
HAL Id: hal-02909276
https://hal.science/hal-02909276v1

Submitted on 3 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Effective predictions of heterogeneous flexoelectric
multilayered composite with generalized periodicity

D. Guinovart-Sanjuán, K. Vajravelu, R. Rodríguez-Ramos, R. Guinovart-Díaz,
J. Bravo-Castillero, Frédéric Lebon, F.J. Sabina, J. Merodio

To cite this version:
D. Guinovart-Sanjuán, K. Vajravelu, R. Rodríguez-Ramos, R. Guinovart-Díaz, J. Bravo-Castillero,
et al.. Effective predictions of heterogeneous flexoelectric multilayered composite with gen-
eralized periodicity. International Journal of Mechanical Sciences, 2020, 181, pp.105755.
�10.1016/j.ijmecsci.2020.105755�. �hal-02909276�

https://hal.science/hal-02909276v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Effective predictions of heterogeneous flexoelectric multilayered composite

with generalized periodicity

D. Guinovart-Sanjuán 

a , K. Vajravelu 

a , R. Rodríguez-Ramos b , ∗ , R. Guinovart-Díaz b ,

J. Bravo-Castillero 

d , F. Lebon 

c , F.J. Sabina 

d , J. Merodio 

e 

a Department of Mathematics, University of Central Florida, 4393 Andromeda Loop N, Orlando, FL 32816, USA
b Departamento de Matemática, Universidad de La Habana, San Lazaro y L, La Habana, 10400, Cuba
c Aix-Marseille University, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS 40006, Marseille Cedex 13 13453, France
d Instituto de Investigaciones en Matemááticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Delegación Álvaro Obregón, Apartado Postal
20-726, CDMX 01000, México
e Departamento de Mecánica de los Medios Continuos y T. Estructuras, E.T.S. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C.P. 28040 Madrid,
España

In this work, the general mathematical statements for flexoelectric heterogeneous equilibrium boundary value

problems are reported. A methodology to find the local problems and the effective properties of flexoelectric

composites with generalized periodicity is presented, using the two-scales asymptotic homogenization method.

The statement of the homogenized boundary values problem is given. A procedure to solve the local problems

of stratified multilayered composites with complex geometry and perfect contact at the interface is proposed.

Consequently, the analytical expressions of the effective coefficients are obtained. The piezoelectric limit case

for rectangular bi-laminated composites is validated. Finally, numerical analysis to illustrate the behavior of the

effective properties for rectangular and wavy flexoelectric bi-layered structures are shown.
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. Introduction

In recent years, there has been aincreased interest in the study of the

iezoelectric and flexoelectric properties of the materials. Many authors

ave highlighted the main difference between these two classes of phe-

omena [1] . Piezoelectricity and flexoelectricity are linear electrome-

hanical coupling. While piezoelectric effect describes the generation

f electric polarization under homogeneous deformation (uniform me-

hanical strain) [2] , flexoelectric effect refers to the electric polarization

nder strain gradient [3,4] . 

Piezoelectric composites are widely used in energy harvesting,

coustic sensors and the development of actuators and transducers able

o operate at elevated temperatures [5,6] . Flexoelectricity has been ob-

erved in several systems such as isotropic elastomers, liquid crystal, and

rystal plates [7] . The flexoelectric phenomenon in biological materials

uch as bones and bio-membranes [8,9] , has been studied by many au-

hors, due to the applications in biomaterials engineering. For example,

he flexoelectric behavior of the bones is essential for bone’s self-repair

nd remodeling properties [10] . According to the authors, the flexoelec-

ricity has a central role in the crack-healing process of the bones. On

he other hand, the flexoelectric materials like BaTiO 3 have been used
∗ Corresponding author. 
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1

o fabricate nanogenerators that harvest energy from light, mechanical

ibration and heat more efficiently [11] . In [12] , other applications of

exoelectricity are presented, like the use of flexoelectric materials in

he fabrication of nano-sized devices for sensors and actuators. 

Due to the multiple combinations of materials, the composite struc-

ures with elastic, piezoelectric or flexoelectric components are widely

tudied. This work presents a method to study flexoelectric composite

ith generalized periodicity, taking the equilibrium equations reported

n [13] as the object of study. In [13] , the authors deduced the equi-

ibrium problem from the electric Gibbs energy density. The flexoelec-

ric part of the equation is characterize by a fourth order tensor 𝜇𝜇𝜇. It is

entioned that 𝜇𝜇𝜇 tensor is a combination of the direct and inverse flex-

electric tensors, which is studied in [1] . Many authors have brought

ifferent approaches to solve or approximate the solutions of the equi-

ibrium equations. One of the most common methods is to find the ho-

ogenized problem using the two scales asymptotic homogenization

ethod (AHM). In [14–16] , the authors offer a detailed description of

he steps to find effective properties of elastic/piezoelectric rectangular

omposites applying AHM. On the other hand, in [17] , a methodology

o find the effective properties for the case of multilayered materials is

resented. The concept of generalized periodicity used in [17] consid-
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Fig. 1. Flexoelectric multilayered composite: a) rectangular geometry at the

periodic cell and b) with complex geometrical shape microstructure.
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rs that the properties of the materials are periodic with respect to a

tratification function, 𝜚 𝜚 𝜚 ( 𝐱) , that describes the geometry of the layers.

he results described in [17] are extended in [18] to elastic curvilinear

tructures with perfect and imperfect contacts at the interface. Now, the

resent work applies the concept of structure with generalized period-

city to flexoelectric composites and describes a procedure to find the

ffective coefficients from the local problems that arise from AHM. Since

he flexoelectric effect is considered, the results shown in [16,17] and

19] are particular cases of the present work. 

It is important to highlight that the asymptotic homogenization

ethod is rigorously justified [20] . The averaging method is efficient for

nvestigating macroscopic and microscopic properties of periodic struc-

ures, see [21] . One of the main advantages of the described technique is

he possibility of determining the effective properties of a large number

f periodic composites. In the case of flexoelectric structures, the ana-

ytical expressions of local problems and the effective coefficients can

e derived. The equivalent homogenized equilibrium problem with non-

apidly oscillating coefficients for a flexoelectric composite is obtained

rom the effective properties. In this manuscript, the analytical solutions

f the local problems for flexoelectric materials with generalized peri-

dicity are presented for the particular case of stratified composite, as a

eneralization of the procedure described in [17] which is for the case

f elastic composites. 

In Section 2 , the general equations of the equilibrium problem for a

exoelectric composite with generalized periodicity are reported. Some

emarks about the matrix representation of the constitutive relations and

he flexoelectric tensor are given in Appendix A . In Section 3 , the proce-

ure of the two-scales asymptotic homogenization method is presented.

he displacements and electrical fields are written in terms of the ex-

ansion. The consequences for different powers of the small parameter

re considered. The mathematical statement of the homogenized flexo-

lectric equilibrium problem is given. Consequently, in Section 3.1 the

eneral expressions of the local problems for a flexoelectric compos-

te are yielded. The details are specified in Appendix B . The conditions

o guarantee the existence and uniqueness of the solutions of the local

roblems are mentioned in Appendix C . An algorithm to obtain the ef-

ective properties is reported in Section 3.2 . Finally, in Section 4 some

umerical examples are illustrated. The procedure described in the pre-

ious section is validated with the results reported in [22] , considering

 piezocomposite as a particular case of a flexoelectric heterogeneous

tructure. On the other hand, two numerical cases of stratified flexo-

lectric composites are studied. The first example illustrates the effec-

ive properties of a bi-materials rectangular laminate composite where

he constituents are flexoelectric materials with cubic symmetry. The

econd example deals with the computation of the macroscopic charac-

eristics for a wavy periodic bi-laminated medium with the same ma-

erial parameters, considering the dependence of the coefficients with

espect to the stratification function. The solution of the local problems

or stratified structures is introduced in the Appendix D . 

. Equilibrium equation

Let Ω ⊂ ℝ 

3 be a three-dimensional open connected bounded domain

ith an infinitely smooth boundary 𝜕Ω. The equilibrium problem on a

exoelectric structure Ω is given by the equation 

 𝑗 𝜎𝑖𝑗 + 𝑓 𝑖 = 0 , in Ω, (1)

 𝑖 𝐷 𝑖 = 0 , in Ω, (2)

nd boundary conditions 

 𝑖 = 𝑢0 𝑖 , on 𝜕Ω𝑢 , 𝑡 𝑖 = 𝑡 0 𝑖 , on 𝜕Ω𝑡 , (3)

 𝑗 𝑢 𝑖 𝑛 𝑗 = 𝑠 0 𝑖 , on 𝜕Ω𝑠 , 𝜇𝑙𝑖𝑗𝑘 𝐸 𝑙 𝑛 𝑖 𝑛 𝑗 = 𝑟 0 
𝑘 
, on 𝜕Ω𝑟 , (4)

= 𝜙0 , on 𝜕Ω𝜙, 𝐷 𝑖 𝑛 𝑖 = − 𝜏, on 𝜕Ω𝜏 , (5)
2

here 𝜕 𝑘 (∙) = 𝜕 (∙)∕ 𝜕 𝑥 𝑘 ; 𝜎𝜎𝜎 is the general stress tensor; f is the exter-

al forces vector; D is the electric displacement vector; u, u 

0 are

he displacement and prescribed displacement vectors, respectively;

 is the normal vector to the corresponding surface; E is the elec-

ric field vector; t, t 0 are the traction and prescribed traction vec-

ors, respectively; s 0 is the prescribed normal derivative of the dis-

lacement vector and 𝜙, 𝜙0 , r 0 , 𝜏 are the electrical potential, the pre-

cribed electrical potential, prescribed higher-order traction and surface

harge, respectively; where 𝜕Ω ≡ 𝜕Ωu ∪ 𝜕Ωt ≡ 𝜕Ωs ∪ 𝜕Ωr ≡ 𝜕Ω𝜙 ∪ 𝜕Ω𝜏 and

≡ 𝜕 Ωu ∩ 𝜕 Ωt ≡ 𝜕 Ωs ∩ 𝜕 Ωr ≡ 𝜕 Ω𝜙 ∩ 𝜕 Ω𝜏 . 
The constitutive relationships between stress 𝝈, electrical displace-

ent D , strain 𝜖𝜖𝜖 and electrical field E have the following form written

y components 

𝑖𝑗 = 𝐶 𝑖𝑗𝑘𝑙 𝜖𝑘𝑙 − 𝑒 𝑘𝑖𝑗 𝐸 𝑘 + 𝜇𝑙𝑖𝑗𝑘 𝜕 𝑘 𝐸 𝑙 , (6)

 𝑖 = 𝑒 𝑖𝑘𝑙 𝜖𝑘𝑙 + 𝜇𝑖𝑗𝑘𝑙 𝜕 𝑙 𝜖𝑗𝑘 + 𝜅𝑖𝑗 𝐸 𝑗 , (7)

here C, e , 𝜅𝜅𝜅 and 𝜇𝜇𝜇 denote the stiffness, piezoelectric, permittivity and

exoelectric tensors, respectively. The matrix representation of the con-

titutive relations (6) –(7) and some explanations about the flexoelectric

ensor are reported in Appendix A . For small deformations, the strain

and the electrical field E relate to the displacement tensor u and the

lectrical potential 𝜙 as 

𝑖𝑗 = 

1 
2 
(
𝜕 𝑗 𝑢 𝑖 + 𝜕 𝑖 𝑢 𝑗 

)
, 𝐸 𝑗 = − 𝜕 𝑗 𝜙, (8)

he mathematical statement for a flexoelectric media is derived substi-

uting (6) –(8) into (1) –(2) under boundary conditions (3) –(5) . 

The mechanical and electrical properties of a curvilinear flexoelec-

ric periodic heterogeneous structure, C 

𝜀 ≡ C 

𝜀 ( x, y ), e 𝜀 ≡ e 𝜀 ( x, y ),
𝜀 ≡ 𝜅𝜅𝜅𝜀 ( 𝐱 , 𝐲 ) , and 𝜇𝜇𝜇𝜀 ≡ 𝜇𝜇𝜇𝜀 ( 𝐱 , 𝐲 ) are regular functions with respect the

ariable 𝐱 ∈ ℝ and periodic with respect the variable 𝐲 = 𝜚 𝜚 𝜚 ( 𝐱)∕ 𝜀 ∈ 𝐘 ,

here 𝜚 𝜚 𝜚 ( 𝐱) is the surface that describes the geometry, 0 < 𝜀 < < 1

s a very small parameter that characterizes the heterogeneity of the

tructure and 𝐘 ⊂ ℝ 

3 is called the periodic cell. As an example, a bi-

aterials multilayered flexoelectric composite with generalized period-

city is shown in Fig. 1 b. The geometry of the periodic cell Y is described

y the function 𝜚 𝜚 𝜚 ( 𝐱) . The small parameter 𝜀 characterizes the periodic-

ty of the layers. The variable 𝐲 = 𝜚 𝜚 𝜚 ( 𝐱)∕ 𝜀 has a wavy behavior due to the

resence of 𝜚 𝜚 𝜚 ( 𝐱) . In this particular case, the wavy is changing along y 2 ,
he layers are transversal to the y 3 axis, while the properties are constant

long the y axis. 
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The material properties satisfy the usual symmetry conditions given

y 

 

𝜀 
𝑖𝑗𝑘𝑙 

= 𝐶 𝜀 
𝑗𝑖𝑘𝑙 

= 𝐶 𝜀 
𝑖𝑗𝑙𝑘 

= 𝐶 𝜀 
𝑘𝑙𝑖𝑗 
, 𝑒 𝜀 

𝑖𝑗𝑘 
= 𝑒 𝜀 

𝑖𝑘𝑗 
, 𝜅𝜀 𝑖𝑗 = 𝜅𝜀 𝑗𝑖 . (9)

ubstituting the formulas (6) –(8) into the Eqs. (1) –(5) , based on the

low x variable and rapid y variable, the heterogeneous flexoelectric

quilibrium problem for a composite with perfect contact at the inter-

ace, can be written, using the total derivative operator 𝜕 𝑗 (∙) = 𝜕(∙) ∕ 𝜕𝑥 𝑗 +
𝜚 𝑠,𝑗 ∕ 𝜀 

)
𝜕(∙) ∕ 𝜕𝑦 𝑠 as ( 

𝜚 𝑚,𝑗 

𝜀
𝐶 𝜀 
𝑖𝑗𝑘𝑙 |𝑚 + 𝐶 𝜀 

𝑖𝑗𝑘𝑙 ,𝑗

) 
𝑢 𝜀 
𝑘,𝑙 

+ 𝐶 𝜀 
𝑖𝑗𝑘𝑙 
𝑢 𝜀 
𝑘,𝑙𝑗 

+ 

( 
𝜚 𝑙,𝑗 

𝜀
𝑒 𝜀 
𝑘𝑖𝑗 |𝑙 + 𝑒 𝜀 

𝑘𝑖𝑗 ,𝑗

) 
𝜙𝜀 
,𝑘 

+ 𝑒 𝜀 
𝑘𝑖𝑗 
𝜙𝜀
,𝑘𝑗 

− 

( 
𝜚 𝑚,𝑗 

𝜀
𝜇𝜀 
𝑙𝑖𝑗𝑘 |𝑚 + 𝜇𝜀 

𝑙𝑖𝑗𝑘 ,𝑗

) 
𝜙𝜀 
,𝑙𝑘 

− 𝜇𝜀 
𝑙𝑖𝑗𝑘 
𝜙𝜀 
,𝑙𝑘𝑗 

+ 𝑓 𝑖 = 0 , (10)

( 
𝜚 𝑠,𝑖 

𝜀
𝑒 𝜀 
𝑖𝑘𝑙 |𝑠 + 𝑒 𝜀 

𝑖𝑘𝑙 ,𝑖

) 
𝑢 𝜀 
𝑘,𝑙 

+ 𝑒 𝜀 
𝑖𝑘𝑙 
𝑢 𝜀 
𝑘,𝑙𝑖 

+ 

( 
𝜚 𝑠,𝑖 

𝜀
𝜇𝜀 
𝑖𝑗𝑘𝑙 |𝑠 + 𝜇𝜀 

𝑖𝑗𝑘𝑙 ,𝑖

) 
𝑢 𝜀 
𝑗,𝑘𝑙

+ 𝜇𝜀 
𝑖𝑗𝑘𝑙 
𝑢 𝜀 
𝑗,𝑘𝑙𝑖 

− 

( 
𝜚 𝑠,𝑖 

𝜀
𝜅𝜀 𝑖𝑗 |𝑠 + 𝜅𝜀 𝑖𝑗 ,𝑖

) 
𝜙𝜀 ,𝑗 − 𝜅𝜀 𝑖𝑗 𝜙

𝜀 
,𝑗𝑖 = 0 , (11)

here (∙) |𝑠 = 𝜕 (∙)∕ 𝜕 𝑦 𝑠 , (∙) ,𝑠 = 𝜕 (∙)∕ 𝜕 𝑥 𝑠 , with boundary conditions 

 

𝜀 
𝑖 = 𝑢 0 𝑖 , on 𝜕Ω𝑢 , 𝑡 𝜀 𝑖 = 𝑡 0 𝑖 , on 𝜕Ω𝑡 , (12)

 

𝜀 
𝑖,𝑗 𝑛 𝑗 = 𝑠 0 𝑖 , on 𝜕Ω𝑠 , 𝑛 𝑖 𝑛 𝑗 𝜇

𝜀 
𝑙𝑖𝑗𝑘 
𝐸 𝜀 
𝑙 
= 𝑟 0 𝑖 , on 𝜕Ω𝑟 , (13)

𝜀 = 𝜙0 , on 𝜕Ω𝜙, 𝐷 

𝜀 
𝑖 𝑛 𝑖 = − 𝜏, on 𝜕Ω𝜏 , (14)

nd continuity conditions at interface [
𝑢 𝜀 𝑖 
]]

= 0 , 
[[
𝜙𝜀 
]]

= 0 , 
[[
𝜎𝜀 ij 𝑛 𝑗 

]]
= 0 , 

[[
𝐷 

𝜀 
𝑗 𝑛 𝑗 

]]
= 0 , on Γ, (15)

here Γ is the interface surface between two different components. The

q. (15) implies that the stress tensor 𝝈, the displacement vector u , the

lectrical displacement vector D and the electric potential 𝜙 are consid-

red continuous functions at the interface (perfect contact condition). 

The problem (10) –(14) for the particular case when 𝜚 𝑖,𝑗 = 𝛿𝑖𝑗 , is re-

orted in [13] . On the other hand, the equilibrium problem (10) –(14) is

 generalization of Eq. (6)–(7) obtained in [23] for the case of an elastic

tructure. 

. Asymptotic homogenization method

The basic idea is to expand the fields in term of the aforementioned

mall parameter. Therefore, the asymptotic expansions for the functions
𝜀 
𝑖𝑗 
, 𝐷 

𝜀 
𝑖 
, 𝑢 𝜀 
𝑘 

and 𝜙𝜀 are given by 

 

𝜀 
𝑘 
( 𝐱 , 𝐲 ) = 𝑢 

(0) 
𝑘 
( 𝐱 ) + 𝜀𝑢 

(1) 
𝑘 
( 𝐱 , 𝐲 ) + 𝜀 2 𝑢 (2) 

𝑘 
( 𝐱 , 𝐲 ) + …, (16)

𝜀 ( 𝐱 , 𝐲 ) = 𝜙(0) ( 𝐱 ) + 𝜀 𝜙(1) ( 𝐱 , 𝐲 ) + 𝜀 2 𝜙(2) ( 𝐱 , 𝐲 ) + …, (17)

𝜀 
𝑖𝑗 ( 𝐱 , 𝐲 ) = 𝜎

(0) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + 𝜀𝜎

(1) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + 𝜀 2 𝜎(2) 

𝑖𝑗 
( 𝐱 , 𝐲 ) + …, (18)

 

𝜀 
𝑖 ( 𝐱 , 𝐲 ) = 𝐷 

(0) 
𝑖 
( 𝐱 , 𝐲 ) + 𝜀𝐷 

(1) 
𝑖 
( 𝐱 , 𝐲 ) + 𝜀 2 𝐷 

(2) 
𝑖 
( 𝐱 , 𝐲 ) + …. (19)

he fact that 𝑢 
(0) 
𝑘 

and 𝜙(0) depend only on the macrovariable x can be

roved by the same procedure presented in Section 5 of the Introduction

f [21] , see Eq. (3)–(5). 

From now on, for simplicity the superscript “𝜀 ” on the magnitudes is

mitted. The asymptotic expansions (16) - (17) are substituted into con-

titutive relationships (6) –(8) , see Appendix B , Eqs. (B.1) –(B.2) . In order

o avoid singularities when 𝜀 → 0, the coefficients for 𝜀 −1 are equated

o zero 

𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙
(1) |𝑟𝑠 = 0 , 𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

(1) 
𝑘 |𝑟𝑠 = 0 . (20)
a  

3

onsequently, the following recurrent formulas for 𝜎
( 𝑛 ) 
𝑖𝑗

and 𝐷 

( 𝑛 ) 
𝑖 

are de-

ived from (B.3) –(B.4) , for 𝜀 n , n ≥ 0 

( 𝑛 ) 
ij 

= 𝐶 ijkl 𝑢 
( 𝑛 )
𝑘,𝑙 

+ 𝐶 ijkl 𝜚 𝑟,𝑙 𝑢 
( 𝑛 +1 )
𝑘 |𝑟 + 𝑒 kij 𝜙

( 𝑛 )
,𝑗 

+ 𝑒 kij 𝜚 𝑟,𝑘 𝜙
( 𝑛 +1 )|𝑟 

− 𝜇lijk 𝜙
( 𝑛 ) 
, lk 

− 

(
𝜇kijl + 𝜇lijk 

)
𝜚 𝑟,𝑙 𝜙

( 𝑛 +1 ) |𝑟,𝑘 − 𝜇lijk 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙
( 𝑛 +2 )|rs , (21)

( 𝑛 ) 
𝑖

= 𝑒 ikl 𝑢
( 𝑛 )
𝑘,𝑙

+ 𝑒 ikl 𝜚 𝑟,𝑙 𝑢 
( 𝑛 +1 )
𝑘 |𝑟 − 𝜅ij 𝜙

( 𝑛 )
,𝑗 

− 𝜅ij 𝜚 𝑠,𝑗 𝜙
( 𝑛 +1 )|𝑠 

+ 𝜇ikjl 𝑢 
( 𝑛 ) 
𝑘, lj 

+ 

(
𝜇iklj + 𝜇ikjl 

)
𝜚 𝑟,𝑙 𝑢 

( 𝑛 +1 ) 
𝑘,𝑗|𝑟 + 𝜇ikjl 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

( 𝑛 +2 )
𝑘 |rs . (22)

quating to zero the contributions of the terms 𝜀 −1 and 𝜀 0 derived from

B.5) –(B.6) , the following equations are obtained 

 𝜀 −1 ) ∶ 𝜚 𝑘,𝑗 𝜎
(0) 
𝑖𝑗|𝑘 = 0 , 𝜚 𝑘,𝑖 𝐷 

(0) 
𝑖 |𝑘 = 0 , (23)

 𝜀 0 ) ∶ 𝜎(0)
𝑖𝑗,𝑗

+ 𝜚 𝑘,𝑗 𝜎
(1) 
𝑖𝑗|𝑘 + 𝑓 𝑖 = 0 , 𝐷 

(0) 
𝑖,𝑖

+ 𝜚 𝑘,𝑖 𝐷 

(1) 
𝑖 |𝑘 = 0 . (24)

t is known that for the AHM, the first order approximation gives a good

pproach for the solution of the heterogeneous equilibrium problem (1) –

2) and it has an accuracy of order 𝜀 1/2 , see Theorem 6.3 in [20] and

hapter 6 in [21] . Hence, the higher order of 𝜀 are neglected. The ho-

ogenized equations of a flexoelectric medium can be obtained apply-

ng the average operator ⟨∙⟩ = 1∕ |𝐘 | ∫𝐘 (∙) 𝑑𝐲 to the Eq. (24) and consid-

ring the periodicity of 𝜎
(1) 
𝑖𝑗 

and 𝐷 

(1) 
𝑖 

with respect the variable y . Thus,

he homogenized problem takes the form, 

̂ 𝑖𝑗,𝑗 + 𝑓 𝑖 = 0 , (25)

̂
 𝑖,𝑖 = 0 , (26)

here �̂�𝑖𝑗 = 

⟨ 
𝜎
(0) 
𝑖𝑗

⟩ 
and �̂� 𝑖 = 

⟨ 
𝐷

(0) 
𝑖

⟩ 
. It is known that the solution of the

eterogeneous equilibrium problem (10) –(14) approaches to the solu-

ion of the homogeneous problem as 𝜀 → 0, using the two-scales asymp-

otic homogenization method. 

To find an expression for 𝜎
(0) 
𝑖𝑗 

and 𝐷 

(0) 
𝑖 
, the system of partial differen-

ial Eq. (23) must be solved. Therefore, the expressions of 𝜎
(0) 
𝑖𝑗

and 𝐷 

(0) 
𝑖 

erived from (21) –(22) for 𝑛 = 0 , are substituted into (23) , 

𝜚 𝑡,𝑗 

(
𝐶 𝑖𝑗𝑘𝑙 𝑢 

(0) 
𝑘,𝑙

+ 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(1)
𝑘 |𝑟 + 𝑒 𝑗𝑖𝑘 𝜙

(0)
,𝑘 

+ 𝑒 𝑗𝑖𝑘 𝜚 𝑟,𝑘 𝜙
(1)|𝑟 

− 𝜇𝑙𝑖𝑗𝑘 𝜙
(0) 
,𝑙𝑘 

− 

(
𝜇𝑘𝑖𝑗𝑙 + 𝜇𝑙𝑖𝑗𝑘 

)
𝜚 𝑟,𝑙 𝜙

(1) |𝑟,𝑘 − 𝜇𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙
(2)|𝑟𝑠
)
|𝑡 = 0 , (27)

𝜚 𝑡,𝑗 

(
𝑒 𝑖𝑘𝑙 𝑢 

(0) 
𝑘,𝑙

+ 𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(1)
𝑘 |𝑟 − 𝜅𝑖𝑗 𝜙

(0)
,𝑗 

− 𝜅𝑖𝑗 𝜚 𝑠,𝑗 𝜙
(1)|𝑠 

+ 𝜇𝑖𝑘𝑗𝑙 𝑢 
(0)
𝑘,𝑙𝑗

+ ( 𝜇𝑖𝑘𝑙𝑗 + 𝜇𝑖𝑘𝑗𝑙 ) 𝜚 𝑟,𝑙 𝑢 
(1)
𝑘,𝑗|𝑟 + 𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

(2)
𝑘 |𝑟𝑠
)
|𝑡 = 0 . (28)

ue to the linearity of the system (27) –(28) and assuming the regularity

f the components and the smoothness in variation of the coefficients,

he following decomposition of the functions 𝑢 
( 𝑛 ) 
𝑘

and 𝜙( n ) , n ≥ 1, is con-

idered [21] , 

( 𝑛 ) 
𝑖
( 𝐱 , 𝐲 ) = 𝑁 

( 𝑛 ) 
𝑘𝑙𝑖 

( 𝐲 ) 𝑢 ( 𝑛 −1)
𝑘,𝑙 

+ Π( 𝑛 ) 
𝑖𝑙 
( 𝐲 ) 𝜙( 𝑛 −1)

,𝑙 
, (29)

( 𝑛 ) ( 𝐱 , 𝐲 ) = Ψ( 𝑛 ) 
𝑘𝑙 
( 𝐲 ) 𝑢 ( 𝑛 −1)

𝑘,𝑙 
+ Θ( 𝑛 ) 

𝑙 
( 𝐲 ) 𝜙( 𝑛 −1)

,𝑙 
, (30)

here N 

( n ) , 𝚷( 𝑛 ) , 𝚿( 𝑛 ) and ΘΘΘ( 𝑛 ) are Y -periodic continuous functions

nd for their uniqueness, the functions satisfy ⟨𝐍 

( 𝑛 ) ⟩ = ⟨𝚷( 𝑛 ) ⟩ = ⟨𝚿( 𝑛 ) ⟩ =
𝚯( 𝑛 ) ⟩ = 𝟎 .

Substituting (29) –(30) into (27) –(28) (contribution 𝜀 −1 ), we have 

 𝐿 𝑖𝑚𝑛𝑝 𝑢 
(0)
𝑚,𝑛𝑝 + 𝐿 𝑖𝑚𝑛 𝑢

(0)
𝑚,𝑛 + 𝑃 𝑖𝑚 𝜙

(0)
,𝑚 − 𝑃 𝑖𝑚𝑛 𝜙

(0) 
,𝑚𝑛 = 0 , (31)

 𝑚𝑛𝑝 𝑢 
(0)
𝑚,𝑛𝑝 + 𝑄 𝑚𝑛 𝑢

(0)
𝑚,𝑛 + 𝑅 𝑚 𝜙

(0)
,𝑚 − 𝑅 𝑚𝑛 𝜙

(0) 
,𝑚𝑛 = 0 , (32)

here the coefficients L, P, Q and R involve derivatives with respect to

he rapid variable y of the local functions N 

( n ) , 𝚷( 𝑛 ) , 𝚿( 𝑛 ) and ΘΘΘ( 𝑛 ) . Notice

hat the coefficients with higher orders L imnp , 𝑃 imn , 𝑄 𝑚𝑛𝑝 and 𝑅 𝑚𝑛 are as-

ociated with the flexoelectric tensor 𝜇𝜇𝜇; on the other hand, the remaining

oefficients L imn , 𝑃 im 

, 𝑄 𝑚𝑛 and 𝑅 𝑚 are related to stiffness, piezoelectric

nd dielectric tensors. See the derivation in Appendix B Eqs. (B.7) –(B.8) .
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.1. Local problems 

The local function N 

( n ) , 𝚷( 𝑛 ) , 𝚿( 𝑛 ) and ΘΘΘ( 𝑛 ) are necessary to obtain

he expressions of �̂�𝑖𝑗 and �̂� 𝑖 of the homogenized problem (25) –(26) . 

Substituting (29) –(30) into (20) the following equations are derived

𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 Ψ
(1)
𝑘𝑙|𝑟𝑠 𝑢 (0) 𝑘,𝑙 + 𝜇𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 Θ

(1)
𝑙|𝑟𝑠 𝜙(0) 𝑙 = 0 , (33)

𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑁 

(1) 
𝑖𝑙𝑘 |𝑟𝑠 𝑢 (0) 𝑖,𝑙 + 𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 Π

(1)
𝑘𝑙|𝑟𝑠 𝜙(0) 𝑙 = 0 . (34)

onsidering the linear independence between the functions 𝑢 
(0) 
𝑘, lq 

, 𝑢 
(0) 
𝑘,𝑙 

,

(0) 
,𝑙

and 𝜙
(0) 
, lj

, the continuity and the periodicity of the local functions, we

an concluded that Ψ(1) 
𝑚𝑛 |𝑟𝑠 = Θ(1) 

𝑚 |𝑟𝑠 = 𝑁 

(1) 
𝑛𝑚𝑘 |𝑟𝑠 = Π(1) 

𝑚 |𝑟𝑠 = 0 . Moreover, due

o the above mentioned linear independence, the coefficients of (31) –

32) are identically zero. 

The local functions Ψ(1) 
𝑚𝑛 , Ψ

(2)
𝑚𝑛𝑝 , 𝑁 

(1) 
𝑚𝑛𝑘 
, 𝑁

(2) 
𝑚𝑛𝑙𝑘 
, Θ(1) 

𝑚 , Θ
(2) 
𝑚𝑛 , Π

(1) 
𝑘𝑙 
, Π(2)

𝑙𝑚𝑘 
are

he solutions of the following local problems 

 𝑖𝑚𝑛𝑝 ≡
(
𝜚 𝑡,𝑙 
(
𝜇𝑝𝑖𝑙𝑗 + 𝜇𝑗𝑖𝑙𝑝 

)
𝜚 𝑠,𝑗 Ψ

(1)
𝑚𝑛 |𝑠 + 𝜚 𝑡,𝑙 𝜇𝑘𝑖𝑙𝑗 𝜚 𝑠,𝑗 𝜚 𝑟,𝑘 Ψ

(2)
𝑚𝑛𝑝 |𝑟𝑠

)
|𝑡 = 0 , (35)

 𝑖𝑚𝑛 ≡
(
𝜚 𝑡,𝑗 𝐶 𝑖𝑗𝑚𝑛 + 𝜚 𝑟,𝑙 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑡,𝑗 𝑁 

(1)
𝑚𝑛𝑘 |𝑟 + 𝜚 𝑡,𝑗 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑘 Ψ

(1)
𝑚𝑛 |𝑟
)
|𝑡 = 0 , (36)

 mnp ≡ 𝜚 𝑡,𝑖 
(
𝜇imnp + 

(
𝜇ikpl + 𝜇iklp 

)
𝜚 𝑟,𝑙 𝑁 

( 1 ) 
mnk |𝑟 + 𝜇iklj 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑁 

( 2 )
mnpk |rs

)
|𝑡 = 0 , 

(37)

 𝑚𝑛 ≡
(
𝜚 𝑡,𝑖 𝑒 𝑖𝑚𝑛 + 𝜚 𝑡,𝑖 𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑘 𝑁 

(1)
𝑚𝑛𝑙|𝑟 − 𝜚 𝑡,𝑖 𝜅𝑖𝑗 𝜚 𝑠,𝑗 Ψ

(1)
𝑚𝑛 |𝑠
)
|𝑡 = 0 , (38)

 𝑖𝑚𝑛 ≡
(
𝜚 𝑡,𝑙 𝜇𝑚𝑖𝑙𝑛 + 𝜚 𝑡,𝑙 

(
𝜇𝑛𝑖𝑙𝑗 + 𝜇𝑛𝑖𝑗𝑙 

)
𝜚 𝑠,𝑗 Θ

(1)
𝑚 |𝑠 + 𝜚 𝑡,𝑙 𝜇𝑘𝑖𝑙𝑗 𝜚 𝑟,𝑘 𝜚 𝑠,𝑗 Θ

(2)
𝑚𝑛 |𝑟𝑠

)
|𝑡 = 0 , 

(39)

 𝑖𝑚 ≡
(
𝜚 𝑡,𝑗 𝑒 𝑚𝑖𝑗 + 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑘 𝜚 𝑡,𝑗 Θ

(1)
𝑚 |𝑟 + 𝜚 𝑡,𝑗 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑟,𝑙 Π

(1)
𝑚𝑘 |𝑟
)
|𝑡 = 0 , (40)

 𝑚 ≡
(
𝜚 𝑡,𝑗 𝑒 𝑗𝑘𝑙 𝜚 𝑟,𝑙 Π

(1)
𝑚𝑘 |𝑟 − 𝜚 𝑡,𝑗 𝜅𝑗𝑚 − 𝜚 𝑡,𝑗 𝜅𝑗𝑘 𝜚 𝑟,𝑘 Θ

(1)
𝑚 |𝑟
)
|𝑡 = 0 , (41)

 𝑙𝑚 ≡
(
𝜚 𝑡,𝑖 
(
𝜇𝑖𝑘𝑝𝑚 + 𝜇𝑖𝑘𝑚𝑝 

)
𝜚 𝑟,𝑝 Π

(1)
𝑘𝑙|𝑟 + 𝜚 𝑡,𝑖 𝜇𝑖𝑘𝑝𝑛 𝜚 𝑟,𝑛 𝜚 𝑠,𝑝 Π

(2)
𝑙𝑚𝑘 |𝑟𝑠

)
|𝑡 = 0 . (42)

nd satisfy the continuity conditions at the interface given in (B.12) –

B.21) . 

Solving the LQ (35) –(38) and PR (39) –(42) systems, the local func-

ions are obtained. As a particular case, the LQ and PR problems for

ne-dimensional flexoelectric rod are deduced in [24] (Eqs. (13)–(20)).

.2. Effective coefficients and homogenized problem 

Finally, the expressions of the effective stress �̂�𝑖𝑗 and the effective

lectric displacement �̂� 𝑖 from the Eqs. (25) –(26) , can be written in terms

f the effective coefficients as follows 

̂ 𝑖𝑗 = �̂� 𝑖𝑗𝑘𝑙 𝑢 
(0) 
𝑘,𝑙 

+ 𝑒 𝑘𝑖𝑗 𝜙
(0) 
,𝑘

− �̂�𝑙𝑖𝑗𝑘 𝜙
(0)
,𝑘𝑙 
, (43)

̂
 𝑖 = 𝑒 𝑖𝑘𝑙 𝑢 

(0) 
𝑘,𝑙

+ �̂�𝑖𝑗𝑘𝑙 𝑢 
(0) 
𝑗,𝑘𝑙 

− �̂�𝑖𝑗 𝜙
(0) 
,𝑗
, (44)

here 

̂
 𝑖𝑝𝑚𝑛 = 

⟨ 
𝐶 𝑖𝑝𝑚𝑛 + 𝐶 𝑖𝑝𝑘𝑙 𝜚 𝑟,𝑙 𝑁 

(1)
𝑚𝑛𝑘 |𝑟 + 𝑒 𝑘𝑖𝑝 𝜚 𝑟,𝑘 Ψ

(1)
𝑚𝑛 |𝑟
⟩ 
, (45)

̂𝑚𝑖𝑝𝑛 = 

⟨ 
𝜇𝑚𝑖𝑝𝑛 + 𝜇𝑘𝑖𝑝𝑗 𝜚 𝑠,𝑗 𝜚 𝑟,𝑘 Θ

(2)
𝑚𝑘 |𝑟𝑠 + 

(
𝜇𝑛𝑖𝑝𝑘 + 𝜇𝑘𝑖𝑝𝑛 

)
𝜚 𝑟,𝑘 Θ

(1)
𝑚 |𝑟
⟩ 
, (46)

̂mipn = ⟨𝜇mipn + 

(
𝜇mknl + 𝜇mkln 

)
𝜚 𝑟,𝑙 𝑁 

( 1 ) 
ipk |𝑟 + 𝜇mklj 𝜚 𝑠,𝑗 𝜚 𝑟,𝑙 𝑁 

( 2 )
ipnk |sr ⟩, (47)

̂ min = ⟨𝑒 min + 𝑒 kin 𝜚 𝑟,𝑘 Θ
( 1 )
𝑚 |𝑟 + 𝐶 inkl 𝜚 𝑟,𝑙 Π

( 1 )
mk |𝑟⟩

𝑒 min = ⟨𝑒 min + 𝑒 mkl 𝜚 𝑟,𝑙 𝑁 

( 1 )
ink |𝑟 − 𝜅pj 𝜚 𝑟,𝑘 Ψ

( 1 ) 
in |𝑟 ⟩, (48)
4

̂𝑚𝑛 = 

⟨ 
𝜅𝑚𝑛 + 𝜅𝑛𝑘 𝜚 𝑟,𝑘 Θ

(1)
𝑚 |𝑟 − 𝑒 𝑛𝑘𝑙 𝜚 𝑟,𝑙 Π

(1)
𝑚𝑘 |𝑟
⟩ 
. (49)

The expression (45) is known as the effective stiffness tensor. The

q. (48) represent the effective piezoelectric tensor. In addition, (49) is

alled the permittivity tensor and finally (46) and (47) denote the effec-

ive flexoelectric tensor. 

The equality of the equations of the piezoelectric tensor (48) is ob-

ained by the solution of the LQ problems (36), (38) and the PR problems

40), (42) , see Lemma 4.4 of [25] . 

Substituting the Eqs. (43) –(44) into (25) –(26) , the homogenized

roblem associated to (10) –(14) , takes the following form 

�̂� 𝑖𝑗𝑘𝑙 𝑢 
(0) 
𝑘,𝑙 

+ 𝑒 𝑘𝑖𝑗 𝜙
(0) 
,𝑘

− �̂�𝑙𝑖𝑗𝑘 𝜙
(0)
,𝑙𝑘

)
,𝑗
+ 𝑓 𝑖 = 0 , (50)

𝑒 𝑖𝑘𝑙 𝑢 
(0) 
𝑘,𝑙

+ �̂�𝑖𝑗𝑘𝑙 𝑢 
(0) 
𝑗,𝑘𝑙 

− �̂�𝑖𝑗 𝜙
(0) 
,𝑗

)
,𝑖
= 0 , (51)

ith boundary conditions 

(0) 
𝑖

= 𝑢0 𝑖 , on 𝜕Ω𝑢 , 𝑡 𝑖 = 𝑡 0 𝑖 , on 𝜕Ω𝑡 , (52)

(0) 
𝑖,𝑗
𝑛 𝑗 = 𝑠0 𝑖 , on 𝜕Ω𝑠 , �̂�𝑙𝑖𝑗𝑘 �̂� 𝑙 𝑛 𝑖 𝑛 𝑗 = 𝑟 0 𝑖 , on 𝜕Ω𝑟 , (53)

(0) = 𝜙0 , on 𝜕Ω𝜙, �̂� 𝑖 𝑛 𝑖 = − 𝜏, on 𝜕Ω𝜏 , (54)

here 𝑡 𝑖 , �̂� 𝑙 , �̂� 𝑖 are the effective traction, electric field and electrical

isplacement respectively. 

. Numerical calculations

In this section, firstly, the model is validated, computing the effective

roperties of the structure presented in [22] . The intention is to verify

he accuracy of the methodology described in Section 3 , considering

iezoelectric laminated composites PZT-5A/Araldite ( Table 1 ) as limit

ase of flexoelectric materials. Now, two different cases of flexoelectric

aminated media are considered. Case 1: rectangular bi-laminated com-

osite with flexoelectric components is analyzed. The materials of the

ayers are Barium Titanate (BaTiO 3 ) and Gallium Arsenide (GaAs), see

able 2 . Finally, Case 2: a flexoelectric wavy-laminated structure made

f two layers of Barium Titanate (BaTiO 3 ) and Gallium Arsenide (GaAs)

s studied. 

All numerical examples presented in the following sections are par-

icular cases of stratified composites, i.e. the function 𝜚 ∶ ℝ 

𝑛 → ℝ [17] .

herefore, the local problems are solved using the description given in

ppendix D . 

.1. Limit case: piezoelectric non-wavy laminated composite 

Piezoelectric structures are particular cases of flexoelectric materi-

ls when 𝜇𝜇𝜇 = 𝟎 . To validate the method presented in this work, a bi-

aminated piezocomposite material is studied. The constituents of the

tructure are PZT-5A and Araldite with volume fractions V 1 and V 2 , re-

pectively. The mechanical properties of these materials are given in

able 2 . As it is described in [22] , the layers are considered transversal

o the x 3 axis, i.e. 𝜚 ( 𝑥 1 , 𝑥 2 , 𝑥 3 ) = 𝑥 3 and 𝑦 = 𝑥 3 ∕ 𝜀 , see Fig. 1 a.

The effective properties of the bi-laminate piezocomposite are esti-

ated using two different methods: the Eqs. (45) , (48), (49) (Present

odel) and the approach described in [22] . In Fig. 2 , a comparison of

he effective coefficients �̂� 2222 , 𝑒 113 , �̂�11 and �̂�22 are shown. The numer-

cal results are computed using the two methods for different volume

ractions. The dashed lines represent the coefficients derived from the

resent model (AHM) and the circles are the effective properties ob-

ained from Grekov et al. [22] . A good concordance between the two



Table 1

Mechanical properties of the PZT-5A and Araldite, [22] . The parameters C ijkl , e ijk , 𝜅 ij / 𝜅0 are the 

constituents of the stiffness (GPa), piezoelectric (C/m 

2 ) and relative permittivity tensors, respec- 

tively.

Parameters C 1111 C 1122 C 1133 C 3333 C 2323 e 311 e 333 e 313 𝜅11 / 𝜅0 𝜅33 / 𝜅0

PZT-5A 121 75.4 75.2 111 21.1 -5.4 15.8 12.3 916 830

Araldite 5.46 2.94 2.94 5.46 1.26 0 0 0 7.0 7.0

Table 2

Mechanical properties of BaTiO 3 and GaAs. The parameters C ijkl , e ijk , 𝜅 ij / 𝜅0 and 𝜇ijkl are 

the constituents of the stiffness (GPa), piezoelectric (C/m 

2 ), relative permittivity and flex- 

oelectric (nC/m) tensors, respectively.

Parameters C 1111 C 1122 C 2323 e 123 𝜅11 / 𝜅0 𝜇1111 𝜇1221 𝜇1212

BaTiO 3 [13] 358.1 115.2 149.8 0 1408 0.15 -5.46 1.90

GaAs [26,27] 118.8 53.8 59.4 -0.16 10.99 0.514 -0.838 0.265

Fig. 2. Comparison of the effective coefficients C 2222 , e 113 , 𝜅11 and 𝜅22 obtained using the formulas (45), (48),(49) and the model described in [22] . 
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ethods is appreciated. Finally, this example validates the procedure

resented in Section 3 , taking the piezocomposites as a limit case of

exoelectric structures. 

.2. Case 1: non-wavy laminated flexoelectric composite 

In this section a flexoelectric rectangular multilayered composite is

roposed, where the layers are transversal to the axis x 3 , Fig. 1 a. For

his particular case, the fast variation of the properties occurs in the

 3 direction, i.e. 𝑦 = 𝑥 3 ∕ 𝜀 , where 𝜚 ( 𝑥 1 , 𝑥 2 , 𝑥 3 ) = 𝑥 3 , see [23] . The con-

tituents are two cubic symmetric materials, Barium Titanate (BaTiO 3 )

nd Gallium Arsenide (GaAs), with volume fractions 𝑉 1 = 𝑉 2 = 0 . 5 . The

aterials properties are given in Table 2 . 

Solving the LQ (35) –(38) and PR (39) –(42) systems and substituting

he solution into (45) - (49) , the effective coefficients are computed. The

verage operator for a laminate composite takes the form ⟨∙⟩ = 0 . 5(∙) (1) +
 . 5(∙) (2) . The obtained effective coefficient matrices �̂� 6×6 �̂� 3×6 , �̂̂��̂�𝜅3×3 and
5

̂̂̂ 6×9 are given as follows 

̂
 6×6 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

234 . 497 80 . 547 69 . 095 0 0 0 
80 . 547 234 . 497 69 . 095 0 0 0 
69 . 095 69 . 095 178 . 412 0 0 0 

0 0 0 85 . 068 0 0 
0 0 0 0 85 . 068 0 
0 0 0 0 0 104 . 600 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

(55)

̂
 3×6 = 

⎛ ⎜ ⎜ ⎝ 
0 0 0 −0 . 090 0 0 
0 0 0 0 −0 . 090 0 
0 0 0 0 0 −0 . 159 

⎞ ⎟ ⎟ ⎠ , (56)

̂̂̂ 3×3 = 

⎛ ⎜ ⎜ ⎝ 
709 . 495 0 0 

0 709 . 495 0 
0 0 21 . 8081 

⎞ ⎟ ⎟ ⎠ , (57)



Fig. 3. Effective coefficients components �̂� 3333 , �̂� 2323 , �̂� 1133 (stiffness), 𝑒 123 , 𝑒 312 (piezoelectric), �̂�11 , �̂�33 (relative effective permittivity) and �̂�3333 , �̂�3131 , �̂�1331 , �̂�1221 
(flexoelectric).
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̂̂̂ 6×9 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 . 334 0 0 0 −0 . 090 0 0 
−0 . 090 0 0 0 0 . 334 0 0 
−0 . 757 0 0 0 −0 . 757 0 0 

0 0 0 0 0 −0 . 346 0 
0 0 −0 . 346 0 0 0 −0 . 184
0 0 . 495 0 0 . 495 0 0 0 

Notice that the constituents of the original heterogeneous body are

wo cubic symmetric layers, however the global properties of the ho-

ogenized solid after homogenization process have a tetragonal ( 4 2m )

ymmetry. The structure of the matrices �̂� 6×6 , �̂� 3×6 and �̂̂��̂�𝜅3×3 are char-

cterized in Figure 3.14 of [26] and for the flexoelectric contribution

ensor, the matrix �̂̂��̂�𝜇6×9 has the same linearly independent components

s it is shown in the appendix of [28] . 

Notice that the effective coefficients for the particular case of rect-

ngular laminate composites with a fixed volume fraction are constant

unctions. 

.3. Case 2: wavy flexoelectric composite 

In order to point out the influence of the composite geometry into the

ffective properties, a two-element wavy laminate composite is studied

s it is illustrated in Fig. 1 b. The stratification function used to describe

he undulating layers is given by 

 ( 𝑥 1 , 𝑥 2 , 𝑥 3 ) = 𝑥 3 − 

1 
4 
sin 
(
2 𝜋𝑥 2

)
, (59)

nd the corresponding gradient is 

𝜕𝜚 

𝜕𝑥 1 
= 0 , 𝜕𝜚 

𝜕𝑥 2 
= − 

𝜋

2 
cos 
(
2 𝜋𝑥 2

) 𝜕𝜚 

𝜕𝑥 3 
= 1 . 

he constituents of the bi-layered composite are the cubic symmetric

aterials Barium Titanate (BaTiO 3 ) and Gallium Arsenide (GaAs). The

roperties of the layers are presented in Table 2 . The local problems
6

0 −2 . 286 
0 −2 . 286 
0 0 . 232 

0 . 184 0 
0 0 
0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (58)

35) –(42) are solved for the case of a stratified composite, following the

pproach described in Appendix D . The expressions of the local func-

ions are substituted in (45) –(49) to compute the effective coefficients
̂
 , �̂� , �̂�𝜅𝜅 and �̂�𝜇𝜇. 

To illustrate the behavior of the effective coefficients of the stud-

ed wavy composite, some non-zero components of the effective tensors

re computed. In Fig. 3 , the effective components �̂� 3333 , �̂� 2323 , �̂� 1133 
stiffness), 𝑒 123 , 𝑒 312 (piezoelectric), �̂�11 , �̂�33 (relative effective permit-

ivity) and �̂�3333 , �̂�3131 , �̂�1331 , �̂�1221 (flexoelectric) tensors are shown,

onsidering the volume fraction 𝑉 1 = 𝑉 2 = 0 . 5 . Distinctly for the rectan-

ular case, where all the effective coefficients are constants along the

edium, for the wavy laminate structure, the effective coefficients are

ariable and depend on the position throughout the composite [17] . It

an be seen that the average properties expressions (45) –(49) are re-

ated to the gradient of the stratification function (59) . Thus, the overall

ensors for this particular example are smooth continuous functions and

-periodic respect to x 2 . Due to the continuity of the coefficients, the

omogenized problem (50) –(54) is easier to solve compared with the

eterogeneous problem, where the coefficients are rapidly oscillating

iscontinuous functions. 

Although many methods offer efficient strategies and techniques for

alculating effective coefficients, such as FEM [29,30] , the asymptotic

omogenization method is an important tool for calculating effective

roperties. First of all, the equations presented in this manuscript are ex-

licit expressions and they are easy to compute. The local problems are

artial differential equations, but for the particular case of multilayered

omposites, the local problems are reduced to systems of linear alge-

raic equations and they can be solved analytically. On the other hand,
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he formulas obtained are not limited to the case of wavy structures; the

alculations were made with a general 𝜚 𝜚 𝜚 function, which allows adapt-

ng the formulas to different geometries, including more general cases of

omposites such as quasi-periodic structures. The computational cost of

rogramming the effective coefficients is low compared with other sim-

lar methods, such as FEM. Finally, these expressions allow to calibrate

umerical algorithms as reflected for FEM in [31] . 

. Conclusions

The manuscript offers an extended study to find the effective co-

fficients of flexoelectric composite with complex geometry. The equi-

ibrium problem for a flexoelectric structure is derived for the case of

hree-dimensional solid. In this work, the symmetry of the flexoelectric

ensor is taken into account, as a low symmetry tensor, due to the gra-

ient term of its definition. The matrix representation and symmetry of

he flexoelectric tensor are provided. 

The validation with the results reported in the literature for piezo-

lectric materials provides reliability to extend the two scales asymptotic

omogenization method to the case of flexoelectric composites. The

HM is used to find the effective material properties. The manuscript

resents a step-by-step strategy to derive the local problems and the

ffective coefficients equations for structures with generalized periodic-

ty. The existence and uniqueness of the solution of the local problems

re guaranteed. Following the proposal, the homogenized problem for

hree-dimensional flexoelectric composites is derived. 

Bi-materials rectangular and wavy laminated composites are consid-

red. A comparison between the effective properties of a rectangular

nd a wavy media provides important outcomes about the behavior of

he coefficients of the homogenized problem. In the case of rectangular

ulti-layered composites, the global properties are constant throughout

he structure, however, in the case of wavy structures, the average prop-

rties are continuous functions that depend on the stratifying function.

he numerical results yield information about the flexoelectric effect for

uture research, as well as its applications, for example, in the regener-

tion of bone tissues. 

This method is an extension of the procedure presented in previ-

us mentioned works to flexoelectric composites with perfect contact at

he interface. It can be extended to other types of composite with dif-

erent interface contact conditions. Several applications in engineering,

iomechanics can be considered due to the broad spectrum of compos-

tes covered by the present approach. 
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ppendix A. Flexoelectric tensor 

The ambiguity in the definition of the flexoelectric tensor has led

everal authors to adopt different constitutive equations and therefore

ifferent versions of the flexoelectric tensor have been studied [32] . But

ll authors agree that the flexoelectric tensor is a low symmetry fourth-

rder tensor [28] . The general expression of the flexoelectric tensor has

4 linearly independent components. This leads to consider a symmetry

f the tensor with respect to two of the indices, in this work we have

ssumed 𝜇ijkl = 𝜇ikjl , the same symmetry is taken in [13] . 

The equilibrium Eqs. (1) –(5) are reported in [13] for a flexoelectric

tructure, where the tensor 𝜇𝜇𝜇 is combined from the direct and converse

exoelectric tensors [1] . A matrix representation of the constitutive re-
7

ations (6) - (7) is 

 

𝜎𝜎𝜎6×1 
𝐃 3×1

] 
= 

[ 
𝐂 6×6 − 𝐞 𝑇 6×3 𝟎 6×18 𝜇𝜇𝜇6×9 
𝐞 3×6 𝜅𝜅𝜅3×3 𝜇𝜇𝜇3×18 𝟎 3×9 

] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜖𝜖𝜖6×1 
𝐄 3×1 
∇ 𝜖𝜖𝜖18×1 
∇ 𝐄 9×1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (A.1)

here 

𝝈6×1 = 

[
𝜎11 , 𝜎22 , 𝜎33 , 𝜎23 , 𝜎13 , 𝜎12 

]𝑇 
,

 3×1 =
[
𝐷 1 , 𝐷 2 , 𝐷 3 

]𝑇 
, 

𝝐6×1 =
[
𝜖11 , 𝜖22 , 𝜖33 , 2 𝜖23 , 2 𝜖13 , 2 𝜖12

]𝑇 
,

 3×1 =
[
𝐸 1 , 𝐸 2 , 𝐸 3 

]𝑇 
, 

 𝝐18×1 =
[
𝜖11 , 1 , 𝜖22 , 1 , 𝜖33 , 1 , 2 𝜖23 , 1 , … , 2 𝜖12 , 3

]𝑇 
,

∇ 𝐄 9×1 =
[
𝐸 1 , 1 , 𝐸 2 , 1 , 𝐸 3 , 1 , … , 𝐸 3 , 3

]𝑇 
.

he matrices 𝐂 6×6 , 𝐞 3×6 and 𝜿3×3 are the classical matrices of the elas-

ic, piezoelectric and permittivity tensors respectively [26] . Finally, the

exoelectric matrices 𝝁3×18 , 𝜇𝜇𝜇6×9 are deduced following the approach

escribed in [28] and yields 

3×18 = [ 𝜇𝑖𝑛 ] , 𝑖 = 1 , 2 , 3; 𝑛 = 1 , 2 , 3 , …, 18 , (A.2)

here 𝑛 = 1 , 2 , 3 , …, 18 refers to the combinations of the indexes 𝑗𝑘𝑙 =
11 , 221 , 331 , 231 , 131 , 121 , 112 , …, 123 , i.e. 𝜇𝑖𝑛 = 𝜇𝑖𝑗𝑘𝑙 as follows 

𝜇𝑖𝑛 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 

𝑖 = 1 𝜇1111 𝜇1221 𝜇1331 𝜇1231 𝜇1131 𝜇1121 𝜇1112 𝜇1222 𝜇1332
𝑖 = 2 𝜇2111 𝜇2221 𝜇2331 𝜇2231 𝜇2131 𝜇2121 𝜇2112 𝜇2222 𝜇2332
𝑖 = 3 𝜇3111 𝜇3221 𝜇3331 𝜇3231 𝜇3131 𝜇3121 𝜇3112 𝜇3222 𝜇3332

𝜇𝑖𝑛 𝑛 = 10 𝑛 = 11 𝑛 = 12 𝑛 = 13 𝑛 = 14 𝑛 = 15 𝑛 = 16 𝑛 = 17 𝑛 = 18 

𝑖 = 1 𝜇1232 𝜇1132 𝜇1122 𝜇1113 𝜇1223 𝜇1333 𝜇1233 𝜇1133 𝜇1123
𝑖 = 2 𝜇2232 𝜇2132 𝜇2122 𝜇2113 𝜇2223 𝜇2333 𝜇2233 𝜇2133 𝜇2123
𝑖 = 3 𝜇3232 𝜇3132 𝜇3122 𝜇3113 𝜇3223 𝜇3333 𝜇3233 𝜇3133 𝜇3123

The flexoelectric matrix (A.2) described in the above table can be

plit in three sub-matrices 

3×18 =
[[
𝜇𝜇𝜇
(1) 
3×6 

] [
𝜇𝜇𝜇
(2) 
3×6 

] [
𝜇𝜇𝜇
(3) 
3×6 

]]
. (A.3) 

n the other hand, the matrix 𝜇𝜇𝜇6×9 has the form 

6×9 = 

[
𝜇pq 
]𝑇 
, (A.4)

here 𝑞 = 1 , 2 , 3 , 4 , 5 , 6 refers to the middle indexes 𝑗𝑘 =
1 , 22 , 33 , 23 , 13 , 12 and 𝑝 = 1 , 2 , 3 , 4 , …, 9 refers to all possible com-

inations of the outer indexes 𝑖𝑙 = 11 , 21 , 31 , 12 , 22 , 32 , 13 , 23 , 33 , i.e.

𝑝𝑞 = 𝜇𝑖𝑗𝑘𝑙 as follows 

[ 𝜇𝑝𝑞 ] 𝑇 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7 𝑝 = 8 𝑝 = 9 

𝑞 = 1 𝜇1111 𝜇2111 𝜇3111 𝜇1112 𝜇2112 𝜇3112 𝜇1113 𝜇2113 𝜇3113
𝑞 = 2 𝜇1221 𝜇2221 𝜇3221 𝜇1222 𝜇2222 𝜇3222 𝜇1223 𝜇2223 𝜇3223
𝑞 = 3 𝜇1331 𝜇2331 𝜇3331 𝜇1332 𝜇2332 𝜇3332 𝜇1333 𝜇2333 𝜇3333
𝑞 = 4 𝜇1231 𝜇2231 𝜇3231 𝜇1232 𝜇2232 𝜇3232 𝜇1233 𝜇2233 𝜇3233
𝑞 = 5 𝜇1131 𝜇2131 𝜇3131 𝜇1132 𝜇2132 𝜇3132 𝜇1133 𝜇2133 𝜇3133
𝑞 = 6 𝜇1121 𝜇2121 𝜇3121 𝜇1122 𝜇2122 𝜇3122 𝜇1123 𝜇2123 𝜇3123

Notice that the matrix (A.4) can be written in terms of the sub-

atrices given in (A.3) as follows 

6×9 =
[ [
𝜇𝜇𝜇
(1) 
3×6 

]𝑇 [
𝜇𝜇𝜇
(2) 
3×6 

]𝑇 [
𝜇𝜇𝜇
(3) 
3×6 

]𝑇 ]
. (A.5)
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In the case of flexoelectric materials with cubic and tetragonal ( ̄4 2 m)

ymmetries, [13,28] , the matrix 𝜇𝜇𝜇6×9 has the forms 

Cubic: 

𝝁6×9 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝

𝜇11 0 0 0 𝜇15 0 0 0 𝜇15 

𝜇15 0 0 0 𝜇11 0 0 0 𝜇15 

𝜇15 0 0 0 𝜇15 0 0 0 𝜇11 

0 0 0 0 0 𝜇46 0 𝜇46 0

0 0 𝜇46 0 0 0 𝜇46 0 0 

0 𝜇46 0 𝜇46 0 0 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

(A.6)

Tetragonal 4 2 m: 

𝝁6×9 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜇11 0 0 0 𝜇15 0 0 0 𝜇19 

𝜇15 0 0 0 𝜇11 0 0 0 𝜇19 

𝜇31 0 0 0 𝜇31 0 0 0 𝜇39 

0 0 0 0 0 𝜇46 0 𝜇48 0

0 0 𝜇46 0 0 0 𝜇48 0 0 

0 𝜇62 0 𝜇62 0 0 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. 

(A.7)

ppendix B. Asymptotic homogenization method 

Substituting (16) –(19) into the constitutive relations (6) –(8) , the fol-
owing expressions are derived 

𝜎
(0) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + 𝜀𝜎

(1) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + 𝜀 2 𝜎

(2) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + … = 𝐶 𝑖𝑗𝑘𝑙 𝜕 𝑙 

(
𝑢
(0) 
𝑘

+ 𝜀𝑢 
(1) 
𝑘 

+ 𝜀 2 𝑢 
(2) 
𝑘 

+ …
)

+ 𝑒 𝑘𝑖𝑗 𝜕 𝑗 
(
𝜙(0) + 𝜀 𝜙(1) + 𝜀 2 𝜙(2) + …

)
− 𝜇𝑙𝑖𝑗𝑘 𝜕 𝑙 𝜕 𝑘 

(
𝜙(0) + 𝜀 𝜙(1) + 𝜀 2 𝜙(2) + …

)
,

(B.1)

( 0 ) 
𝑖 ( 𝐱 , 𝐲 ) + 𝜀𝐷 

( 1 ) 
𝑖 ( 𝐱 , 𝐲 ) + 𝜀 2 𝐷 

( 2 ) 
𝑖 ( 𝐱 , 𝐲 ) + ⋯ = 𝑒 ikl 𝜕 𝑙 

(
𝑢
( 0 )
𝑘

+ 𝜀𝑢 
( 1 )
𝑘 

+ 𝜀 2 𝑢 
( 2 ) 
𝑘 

+ …
)

+ 𝜇ikjl 𝜕 𝑙 𝜕 𝑗 

(
𝑢
( 0 )
𝑘

+ 𝜀𝑢 
( 1 )
𝑘 

+ 𝜀 2 𝑢 
( 2 ) 
𝑘 

+ …
)
− 𝜅ij 𝜕 𝑗 

(
𝜙( 0 ) + 𝜀𝜙( 1 ) + 𝜀 2 𝜙( 2 ) + …

)
.

(B.2)

rouping by power of 𝜀 in the right-hand sides of (B.1) –(B.2) and consid-

ring the above mentioned total derivative operator, yields

𝜎
(0) 
𝑖𝑗
( 𝐱 , 𝐲 ) + 𝜀𝜎

(1) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + 𝜀 2 𝜎

(2) 
𝑖𝑗 
( 𝐱 , 𝐲 ) + … = 𝜀 −1 

(
𝜇𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙

(1)|𝑟𝑠
)

+ 𝐶 𝑖𝑗𝑘𝑙 𝑢
(0)
𝑘,𝑙

+ 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(1)
𝑘 |𝑟 + 𝑒 𝑘𝑖𝑗 𝜙

(0)
,𝑗 

+ 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑗 𝜙
(1)|𝑗 − 𝜇𝑙𝑖𝑗𝑘 𝜙

(0)
,𝑙𝑘

− 

(
𝜇𝑘𝑖𝑗𝑙 + 𝜇𝑙𝑖𝑗𝑘 

)
𝜚 𝑟,𝑙 𝜙

(1)|𝑟,𝑘 − 𝜇𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙
(2)|𝑟𝑠

+ 𝜀 
(
𝐶 𝑖𝑗𝑘𝑙 𝑢 

(1)
𝑘,𝑙

+ 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(2)
𝑘 |𝑟 + 𝑒 𝑘𝑖𝑗 𝜙

(1)
,𝑗 

+ 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑗 𝜙
(2)|𝑗 − 𝜇𝑙𝑖𝑗𝑘 𝜙

(1)
,𝑙𝑘

− 

(
𝜇𝑘𝑖𝑗𝑙 + 𝜇𝑙𝑖𝑗𝑘 

)
𝜚 𝑟,𝑙 𝜙

(2)|𝑟,𝑘 − 𝜇𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙
(3)|𝑟𝑠
)

+ 𝜀 2 
(
𝐶 𝑖𝑗𝑘𝑙 𝑢 

(2)
𝑘,𝑙

+ 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(3)
𝑘 |𝑟 + 𝑒 𝑘𝑖𝑗 𝜙

(2)
,𝑗 

+ 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑗 𝜙
(3)|𝑗 − 𝜇𝑙𝑖𝑗𝑘 𝜙

(2)
,𝑙𝑘

− 

(
𝜇𝑘𝑖𝑗𝑙 + 𝜇𝑙𝑖𝑗𝑘 

)
𝜚 𝑟,𝑙 𝜙

(3)|𝑟,𝑘 − 𝜇𝑙𝑖𝑗𝑘 𝜚 𝑟,𝑙 𝜚 𝑠,𝑘 𝜙
(4)|𝑟𝑠
)

⋮ (B.3)

𝐷
(0) 
𝑖
( 𝐱 , 𝐲 ) + 𝜀𝐷 

(1) 
𝑖 
( 𝐱 , 𝐲 ) + 𝜀 2 𝐷 

(2) 
𝑖 
( 𝐱 , 𝐲 ) + … = 𝜀 −1 

(
𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

(1)
𝑘 |𝑟𝑠
)

+ 𝑒 𝑖𝑘𝑙 𝑢
(0)
𝑘,𝑙

+ 𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(1)
𝑘 |𝑟 − 𝜅𝑖𝑗 𝜙

(0)
,𝑗 

− 𝜅𝑖𝑗 𝜚 𝑠,𝑗 𝜙
(1)|𝑠 + 𝜇𝑖𝑘𝑗𝑙 𝑢

(0)
𝑘,𝑙𝑗

+( 𝜇𝑖𝑘𝑙𝑗 + 𝜇𝑖𝑘𝑗𝑙 ) 𝜚 𝑟,𝑙 𝑢 
(1)
𝑘,𝑗|𝑟 + 𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

(2)
𝑘 |𝑟𝑠

+ 𝜀 
(
𝑒 𝑖𝑘𝑙 𝑢 

(1)
𝑘,𝑙

+ 𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(2)
𝑘 |𝑟 − 𝜅𝑖𝑗 𝜙

(1)
,𝑗 

− 𝜅𝑖𝑗 𝜚 𝑠,𝑗 𝜙
(2)|𝑠 + 𝜇𝑖𝑘𝑗𝑙 𝑢

(1)
𝑘,𝑙𝑗

+( 𝜇𝑖𝑘𝑙𝑗 + 𝜇𝑖𝑘𝑗𝑙 ) 𝜚 𝑟,𝑙 𝑢 
(2)
𝑘,𝑗|𝑟 + 𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

(3)
𝑘 |𝑟𝑠
)

+ 𝜀 2 
(
𝑒 𝑖𝑘𝑙 𝑢 

(2)
𝑘,𝑙

+ 𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑙 𝑢 
(3)
𝑘 |𝑟 − 𝜅𝑖𝑗 𝜙

(2)
,𝑗 

− 𝜅𝑖𝑗 𝜚 𝑠,𝑗 𝜙
(3)|𝑠 + 𝜇𝑖𝑘𝑗𝑙 𝑢

(2)
𝑘,𝑙𝑗

+( 𝜇𝑖𝑘𝑙𝑗 + 𝜇𝑖𝑘𝑗𝑙 ) 𝜚 𝑟,𝑙 𝑢 
(3)
𝑘,𝑗|𝑟 + 𝜇𝑖𝑘𝑗𝑙 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑢 

(4)
𝑘 |𝑟𝑠
)

8

⋮ (B.4)

eplacing the expansions (18) and (19) into the equilibrium problem (1) -

2) , the following is derived

 

−1 𝜚 𝑘,𝑗 𝜎
(0)
𝑖𝑗|𝑘 + 𝜎

(0)
𝑖𝑗,𝑗

+ 𝜚 𝑘,𝑗 𝜎
(1) 
𝑖𝑗|𝑘 + 𝜀 

(
𝜎
(1)
𝑖𝑗,𝑗

+ 𝜚 𝑘,𝑗 𝜎
(2)
𝑖𝑗|𝑘 
)
…+ 𝑓 𝑖 = 0 (B.5)

 

−1 𝜚 𝑘,𝑖 𝐷 

(0)
𝑖 |𝑘 + 𝐷

(0)
𝑖,𝑖

+ 𝜚 𝑘,𝑖 𝐷 

(1) 
𝑖 |𝑘 + 𝜀 

(
𝐷

(1)
𝑖,𝑖

+ 𝜚 𝑘,𝑖 𝐷 

(2) 
𝑖 |𝑘 
)
… = 0 (B.6)

Substituting (29) –(30) into (27) –(28) and regrouping in terms of the

erivatives of 𝑢 
(0) 
𝑘

and 𝜙(0) , it yields

𝑢
(0) 
𝑘,𝑙𝑞

(
− 𝜇𝑚𝑖𝑗𝑛 𝜚 𝑡,𝑗 𝜚 𝑟,𝑚 𝜚 𝑠,𝑛 Ψ

(2)
𝑞𝑘𝑙|𝑟𝑠 − 

(
𝜇𝑚𝑖𝑗𝑞 + 𝜇𝑞𝑖𝑗𝑚 

)
𝜚 𝑡,𝑗 𝜚 𝑟,𝑚 Ψ

(1)
𝑘𝑙|𝑟
)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿 𝑖𝑘𝑙𝑞

+ 𝑢 
(0)
𝑘,𝑙

(
𝜚 𝑡,𝑗 𝐶 𝑖𝑗𝑘𝑙 + 𝜚 𝑡,𝑗 𝐶 𝑖𝑗𝑛𝑚 𝜚 𝑟,𝑚 𝑁 

(1)
𝑘𝑙𝑛 |𝑟 + 𝜚 𝑡,𝑗 𝑒 𝑗𝑖𝑚 𝜚 𝑟,𝑚 Ψ

(1)
𝑘𝑙|𝑟
)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿 𝑖𝑘𝑙

+ 𝜙
(0)
,𝑙 

(
𝜚 𝑡,𝑗 𝑒 𝑗𝑖𝑙 + 𝜚 𝑡,𝑗 𝐶 𝑖𝑗𝑛𝑚 𝜚 𝑟,𝑚 Π

(1)
𝑛𝑙|𝑟 + 𝜚 𝑡,𝑗 𝑒 𝑗𝑖𝑚 𝜚 𝑟,𝑚 Θ

(1)
𝑙|𝑟
)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑃 𝑖𝑙

− 𝜙
(0)
,𝑙𝑘

(
𝜚 𝑡,𝑗 𝜇𝑙𝑖𝑗𝑘 + 𝜚 𝑡,𝑗 

(
𝜇𝑚𝑖𝑗𝑘 + 𝜇𝑘𝑖𝑗𝑚 

)
𝜚 𝑟,𝑚 Θ

(1)
𝑙|𝑟 − 𝜚 𝑡,𝑗 𝜇𝑚𝑖𝑗𝑛 𝜚 𝑟,𝑚 𝜚 𝑠,𝑛 Θ

(2)
𝑘𝑙|𝑟𝑠
)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑃 𝑖𝑙𝑘

= 0

(B.7

𝑢
(0) 
𝑘,𝑙𝑞

(
𝜚 𝑡,𝑖 𝜇𝑖𝑘𝑞𝑙 + 𝜚 𝑡,𝑖 

(
𝜇𝑖𝑛𝑗𝑙 + 𝜇𝑖𝑛𝑙𝑗 

)
𝜚 𝑟,𝑗 𝑁 

(1) 
𝑘𝑞𝑛 |𝑟 + 𝜚 𝑡,𝑖 𝜇𝑖𝑚𝑗𝑝 𝜚 𝑟,𝑝 𝜚 𝑠,𝑗 𝑁 

(2)
𝑞𝑘𝑙𝑚 |𝑟𝑠

)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄 𝑘𝑙𝑞

+ 𝑢 
(0)
𝑘,𝑙

(
𝜚 𝑡,𝑖 𝑒 𝑖𝑘𝑙 + 𝜚 𝑡,𝑖 𝑒 𝑖𝑚𝑛 𝜚 𝑟,𝑛 𝑁 

(1)
𝑘𝑙𝑚 |𝑟 − 𝜚 𝑡,𝑖 𝜅𝑖𝑗 𝜚 𝑠,𝑗 Ψ

(1)
𝑘𝑙|𝑠
)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄 𝑘𝑙

+ 𝜙
(0)
,𝑙 

(
− 𝜚 𝑡,𝑖 𝜅𝑖𝑙 + 𝜚 𝑡,𝑖 𝑒 𝑖𝑚𝑙 𝜚 𝑟,𝑙 Π

(1)
𝑘𝑙|𝑟 − 𝜚 𝑡,𝑖 𝜅𝑖𝑗 𝜚 𝑠,𝑗 Θ

(1)
𝑙|𝑠
)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅𝑙

− 𝜙
(0)
,𝑙𝑗

(
𝜚 𝑡,𝑖 
(
𝜇𝑖𝑘𝑝𝑗 + 𝜚 𝑡,𝑖 𝜇𝑖𝑘𝑗𝑝 

)
𝜚 𝑟,𝑝 Π

(1)
𝑘𝑙|𝑟 + 𝜚 𝑡,𝑖 𝜇𝑖𝑘𝑝𝑛 𝜚 𝑟,𝑛 𝜚 𝑠,𝑝 Π

(2)
𝑙𝑗𝑘 |𝑟𝑠

)
|𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅 𝑙𝑗

= 0 , 

(B.8)

here 

 

( 2 ) 
lmpn

= 𝑁 

( 2 )
kln 
𝑁 

( 1 ) 
mpk

+ Π( 2 ) 
nl 
Ψ( 1 )

mp , 

Π( 2 )
lmn

= 𝑁 

( 2 ) 
kln 

Π( 1 )
km

+ Π( 2 ) 
nl 
Θ( 1 ) 
𝑚 , (B.9)

( 2 )
lmn

= Ψ( 2 )
kl 
𝑁 

( 1 ) 
mnk

+ Θ( 2 ) 
𝑙 
Ψ( 1 )

kn 
, 

Θ( 2 )
nl 

= Ψ( 2 ) 
kl 
Π( 1 )

kn
+ Θ( 2 ) 

𝑙 
Θ( 1 ) 
𝑛 . (B.10)

Now, the asymptotic expansions (16) –(19) are substituted into the

nterface conditions (15) , where the different order of 𝜀 contributions

re [[
𝑢
( 𝑛 ) 
𝑖

]]
= 0 , 

[[
𝜙( 𝑛 ) 
]]

= 0 , [
𝜎
( 𝑛 ) 
ij 
𝑛 𝑗 

]]
= 0 , 

[[
𝐷

( 𝑛 ) 
𝑖
𝑛 𝑖 

]]
= 0 . (B.11)

oreover, the equations (29) –(30) are substituted into (21) –(22) , and

he resulting expressions in terms of the local functions N 

( n ) , 𝚷( 𝑛 ) , 𝚿( 𝑛 )

nd ΘΘΘ( 𝑛 ) are replaced in (B.11) . 
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The continuity conditions at the interface of the local functions Ψ(1)
𝑚𝑛 ,

(2)
𝑚𝑛𝑝 , 𝑁 

(1) 
𝑚𝑛𝑘 
, 𝑁

(2) 
𝑚𝑛𝑙𝑘 
, Θ(1) 

𝑚 , Θ
(2) 
𝑚𝑛 , Π

(1) 
𝑘𝑙 
, Π(2)

𝑙𝑚𝑘 
are obtained from the first two

quations of (B.11) for 𝑛 = 1 , 2 [
𝑁 

( 1 ) 
kli 

]]
= 0 , 

[[
Π( 1 )

il 

]]
= 0 , [[

Ψ( 1 )
kl 

]]
= 0 , 

[[
Θ( 1 )
𝑙 

]]
= 0 , (B.12)

[
𝑁 

( 2 ) 
mnlk 

]]
= 0 , 

[[
Π( 2 )

lmk 

]]
= 0 , [[

Ψ( 2 )
mnp

]]
= 0 , 

[[
Θ( 2 )

mn

]]
= 0 , (B.13)

nd the remaining two equations of (B.11) , for 𝑛 = 0 [((
𝜇𝑝𝑖𝑙𝑗 + 𝜇𝑗𝑖𝑙𝑝 

)
𝜚 𝑠,𝑗 Ψ

(1) 
𝑚𝑛 |𝑠 + 𝜇𝑘𝑖𝑙𝑗 𝜚 𝑠,𝑗 𝜚 𝑟,𝑘 Ψ

(2) 
𝑚𝑛𝑝 |𝑟𝑠 

)
𝑛 𝑗 

]]
= 0 , (B.14)

[(
𝐶 𝑖𝑗𝑚𝑛 + 𝜚 𝑟,𝑙 𝐶 𝑖𝑗𝑘𝑙 𝑁 

(1)
𝑚𝑛𝑘 |𝑟 + 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑘 Ψ

(1)
𝑚𝑛 |𝑟 
)
𝑛 𝑗 

]]
= 0 , (B.15)

[(
𝜇𝑖𝑚𝑛𝑝 + 

(
𝜇𝑖𝑘𝑝𝑙 + 𝜇𝑖𝑘𝑙𝑝 

)
𝜚 𝑟,𝑙 𝑁 

(1) 
𝑚𝑛𝑘 |𝑟 + 𝜇𝑖𝑘𝑙𝑗 𝜚 𝑟,𝑙 𝜚 𝑠,𝑗 𝑁 

(2)
𝑚𝑛𝑙𝑘 |𝑟𝑠 

)
𝑛 𝑖 

]]
= 0 , (B.16)

[(
𝑒 𝑖𝑚𝑛 + 𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑘 𝑁 

(1)
𝑚𝑛𝑙|𝑟 − 𝜅𝑖𝑗 𝜚 𝑠,𝑗 Ψ

(1)
𝑚𝑛 |𝑠 
)
𝑛 𝑖 

]]
= 0 , (B.17)

[(
𝜇𝑚𝑖𝑗𝑛 + 

(
𝜇𝑛𝑖𝑗𝑙 + 𝜇𝑛𝑖𝑙𝑗 

)
𝜚 𝑠,𝑙 Θ

(1)
𝑚 |𝑠 + 𝜇𝑘𝑖𝑗𝑙 𝜚 𝑟,𝑘 𝜚 𝑠,𝑙 Θ

(2)
𝑚𝑛 |𝑟𝑠 

)
𝑛 𝑗 

]]
= 0 , (B.18)

[(
𝑒 𝑚𝑖𝑗 + 𝑒 𝑘𝑖𝑗 𝜚 𝑟,𝑘 Θ

(1)
𝑚 |𝑟 + 𝐶 𝑖𝑗𝑘𝑙 𝜚 𝑟,𝑙 Π

(1)
𝑚𝑘 |𝑟 
)
𝑛 𝑗 

]]
= 0 , (B.19)

[(
𝑒 𝑖𝑘𝑙 𝜚 𝑟,𝑙 Π

(1)
𝑚𝑘 |𝑟 − 𝜅𝑖𝑚 − 𝜅𝑖𝑘 𝜚 𝑟,𝑘 Θ

(1)
𝑚 |𝑟 
)
𝑛 𝑖 

]]
= 0 , (B.20)

[((
𝜇𝑖𝑘𝑝𝑚 + 𝜇𝑖𝑘𝑚𝑝 

)
𝜚 𝑟,𝑝 Π

(1)
𝑘𝑙|𝑟 + 𝜇𝑖𝑘𝑝𝑛 𝜚 𝑟,𝑛 𝜚 𝑠,𝑝 Π

(2)
𝑙𝑚𝑘 |𝑟𝑠 

)
𝑛 𝑖 

]]
= 0 . (B.21)

he expressions (B.12) –(B.21) are the interface conditions for the local

unctions Ψ(1) 
𝑚𝑛 , Ψ

(2) 
𝑚𝑛𝑝 , 𝑁 

(1) 
𝑚𝑛𝑘 
, 𝑁 

(2) 
𝑚𝑛𝑙𝑘 
, Θ(1) 
𝑚 , Θ

(2) 
𝑚𝑛 , Π

(1) 
𝑘𝑙 
, Π(2) 
𝑙𝑚𝑘 

.

ppendix C. Existence and uniqueness of the solution of the local 

roblems 

Let’s assume that Ω ⊂ ℝ 

3 is a three-dimensional open connected

ounded domain with an infinitely smooth boundary 𝜕Ω. The material

unctions are supposed to be infinitely differentiable, rapidly oscillating

nd 𝜀 Y -periodic in the local variable 𝐲 = 𝜚 𝜚 𝜚 ( 𝐱)∕ 𝜀 where 𝜀 > 0 is the usual

mall geometric parameter, and Y is the so-called periodic cell. For each

 = ( 𝑥 1 , 𝑥 2 , 𝑥 3 ) ∈ Ω the material functions are defined as the following

 − family of functions: 

 ≡ 𝐂 ( 𝐱 , 𝐲 ) , 𝐞 ≡ 𝐞 ( 𝐱 , 𝐲 ) , 
≡ 𝜿( 𝐱 , 𝐲 ) , 𝝁 ≡ 𝝁( 𝐱 , 𝐲 ) . 

he material functions satisfy the usual symmetry conditions given by

9) . Let’s consider the system of Eqs. (36) and (38) for each value of

, 𝑛 = 1 , 2 , 3 . The system can be written in the matrix form as follows, 

𝜕

𝜕𝑦 𝑡 

( 
𝐃 

𝜕 

𝜕𝑦 𝑟 
𝐍 

) 
= − 

𝜕 

𝜕𝑦 𝑡 
𝐛 , (C.1)

here 

 = 

[
𝑁 

(1) 
𝑚𝑛 1 𝑁 

(1) 
𝑚𝑛 2 𝑁 

(1) 
𝑚𝑛 3 Ψ(1)

𝑚𝑛

]𝑇 
,

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜚 𝑟,𝑙 𝐶 1 𝑗1 𝑙 𝜚 𝑡,𝑗 𝜚 𝑟,𝑙 𝐶 1 𝑗2 𝑙 𝜚 𝑡,𝑗 𝜚 𝑟,𝑙 𝐶 1 𝑗3 𝑙 𝜚 𝑡,𝑗 𝜚 𝑡,𝑗 𝑒 𝑙1 𝑗 𝜚 𝑟,𝑙 
𝜚 𝑟,𝑙 𝐶 2 𝑗1 𝑙 𝜚 𝑡,𝑗 𝜚 𝑟,𝑙 𝐶 2 𝑗2 𝑙 𝜚 𝑡,𝑗 𝜚 𝑟,𝑙 𝐶 2 𝑗3 𝑙 𝜚 𝑡,𝑗 𝜚 𝑡,𝑗 𝑒 𝑙2 𝑗 𝜚 𝑟,𝑙 
𝜚 𝑟,𝑙 𝐶 3 𝑗1 𝑙 𝜚 𝑡,𝑗 𝜚 𝑟,𝑙 𝐶 3 𝑗2 𝑙 𝜚 𝑡,𝑗 𝜚 𝑟,𝑙 𝐶 3 𝑗3 𝑙 𝜚 𝑡,𝑗 𝜚 𝑡,𝑗 𝑒 𝑙3 𝑗 𝜚 𝑟,𝑙 
𝜚 𝑡,𝑗 𝑒 𝑗1 𝑙 𝜚 𝑟,𝑙 𝜚 𝑡,𝑗 𝑒 𝑗2 𝑙 𝜚 𝑟,𝑙 𝜚 𝑡,𝑗 𝑒 𝑗3 𝑙 𝜚 𝑟,𝑙 − 𝜚 𝑡,𝑗 𝜅𝑗𝑙 𝜚 𝑟,𝑙 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 
9

 = 

[
𝜚 𝑡,𝑗 𝐶 1 𝑗𝑚𝑛 𝜚 𝑡,𝑗 𝐶 2 𝑗𝑚𝑛 𝜚 𝑡,𝑗 𝐶 3 𝑗𝑚𝑛 𝜚 𝑡,𝑗 𝑒 𝑗𝑚𝑛 

]𝑇 
.

esides, we make the further assumption that there exist a constant 𝜉 > 0

uch that, for any vector 𝐚 = ( 𝑎 1 , 𝑎 2 , 𝑎 3 ) , and any third-order symmetric

atrix 𝑀 = ( 𝑀 𝑖𝑗 ) 

 𝑖𝑗𝑘𝑙 𝑀 𝑖𝑗 𝑀 𝑘𝑙 ≥ 𝜉𝑀 𝑖𝑗 𝑀 𝑖𝑗 , 𝜅𝑖𝑗 𝑎 𝑖 𝑎 𝑗 ≥ 𝜉𝑎 𝑖 𝑎 𝑖 . 

sing the Cauchy-Schwarz inequality [33] , it is shown that the matrix

 tr satisfies the following 
 

𝐃 

𝜕

𝜕𝑡 𝑟 
𝐍 , 
𝜕 

𝜕𝑦 𝑡 
𝐍 

} 

≥ 𝜉1 

{ 

𝜕

𝜕𝑡 𝑟 
𝐍 , 
𝜕 

𝜕𝑦 𝑡 
𝐍 

} 

, (C.2)

here 𝜉1 > 0 and { •, •} denotes the scalar product. Under the assump-

ion that ⟨𝜕 𝐛 𝑡 ∕ 𝜕 𝑦 𝑡 ⟩ = 0 , the Theorem 1, p. 346 of [21] guarantee the

xistence of a general solution in the form, 

 = 𝐍 0 + 𝐜 ,

here ⟨𝐍 0 ⟩ = 0 . On the other hand, considering the condition ⟨𝐍 ⟩ = 0 ,
t turns out that c ≡ 0 , and the solution of the problem is unique, see

roposition 1 in [17] . 

Following a similar idea, the existence and uniqueness of the solution

f the LQ and PR problems can be proved. 

ppendix D. Solution of the local problem for stratified 

omposites 

As a particular example of the given methodology, a stratified com-

osite is considered, i.e. the case of a function 𝜚 𝜚 𝜚 ∶ ℝ 

3 → ℝ [17] ; then,

he local variable 𝑦 ∈ ℝ . Also, a methodology to solve the local problems

35) - (42) for a stratified composite is presented. 

From the expressions (45) - (49) , the functions 𝑁 

(1) 
𝑚𝑛𝑘 
, Ψ(1) 

𝑚𝑛 , Θ
(1) 
𝑚 , Π

(1)
𝑚𝑘

re not necessary for finding the effective coefficients; only the deriva-

ives are sufficient to get (45) - (49) . For that reason, the systems of partial

ifferential equations LQ and PR can be reduced. Following this idea, a

ethodology described in [17] is extended for the case of stratified flex-

electric composites. 

For the case of stratified composite, the local problems (36),

38) ( LQ ) have the following expressions 

𝜕

𝜕𝑦

( 

𝜕𝜚

𝜕𝑥 𝑗 
𝐶 𝑖𝑗𝑚𝑛 + 

𝜕𝜚

𝜕𝑥 𝑙 
𝐶 𝑖𝑗𝑘𝑙 

𝜕𝜚

𝜕𝑥 𝑗 

𝜕𝑁
(1) 
𝑚𝑛𝑘

𝜕𝑦
+ 

𝜕𝜚

𝜕𝑥 𝑗 
𝑒 𝑘𝑖𝑗 

𝜕𝜚

𝜕𝑥 𝑘 

𝜕Ψ(1)
𝑚𝑛

𝜕𝑦

) 

= 0 , (D.1)

𝜕

𝜕𝑦

( 

𝜕𝜚

𝜕𝑥 𝑗 
𝑒 𝑗𝑚𝑛 + 

𝜕𝜚

𝜕𝑥 𝑗 
𝑒 𝑗𝑘𝑙 

𝜕𝜚

𝜕𝑥 𝑙 

𝜕𝑁
(1) 
𝑚𝑛𝑘

𝜕𝑦
− 

𝜕𝜚

𝜕𝑥 𝑗 
𝜅𝑗𝑘 

𝜕𝜚

𝜕𝑥 𝑘 

𝜕Ψ(1)
𝑚𝑛

𝜕𝑦

) 

= 0 . (D.2)

or every value of 𝑚, 𝑛 = 1 , 2 , 3 , the systems (D.1) - (D.2) are 4 × 4 systems.

aking into account that the average of the local functions is zero, the

olution of the LQ problems (D.1) - (D.2) satisfies the system 

 𝐷 𝑎𝑏 ] 4×4 𝐍 4×1 = 𝜆𝜆𝜆4×1 − 𝐛 4×1 , (D.3)

here 

 = 

[ 
𝜕𝑁 

(1) 
𝑚𝑛 1 
𝜕𝑦

,
𝜕𝑁 

(1) 
𝑚𝑛 2 
𝜕𝑦

,
𝜕𝑁 

(1) 
𝑚𝑛 3 
𝜕𝑦

,
𝜕Ψ(1)
𝑚𝑛

𝜕𝑦

] 𝑇 
,

 𝑎𝑏 = 

𝜕𝜚

𝜕𝑥 𝑙 
𝐶 𝑎𝑗𝑏𝑙 

𝜕𝜚 

𝜕𝑥 𝑗 
, 𝑎, 𝑏 = 1 , 2 , 3 , 

 𝑎 4 = 

𝜕𝜚

𝜕𝑥 𝑗 
𝑒 𝑘𝑎𝑗 

𝜕𝜚 

𝜕𝑥 𝑘 
, 𝑎 = 1 , 2 , 3 , 

 4 𝑏 = 

𝜕𝜚

𝜕𝑥 𝑗 
𝑒 𝑗𝑏𝑙 

𝜕𝜚 

𝜕𝑥 𝑙 
, 𝑏 = 1 , 2 , 3 , 

 44 = − 

𝜕𝜚

𝜕𝑥 𝑗 
𝜅𝑗𝑘 

𝜕𝜚

𝜕𝑥 𝑘 
,

 = 

[ 
𝜕𝜚

𝜕𝑥 𝑗 
𝐶 1 𝑗𝑚𝑛 , 

𝜕𝜚

𝜕𝑥 𝑗 
𝐶 2 𝑗𝑚𝑛 , 

𝜕𝜚

𝜕𝑥 𝑗 
𝐶 3 𝑗𝑚𝑛 , 

𝜕𝜚

𝜕𝑥 𝑗 
𝑒 𝑗𝑚𝑛 

] 𝑇 
,
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nd 𝜆𝜆𝜆 satisfies the linear system 

[ 𝐷 𝑎𝑏 ] −1 
⟩
4×4 𝜆𝜆𝜆4×1 =

⟨
[ 𝐷 𝑎𝑏 ] −1 𝐛 

⟩
4×1 ,

here ⟨•⟩ denotes the average operator. This methodology is described

n [17] for the case of wavy-laminated elastic composite materials. Sim-

larly, the rest of the LQ and PR problems can be solved. 
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