. 7 , We can also clearly see the benefit
of using the meta-learning method during the optimization
process, with a better mean performance for every object
among all the runs, leading to a significantly better score
(paired sampled Wilcoxon test p-value=0.031). Table II also
shows that worst performance is anyhow always better (at
least > 70.6%) when using the meta-learning, providing
a higher minimum expected performance (paired sampled
Wilcoxon test p-value=0.031). Overall, it seems that the robot
is benefiting more from the meta-learning when the task is
more difficult (i.e. when percentage of success is overall lower)
like with objects A and D, with a lower success score with BO
only of respectively 68.4% and 65.1%) and the constrained
search space allows the Bayesian Optimization to be more
efficient and find promising parameters sooner, and for each
run. However, the Bayesian Optimisation can still be efficient
even without meta-learning as seen from the performance of
the best runs, however the optimization are less reliable: most
runs will not be as efficient as with meta-learning.

We have also implemented our architecture on a real
robotic arm Fanuc, however the specific version of the
robot (M20iA/12L vs M10iA12), the end-effector parallel-
jaws gripper and the environmental setup (See Fig. 1) is
different than the one used in [7], so direct comparison is
not possible. In addition, because we used non-deformable
object in simulation, we wanted to try with a real soft-
body object in order to check if the method can obtain good
results with such physical property. Therefore, we created an
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TABLE II
OPTIMIZATION RESULTS WITH/WITHOUT META LEARNING -

COMPARISON WITH [7] USING BUDGET OF 68 ITERATIONS VS 30 HERE
AND TRANSFER LEARNING INSTEAD OF META LEARNING

Reference Budget % succes all run % succes % succes
mean±sd, median (worst run) (best run)

A [7] 68 65.47±27.3, 73.3 - 78.9
A 30 68.4±7.09, 66.4 61.7 81.1
A ML C2 30 75.9±2.37, 75.8 73.3 80.0
A TL C2 [7] 68 76.1±10.19, 76.7 - 82.8
C1 [7] 68 78.95±10.87, 80 - 83.9
C1 30 77.6±6.00, 77.5 68.3 85.0
C1 ML C2 30 79.4±5.44, 79.4 70.6 85.0
C1 TL C2 [7] 68 81.3±11.04, 80 - 82.5
D [7] 68 86.9±9.45, 86.67 - 91.1
D 30 65.1±25.7, 76.4 28.3 88.3
D ML D’ 30 89.4±6.78, 90 78.9 96.1
D TL D’ [7] 68 87.3±7.44, 86.7 - 90.6

P1 30 91.0±6.06, 91.4 83.3 99.4
P1 ML P2 30 93.1±3.25, 91.7 91.1 98.9
ham j 30 86.0±4.8, 84.7 80.0 92.2
ham j ML ham t 30 86.7±2.06, 86.7 83.3 90.0
m784 30 76.0±6.65, 76.7 66.7 86.7
m784 ML m782 30 76.9±4.27, 77.8 71.1 83.3
coke 30 88.1±2.69, 87.8 84.4 91.1
coke ML detergent 30 88.9±3.06, 88.9 85.6 93.3
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Fig. 7. Final mean performance of all runs, grouped by objects and paired on
both conditions: without meta-learning and with meta-learning. This shows
the systematic gain of performance when using meta-learning strategy, with
a greater benefit where the initial performance was lower (object D and A)

homogenous heap of highly cluttered elbowed rubber tube
pieces as a test. With the 30 iterations budget runs, we have
observed again a benefit of the meta-learning feature, with
an increase from 75.6% of mean performance with the real
robot (sd=5.46, min=70.6, max=82.8) without meta-learning,

to 84.6% (sd=2.5, min=82.2, max=87.2) with meta-learning.

VI. CONCLUSION AND FUTURE WORK

This work explored how a robot can take advantage of
its experience and long-term memory in order to utilize a
meta-learning method and enhance the results of Bayesian
Optimization algorithm for tuning constrained and continuous
hyper-parameters, in bin-picking objects type of tasks (6
different objects extracted from 3 different shape objects
database). With a very small fixed optimization budget of 30
trials, we are able to optimize 9 continuous parameters of an
industrial grasping algorithm and achieve good performance,
even with a very noisy evaluation function as encountered
during this task. The meta-learning method, based on the
reduction of the search space using reduced parameters
bounds from the best iterations of object similar to the
new one, guarantees overall a faster and better optimization
with a mean grasping success of 84.3% vs 78.9% without
meta-learning. Moreover, the increase in the mean expected
performance from the optimization with meta-learning is
consistent for every object tested, simulated or real (75.9%
vs 68.4%, 79.4% vs 77.6%, 89.4% vs 65.1%, 93.1% vs
91.0%, 86.7% vs 86.0%, 76.9% vs 76.0%, 88.9% vs 88.1%,
and 84.6% vs 75.6%), and is stronger for object presenting
a higher challenge. When considering only the best run for
each object among the 6, the optimization with meta-learning
reaches 80.0%, 85.0%, 96.1%, 98.9%, 90.0% and 83.3% and
93.3% for respectively object A, C1, D, P1, hammer j, m784
and cokeSmallGrasp, which represents a mean score of 89.5%.

One of the assumption in this work was that the default
parameters bounds where large enough to include optimized
values within the range, that is why the Parameters Bounds
module has been designed to only reduced them. However,
future work will investigate the possibility of the parameters
bounds to also be extended, which can be useful in particular
when the manually defined default bounds are too constrained
for a specific task.

We aim also to use this developmental learning framework
from simulation into a transfer learning setup, where the
reduced parameters bounds and the optimized parameters of a
simulated object O will be used when optimizing the same ob-
ject O but with a real robot, as explored for grasping problems
recently [27]. The robot will use its simulated experiences in
order to warm-start and simplify the optimization of the bin-
picking of the same object when confronted in reality. The use
of the simulation applied to transfer learning has the benefit
of allowing the robot to always train and learn ”mentally” (i.e.
when one computer is available, and can even ”duplicate” itself
and run multiple simulation from several computers) even if
the physical robot is already used or is costly to run, which is
the case usually for industrial robots in-situ.

Eventually, this work can be extended toward the develop-
mental embodied aspect of the robotics field, when reduced
parameters bounds might potentially be linked to embod-
ied symbols or concept emergence [28] related to physical
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properties of the manipulated objects. A possible method to
investigate such properties would be to find co-occurrences
between sub-set of reduced parameters bounds and human
labels or description of the object (e.g. ”flat”, ”heavy”) or
of the manner the task has been achieved (e.g. ”fast”), in a
similar way that was done to discover pronouns [29] or body-
parts and basic motor skills [30]. This would allow in return
a possible human guidance in an intuitive manner to the robot
by constraining the search space based on the label provided
by the human operator.
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