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Abstract7

In its original formulation by Forest & Sab (Math. Mech. Solids, 2017),

stress gradient elastodynamics incorporate two inner-lengths to account for

size effects in continuum theory. Here, an extended one-dimensional stress

gradient model is developed by means of Lagrangian formalism, incorpo-

rating an additional inner-length and a fourth-order space derivative in the

wave equation. Dispersive properties are characterised and hyperbolicity

and stability are proven. Group velocity remains bounded in both original

and extended models, proving causality is satisfied for both contrary to a

usually-accepted postulate. By means of two-scale asymptotic homogeniza-

tion, the high-order wave equation satisfied by the stress gradient model

is shown to stand for an effective description of heterogeneous materials in

the low-frequency range. An upscaling method is developed to identify the

stress gradient material parameters and bulk forces on the parameters of elas-

tic micro-structures. Application of the micro-macro procedure to periodic

multi-laminates demonstrates the accuracy of the stress gradient continuum

to account for the dispersive features of wave propagation. Frequency and

time-domain simulations illustrate these properties.
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1. Introduction11

Over the past decades, many extensions to the classical continuum me-12

chanics theory have emerged [1], such as micro-polar [2] or more general13

micro-continuum mechanics theories [3, 4, 5]. As alternative approaches14

to atomistic models for micro-structured media, such extended continuum15

models have been developed to incorporate physical phenomena involving16

size effects beyond the reach of the classical theories. While many extended17

continuum models were developed in statics [6, 7], microstructural size ef-18

fects are particularly significant in dynamics when the characteristic length19

λ associated with the external excitation (typical wavelength and size of20

the domain of propagation) is not sufficiently large compared to the char-21

acteristic internal length ` so as to neglect the underlying micro-structural22

architecture. Neglected in classical theories, such characteristic inner-lengths23

usually result in additional high-order spatial or time derivatives of relevant24

state variables in the governing equations [8, 9, 10]. This leads to space25

and time behavior characterized through additional material parameters to26

estimate for numerical applications.27

To justify such high-order derivatives, asymptotic homogenization tech-28

niques applied to micro-lattices or heterogeneous media were presented [11,29

12, 13, 14, 15]. Advantageously, they bring micro-macro mechanical support30

to extended continuum models, and micro-macro relations to estimate ma-31
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terial parameters from underlying microscopic heterogeneities. For instance,32

long-wavelength Taylor expansions of transfer functions in analogous mass-33

spring discrete lattices have been used for that purpose [16]. Another exam-34

ple stands in two-scale asymptotic homogenization theory for periodic media35

[17, 18] which has proven very useful by including high-order terms in the36

asymptotic expansions [19, 20, 21]. In particular, microstructural size effects37

on wave dispersion, polarisation, attenuation, and mode conversions in three-38

dimensional space were evidenced theoretically by means of two-scale asymp-39

totic homogenization [20]. However, some continuum models developed by40

asymptotic approaches are unstable [22, 23], due to features developing at41

frequencies outside the initial range of the asymptotic expansions. This is42

a critical issue, especially for time-domain calculations involving broadband43

signals.44

While many micro-continuum theories have been formulated by equipping45

material particles with enriched kinematics, including rotational degrees of46

freedom [2] or micro-deformations [3, 4, 5], another class of extended con-47

tinuum model, called stress gradient elasticity, was formulated on the idea48

that stress rather than kinematics constitutes the driving variable in the ma-49

terial behavior. Tracing back to Eringen’s constitutive relations [24] in the50

form of partial differential equations involving both the stress tensor and its51

Laplacian, stress gradient elasticity found further theoretical developments52

recently [25, 26, 27, 28] including its formulation in elastodynamics by For-53

est & Sab [29]. These authors obtained a generalized wave equation for the54

displacement variable U in one-dimensional (1-D) stress gradient elasticity55

media, which involved, in addition to the classical wave-operator, its fourth-56
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order time derivative ∂4
tU and mixed space-time derivative ∂2

t ∂
2
xU . However,57

the dispersion of waves in such stress gradient elasticity material was not58

studied any further.59

In the present work, our objective is fourfold: (i) to extend the elas-60

todynamics stress gradient model developed by Forest & Sab [29] in one-61

dimensional space to include space derivative ∂4
xU in the generalized wave62

equation; (ii) to evidence the dispersive features of wave propagation in such63

medium; (iii) to identify all five material parameters involved in the extended64

stress gradient model applied to heterogeneous elastic materials ; and (iv)65

to compute the transient response of stress gradient media to transient bulk66

sources, to be compared with direct simulations in heterogeneous Cauchy67

media. In what follows, the original stress gradient model refers to the elas-68

todynamics stress gradient model developed by Forest & Sab [29].69

The outline of this paper is the following. In Sec. 2, we propose an70

extended stress gradient model, which is obtained by considering an aux-71

iliary elasticity. It is shown to be energetically consistent and stable and72

its governing equation includes a fourth-order space derivative that did not73

exist in the original stress gradient model. In Sec. 3, the wave dispersion,74

phase velocity and group velocity corresponding to this model are derived75

and discussed, in particular with respect to those of the original stress gra-76

dient model. In Sec. 4, a relation is drawn between the proposed model77

and higher-order homogenized models obtained from microstructured elas-78

tic materials. This relation yields a way to identify the parameters of the79

proposed stress gradient model for a given elastic micro-structured material,80

while ensuring stability and energy consistency. Finally, in Sec. 5, numerical81
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simulations are proposed to illustrate the behavior of the proposed model in82

time, in particular with respect to stability and in comparison with other83

similar models proposed in the literature.84

2. Stress gradient model85

Properties of stress-gradient materials are analysed theoretically: hyper-86

bolicity, stability, existence and regularity of solutions. For the sake of gen-87

erality, an extended stress gradient elasticity model with three inner length88

scales is considered. It generalizes the recent developments on stress gradient89

elastodynamics with two inner lengths [29].90

2.1. Constitutive laws91

Let U be the particle displacement and ζ an auxiliary displacement which92

encapsulates the size effects. It follows the velocity v, strain e, auxiliary93

velocity ϕ and auxiliary strain θ94

v = ∂tU, e = ∂xU, ϕ = ∂tζ, θ = ∂xζ. (1)95

One defines the kinetic and potential energy densities K and W96

K = %
v2

2
+ µ

ϕ2

2
, W =

E

2
(e + θ)2 + κ

θ2

2
+D

ζ2

2
, (2)97

where % is a density, µ is an auxiliary density, E is an elasticity modulus, κ

is an auxiliary elasticity modulus and D is a stress gradient modulus. The
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energy densities (2) amount to the positive quadratic forms

K =
1

2


v
ϕ



T

·M ·


v
ϕ


 , (3a)

W =
1

2


e

θ



T

· E ·


e

θ


+

1

2


U
ζ



T

· D ·


U
ζ


 , (3b)

where M, E and D are symmetric and positive matrices98

M =


% 0

0 µ


 , E =


E E

E E + κ


 , D =


0 0

0 D


 . (4)99

Introducing the stress fields σ and τ and stress gradient R100

σ =
∂W
∂e

, τ =
∂W
∂θ

, R =
∂W
∂ζ

, (5)101

the potential energy (2) provides the constitutive laws

σ = E ∂x(U + ζ), (6a)

τ = E ∂x(U + ζ) + κ ∂xζ, (6b)

R = D ζ. (6c)

The constitutive laws of original stress gradient model are recovered when102

κ = 0 [29].103

2.2. Dynamic equations104

Hamilton’s stationary principle applied to the Lagrangian density L =

K −W gives the Euler-Lagrange equations

∂

∂t

(
∂L
∂v

)
+

∂

∂x

(
∂L
∂e

)
− ∂L
∂U

= 0, (7a)

∂

∂t

(
∂L
∂ϕ

)
+

∂

∂x

(
∂L
∂θ

)
− ∂L
∂ζ

= 0. (7b)
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Introducing the external bulk forces FU and Fζ , the dynamic equations follow

from (2) and (7) in the form

% ∂2
tU = ∂xσ + %FU , (8a)

µ ∂2
t ζ = ∂xτ −R + µFζ , (8b)

Multiplication of (8a) and (8b) by v and ϕ and summation yield the conser-105

vation law for energy106

∂t(K +W) + ∂x(Π) = P , (9)107

where the power density of external bulk forces P , and the Poynting ’vector’108

Π are given by109

P = %FUv + µFζϕ and Π = −(σ v + τ ϕ). (10)110

Equation (9) shows that the time variation of the energy K+W corresponds111

to the power density of external bulk forces and energy fluxes described by112

the Poynting ’vector’.113

2.3. Hyperbolic system114

Equations (6) and (8) can be rewritten in the matrix form115

∂tW + A · ∂xW = S ·W + F, (11)116
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with the state vector W, the source F and the matrices A and S

W =





v

ϕ

σ

τ

R





, A = −




0 0 1/% 0 0

0 0 0 1/µ 0

E E 0 0 0

E E + κ 0 0 0

0 0 0 0 0




, (12a)

F =





FU

Fζ

0

0

0





, S =




0 0 0 0 0

0 0 0 0 −1/µ

0 0 0 0 0

0 0 0 0 0

0 D 0 0 0




. (12b)

The eigenvalues of A and S are

Sp(A) = {0; ±c+
A ; ±c−A}, (13a)

Sp(S) = {0; 0; 0; ±iωS}, (13b)

where the characteristic speeds c±A and frequency ωS read117

c±A = c0

√
b2
m ±

√
b4
m − 4b2

t b
2
x

2b2
t

and ωS =

√
D

µ
. (14)118

In (14), c0 =
√
E/% is the classical wave speed in the Cauchy medium, and119

the inner lengths are120

bt =

√
µ

%
B, bx =

√
κ

E
B, bm =

√
b2 + b2

t + b2
x, (15)121

with the characteristic area B ≡ b2 = E/D. The inequalities122

b4
m ≥ b4

m − 4b2
t b

2
x =

(
b2
m − 2b2

t

)2
+ 4b2

t ≥
(
b2
m − 2b2

t

)2 ≥ 0 (16)123
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imply that the characteristic speeds c±A are real and satisfy124

0 ≤ c−A ≤ c0 ≤ c+
A . (17)125

When κ 6= 0, each eigenvalue of A is associated with one single eigenvector126

WA(c 6= 0) =





1(
c2

c20
− 1
)

%c(
c2

c20
− 1
)
µc

0





, WA(0) =





0

0

0

0

1





. (18)127

The matrix A is thus diagonalizable with real eigenvalues, which proves the128

hyperbolicity of (11) [30]. Also, the eigenvalues of S are either null or purely129

imaginary, which implies that W ≡ 0 is asymptotically stable [30]. Intro-130

ducing the definite positive symmetric matrix131

Q =




% 0 0 0 0

0 µ 0 0 0

0 0 1/E + 1/κ −1/κ 0

0 0 −1/κ 1/κ 0

0 0 0 0 1/D




(19)132

the following relations hold133

QA = −




0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0




, QS =




0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0




. (20)134
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These relations imply that matrix Q is a symmetrizer for the system (11),

in the sense that QA is symmetric, and QS is skew-symmetric with null

diagonal terms [32]. One has

WT Q ∂tW = ∂t(K +W), WT QF = P , (21a)

WT (QA) ∂xW = ∂x(Π), WT (QS) W = 0, (21b)

As a result, multiplication of (11) by WTQ while using (21) recovers the135

equation of energy conservation (9). Moreover, the symmetrizer allows to use136

Friedrichs’ theory on symmetric systems [31]: assuming sufficiently smooth137

initial data and excitation, it yields existence and regularity of the solution138

to (12). Details are given in section 3-2 and Theorem 3-1 of [40].139

In the case of the original stress gradient model κ = 0, then τ = σ. It140

reduces the system in Eq. (12) to141

∂tW
∗ + A∗ · ∂xW∗ = S∗ ·W∗ + F∗, (22)142

where the reduced vectors and matrices are

W∗ =





v

ϕ

σ

R





, A∗ = −




0 0 1/% 0

0 0 1/µ 0

E E 0 0

0 0 0 0



, (23a)

F∗ =





FU

Fζ

0

0





, S∗ =




0 0 0 0

0 0 0 −1/µ

0 0 0 0

0 D 0 0



. (23b)
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The eigenvalues of reduced matrices A∗ and S∗ are

Sp(A∗) = {0; 0; ±c∗A}, (24a)

Sp(S∗) = {0; 0; ±iωS}, (24b)

Here, the second zero in the spectrum of A∗ is inherited from the eigenvalue143

±c−A of A which is zero when κ = 0 (14). The eigenvalue c∗A is equal to c+
A144

calculated with the modulus κ = 0,145

c∗A = c0

√
%+ µ

µ
≥ c0. (25)146

The eigenvectors associated with the eigenvalues of A∗ read147

W∗
A(±c∗A) =





1

%/µ

±%c∗A
0





, W∗
A(0) = Vect








0

0

0

1





,





1

−1

0

0







. (26)148

The reduced matrix A∗ is thus diagonalizable with real eigenvalues. A sym-149

metrizer for the system (22) is150

Q∗ = diag (%; µ; 1/E; 1/D) . (27)151

As a consequence, all the properties of the full system are still valid in the152

case of the reduced system (22).153

2.4. High-order wave equations154

Now, combination of Eqs. (6a) to (8a) yields

% ∂2
tU − E ∂2

xU +H(U) = %FU + ΨU , (28a)

% ∂2
t ζ − E ∂2

xζ +H(ζ) = Ψζ . (28b)

11



Here, the classical wave operator % ∂2
t • −E ∂2

x• is accompanied by higher

order derivatives, described by the operator H(•) and forcing terms ΨU and

Ψζ

H(•) =
%2b2

t

E
∂4
t (•) + Eb2

x ∂
4
x(•)− %b2

m ∂
2
t ∂

2
x(•), (29a)

ΨU =
%2b2

t

E
∂2
t FU − %∂2

x[(b
2
m − b2

t )FU − b2
tFζ ], (29b)

Ψζ =
%2b2

t

E
∂2
t Fζ − %∂2

x[b
2
tFζ − b2FU ], (29c)

where the lengths bt, bx and bm are given in (15). Derivatives ∂4
x, ∂

2
x∂

2
t and155

∂4
t of the displacements are present in (28), while only terms in ∂2

x∂
2
t and ∂4

t156

are present in the original stress gradient model. The latter is shown to be157

causal in the next section: the postulated causality condition introduced by158

Metrikine [33], which states that leading-order derivatives in space and time159

should be of the same order, is therefore clearly not necessary.160

Displacement U and auxiliary displacement ζ are not forced by the same161

source in (28a) and (28b). In the absence of source, they satisfy the same162

high-order wave equation in the form % ∂2
t • −E ∂2

x •+H(•) = 0.163

3. Wave dispersion in stress gradient media164

In this section, wave dispersion with inner lengths is studied. Existence165

of supplementary modes when κ 6= 0 is examined. Lastly, causality is proven,166

whatever κ.167

3.1. Dispersion relation168

Plane wave of the form U = ei(kx−ωt) is considered, where ω is the angular169

frequency and k is the wavenumber. Substitution into the high-order wave170

12



Re(kb)

ω
b/ c 0

10-2 10-1 100 101 102 103

102

101

100

10-1

10-2

(a)

Im(kb)

ω
b/ c 0

10-2 10-1 100 101 102

102

101

100

10-1

10-2

bx/b = 0
bx/b = 0.1
bx/b = 1.2

(b)

Figure 1: (Color online) Dispersion relation in stress gradient media. Modes with (a)

real positive and (b) imaginary positive normalised wavenumbers kb versus normalised

frequency ωb/c0. Here, filled or empty symbols stand for different modes. Hence, modes

with real (propagative) and imaginary (exponentially-decaying) wavenumbers are distinct,

and do not correspond to real and imaginary parts of a same wavenumber. Calculations

with normalised inner lengths bt/b = 1 and various bx/b. Grey zone is bandgap when

bx = 0. Dashed grey line corresponds to elastodynamic relation kb = ωb/c0. Legend in

(a) is the same as in (b).
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equation leads to171

−
(

1− %ω2

E
b2
t

)
%ω2

E
+

(
1− %ω2

E
b2
m

)
k2 + b2

xk
4 = 0. (30)172

In the limit case B = 0, inner-lengths vanish bx = bm = bt = 0, and one173

recovers the Cauchy dispersion relation174

k = ±k0 with k0 = ω

√
%

E
=
ω

c0

. (31)175

Now, wave dispersion in stress gradient media with inner-lengths is studied.176

To illustrate the discussion, normalised dispersion curves and wave velocities177

are presented in Figs. 1 and 2. The angular frequencies ωt and ωm, such that178

k0bt = 1 and k0bm = 1, are introduced. They write179

ωt = ωS =

√
D

µ
, ωm =

√√√√ D

%
(

1 +
κ

E

)
+ µ
≤ ωt, (32)180

where iωS is an eigenvalue of S (11). The biquadratic dispersion equation

(30) admits four roots

kI
± = ±k0

√
2(1− (k0bt)2)

1− (k0bm)2 +
√

∆
, (33a)

kII
± = ±k0

√
2(1− (k0bt)2)

1− (k0bm)2 −
√

∆
. (33b)

From (15), the discriminant ∆ satisfies181

∆ =
(
1− (k0bm)2

)2
+ 4(k0bx)

2
(
1− (k0bt)

2
)
,

=
(
1− (k0bm)2 + 2(k0bx)

2
)2

+ 4(k0b)
2(k0bx)

2 ≥ 0.
(34)182

In the low frequency range k0bx � 1, k0bt � 1 and k0bm � 1, a Taylor183

expansion of (33) provides the approximates184

kI
± ∼ ±k0

(
1 +

1

2
k2

0B

)
and kII

± ∼ ±
i

bx
. (35)185
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The first two branches with purely real wavenumbers kI
± are propagative.186

Their Taylor expansion is asymptotic to ±k0 = ±ω/c0, and deviation from187

this line is driven by the stress gradient parameter B. The two other branches188

with purely-imaginary wavenumbers kII
± in (35) correspond to non-oscillating189

exponentially-decaying displacements.190

At high frequencies k0bx � 1, k0bt � 1 and k0bm � 1, the wavenumbers191

satisfy192

kI
± ∼ ±

ω

c−A
and kII

± ∼ ±
ω

c+
A
, (36)193

where wave speeds c±A ≥ 0 are eigenvalues of A (14). One recalls c−A ≤ c0 and194

c+
A ≥ c0 in (17).195

At the intermediate frequency ωt = ωS such that k0bt = 1, the discrimi-196

nant (34) yields
√

∆ = |1− (k0bm)2|, which provides kII
± = ±0. This property197

holds for both the original stress gradient model (bx = 0) and the extended198

one (bx 6= 0).199

Finally, as inner length bx reaches zero in (33), the dispersion relation for

the original stress gradient model is recovered

kI
± = ±k0

√
1− (k0bt)2

1− (k0bm)2
, kII

± = ±∞, if ω < ωm, (37a)

kI
± = ±∞, kII

± = ±k0

√
1− (k0bt)2

1− (k0bm)2
, if ω > ωm. (37b)

While four modes are supported in stress gradient media in the extended200

model (bx 6= 0), only two of them exist in the original model (bx = 0);201

the wavenumbers of the two others are sent to infinity. Finally, in the fre-202

quency range [ωm, ωt], the wavenumber in the original stress gradient mate-203

rial becomes purely imaginary, see (37b), which leads to non-oscillating and204
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exponentially-decaying displacements with Im(kII
±) > 0.205

3.2. Phase velocity and group velocity206

Phase velocity cp and group velocity cg are defined by207

cp(kR) =
ω(kR)

kR

and cg(kR) =
dω(kR)

d kR

, (38)208

where the angular frequency ω(kR) is solution to the dispersion equation209

(30) with the real-valued wavenumber k = kR being prescribed. Whether210

in the original (bx = 0) or the extended (bx 6= 0) stress gradient model, the211

ω-biquadratic dispersion equation (30) admits the four solutions212

ωI
±(kR) = ±kR c

I
p(kR) and ωII

±(kR) = ±kR c
II
p (kR), (39)213

where the phase velocities cI
p(kR) and cII

p (kR) are given by

cI
p(kR)

c0

=

√
1 + (kRbm)2 −√∆c

2(kRbt)2
, (40a)

cII
p (kR)

c0

=

√
1 + (kRbm)2 +

√
∆c

2(kRbt)2
. (40b)

Here the discriminant ∆c reads214

∆c =
(
1 + (kRb

2
m)2
)2 − 4(kRbt)

2(1 + (kRbx)
2),

=
(
1 + k2

R(B + b2
x − b2

t )
)2

+ 4k4
RBb

2
t .

(41)215

Since B ≥ 0, the following inequalities result from (41)216

∆c ≥
(
1 + k2

R(b2
m − 2b2

t )
)2
> 0,

√
∆c ≤ 1 + (kRbm)2. (42)217

It implies that phase velocities cI
p(kR) and cII

p (kR) are real-valued and positive,218

and satisfy219

0 < cI
p(kR) ≤ c0 ≤ cII

p (kR). (43)220
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Figure 2: (Color online) Dispersion relation in stress gradient media: (a) normalised phase

velocities cp/c0 and (b) normalised group velocities cg/c0 versus normalised wavenumber

kRb for modes I and II. Here, filled or empty symbols stand for different modes. Symbols

consistent with Fig. 1. Calculations with normalised inner lengths bt/b = 1 and various

bx/b. Dashed grey line corresponds to cp = cg = c0. Legend in (b) is the same as in (a).

Moreover, the phase velocities are smooth even functions of the wavenumber

kR, and display the limits

cI
p(kR)→ c0, cII

p (kR) ∼ c0

|kRbt|
, as |kR| → 0, (44a)

cI
p(kR)→ c−A , cII

p (kR)→ c+
A , as |kR| → ∞. (44b)
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Derivation of (39) with respect to kR provides221

dωI
±(kR)

d kR

= ±cI
g(kR) and

dωII
±(kR)

d kR

= ±cII
g (kR) (45)222

where, accounting for Eq. (40),

cI
g(kR) =

{
1− 1√

∆c

((
c0

cI(kR)

)2

− 1

)}
cI

p(kR), (46a)

cII
g (kR) =

{
1− 1√

∆c

(
1−

(
c0

cII(kR)

)2
)}

cII
p (kR). (46b)

As a result of (43), one has223

cI
g(kR) ≤ cI

p(kR) ≤ c0, and cII
g (kR) ≤ cII

p (kR). (47)224

Equation (46) shows that group velocities are smooth and even functions of

kR, and display the limits

cI
g(kR) = c0, cII

g (kR) = 0, as |kR| = 0, (48a)

cI
g(kR)→ c−A , cII

g (kR)→ c+
A , as |kR| → ∞, (48b)

As a consequence, the group velocities are bounded whatever bx, which225

complies with causality. The postulated causality condition introduced by226

Metrikine [33], which is not satisfied when bx = 0, is therefore clearly not227

necessary.228

4. Micro-macro calculation of material parameters229

It was shown in Sec. 2.2 that the displacement U in the stress gradient230

model satisfies the following equation, according to Eqs. (28) and (29),231

% ∂2
tU − E ∂2

xU +
%2

E
b2
t ∂

4
tU + Eb2

x ∂
4
xU − %b2

m ∂
2
t ∂

2
xU,

= %FU +
%2b2

t

E
∂2
t FU − %∂2

x

[
(b2
m − b2

t )FU − b2
tFζ
]
.

(49)232
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Here we show that (49) stands for an effective description of micro-structured233

media in the low-frequency range. To this end, a micro-macro homogeniza-234

tion scheme is presented, which provides (i) the micro-mechanical background235

to (49); and (ii) a method to estimate the material parameters in the stress236

gradient model. It relies on the theory of two-scale asymptotic homoge-237

nization [17, 18] wherein high-order terms of the asymptotic expansions are238

included [19, 20, 21].239

4.1. High-order asymptotic homogenization240

The homogenization model starts from the equations of dynamic equi-

librium and elasticity at the microstructural scale of the one-dimensional

medium

ρ ∂2
t u = ∂xs+ ρ f, (50a)

s = a∂xu, (50b)

where u and s are the micro-structural displacement and stress fields, ρ and241

a the density and elastic modulus, and f is the bulk force in the micro-242

structure. The heterogeneous medium consists of the 1-D periodic repetition243

of a Representative Elementary Volume (REV) Ω of length `.244

A scale separation is assumed, whereby the characteristic macroscopic245

length λ (related to the reduced wavelength O(1/k0) or size of the domain of246

propagation) is much larger than `. This condition is quantified by the scale247

parameter ε = `/λ� 1 and enables the application of two-scale asymptotic248

homogenization. To account for both scales, the two space variables x and249

y = ε−1x are defined for macro- and microscopic description respectively.250

Material parameter ρ(y) and a(y) are set to depend on y, and are `-periodic251
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over y. No high material contrast between the heterogeneities is considered:252

the local density ρ(y) and elastic modulus a(y) are assumed to vary only253

moderately around their mean values, ρ(y) = O( 〈ρ〉 ) and a(y) = O( 〈a〉 ),254

where the y-averaging operator 〈·〉 is defined by255

〈·〉 =
1

`y

∫

Ω

· dy with `y =

∫

Ω

1 dy. (51)256

The homogenization of media with inner resonance due to high material con-

trasts is therefore out of the scope of the present study [34, 35]. Also, the

propagative medium is supposed to be macroscopically homogeneous, which

implies that ρ(y) and a(y) are independent of the variable x of macroscopic

description. The fields u(x, y) and s(x, y) can display variation at both micro-

and macroscopic scales, and they are set to depend on both x and y, while

being `-periodic over y. This implies to modify spacial differential opera-

tor ∂x into ∂x + ε−1∂y. Finally, the displacement and stress are expanded

asymptotically into powers of the scale parameter ε according to

u(x, y) = u(0) + εu(1) + ε2u(2) + ε3u(3) +O(ε4), (52a)

s(x, y) = s(0) + εs(1) + ε2s(2) +O(ε3), (52b)

where bracketed superscripts indicate the order of the terms and all terms257

u(j)(x, y) and s(j)(x, y) for j ≥ 0 are two-scale fields that depend on both258

x and y. The aim of high-order asymptotic homogenization is to determine259

not only the leading-order terms u(0) and s(0), but also higher-order terms260

u(j)(x, y) and s(j)(x, y) for j ≥ 1. To do so, asymptotic expansions (52) are261

substituted into the governing equations (50) expressed with two-scale differ-262

ential operator ∂x+ ε−1∂y. Terms of equal power of ε are collected to provide263

problems which are solved in increasing order of the power of ε. Details of264

20



the asymptotic homogenization procedure are provided in Appendix A and265

the main results with respect to the estimation of material parameters in the266

stress gradient model are discussed here.267

The effective macroscopic description of the 1-D periodic elastic material268

relies on the displacements U (j)(x) for j ≥ 0, which correspond to the local269

mean-value of u(j)(x, y) in (52a)270

U (j)(x) = 〈u(j)(x, y)〉. (53)271

They satisfy the governing equations

C(0)
0 (U (0) ) = ρ0 f(x), (54a)

C(0)
0 (U (1) ) = −ρ0h

(1)∂xf(x), (54b)

C(0)
0 (U (2) ) = ρ0(h(1))2∂2

xf(x)− C(2)
2 (U (0) ), (54c)

where the operators C(0)
0 and C(2)

2 read

C(0)
0 (U (j) ) = ρ0∂

2
t U (j) − E0∂

2
xU (j) (55a)

C(2)
2 (U (0) ) = −ρ0Γ

(2)
t ∂2

x∂
2
t U (0) − E0Γ(2)

x ∂4
xU (0). (55b)

In (54) and (55), the density ρ0 [kg/m3], elastic modulus E0 [Pa], and char-

acteristic length h(1) [m] and surfaces Γ
(2)
t and Γ

(2)
x [m2] satisfy micro-macro

relations involving volume averages of Ω-periodic fields:

ρ0 = 〈ρ〉 > 0, E0 = 〈q(0)
0 〉 > 0, (56a)

h(1) =
〈ρχ(1)

1 〉
〈ρ〉 =

〈q(1)
1 〉
〈q(0)

0 〉
, (56b)

Γ(2)
x =

〈q(2)
2 〉
〈q(0)

0 〉
, Γ

(2)
t = J

(2)
1 −

〈ρχ(2)
2 〉
〈ρ〉 , (56c)

with J
(2)
1 =

〈
ρ

ρ0

(χ
(1)
1 )2

〉
−
〈
ρ

ρ0

χ
(1)
1

〉2

> 0. (56d)
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The Ω-periodic fields χ
(j)
j (y) [mj] and generalised stresses q

(j)
j (y) [Pa·mj−1]

satisfy recurrent cell problems for j ≥ 0

q
(j)
j (y) = a

(
χ

(j)
j (y) + ∂yχ

(j+1)
j+1

)
, (57a)

∂yq
(j)
j =

ρ(y)

〈ρ〉 〈q
(j−1)
j−1 〉 − q(j−1)

j−1 (y), (57b)

〈χ(j)
j 〉 = 0 for j ≥ 1, (57c)

χ
(0)
0 (y) ≡ 1 and q

(−1)
−1 (y) ≡ 0. (57d)

These cell problems (57) correspond to the static equilibrium of the periodic272

material under Ω-periodic bulk excitation. Except for the effective density273

ρ0 which depends only on ρ(y), and the elasticity modulus E0, which de-274

pends only on a(y), all the other high-order material parameters h(1), Γ
(2)
t275

and Γ
(2)
x depend on both ρ(y) and a(y) through the cell problems. Hence,276

they cannot be distinguished as parameters related to either micro-inertia or277

micro-elasticity.278

All macro-displacements U (j) in (55) are governed by the classical wave279

operator encoded within C(0)
0 in (55a), but with different forcing sources on280

the right-hand-side. First, as the order j of U (j) increases, high-order space281

derivatives ∂jxf(x) of f are involved. Second, the leading-order term U (0) and282

the corrector U (1) are forced only by the bulk force f through its high-order283

space derivatives, while U (2) is forced in addition by 4th-order space and time284

derivatives of the leading-order field U (0). This is the clue to evidence the285

stress gradient dynamics operating in this low-frequency range. Third, the286

classical description of a Cauchy medium is recovered in the leading-order287

description U (0), which can be sufficient when ε≪ 1.288
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4.2. Identification of stress gradient parameters289

Equations (54) are re-scaled to physical scale. To do so, (54b) and (54c)290

are multiplied by ε and ε2 respectively, and results are summed altogether291

with (54a) to provide292

C(0)
0 (U ) = ρ0F − ε2C(2)

2 (U (0) ) +O(ε3), (58)293

where effective displacement U and bulk force F read

U(x) = U (0) + ε1U (1) + ε2U (2) = 〈u〉+O(ε3), (59a)

F(x) = f(x)− h ∂xf(x) + h2 ∂2
xf(x). (59b)

Here, (59b) represents the micro-macro relation between bulk force f(x) ex-294

perienced at the micro-structural scale, and the resulting bulk force F(x)295

emerging from it at the macroscopic scale. In particular, this micro-macro296

relation involves the characteristic inner-length h = εh(1) related to the bulk297

force.298

The effective macroscopic displacement U in (58) is forced not only by299

the effective bulk force F but also by fourth-order time and space derivatives300

∂2
x∂

2
t U (0) and ∂4

xU (0) of the leading-order displacement U (0), see C(2)
2 in (55b).301

Meanwhile, U (0) satisfies the classical wave equation (54a), which yields after302

∂2
t− and ∂2

x− differentiation303

∂2
t ∂

2
xU (0) =

ρ0

E0

{∂4
t U (0) − ∂2

t f} =
E0

ρ0

∂4
xU (0) + ∂2

xf. (60)304

Similar relations without bulk forces f(x) were used in early studies [20] to305

define the cell problems, and more recently [11, 14] to define families of306

effective high-order continuum media. Indeed, this capacity to transform307
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arbitrarily any 4th-order time-space derivatives of U (0) into any other ones308

results in the non-uniqueness of effective continuum models in the asymptotic309

framework [15]. The general relation is derived in Appendix A using (60)310

C(2)
2 (U (0) ) =

ρ2
0

E0

αt Γ
(2)
t ∂4

t U (0) + E0αx Γ(2)
x ∂4

xU (0)

− ρ0

[
(1 + αx) Γ(2)

x + (1 + αt) Γ
(2)
t

]
∂2
x∂

2
t U (0)

+ ρ0(1 + αx) Γ(2)
x ∂2

xf−
ρ2

0

E0

αtΓ
(2)
t ∂2

t f,

(61)311

where αt and αx are arbitrary dimensionless numbers. However, constraints312

are imposed further to ensure hyperbolicity and stability of the resulting313

model. Such aspects have been overlooked in previous studies, see [11] and314

references therein.315

To conclude, (61) is substituted into (58). The latter actually holds up316

to O(ε3), hence terms of order O(ε3) can be added to result in equivalent317

models. This property is used to identify ε2U (0) with ε2U and ε2f(x) with318

ε2F in the expression of ε2C(2)
2 (U (0) ). Then, characteristic surface areas are319

re-scaled according to Γx = ε2Γ
(2)
x and Γt = ε2Γ

(2)
t , which finally leads to the320

following high-order wave equation321

ρ0∂
2
t U − E0∂

2
xU +

ρ2
0

E0

αtΓt∂
4
t U + E0αxΓx∂

4
xU

− ρ0 [(1 + αx)Γx + (1 + αt)Γt] ∂
2
x∂

2
t U

= ρ0F +
ρ2

0

E0

αtΓt∂
2
tF − ρ0(1 + αx)Γx∂

2
xF .

(62)322

The high-order wave equation (62) is formally identical to that given by the

stress gradient model in (49). This legitimates the stress gradient model as

a candidate for the effective description of heterogeneous media in the low

frequency range. Identification of the terms between (62) and (49) leads to
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the following relations, with the superscript † on stress gradient parameters:

U † = U , F †U = F , F †ζ =
F
αt
, (63a)

%† = ρ0, E† = E0, (63b)

B† = Γx + Γt, D† =
E†

B†
=

E0

Γx + Γt
, (63c)

b†2x = αxΓx, κ† = E†
b†2x
B†

= E0
αxΓx

Γx + Γt
, (63d)

b†2t = αtΓt, µ† = %†
b†2t
B†

= ρ0
αtΓt

Γx + Γt
, (63e)

b†2m = (1 + αx) Γx + (1 + αt) Γt = B† + b†2x + b†2t . (63f)

All the families of models defined through (62) share the same degree of323

asymptotic accuracy. They all have the same density %†, elasticity modulus324

E† and stress gradient coefficient B†, defined without ambiguity by homog-325

enization, independently of the coefficients αx and αt. As a consequence326

of (35) where only %†, E† and B† are involved, the dispersion relations of327

all models are therefore asymptotically the same at low frequencies. This328

implies that discrimination between auxiliary inertia (weighted by αt) and329

auxiliary elasticity (weighted by αx) in micro-structural effects can be made330

only at higher frequencies.331

The orders of magnitude for coefficients αt and αx are constrained by332

asymptotic homogenization, which requires that ε2C(2)
2 (U (0) ) remains a cor-333

rector of order ε2 in (58). It results in the orders of magnitude αt = O(εm)334

and αx = O(εm) with integer m ≥ 0 .335
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4.3. Closing criteria from Bloch-Floquet analysis336

As analysed in Sec 2, the parameters B†, b†t and b†x are required to be337

positive. We assume that asymptotic homogenization theory provides B† >338

0. This property is confirmed numerically through multiple configurations339

tested in Sec. 5, even if it remains to be proven rigorously.340

Various closing criteria for b†t and b†x can be found in the literature in341

other contexts [36, 11, 14], mostly related to bilaminate micro-structures.342

Examples of such closing criteria are recalled in Sec. 5.1, where the study case343

of bilaminate micro-structures is revisited for comparison with the closing344

criteria that we choose here.345

Our criteria follows the same aim of global fit as in [36, 11, 14] but is346

defined so that it can be applied to any 1-D periodic architecture, while347

positivity constraints b†t > 0 and b†x > 0 are satisfied: we choose to define348

b†t and b†x as the strictly-positive parameters which minimize the difference349

between the dispersion relations computed from the stress gradient model350

and Bloch-Floquet calculations on the heterogeneous medium.351

In Bloch-Floquet calculations on the heterogeneous 1-D periodic medium,352

the dispersion relation is obtained numerically after substitution of the ansatz353

u(x) = η(x) exp(ikx − iωt) into the governing equations (50), yielding the354

eigenvalue problem,355

ω2ρη + ∂x{a ∂xη + ik a η}+ ika∂xη − k2aη = 0, (64)356

where the cell function η(x) is periodic. Then, the parameters b†t and b†x are357

obtained through the minimisation358

(b†t , b
†
x) = argmin

b∗t , b
∗
x>0

Φ(b∗t , b
∗
x), (65)359
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where the deviation function Φ reads360

Φ(b∗t , b
∗
x) =

1

N

√√√√
m=N∑

m=1

∣∣ωI
m − ωI

+(km, b∗t , b
∗
x)
∣∣2. (66)361

The angular frequencies ωI
m denote the lowest eigenvalues of the problem362

stated in (64) for given values of the wavenumber k = km = mπ/(N`) with363

integers 1 ≤ m ≤ N and N ≥ 2. The angular frequencies ωI
+(km, b

∗
t , b
∗
x)364

defined in (39) are computed at wavenumber km for the stress gradient ma-365

terial having inner-lengths b∗t and b∗x, with parameters %†, E†, and B† given366

by asymptotic homogenization. In (65), the minimum of the deviation func-367

tion is found by means of the Nelder-Mead Simplex Method [37] using the368

routine fminsearch in commercial software MatLab, with added bounds369

b∗t , b
∗
x ∈]0, 10`].370

This numerical procedure enforces the strict positivity of b†t and b†x, ensur-371

ing the hyperbolicity and stability of the model. It can be applied to any 1-D372

unit cell Ω, whether layered or continuously graded. Once the parameters b†t373

and b†x are obtained from the minimisation in (65), the coefficients αx and αt374

can be calculated according to (63d) and (63e), and the auxiliary bulk force375

F †ζ is determined by (63a).376

5. Numerical applications377

In this section, the micro-macro procedure presented in previous Sec. 4378

is applied. The objectives developed in the numerical applications are three-379

fold. First, the influence of the choice in the closing criteria is illustrated380

in Sec. 5.1. To this aim, our closing criteria is compared to those proposed381
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by Wautier & Guzina [11] or Cornaggia & Guzina [14] in 1-D periodic bi-382

laminate micro-structures. Second, a parametric study on values of param-383

eters for multi-laminate materials with up to 10 layers in the unit cell is384

performed in Sec. 5.2. This led us to evidence the range of values for the385

stress gradient parameters, and their respective influence over dispersion re-386

lations. Finally, in Sec. 5.3, transient time-domain calculations are performed387

in response to oscillatory bulk forces in both multi-laminate periodic media388

and corresponding stress gradient media. They evidence the benefits of the389

equivalent continuum descriptions.390

5.1. Comparison of closing criteria in bi-laminate materials391

The micro-structure consists of the 1-D periodic repetition of the `-sized392

unit cell Ω made of the two homogeneous elastic layers Ω[1] and Ω[2] having393

the thickness `[1] = φ[1]` and `[2] = φ[2]` = (1 − φ[1])`, densities ρ[1] and394

ρ[2], local elastic moduli a[1] and a[2], and wave speeds c[1] =
√
a[1]/ρ[1] and395

c[2] =
√
a[2]/ρ[2]. As detailed in Appendix B.2, closed-form formula can396

be derived for the effective material properties in bilaminate structures. In397

particular, the stress gradient parameter is shown to be positive, B† > 0,398

which is essential for energy consistency of the stress gradient model, see399

Sec. 2.400

We consider the same micro-structure used by Wautier & Guzina [11],401

with normalised parameters402

φ[1] = φ[2] =
1

2
,

ρ[2]

ρ[1]
= 0.6,

a[2]

a[1]
= 0.4, (67)403
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which lead to the effective material parameters according to Appendix B.2

ρ0

ρ[1]
= 0.8,

E0

a[1]
≈ 0.571,

B†

`2
≈ 9.593× 10−3, (68a)

Γx
B†
≈ 0.233,

Γt
B†
≈ 0.767. (68b)

We compare our results with those obtained in [14] and [11] with different404

closing criteria. Using the high-order continuum model (62) with b†x ≡ 0 to405

describe a bilaminate without bulk force, Cornaggia & Guzina [14] fixed the406

value of b†t by equating the terms up to (k0`)
5 in the Taylor expansions of the407

dispersion relation in the high-order continuum model and in the bilaminate408

material. Doing so resulted into the closed-form formula for squared inner-409

lengths, denoted with CG as superscript,410





(bCG
x )2 = 0,

(bCG
t )2 = (`2 − 6B† − 4JCG)/10,

(bCG
m )2 = B† + (bCG

x )2 + (bCG
t )2,

(69)411

where the characteristic surface JCG is given by412

JCG =
`2

12

((
φ[1] c0

c[1]

)2

−
(
φ[2] c0

c[2]

)2
)2

. (70)413

The closing criteria (69) with bCG
x = 0 results into the original stress gradient414

model. Using micro-structure described in Eq. (67) the values found for the415

squared inner-lengths and resulting material parameters are given in Tab. 1.416

In another study on high-order continuum model (62) applied to describe417

the bilaminate micro-structure without bulk force, Wautier & Guzina [11]418

used all three inner lengths (bx, bt, bm) along with the relation (15) and the419

following closing criteria: (i) the group velocity dω/d(Re(k)) at the end of420
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Figure 3: Values of normalised inner-lengths issued from closing criterion (65) with the

number N of Bloch wavenumbers used for minimisation for 1-D periodic bilaminate ma-

terials described in (68).

the Brillouin zone Re(k`) = π is zero; and (ii) the frequency-jump in the421

dispersion relation between branches Re(kI) and Re(kII) of the stress gradient422

model at the end of the Brillouin zone Re(k`) = π equals the frequency423

bandwidth of first Bragg bandgap in bilaminate materials. The approach is424

numerical, and leads to values of inner-lengths bWG
x , bWG

t , bWG
m and weighting425

factors αWG
x and αWG

t given in Tab. 1, and denoted with the superscript426

WG. However, such conditions led to the purely imaginary inner-length427

bWG
x ≈ 0.2252 i, which implies the negative auxiliary elasticity modulus κ† =428

E(bWG
x )2/B† < 0, making the model energetically inconsistent and unstable,429

see Sec. 2.430

Finally, the criteria (65) proposed here is used. The eigenvalue problem431

(64) related to Bloch-Floquet analysis is solved numerically by the Plane432

Wave Method presented in Appendix C. Fig. 3 shows the values of normalised433

inner-lengths issued from closing criterion using different number N of Bloch434

30



Re(kℓ)/π

ω
ℓ/
π
c 0

0 0.5 1 1.5 2

2

1.5

1

0.5

0

(a)

Im(kℓ)

ω
ℓ/
π
c 0

-4 -2 0 2 4

2

1.5

1

0.5

0

Bilaminate
WG
CG
†(N = 105)

(b)

Figure 4: (Color online) Dispersion relation with (a) real and (b) imaginary parts of nor-

malised wavenumbers versus normalised frequency in 1-D periodic bilaminate materials

described in Eq. (68) and its stress gradient continuum representations using closing cri-

teria WG, CG, and †, defined by Wautier & Guzina [11], Cornaggia & Guzina [14], and in

the present work (with N = 105 Bloch wavenumbers used in minimisation) respectively.

Here, filled or empty symbols stand for different modes. Dashed grey line corresponds to

elastodynamic relation k = ω/c0. For clarity, branches which satisfy Im(k) = 0 have not

been represented in Fig. (b), except for WG calculations.
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WG CG † (N = 105) † (N = 20)

b∗x/` 0.2252 i 0 4.93× 10−9 4.41× 10−9

b∗t/` 0.2032 0.3066 0.3314 0.3340

b∗m/` 0.0139 0.3218 0.3455 0.3481

α∗x −22.71 0 1.09× 10−14 8.72× 10−15

α∗t 5.61 12.77 14.9174 15.1558

Table 1: Values of normalised inner-lengths (b∗x, b
∗
t , b

∗
m)/`, and weighting factors (α∗

x, α
∗
t )

following closing criteria WG, CG, and †, defined by Wautier & Guzina [11], Cornaggia

& Guzina [14], and in the present work (with N = 105 or N = 20 Bloch wavenumbers

used in minimisation) respectively. Calculations performed for micro-structure given in

Eq. (67).

wavenumbers in minimisation. For N = 20, the inner lengths b†t and b†m435

already reached the value obtained for N = 105 with less than 1% error. On436

the other hand, the smallness of the inner length b†x compared to the two437

other inner-length, and its difficulty to converge towards a definite value, are438

noticeable. This difficulty might be due to the low sensitivity of the acoustic439

branch of the dispersion relation (on which is performed the minimisation)440

on b†x. Values of inner-lengths and weighting factors for N = 105 and N = 20441

are reported in Tab. 1.442

Fig. 4 displays the dispersion relations for the 1-D periodic bilaminate443

material, and for the stress gradient media with parameters issued from WG444

and CG criteria, and from our closing criterion (65). Focusing only on the445

real part of the wavenumbers in Fig. 4(a), all stress gradient representation446

are in excellent agreement with the acoustic branch of the dispersion relation447

of the bilaminate material in the first Brillouin zone Re(k`) ≤ π. However,448
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for larger wavenumbers and higher frequencies outside this zone, the stress449

gradient continuum is inaccurate in its representation of the bilaminate ma-450

terial (for all closing criteria), and remains therefore a long-wavelength/low-451

frequency effective medium.452

Despite their irrelevance at high frequencies, the continuum models must453

remain stable. Here, the imaginary part of the wavenumbers represented in454

Fig. 4(b) reveals clearly that stress gradient medium using the WG closing455

criterion is unstable: in the vicinity of the Bragg limit Re(k`) ≡ π, the imag-456

inary part of the wavenumber becomes negative, which results in displace-457

ments that increase exponentially as they propagate. Finally, using N = 105
458

or N = 20 Bloch wavenumbers in our closing criterion (65) produces no459

significant effects upon the dispersion relation (graphically superimposed) in460

the long-wavelength/low-frequency range wherein stress gradient continuum461

is relevant.462

5.2. Parametric study on multi-laminate materials463

The proposed closing criterion (65) can be applied to any 1-D periodic464

micro-structure to retrieve both positive inner-lengths b†t and b†x. An heuristic465

study on 1-D periodic multi-laminate materials is then conducted so as to466

evidence ranges of values for effective stress gradient parameters.467

The 1-D periodic multi-laminate material consists of the `-sized unit cell Ω468

made of the n = 1 ..N homogeneous elastic layers Ω[n] = [L[n], L[n+1]] having469

the densities ρ[n], local elastic moduli a[n], and thickness `[n] = L[n+1] − L[n].470

Closed-form formula for effective material parameters ρ0, E0, h, Γx, Γt and B†471

in 1-D periodic multi-laminate materials are derived in Appendix B according472

to (56) by solving the cell problems (57) .473
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The micro-structural parameters `[n], ρ[n], and a[n] are chosen in the form474

10υ, where υ is a number picked randomly in the interval [−1.2, 1.2] according475

to the uniform law. The effective material parameters ρ0, E0, h, Γx, Γt476

and B† are computed according to Appendix B. The closing criterion (65)477

with 20 Bloch wavenumbers is used to derive the stress gradient continuum478

corresponding to the multi-laminate material. Such systematic procedure479

is applied for micro-structures with N = 2, 3, 5, and 10 layers in the unit480

cell, and 10 000 random realisations of micro-structures is considered for each481

number N . Figure 5 shows the histogram (or distribution density) of values482

reached by the parameters once normalised by `, ρ0 or E0.483

Values reached by micro-structural parameters `[n]/`, ρ[n]/ρ0, and a[n]/E0,484

cover nearly 3 orders of magnitudes each. As for material parameters issued485

from two-scale asymptotic homogenization, Γx/`
2 and h/` can reach posi-486

tive and negative values, while Γt/`
2 and B†/`2 are always positive. As for487

inner-lengths, results show that the approximation bt/` ≈ 1/3 is relevant for488

all realisations of micro-structures considered here, while bx remains much489

smaller than bt with bx/` ∼ 5 × 10−9 and the approximation bx/` = 0 is490

tantalizing. The inner-length bm =
√
B + b2

x + b2
t and weighting coefficients491

αx = b2
x/Γx and αt = b2

t/Γt are then obtained from the other parameters,492

and their range of values is given for illustration.493

5.3. Time-domain simulations494

Finally, time-domain simulations are performed on a 1-D periodic tri-495

laminate material and its equivalent stress gradient continuum. Micro-structural496
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Figure 5: (Color online) Histogram (or distribution density) of characteristic parameters

for random realisations of 1-D periodic multi-laminate materials with N =2, 3, 5 and

10 layers in the unit cell. For each number N of layers, 10 000 random realisations are

considered.
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parameters for the tri-laminate material are chosen according to497

`[1] = 0.3 `, `[2] = 0.3 `, `[3] = 0.4 `,

a[1] = 0.45E0, a[2] = 3.90E0, a[3] = 1.56E0,

ρ[1] = 0.34 ρ0, ρ[2] = 0.14 ρ0, ρ[3] = 2.14 ρ0,





(71)498

which lead to the normalised parameters499

Γx/`
2 ≈ 0.009, Γt/`

2 ≈ 0.022, B†/`2 ≈ 0.032,

b†x/` ≈ 5× 10−9, b†t/` ≈ 0.33, b†m/` ≈ 0.38,

αx ≈ 3× 10−15, αt ≈ 4.92, h/` ≈ −0.07.





(72)500

Dimensional parameters are used, with the period size ` = 40 m, the density501

% = ρ0 = 2 980 kg/m3, and the elasticity modulus E = E0 = 2.33 × 109 Pa.502

Using (63), it yields the auxiliary density µ ≈ 3.5 ρ0 ≈ 10 358 kg/m3, the503

auxiliary elasticity modulus κ ≈ 2.2×10−6 Pa� E0, and the stress gradient504

modulus D ≈ 4.6× 107 Pa/m2. The dispersion relations in the 1-D periodic505

tri-laminate material and its equivalent stress gradient continuum are shown506

in Fig. 6. The straight line k = ω/c0 corresponding to the non-dispersive507

Cauchy medium with density % and elasticity modulus E is also plotted.508

The medium x ∈ [0, L] is L = 2 000 m long and consists of 50 unit509

cells, with abscissa x = L/2 corresponding to the interface between Ω[3] at510

x = (L/2)− and Ω[1] at x = (L/2)+.511

Whether in the tri-laminate materials, or its equivalent stress gradient and512

Cauchy continua, a uniform Cartesian grid with mesh size δx and time step513

δt is introduced. A fourth-order ADER scheme is implemented to integrate514

the evolution equations [38]. This explicit two-step and single-grid finite-515

difference scheme is stable under the usual CFL condition:516

ν = max(ci)
δt

δx
≤ 1, (73)517
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Figure 6: (Color on-line) Complex dispersion relation in the 1-D tri-laminate material

described in Eq. (71), and in its equivalent stress gradient and Cauchy media characterised

by parameters (%, E, µ, κ, D) and (%, E) respectively. See main text for values.

where ci is the maximal eigenvalue of A at node i. In multi-laminate materi-518

als, a large number of interfaces is involved. To ensure a correct discretisation519

of the jump conditions, and hence to provide reliable reference solutions, we520

implement an immersed interface method [39]. While the relaxation matrix521

S is null in Cauchy media, S is non-null in equivalent stress gradient media.522

Its contribution is then discretised by a splitting approach [40]. In what fol-523

lows, the spatial mesh size is δx = 1 m and the time step is deduced from524

the CFL condition (73) where ν = 0.95 is chosen.525

The following external force is considered526

f(x, t) = Xf(x) Tf(t). (74)527

The time and space functions Tf(t) and Xf(x) read

Tf(t) =
4∑

m=1

1[0, Tc ]̂fm sin
(
2m−1ωct

)
, (75a)

Xf(x) = exp
(
−x2/(2d2)

)
. (75b)
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Figure 7: (Color on-line) External bulk force applied to materials in time-domain cal-

culations. (a) Time signals Tf(t) for three central frequencies fc; (b) Fourier Transform

(F.T.) of time signals Tf(t); and (c) space function Xf(x) applied in the phase Ω[2] in

vicinity of central abscissa xs = 978 m. In figure (b), the shapes of dispersion relations for

1-D periodic tri-laminate material and its equivalent Cauchy medium are plotted in thin

continuous and dashed grey lines respectively.

In (75a), the time function Tf(t) is a combination of sinusoids with support528

bounded to the time interval t ∈ [0, Tc] by the indicator function 1[0, Tc]529

equal to 1 over [0, Tc] and 0 elsewhere. The amplitudes of the sinusoids530

are f̂1 = 1, f̂2 = −21/32, f̂3 = 63/768 and f̂4 = −1/512. It makes the dif-531

ferentiability class of time function Tf(t) of order 6, which enable the use532

of numerical scheme ADER 4 [41] for time-domain calculations. The time533

evolution of Tf(t) and its frequency spectrum are displayed in Fig. 7(a) and534

(b). In particular, Fig. 7(b) shows that Tf(t) is a broadband signal with de-535

creasing spectral lobes, the first principal lobe having the central frequency536

fc = 1/Tc = ωc/2π. The values fc = {1; 2; 3} Hz are considered, correspond-537

ing to scale factors εc = `ωc/c0 = {0.28; 0.57; 0.85}. While most frequency538

content of signal with central frequency fc = 1 Hz is within the low frequency539
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range, the whole acoustic branch of the dispersion relation related to the tri-540

laminate material is excited for central frequency fc = 3 Hz (and its second541

lobe is within first Bragg bandgap).542

In (75b), the space function Xf(x) is a Gaussian function centred at xs =543

978 m (phase Ω[2] in the tri-laminate material) and with standard deviation544

d = 4/
√

2 ≈ 2.83 m, see Fig. 7(c). The Gaussian is actually cancelled at grid545

nodes xi such that |xi−xs| ≥ 2d, which makes the source terms belong only to546

the phase Ω[2] in the tri-laminate material. Using micro-macro relations (63a)547

with (59b), the external bulk force F †U applied in stress gradient medium and548

corresponding to (74) reads549

F †U(x, t) =

[
1 +

h

d

x

d
+
h2

d2

(
x2

d2
− 1

)]
f(x, t). (76)550

The forces F †U and F †ζ in the equivalent stress gradient medium are applied551

at the same nodes xi as in the tri-laminate material.552

Figure 8 shows the particle velocity ∂tu in the tri-laminate material, and553

v in its equivalent stress gradient and Cauchy media, at t = 1 s. For central554

frequency fc = 1 Hz, the dispersive effects are negligible, and the agreement555

of both stress gradient and Cauchy models (leading-order homogenization)556

with reference field in tri-laminate material is excellent. The interest of557

the stress gradient model occurs at higher frequencies, when the dispersive558

effects are solicited: at fc = 2 Hz, the oscillations are well captured by the559

stress gradient model and the amplitude of the waves is also reproduced. At560

fc = 3 Hz, the stress gradient model remains still in good agreement with the561

reference signal in tri-laminate material, while severe discrepancies in terms562

of wave dispersion and amplitudes can be observed for the Cauchy medium.563

Near the source, at fc = 2 Hz and fc = 3 Hz, a sharp peak in the velocity is564
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due to the small support of the source, included within one micro-structural565

layer: it disappears when we spread the source by increasing d (not shown566

here).567

Hence, even under poor condition of scale separation (εc = 0.85 for central568

frequency fc = 3 Hz) and for an external bulk source with micro-structural569

support, the stress gradient model remains robust to capture the dispersive570

size effects within the micro-structured material, at small distance away from571

the zone where the force is applied. All the results presented in Fig. 8 are572

given with the same number of nodes for both the 1-D periodic tri-laminate573

material and the homogeneous equivalent media. In the low-frequency range,574

this number of nodes is mostly driven by the discretisation of the micro-575

structural layers in the tri-laminate material. This constraint is obviously not576

present in the homogeneous equivalent media and a 1/ε-coarser mesh would577

be sufficient to compute fields with an accuracy nearly as good. In addition, a578

coarser mesh lowers also the number of time-steps through the CFL condition579

(73). These aspects emphasise the high interest of homogenization models580

in dynamic simulations.581

Figure 9 shows the snapshots of the elastic and auxiliary velocities v and582

ϕ in the case fc = 1 Hz. It evidences that (i) in the low-frequency range583

where the stress gradient model is relevant, the auxiliary velocity ϕ is much584

smaller than elastic velocity v, by two orders of magnitude here; and (ii) ϕ585

is a long-wavelength field with spatial variations as large as v, and is not a586

micro-structural field with period-wise variations.587
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(c) Central frequency fc = 2 Hz
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(d) Central frequency fc = 2 Hz
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(e) Central frequency fc = 3 Hz
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(f) Central frequency fc = 3 Hz
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Figure 8: (Color online) Snapshot at t = 1 s of the elastic velocity emitted by a source

at xs = 978 m (phase Ω[2] in the tri-laminate material) for various central frequencies

fc: 1 Hz (εc = 0.28), 2 Hz (εc = 0.57) and 3 Hz (εc = 0.85). Left: Elastic velocity in

the 1-D periodic tri-laminate material. Right: comparison between fields in 1-D periodic

tri-laminate material and its equivalent stress gradient Cauchy homogeneous media.

41



(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1E−4 

−5E−5 

0 

5E−5 

1E−4 

x [m]

V
el

o
ci

ty
 [

m
/s

]
(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−8E−7 

−4E−7 

0 

4E−7 

8E−7 

x [m]

A
u
x
il

ia
ry

 v
el

o
ci

ty
 [

m
/s

]

Figure 9: (Color online) Snapshot at t = 1 s of the elastic velocity v in (a) and auxiliary

velocity ϕ in (b) emitted by a source at xs = 978 m for fc = 1 Hz.

6. Conclusions588

This paper focused on the dynamic study of stress gradient materials in589

1D. For generality, an extended stress-gradient model was considered, intro-590

ducing an additional inner-length to the original stress gradient model and a591

term in ∂4
x in the wave equation. On the one hand, we studied theoretically592

the properties of waves in the extended model: hyperbolicity, stability, dis-593

persion and causality. On the other hand, we proposed a numerical method594

to identify the parameters of this model to represent the dynamic behavior595

of a microstructured Cauchy medium. The numerical experiments showed596

that the dispersive effects were then well captured by the homogeneous stress597

gradient material. A systematic numerical study showed that the additional598

parameter of the extended model was very close to 0 when it comes to repre-599

sent classical heterogeneous elastic media, and could very well be neglected600

in that case. Contrary to a usually-accepted postulate, this parameter is not601
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necessary for causality. An interesting perspective of this work concerns the602

study (theoretical and numerical) of stress gradient media in higher spatial603

dimensions.604

Acknowledgments605

This research has been supported by Labex MEC Mécanique et Com-606
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Appendix A. Two-scale asymptotic homogenization611

This appendix describes the two-scale asymptotic homogenization high-

order terms. The approach follows the procedure developed initially in 3-D

elastodynamics without bulk force [20] or 3-D elastostatics with the bulk

force [19, 21], and applied in more recent work [13, 11, 14] in 1-D elastody-

namics without bulk force f. Here, the problem in elastodynamics with the

mass density of external bulk force f is tackled. After substitution of asymp-

totic expansions (52) into governing equations (50) expressed with two-scale

differential operator ∂x + ε−1∂y, terms of equal power of ε are collected to
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provide

∂yu
(0) = 0, (A.1a)

∂ys
(0) = 0, (A.1b)

s(0) = a(∂yu
(1) + ∂xu

(0)), (A.1c)

∂ys
(1) + ∂xs

(0) = ρ (∂2
t u

(0) − f), (A.1d)

s(1) = a(∂yu
(2) + ∂xu

(1)), (A.1e)

∂ys
(2) + ∂xs

(1) = ρ ∂2
t u

(1), (A.1f)

s(2) = a(∂yu
(3) + ∂xu

(2)), (A.1g)

∂ys
(3) + ∂xs

(2) = ρ ∂2
t u

(2). (A.1h)

First, y-averaged values U (j)(x) and Σ(j)(x) of two-scale fields u(j)(x, y) and612

s(j)(x, y) are defined for j ≥ 0,613

U (j)(x) =
〈
u(j)
〉

and Σ(j)(x) =
〈
s(j)
〉
. (A.2)614

The local Ω-periodicity of stress fields s(j)(x, y) over the variable y implies615

the following relation, that is useful when Eqs. (A.1b), (A.1d), (A.1f) and616

(A.1h) is y-averaged617

〈
∂ys

(j)
〉

= 0. (A.3)618

Equation (A.1a) shows that u(0)(x, y) is independent of y. It is therefore619

purely macroscopic, and reads620

u(0)(x, y) ≡ U (0)(x). (A.4)621
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Equations (A.1b) and (A.1c) show that u(1)(x, y) and s(0)(x, y) are forced at

the macroscopic scale by ∂xU (0). Thus they write

u(1)(x, y) = U (1)(x) + χ
(1)
1 (y) ∂1

xU (0), (A.5a)

s(0)(x, y) = q
(0)
0 (y) ∂1

xU (0), (A.5b)

where cell field χ
(1)
1 (y) and local modulus q

(0)
0 (y) are Ω-periodic and satisfy

the cell problem

∂yq
(0)
0 = 0, (A.6a)

q
(0)
0 = a(1 + ∂yχ

(1)
1 ), (A.6b)

with the condition 〈χ(1)
1 〉 = 0 so that U (1) = 〈u(1)〉. Then, the equations

governing the macroscopic field U (0) are obtained by y-averaging (A.5b) and

(A.1d),

Σ(0) = E0 ∂
1
xU (0), (A.7a)

∂xΣ
(0) = ρ0

(
∂2
t U (0) − f(x)

)
, (A.7b)

where effective material parameters are given by622

E0 =
〈
q

(0)
0

〉
=
〈
a(1 + ∂yχ

(1)
1 )2

〉
, ρ0 = 〈ρ〉 . (A.8)623

Hence, both E0 and ρ0 are positive. The second expression for E0 in Eq. (A.8)624

follows from the weak formulation of cell problem (A.6) with χ
(1)
1 as the test-625

field [17]626 〈
χ

(1)
1 ∂yq

(0)
0

〉
= −

〈
(∂yχ

(1)
1 )a(1 + ∂yχ

(1)
1 )
〉

= 0. (A.9)627

Combination of (A.7a) and (A.7b) yields the equation for the leading-order628

displacement U (0)
629

C0(U (0))
def
= ρ0 ∂

2
t U (0) − E0 ∂

2
xU (0) = ρ0 f(x), (A.10)630
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which corresponds to elastodynamics in Cauchy media, with the density ρ0631

and elasticity modulus E0. From (A.6a), it follows that q
(0)
0 is uniform and632

hence equal to its mean value E0. Then, averaging q
(0)
0 /a from (A.6b) with633

〈∂yχ(1)
1 〉 = 0 due to Ω-periodicity leads to the relation for the elastic modulus634

635

q
(0)
0 ≡ E0 =

〈
1

a(y)

〉−1

. (A.11)636

Expressions for ∂2
t U (0)−f(x) given in (A.7a) and u(1) in (A.5a) are substituted

into (A.1d) and (A.1e) to yield:

∂ys
(1) = r

(0)
0 (y) ∂2

xU (0), (A.12a)

s(1) = a(∂yu
(2) + ∂xU (1) + χ

(1)
1 (y) ∂2

xU (0)). (A.12b)

Due to (A.5b) and (A.7a), the source term r
(0)
0 in (A.12a) writes637

r
(0)
0 (y) =

ρ(y)

ρ
(0)
0

E
(0)
0 − q(0)

0 (y) =

(
ρ(y)

ρ
(0)
0

− 1

)
E

(0)
0 . (A.13)638

Equations (A.12a) to (A.13) show that u(2) and s(1) are forced by both ∂xU (1)

and ∂2
xU (0) according to

u(2)(x, y) = U (2)(x) + χ
(1)
1 ∂1

xU (1) + χ
(2)
2 ∂2

xU (0), (A.14a)

s(1)(x, y) = q
(0)
0 ∂1

xU (1) + q
(1)
1 ∂2

xU (0). (A.14b)

The cell field χ
(2)
2 (y) and local modulus q

(1)
1 (y) are Ω-periodic and satisfy the

cell problem

∂yq
(1)
1 = r

(0)
0 (y) (A.15a)

q
(1)
1 = a

(
χ

(1)
1 (y) + ∂yχ

(2)
2

)
, (A.15b)
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with 〈χ(2)
2 〉 = 0, so that U (2) = 〈u(2)〉. Averaging q

(1)
1 /a from (A.15b) with639

〈∂yχ(2)
2 〉 = 0 due to Ω-periodicity leads to640

〈
q

(1)
1 (y)

a(y)

〉
=
〈
χ

(1)
1 (y) + ∂yχ

(2)
2

〉
≡ 0. (A.16)641

Then, the equations governing the macroscopic field U (1) are obtained by

y-averaging (A.14b) and (A.1f),

Σ(1) = E
(0)
0 ∂1

xU (1) + E
(1)
1 ∂2

xU (0), (A.17a)

∂xΣ
(1) = ρ

(0)
0 ∂2

t U (1) + ρ
(1)
1 ∂2

t ∂xU (0), (A.17b)

where effective material parameters are given by642

E
(1)
1 =

〈
q

(1)
1

〉
, ρ

(1)
1 =

〈
ρχ

(1)
1

〉
. (A.18)643

The weak formulation of cell problems (A.6) and (A.15) with χ
(1)
1 and χ

(2)
2644

as test-fields yields [20]645

E
(1)
1 = 〈χ(1)

1 ∂yq
(1)
1 − χ(2)

2 ∂yq
(0)
0 + χ

(1)
1 q

(0)
0 〉

= 〈χ(1)
1 r

(0)
0 + χ

(1)
1 q

(0)
0 〉 = ρ

(1)
1 E0

/
ρ0.

(A.19)646

Combination of (A.17a) and (A.17b) leads to647

C0(U (1)) = −∂x{ρ(1)
1 ∂2

t U (0) − E(1)
1 ∂2

xU (0)}. (A.20)648

Multiplication of (A.10) by ρ
(1)
1 /ρ0 and use of (A.19) gives649

ρ
(1)
1 ∂2

t U (0) − E(1)
1 ∂2

xU (0) = ρ
(1)
1 f(x), (A.21)650

which is analogous to classical elastodynamics in Cauchy media, with ρ
(1)
1 and651

E
(1)
1 as density and elasticity modulus. Substitution of (A.21) into (A.20)652

provides653

C0(U (1)) = −ρ0h
(1)∂xf(x), h(1) = ρ

(1)
1

/
ρ0, (A.22)654
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which shows that U (1) is actually forced by the gradient of the bulk force,655

∂xf(x). As previously, (A.22) is multiplied by ρ
(1)
1 /ρ0 and combined with656

(A.19) to give657

ρ
(1)
1 ∂2

t U (1) − E(1)
1 ∂2

xU (1) = −ρ0(h(1))2∂xf(x). (A.23)658

Substitution of (A.5a) and (A.14b) into (A.1f), while using (A.17a) and659

(A.17b) to express ∂2
t U (1) and Σ(1) provides660

∂ys
(2) = r

(0)
0 ∂2

xU (1) + r
(1)
1 ∂3

xU (0) + ρ0r̃
(1)
1 ∂2

t ∂xU (0), (A.24)661

where the source terms r
(1)
1 (y) and r̃

(1)
1 (y) read

r
(1)
1 (y) =

ρ(y)

ρ0

E
(1)
1 − q(1)

1 (y), (A.25a)

r̃
(1)
1 (y) =

ρ(y)

ρ0

(
χ

(1)
1 (y)− ρ

(1)
1

ρ0

)
. (A.25b)

Further, substitution of (A.14a) into (A.1g) yields662

s(2) = a(∂yu
(3) + ∂xU (2) + χ

(1)
1 ∂2

xU (1) + χ
(2)
2 ∂3

xU (0)). (A.26)663

Equations (A.24) and (A.26) evidence that u(3)(x, y) and s(2)(x, y) are forced

at the macroscopic scale by ∂xU (2), ∂2
xU (1), ∂3

xU (0), and ∂2
t ∂xU (0) according to

u(3)(x, y) = U (3) + χ
(1)
1 ∂1

xU (2) + χ
(2)
2 ∂2

xU (1)

+χ
(3)
3 ∂3

xU (0) + ρ0ψ
(3)∂2

t ∂xU (0),
(A.27a)

s(2)(x, y) = q
(0)
0 ∂1

xU (2) + q
(1)
1 ∂2

xU (1)

+q
(2)
2 ∂3

xU (0) + ρ0p
(2)∂2

t ∂xU (0).
(A.27b)
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The cell fields χ
(3)
3 (y) and ψ(3)(y), and associated local moduli q

(2)
2 (y) and

p(2)(y) are Ω-periodic and satisfy the cell problems

∂yq
(2)
2 = r

(1)
1 , q

(2)
2 = a

(
χ

(2)
2 (y) + ∂yχ

(3)
3

)
, (A.28a)

∂yp
(2) = r̃

(1)
1 , p(2) = a∂yψ

(3), (A.28b)

with the condition 〈χ(3)
3 〉 = 0 and 〈ψ(3)〉 = 0, so that U (3) = 〈u(3)〉. Averaging664

q
(2)
2 /a and p(2)/a with 〈∂yχ(3)

3 〉 = 0 and 〈∂yψ(3)〉 = 0 due to Ω-periodicity665

yields666 〈
q

(2)
2 (y)

a(y)

〉
= 0 and

〈
p(2)(y)

a(y)

〉
= 0. (A.29)667

In (A.27b), we choose to involve the derivative ∂2
t ∂xU (0) in the stress field.668

Using the wave equation (A.10) at dominant order, this derivative is trans-669

formed into ρ0∂
2
t ∂xU (0) = E0∂

3
xU (0) + ρ0 ∂xf. In the absence of bulk force670

f = 0, this procedure is usually applied, so as to keep only high-order space671

derivatives ∂3
xU (0) in the expression of the stress field [20, 13, 11, 14]. With672

bulk force, we prefer to keep the space-time derivative ρ0∂
2
t ∂xU (0) in the ef-673

fective constitutive relation (A.27b) rather than involving the bulk force in674

it. This choice leads to define the cell problems according to (A.28).675

Finally, the equations governing the macroscopic field U (2) are obtained

by y-averaging (A.27b) and (A.1h),

Σ(2) = E0∂xU (2) + E
(1)
1 ∂2

xU (1)

+E
(2)
2 ∂3

xU (0) + ρ0J
(2)
1 ∂2

t ∂xU (0),
(A.30a)

∂xΣ
(2) = ρ0∂

2
t U (2) + ρ

(1)
1 ∂x∂

2
t U (1)

+ρ
(2)
2 ∂2

x∂
2
t U (0),

(A.30b)
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with effective material parameters given by676

E
(2)
2 =

〈
q

(2)
2

〉
, J

(2)
1 =

〈
p(2)
〉
, ρ

(2)
2 =

〈
ρχ

(2)
2

〉
. (A.31)677

Weak formulation of cell problems (A.28b) and (A.15) with χ
(1)
1 and ψ(3) as678

test-fields yields679

J
(2)
1 =

〈
χ

(1)
1 ∂yp

(2) − ψ(3)∂yq
(0)
0

〉

=

〈
ρ

ρ0

(χ
(1)
1 )2

〉
−
〈
ρ

ρ0

χ
(1)
1

〉2

> 0.
(A.32)680

Combination of (A.30a) and (A.30b) with (A.23) yields the equation for the681

displacement U (2)
682

C0(U (2)) = ρ0(h(1))2∂2
xf(x)

−
{
−ρ0Γ

(2)
t ∂2

x∂
2
t U (0) − E0Γ(2)

x ∂4
xU (0)

}
.

(A.33)683

where characteristic surfaces Γ
(2)
t and Γ

(2)
x are defined by684

ρ0Γ
(2)
t = ρ0J

(2)
1 − ρ(2)

2 , E0Γ(2)
x = E

(2)
2 . (A.34)685

From (A.10) and for any αt and αx, one gets

(1 + αt − αt)∂2
x∂

2
t U (0) =

ρ0

E0

(∂4
t U (0) − ∂2

t f), (A.35a)

(1 + αx − αx)∂4
xU (0) =

ρ0

E0

(∂2
x∂

2
t U (0) − ∂2

xf). (A.35b)

It results into

∂2
x∂

2
t U (0) = (1 + αt)∂

2
x∂

2
t U (0) − αt

ρ0

E0

(∂4
t U (0) − ∂2

t f), (A.36a)

∂4
xU (0) = (1 + αx)

ρ0

E0

(∂2
x∂

2
t U (0) − ∂2

xf)− αx∂4
xU (0), (A.36b)

which, once substituted into (A.33) leads to (61).686
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Appendix B. Cell functions and effective properties in periodic687

multilaminate materials688

Here, cell functions and effective material parameters defined through689

two-scale asymptotic homogenization in Appendix A are given for the peri-690

odic multilaminate material. It consists of the `-sized unit cell Ω made of the691

n = 1 ..N homogeneous elastic layers Ω[n] = [L[n], L[n+1]] having the densi-692

ties ρ[n], local elastic moduli a[n], and thickness `[n] = φ[n]` = L[n+1] − L[n],693

with filling fractions φ[n] and boundaries at abscissa L[n] so that694

N∑

n=1

φ[n] = 1, L[n] =
n−1∑

m=1

`[m] =

(
n−1∑

m=1

φ[m]

)
`, (B.1)695

with L[1] = 0 and L[N+1] = `. Here and in what follows, the usual convention696

that the sum
∑b

a is zero if b < a is adopted. Further, space, fields and697

parameters have been re-scaled to physical scale, with x = εy and qj = εjq
(j)
j698

for instance. The local normalised coordinate ξ[n] holding on layer Ω[n] is also699

defined as follows, for n ≥ 1,700

∀x ∈ [L[n], L[n+1]], ξ[n] =
x− L[n]

`
∈ [0, φ[n]]. (B.2)701

Explicit resolution of the cell problems is provided in the general case of the702

multilaminate materials; then, formula are provided in the simple case of the703

bilaminate materials with N = 2.704

Appendix B.1. General formulation705

First, equations (A.8) and (A.11) provide706

ρ0 =
N∑

n=1

φ[n]ρ[n], q0 ≡ E0 =

(
N∑

n=1

φ[n]

a[n]

)−1

. (B.3)707
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Then, successive integrations of Eqs. (A.6b) and (A.15a) to solve for χ1 and

q1, yield the cell functions in the following form of linear functions on layer

Ω[n],

χ1(ξ[n])

`
= ϑ

[n]
E ξ

[n] + X [n]
1 − χ̃1, (B.4a)

q1(ξ[n])

E0`
= ϑ[n]

ρ ξ
[n] +Q

[n]
1 − q̃1. (B.4b)

Here, the dimensionless factors ϑ
[n]
E and ϑ

[n]
ρ read708

ϑ
[n]
E =

E0

a[n]
− 1 and ϑ[n]

ρ =
ρ[n]

ρ0

− 1, (B.5)709

while factors X [n]
1 and Q

[n]
1 are defined to ensure continuity and periodicity710

of the cell functions,711

X [n]
1 =

n−1∑

m=1

ϑ
[m]
E φ[m], Q

[n]
1 =

n−1∑

m=1

ϑ[m]
ρ φ[m], (B.6)712

and dimensionless parameters χ̃1 and q̃1 are prescribed by conditions of zero

mean values 〈χ1〉 = 0 and 〈q1/a〉 = 0,

χ̃1 =
N∑

n=1

[
ϑ

[n]
E

(φ[n])2

2
+ X [n]

1 φ[n]

]
, (B.7a)

q̃1 =
N∑

n=1

E0

a[n]

[
ϑ[n]
ρ

(φ[n])2

2
+Q

[n]
1 φ[n]

]
. (B.7b)

For efficient calculations of X [n]
1 and Q

[n]
1 , it is worth noting the following

recurrence relations for n ≥ 1,

X [n+1]
1 = X [n]

1 + ϑ
[n]
E φ

[n], (B.8a)

Q
[n+1]
1 = Q

[n]
1 + ϑ[n]

ρ φ
[n], (B.8b)
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and following relations due to `-periodicity,

X [N+1]
1 =

N∑

m=1

ϑ
[m]
E φ[m] = 0 = X [1]

1 , (B.9a)

Q
[N+1]
1 =

N∑

m=1

ϑ[m]
ρ φ[m] = 0 = Q

[1]
1 . (B.9b)

As a result of cell functions in Eq. (B.4), the material parameters ρ1 and E1

defined in Eq. (A.18) are given by

ρ1

ρ0`
=

N∑

n=1

ϑ[n]
ρ

[
ϑ

[n]
E

(φ[n])2

2
+ X [n]

1 φ[n]

]
, (B.10a)

E1

E0`
= −

N∑

n=1

ϑ
[n]
E

[
ϑ[n]
ρ

(φ[n])2

2
+Q

[n]
1 φ[n]

]
. (B.10b)

At order ε2, successive integrations of (A.15b), (A.28a) and (A.28b) to solve

for χ2, q2, and p yield the cell functions in the form of second-order polyno-

mials on layer Ω[n],

χ2(ξ[n])

`2
= ϑ

[n]
d

(ξ[n])2

2
+ Z [n]ξ[n] + X [n]

2 − χ̃2 (B.11a)

q2(ξ[n])

E0`2
= −ϑ[n]

ρ

(ξ[n])2

2
+ Y [n]ξ[n] +Q

[n]
2 − q̃2, (B.11b)

p(ξ[n])

`2
=
ρ[n]

ρ0

ϑ
[n]
E

(ξ[n])2

2
+R[n]ξ[n] + P [n] − p̃. (B.11c)

Here, dimensionless coefficients read

ϑ
[n]
d =

E0

a[n]
ϑ[n]
ρ − ϑ[n]

E , (B.12a)

Z [n] =
E0

a[n]

(
Q

[n]
1 − q̃1

)
−
(
X [n]

1 − χ̃1

)
, (B.12b)

Y [n] =
ρ[n]

ρ0

E1

E0`
− (Q

[n]
1 − q̃1), (B.12c)

R[n] =
ρ[n]

ρ0

(
X [n]

1 − χ̃1 −
ρ1

ρ0`

)
, (B.12d)

53



while factors X [n]
2 , Q

[n]
2 and P [n] are defined to ensure continuity and period-

icity of the cell functions,

X [n]
2 =

n−1∑

m=1

ϑ
[m]
d

(φ[m])2

2
+ Z [m]φ[m], (B.13a)

Q
[n]
2 =

n−1∑

m=1

−ϑ[m]
ρ

(φ[m])2

2
+ Y [m]φ[m], (B.13b)

P [n] =
n−1∑

m=1

ρ[m]

ρ0

ϑ
[m]
E

(φ[m])2

2
+R[m]φ[m], (B.13c)

and parameters χ̃2, q̃2 and p̃ are prescribed by conditions of zero mean values

〈χ2〉 = 0, 〈q2/a〉 = 0 and 〈p/a〉 = 0,

χ̃2 =
N∑

n=1

ϑ
[n]
d

(φ[n])3

6
+ Z [n] (φ

[n])2

2
+ X [n]

2 φ[n], (B.14a)

q̃2 =
N∑

n=1

E0

a[n]

[
−ϑ[n]

ρ

(φ[n])3

6
+ Y [n] (φ

[n])2

2
+Q

[n]
2 φ[n]

]
, (B.14b)

p̃ =
N∑

n=1

E0

a[n]

[
ρ[n]

ρ0

ϑ
[n]
E

(φ[n])3

6
+R[n] (φ

[n])2

2
+ P [n]φ[n]

]
. (B.14c)

For efficient calculations of X [n]
2 , Q

[n]
2 and P [n], one notices

X [n+1]
2 = X [n]

2 + ϑ
[n]
d

(φ[n])2

2
+ Z [n]φ[n], (B.15a)

Q
[n+1]
2 = Q

[n]
2 − ϑ[n]

ρ

(φ[n])2

2
+ Y [n]φ[n], (B.15b)

P [n+1] = P [n] +
ρ[n]

ρ0

ϑ
[n]
E

(φ[n])2

2
+R[n]φ[n], (B.15c)
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and following relations due to `-periodicity,

X [N+1]
2 =

N∑

m=1

ϑ
[m]
d

(φ[m])2

2
+ Z [m]φ[m] = 0 = X [1]

2 , (B.16a)

Q
[N+1]
2 =

N∑

m=1

−ϑ[m]
ρ

(φ[m])2

2
+ Y [m]φ[m] = 0 = Q

[1]
2 . (B.16b)

P [N+1] =
N∑

m=1

ρ[m]

ρ0

ϑ
[m]
E

(φ[m])2

2
+R[m]φ[m] = 0 = P [1]. (B.16c)

From (B.11), the parameters ρ2, E2 and J1 in (A.31) read

ρ2

ρ0`2
=

N∑

n=1

ϑ[n]
ρ

[
ϑ

[n]
d

(φ[n])3

6
+ Z [n] (φ

[n])2

2
+ X [n]

2 φ[n]

]
, (B.17a)

E2

E0`2
= −

N∑

n=1

ϑ
[n]
E

[
−ϑ[n]

ρ

(φ[n])3

6
+ Y [n] (φ

[n])2

2
+Q

[n]
2 φ[n]

]
, (B.17b)

J1

`2
= −

N∑

n=1

ϑ
[n]
E

[
ρ[n]

ρ0

ϑ
[n]
E

(φ[n])3

6
+R[n] (φ

[n])2

2
+ P [n]φ[n]

]
. (B.17c)

while Γx, Γt and B are calculated according to713

Γx
`2

=
E2

E0`2
,

Γt
`2

=
J1

`2
− ρ2

ρ0`2
,

B

`2
=

Γx + Γt
`2

. (B.18)714

55



Appendix B.2. Case of the bilaminate materials715

In the case of the periodic bilaminate material (N = 2), cell functions

result in the following effective material parameters,

ρ0 = φ[1]ρ[1] + φ[2]ρ[2],
1

E0

=
φ[1]

a[1]

+
φ[2]

a[2]

, (B.19a)

ρ1 = 0, E1 = ρ1E0

/
ρ0 = 0, (B.19b)

ρ2

ρ0

= − `
2

12

(
ϑ[1]
ρ ϑ

[1]
d (φ[1])3 + ϑ[2]

ρ ϑ
[2]
d (φ[2])3

)
, (B.19c)

E2

E0

= − `2

12

(
ϑ[1]
ρ ϑ

[1]
E (φ[1])3 + ϑ[2]

ρ ϑ
[2]
E (φ[2])3

)
, (B.19d)

J1 =
`2

12

(ρ[1]

ρ0

(ϑ
[1]
E )2(φ[1])3 +

ρ[2]

ρ0

(ϑ
[2]
E )2(φ[2])3

)
, (B.19e)

J2 =
`2

12

(E0

a[1]

(ϑ[1]
ρ )2(φ[1])3 +

E0

a[2]

(ϑ[2]
ρ )2(φ[2])3

)
, (B.19f)

where J2 = −(ρ2/ρ0 + E2/E0). Relations in (B.19) show the symmetric role716

of layers Ω[1] and Ω[2]. Using (B.9) and717

(φ[1])2ϑ[1]
ρ ϑ

[1]
E = (φ[2])2ϑ[2]

ρ ϑ
[2]
E , (B.20)718

the following relations are found,

J1 =
(`[1])2

12
(ϑ

[1]
E )2 =

(`[2])2

12
(ϑ

[2]
E )2 ≥ 0, (B.21a)

J2 =
(`[1])2

12
(ϑ[1]

ρ )2 =
(`[2])2

12
(ϑ[2]

ρ )2 ≥ 0, (B.21b)

E2

E0

= − (`[1])2

12
ϑ[1]
ρ ϑ

[1]
E = − (`[2])2

12
ϑ[2]
ρ ϑ

[2]
E . (B.21c)

The characteristic surface B = Γx + Γt = J1 + J2 + 2E2/E0 reads719

B =
(`[1])2

12
(ϑ[1]

ρ − ϑ[1]
E )2 =

(`[2])2

12
(ϑ[2]

ρ − ϑ[2]
E )2. (B.22)720
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Appendix C. Plane Wave Method for dispersion relation in peri-721

odic laminates722

The dispersion relation in 1-D periodic multi-laminate materials can be723

computed according to the Plane Wave Method. A medium with `-sized724

unit cell Ω made of n = 1 ..N homogeneous elastic layers Ω[n] = [x[n], x[n+1]]725

of thickness `[n] = x[n+1] − x[n] = φ[n]`, densities ρ[n], local elastic moduli726

a[n], and wave speed c[n] =
√
a[n]/ρ[n] is considered. In the layer Ω[n], the727

displacement u[n](x) e−iωt writes728

u[n](x) = U[n]
1 eik[n](x−x[n]) + U[n]

2 e−ik[n](x−x[n]), (C.1)729

where U[n]
1 and U[n]

2 are complex amplitudes and k[n] = ω/c[n] is the wavenum-730

ber in the layer Ω[n]. Continuity on the displacement u[n] = u[n+1], and stress731

a[n]∂xu
[n] = a[n+1]∂xu

[n+1] at point x[n+1] yield the conditions on the complex732

amplitudes733 


U[n+1]

1

U[n+1]
2



 = T[n] ·




U[n]

1

U[n]
2



 , (C.2)734

where the transfer matrix T[n] reads735

T[n] =
1

2




(1 + z[n])eik[n]`[n]

(1− z[n])e−ik[n]`[n]

(1− z[n])eik[n]`[n]

(1 + z[n])e−ik[n]`[n]


 . (C.3)736

with impedance ratio z[n] = ρ[n]c[n]/ρ[n+1]c[n+1]. Relation (C.2) yields737




U[N+1]

1

U[N+1]
2



 = T ·




U[1]

1

U[1]
2



 , T = T[N ] · ... · T[1]. (C.4)738

57



Then, the condition of quasi-periodicity with wavenumber k is prescribed in739

layers Ω[N+1] and Ω[1],740




U[N+1]

1

U[N+1]
2



 = T ·




U[1]

1

U[1]
2



 = eik`




U[1]

1

U[1]
2



 , (C.5)741

Equation (C.5) shows that eik` = eig(T) is an eigenvalue eig(T) of 2x2-matrix742

T, which leads to the relation743

det(T)− tr(T)eik` + e2ik` = 0. (C.6)744

The wavenumber k takes the form, where ν is an integer:745

k =

(
1

`
Arg(eig(T)) + 2πν

)
− i

(
1

`
Ln(|eig(T)|)

)
. (C.7)746

Here, matrix T and its eigenvalues depend on the frequency ω, and the cal-747

culated wavenumber k can be complex-valued. In the dual approach used748

in closing criterion based in Bloch-analysis, the wavenumber k can be pre-749

scribed, and the corresponding frequencies ω are found numerically by solving750

for ω in Eq. (C.6).751
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