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The aim of this work is to compare two existing multilevel compu-
tational approaches coming from two different families of multi-
scale methods in a nonlinear solid mechanics framework. A 
locally adaptive multigrid method and a numerical homogenization 
technique are considered. Both classes of methods aim to enrich a 
global model representing the structure’s behavior with more 
sophisticated local models depicting fine localized phenomena. It 
is clearly shown that even being developed with different vocations, 
such approaches reveal several common features. The main con-
ceptual difference relying on the scale separation condition has 
finally a limited influence on the algorithmic aspects. Hence, this 
comparison enables to highlight a unified framework for multiscale 
coupling methods. 
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1 Introduction
In many engineering situations, it is crucial to understand and

precisely model certain complex phenomena with the necessity to
capture multiple length scales features. A complete resolution at
the finest details scale may rapidly become prohibitive in terms of
computational complexity. As a remedy to such issue, a common
approach in practical engineering analysis is to rely on multiscale
coupling methods permitting to reach a desired precision locally
while avoiding the necessity to solve a complete fine-scale problem.
The choice of the computational strategy to be applied is gov-

erned by the length scale ratio (l/L) between the characteristic size
of the local effects (l) and of the structural level (L). Generally,
two classes of multiscale problems can be distinguished [1]. The
first class incorporates problems with the small-scale difference
(l/L≈ 1/4, …, 1/10), cf. Fig. 1(a). Local phenomena, such as local
concentrations or singularities, discontinuous boundary conditions,
cracks, etc., belong to the macroscopic or mesoscopic scale. To deal
with this kind of problems, adaptive mesh refinement techniques

[2–4] are generally well suited. For the second class of problems,
the scale difference is much more pronounced (l/L≪ 1): fine phe-
nomena are localized at the microscopic scale (heterogeneous
media, composite materials, etc.), cf. Fig. 1(b). For such problems,
analytical [5,6] and numerical [7–9] homogenization approaches
have been developed.
We focus here on multilevel approaches lying on addressing a

problem from different levels of details, coupled in the same com-
putational scheme. Commonly, a global model aims to capture a
structure’s global behavior, while local model offers more accurate
simulation of fine phenomena. The objective of this study is to place
in the same unified multilevel framework two existing multiscale
methods, respectively, from each of both previously mentioned
classes. For the first class of multiscale methods, locally adaptive
multigrid methods are considered here, as they are efficient multi-
level mesh refinement techniques [10–12]. We focus on the local
defect correction (LDC) method [11] as it seems to be the most per-
tinent choice for solid mechanics problems [13]. For the second
class of multiscale methods, numerical homogenization approaches
are chosen. Among them, the so-called FE2 (finite element square)
approach [8,14] is considered here as it is the numerical reference,
especially when analytical methods (based for example on Hashin–
Shtrikman [15] or Mori–Tanaka [16] models) find their limits
(particular geometries, large number of material phases, complex
behavior,…).
It has to be underlined that the scope of this work is not to

develop a new strategy of using efficient multigrid solvers in a
homogenization context as made in Refs. [17–19], but to analyti-
cally compare two existing multilevel methods coming from
different multiscale classes.

2 Nonlinear Quasi-Static Problem
In this work, we place ourselves in a general fully nonlinear

framework. A mechanical quasi-static nonlinear boundary-value
problem of the following form is considered:

div σ = 0 in Ω
ε(u) = 1

2 (grad u + gradT u) in Ω
σ = F (ε, ε̇, . . . ) in Ω
u = uD on ΓD

σ · n = FN on ΓN

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1)

with Ω being an open bounded subset of RD—the domain occupied
by the solid, with D referring to the problem’s dimension. The
boundary Γ of Ω is partitioned into ΓD (Dirichlet boundary condi-
tions) and ΓN (Neumann boundary conditions), with ΓD ∪
ΓN = ∂Ω and ΓD ∩ ΓN =∅.
The constitutive law relating strain and stress tensors is given by

the third equation of Eq. (1). This relation is considered nonlinear;
hence, the problem (1) is nonlinear in terms of strain and therefore
in terms of displacement. Generally, a Newton-like algorithm is
applied to linearize the variational formulation of the problem (1).
The following variational form is then obtained at iteration k:∫

Ω
ε(v):Hk−1:ε(uk − uk−1) dΩ

=
∫
ΓN

FN v dΓN −
∫
Ω
ε(v):σk−1 dΩ

(2)

for all v kinematically admissible to zero andH being a linearization
operator. In the classical Newton method, H k−1 is chosen to be the
Jacobian matrix—the so-called constitutive tangent matrix in solid
mechanics. In quasi-Newton scheme, this tangent matrix is gener-
ally approximated by a more easily computable matrix (secant
matrix, constant matrix, etc.). The choice of the operator H only
affects the convergence order of the obtained algorithm and may
not impact the final accuracy.
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The iterative Newton-like algorithm tends to minimize the resid-
ual Rk−1 =

�
ΓN
FN v dΓN −

�
Ωε(v):σ

k−1 dΩ, where σ k−1 is updated
using the nonlinear constitutive relation at each iteration. For the
sake of simplicity, we consider here a rate-independent constitutive
relation of the following form:

σk = F (ε(uk)) (3)

We assume that the considered problem is solved using the standard
finite element method in displacement. By denoting [·], the discre-
tized quantities, and [K ] the stiffness matrix, the problem (2) can be
written as

[Kk−1][δUk] = [Fext] − [Fint,k−1(σk−1)] (4)

with [Rk−1]= [Fext]− [Fint,k−1(σ k−1)] and [δUk]= [Uk]− [Uk−1].
Numerically speaking, integration of the constitutive relation (3)
is only performed at integration points. The algorithm of the stan-
dard resolution process is summarized in Algorithm 1.

Algorithm 1 Finite element resolution algorithm for nonlinear
quasi-static problem

for k= 1 until convergence do

• Solve the equilibrium equation (4)
• Integrate the constitutive relation (3) at each integration point to obtain σk

• Update the residual: [Rk] = [Fext] − [Fint,k(σk)]
• Check the convergence on [Rk]

end

3 Hybrid FE2 and Local Defect Correction Multilevel
Algorithms
In what follows, we aim to rewrite both (see Sec. 1) multilevel

algorithms in a unified setting. For this study, we limit ourselves
to two levels (referred to as global and local); however, it is straight-
forward for both considered multiscale methods to increase the
number of levels. On the global computational domain, named
ΩM, a global homogenized model is defined. We assume that in
some region Ω̂M ⊂ ΩM , local meshΩm aiming to solve local nonlin-
ear problem(s) is added. The quantities derived on the global level
are marked as ·M, while those associated with the local level as ·m.
The two-level iterative nonlinear resolution derived from both
methods can be represented in general common way, see Fig. 2.

3.1 Adaptive Multigrid Local Defect Correction Method.
Adaptive local multigrid methods have been initially introduced
in a multilevel mesh refinement context. These techniques consist
in improving the solution’s accuracy locally near critical regions
(local concentrations or singularities, crack tip, re-entrant corner,
etc.) by adding local levels with finer meshes. Thus, they exploit

the inverse hierarchy of grids compared with standard multigrid
methods [20]. The inter-grid transfer operators are used to link
the generated levels of grids.
These adaptive multigrid approaches can also be easily exploited

in a multimodel context. It consists in adding appropriate local
models in critical zones, where the global model is no more repre-
sentative. These local models aim to precisely capture local fea-
tures, such as geometrical nonlinearities [21], local plasticity
regions [22], cracks [23], etc. In Ref. [24], the authors proposed
to adapt the local multigrid methods to treat homogenization prob-
lems via the use of appropriate homogenization-based transfer oper-
ators. These operators are supposed to ensure the coincidence of the
restricted local stiffness matrix with the homogenized global one.
We consider in this study the Local Defect Correction approach

[11] with a homogenized model defined on the global level and an
adapted fine model on the local level. This local level recovers the
critical part of the global domain (Ωm = Ω̂M), see Fig. 3(a).
In the nonlinear context, there exist two possible ways to carry

out the two embedded iterative processes (nonlinear problem’s res-
olution and LDC multigrid resolution). In this paper, we focus on a
nonlinear LDC iterative process performed with only one smooth-
ing operation done at the global level, while on the local level,
the nonlinear problem’s resolution is pushed until convergence,
cf. Fig. 2. It allows to benefit from the nonlinear local problem’s res-
olution to correct the global problem within Newton iterations. We
assume the computations at each generated level to be performed
using the standard finite element method. Hence, we introduce in
Algorithm 2, a two-scale LDC method for nonlinear solid mechan-
ics. To the best of our knowledge, only Ref. [25] has provided an
application of LDC method for nonlinear solid mechanics. It is
the first time here that LDC algorithm is extended in a solid mechan-
ics multimodel context.
The underlying idea of the LDCmethod is to make the global dis-

placement tend toward the restricted local one (ukM → ũkM) in a weak
sense via the residual on Ω̂M . Indeed, the LDC approach aims to
define, based on local computations, a so-called defect which is
added to the global problem’s right-hand side. For nonlinear solid

(a) (b)

Fig. 1 Two classes of multiscale problems: problems involving effects localized (a) at the
macroscopic scale (l≤L) and (b) at the microscopic scale (l≪L)

Fig. 2 Generic two-level iterative process for nonlinear prob-
lems multiscale resolution
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mechanics problems, this defect is calculated in terms of a corrected
stress associated to the restricted local displacement (Eq. (7)).
Finally, the algorithm returns to a minimization, in the region of

interest Ω̂M , of the difference between the internal forces computed,
respectively, via σ̃kM and via σkM . The internal forces to be equili-
brated are now [Fint,k

M

(
σ̃kM

)
] which implicitly take into account the

external forces via the local problem’s boundary conditions. Note
that this corrected stress σ̃kM has only an algorithmic meaning.

Algorithm 2 Two-scale Local Defect Correction algorithm for
nonlinear quasi-static problem

for k= 1 until convergence do

• Solve the global equilibrium equation (4) in ΩM

• In the region of interest Ω̂M : use the LDC model
○ Global-to-local information transfer: prolongation step. Impose

boundary conditions on the local mesh boundaries ∂Ωm (cf. Fig. 3(a)):
boundary conditions of the continuous problem on ∂Ωm ∩ ∂ΩM

and imposed displacement derived by prolongating the global
displacement on the fictive boundary Γ f := ∂Ωm \ (∂Ωm ∩ ∂ΩM):

uΓ f = Pm
M(ukM) (5)

with Pm
M a prolongation operator (typically interpolation operator)

○ Local problem: nonlinear problem’s full resolution on Ωm with
Algorithm 1 using the local constitutive model

○ Local-to-global information transfer: restriction step. Compute in Ω̂M ,
the restricted local displacement:

ũkM = RM
m (ukm) (6)

with RM
m (≠ (Pm

M)T ) a restriction operator (interpolation or injection
operator) and the associated global stress:

σ̃kM = FM(ε(ũkM)) (7)

• In ΩM : integration of the global constitutive law (Eq. (3)) to find σkM
• Update the global residual:

[Rk
M] =

[
Fint,k
M

(
σ̃kM

)]− [
Fint,k
M

(
σkM

)]
in Ω̂M[

Fext
M

]− [
Fint,k
M

(
σkM

)]
in ΩM \ Ω̂M

{
(8)

• Check the convergence on [Rk
M]

end

3.2 Numerical Homogenization Hybrid FE2Method. Histo-
rically, the homogenization methods have been widely used to treat
the problems with the large-scale separation and thus have to verify
two strong assumptions, cf. Refs. [1,5]. The first one states the
scale separation in terms of dimensions (l≪ L) which allows to

consider the local averaged behavior to be representative of the
global structure’s behavior at a given point. The second hypothesis
consists in assuming the homogeneity of the global strain near a
macroscopic point of interest, which enables to prescribe the bound-
ary conditions on the local level. This second hypothesis may limit
the application of homogenization techniques in the presence of
localized phenomena (crack, stress concentration, strong tempera-
ture gradient, etc.).
In contrast to the analytical homogenization methods [5,15,16],

where the microscopic behavior is obtained based on analytical for-
mulations, the scope of the numerical homogenization approaches
lies on the possibility to obtain the material’s microstructural beha-
vior on-the-fly by solving numerically the micro-scale problems. It
permits to replace the integration of the global constitutive law by
computations performed at the microscopic scale. It is of particular
interest when the effective behavior is difficult to predict a priori.
Local micro-scale problems are formulated on representative ele-
mentary volumes (REV) characteristic of the microstructure.
These local domains are attached to macroscopic integration
points, see Fig. 3(b). The scale transition is thus constructed on
point-to-volume basis. Note, that the characteristic size of the
REV is very small when compared with the size of the region of
interest; moreover, one defines a unique discretization of the REV
which is used for all local problems resolutions.
We consider in this study the numerical homogenization FE2

technique [8,14] where the problems on both scales are recursively
solved with the finite element method, cf. Fig. 2. Based on the
homogenization theory, the FE2 technique directly defines the
global stress as the average of the computed microscopic stress
on the associated REV. The FE2 scheme permits to accurately
compute on-the-fly the homogenized global stress as well as the
complete local microstructural behavior. This approach can also
be used to correct the global linearization operator H k−1 (via the
effective tangent matrix obtained from the microscale computa-
tions, cf. for example, Refs. [26,27]). However, the evaluation of
the effective tangent matrix requires to perform additional compu-
tations on the REV. This option, being computationally expensive,
is not considered here. It results in limiting the convergence order of
the Newton algorithm: the linear convergence is thus supposed.
In the case of real industrial applications, the numerical homog-

enization strategies, even being naturally parallelizable, are accom-
panied with a significant computational cost (large number of local
micro-scale problems to be solved). Hence, we focus here on the
hybrid FE2 technique [28] consisting in performing micro-scale
computations only in region of interest, cf. Algorithm 3. It has to
be noticed that in the literature complementary strategies aiming
to reduce the microscale computational cost exist. Let us mention
for example the multigrid preconditioning techniques (using
the homogenized model) [17–19] or the model order reduction
approaches (NTFA) [29].

(a) (b)

Fig. 3 Global and local levels with boundary conditions for the (a) LDC and (b) hybrid FE2 methods
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Algorithm 3 Hybrid FE2 algorithm for nonlinear quasi-static
problem

for k= 1 until convergence do

• Solve the global equilibrium equation (4) in ΩM

• In the region of interest Ω̂M at each integration point: use the FE2 model
○ Global-to-local information transfer: localization step. Impose the

boundary conditions on the local mesh boundaries ∂Ωm (cf. Fig. 3(b))
derived from the global homogeneous strain (HS) tensor:
HSBC (homogeneous strain boundary conditions): imposed displa-
cement for general REV (with xm being a point on ∂Ωm):

ukm(xm) = εkMxm on ∂Ωm (9)

or PBC (periodicity boundary condition) for periodic REV (with wk
m

being a periodic displacement on ∂Ωm):

ukm(xm) = εkMxm + wk
m(xm) on ∂Ωm (10)

○ Local problems: nonlinear problems full resolution on Ωm with
Algorithm 1 using the local heterogeneous constitutive model

○ Local-to-global information transfer: homogenization step. Compute
the global stress tensor at the considered integration point by averaging
the computed local stress σkm over the REV Ωm:

σ̃kM = 〈σkm〉Ωm
= 1

|μ(Ωm)|
∫
Ωm

σkm dΩm (11)

with μ(Ωm) the measure of the REV
• In ΩM \ Ω̂M : integration of the global constitutive law (Eq. (3)) to find σkM
• Update the global residual:

[Rk
M] =

[Fext
M ] − [Fint,k

M

(
σ̃kM

)] in Ω̂M

[Fext
M ] − [Fint,k

M

(
σkM

)] in ΩM \ Ω̂M

{
(12)

• Check the convergence on [Rk
M]

end

It has to be noticed that in the region of interest Ω̂M , the compu-
tation of the global stress σkM is avoided. It is substituted with the
averaged local stress σ̃kM in the expression of the internal forces
[Fint,k

M

(
σ̃kM

)
]. Therefore, the FE2 algorithm aims to minimize the dif-

ference between the external forces and internal forces involving
corrected stress.

4 Comparison of the Hybrid FE2 and Local Defect
Correction Methods
FE2 and LDC methods both aim to solve a problem on several

levels with a complete global level representing the structure’s
behavior and finer local levels added to depict more precisely
local phenomena. Both computational schemes exploit an iterative
multilevel resolution aiming to benefit from local problems resolu-
tion to correct on-the-fly the global problem. The multiscale cou-
pling algorithm is carried out in a similar way and can be
generalized by Algorithm 4.

Algorithm 4 Unified multiscale coupling algorithm for nonlin-
ear quasi-static problem

for k= 1 until convergence do

• Solve the equilibrium equation (4)
• In the region of interest: use local model

○ Global-to-local information transfer. Impose the Dirichlet-like
boundary conditions on the local mesh boundaries ∂Ωm derived from
the global problem’s solution (displacement or associated strain);

○ Local problem(s): nonlinear problem(s) full resolution on Ωm with
Algorithm 1 (can be done with any discretization method);

○ Local-to-global information transfer.

• Integration of the global constitutive law (Eq. (3)) where needed
• Update the global residual:

○ based on the fine scale computations in the region of interest;
○ via the standard procedure elsewhere (see Algorithm 1)

• Check the convergence.

end

Such multilevel resolution algorithm can be seen as a unified for-
malism which could be used to interpret a wide range of multiscale
coupling methods (e.g., Refs. [7,24]).
The main algorithmic difference between the compared FE2 and

LDC approaches is summarized in the information transfer between
levels, which is carried out in terms of the primal variable (displace-
ment) for the LDC approach, or the dual variable (strain/stress) for
the FE2 technique. It implies a slightly different evaluation in the
boundary values and in the global updated residual. For this
latter, in the LDC method, the external forces are replaced by an
evaluation of the global internal forces associated with the restricted
local displacement through the associated global stress (that has
only an algorithmic meaning). For the FE2 approach, the internal
forces are substituted by the ones derived from the homogenized
stress (averaged local stress).
The LDC method can thus be seen as a meso-homogenization

approach, as features it aims to represent are localized at the
global or intermediate level and therefore local levels generally
recover a part of the structure. The main differences between the
methods are summarized hereafter:

• LDC method:
○ needs the integration of the global constitutive law on the
whole structural level;

○ does not provide the corrected global stress: necessity to
store local levels if one is concerned with local stress state;

○ in the presence of localized effect, appropriate boundary
conditions are imposed to the local problem;

○ small-scale separation→many levels in order to achieve the
microstructural scale.

• FE2 method:
○ limited in the presence of localized effects due to the scale
separation hypothesis (cf. boundary conditions on REV);

○ relevant exclusively in the case of large-scale separation;
○ natively represents the microstructure.

As it has been noticed, differences are limited between the two
considered classes of multiscale methods. Moreover, a choice
sometimes considered in the literature [30] to merge all local FE2

problems in one computation makes the local level of the FE2

method even closer to the one defined with the LDCmethod. There-
fore, it would be interesting to explore the intersection between
these two classes of multiscale methods: what is the maximal rele-
vant size of REV and what is the level of details accessible with the
LDC approach? Would we obtain the same solutions, and compara-
ble computational costs, if the same level of details could be repre-
sented with both methods?

5 Conclusions
The present analysis has enabled to place in a unified framework

two multiscale methods based on multilevel coupling but developed
to handle different types of length scale separation. Being generic,
the proposed formalism is not limited to the two compared methods,
but can be used to represent several multiscale coupling methods. It
allows to clearly reveal strong conceptual and algorithmic similari-
ties. Hence, the locally adaptive multigrid approach can be seen as a
meso-homogenization method working on the primal variable
(instead of the dual variable for classical homogenization tech-
niques), suitable when the large scale separation argument is no
more valid.
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