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In this work, the general mathematical statements for flexoelectric heterogeneous equilibrium boundary value
problems are reported. A methodology to find the local problems and the effective properties of flexoelectric
composites with generalized periodicity is presented, using the two-scales asymptotic homogenization method.
The statement of the homogenized boundary values problem is given. A procedure to solve the local problems
of stratified multilayered composites with complex geometry and perfect contact at the interface is proposed.
Consequently, the analytical expressions of the effective coefficients are obtained. The piezoelectric limit case
for rectangular bi-laminated composites is validated. Finally, numerical analysis to illustrate the behavior of the
effective properties for rectangular and wavy flexoelectric bi-layered structures are shown.

1. Introduction

In recent years, there has been aincreased interest in the study of the
piezoelectric and flexoelectric properties of the materials. Many authors
have highlighted the main difference between these two classes of phe-
nomena [1]. Piezoelectricity and flexoelectricity are linear electrome-
chanical coupling. While piezoelectric effect describes the generation
of electric polarization under homogeneous deformation (uniform me-
chanical strain) [2], flexoelectric effect refers to the electric polarization
under strain gradient [3,4].

Piezoelectric composites are widely used in energy harvesting,
acoustic sensors and the development of actuators and transducers able
to operate at elevated temperatures [5,6]. Flexoelectricity has been ob-
served in several systems such as isotropic elastomers, liquid crystal, and
crystal plates [7]. The flexoelectric phenomenon in biological materials
such as bones and bio-membranes [8,9], has been studied by many au-
thors, due to the applications in biomaterials engineering. For example,
the flexoelectric behavior of the bones is essential for bone’s self-repair
and remodeling properties [10]. According to the authors, the flexoelec-
tricity has a central role in the crack-healing process of the bones. On
the other hand, the flexoelectric materials like BaTiO3 have been used
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to fabricate nanogenerators that harvest energy from light, mechanical
vibration and heat more efficiently [11]. In [12], other applications of
flexoelectricity are presented, like the use of flexoelectric materials in
the fabrication of nano-sized devices for sensors and actuators.

Due to the multiple combinations of materials, the composite struc-
tures with elastic, piezoelectric or flexoelectric components are widely
studied. This work presents a method to study flexoelectric composite
with generalized periodicity, taking the equilibrium equations reported
in [13] as the object of study. In [13], the authors deduced the equi-
librium problem from the electric Gibbs energy density. The flexoelec-
tric part of the equation is characterize by a fourth order tensor u. It is
mentioned that u tensor is a combination of the direct and inverse flex-
oelectric tensors, which is studied in [1]. Many authors have brought
different approaches to solve or approximate the solutions of the equi-
librium equations. One of the most common methods is to find the ho-
mogenized problem using the two scales asymptotic homogenization
method (AHM). In [14-16], the authors offer a detailed description of
the steps to find effective properties of elastic/piezoelectric rectangular
composites applying AHM. On the other hand, in [17], a methodology
to find the effective properties for the case of multilayered materials is
presented. The concept of generalized periodicity used in [17] consid-



ers that the properties of the materials are periodic with respect to a
stratification function, o(x), that describes the geometry of the layers.
The results described in [17] are extended in [18] to elastic curvilinear
structures with perfect and imperfect contacts at the interface. Now, the
present work applies the concept of structure with generalized period-
icity to flexoelectric composites and describes a procedure to find the
effective coefficients from the local problems that arise from AHM. Since
the flexoelectric effect is considered, the results shown in [16,17] and
[19] are particular cases of the present work.

It is important to highlight that the asymptotic homogenization
method is rigorously justified [20]. The averaging method is efficient for
investigating macroscopic and microscopic properties of periodic struc-
tures, see [21]. One of the main advantages of the described technique is
the possibility of determining the effective properties of a large number
of periodic composites. In the case of flexoelectric structures, the ana-
lytical expressions of local problems and the effective coefficients can
be derived. The equivalent homogenized equilibrium problem with non-
rapidly oscillating coefficients for a flexoelectric composite is obtained
from the effective properties. In this manuscript, the analytical solutions
of the local problems for flexoelectric materials with generalized peri-
odicity are presented for the particular case of stratified composite, as a
generalization of the procedure described in [17] which is for the case
of elastic composites.

In Section 2, the general equations of the equilibrium problem for a
flexoelectric composite with generalized periodicity are reported. Some
remarks about the matrix representation of the constitutive relations and
the flexoelectric tensor are given in Appendix A. In Section 3, the proce-
dure of the two-scales asymptotic homogenization method is presented.
The displacements and electrical fields are written in terms of the ex-
pansion. The consequences for different powers of the small parameter
are considered. The mathematical statement of the homogenized flexo-
electric equilibrium problem is given. Consequently, in Section 3.1 the
general expressions of the local problems for a flexoelectric compos-
ite are yielded. The details are specified in Appendix B. The conditions
to guarantee the existence and uniqueness of the solutions of the local
problems are mentioned in Appendix C. An algorithm to obtain the ef-
fective properties is reported in Section 3.2. Finally, in Section 4 some
numerical examples are illustrated. The procedure described in the pre-
vious section is validated with the results reported in [22], considering
a piezocomposite as a particular case of a flexoelectric heterogeneous
structure. On the other hand, two numerical cases of stratified flexo-
electric composites are studied. The first example illustrates the effec-
tive properties of a bi-materials rectangular laminate composite where
the constituents are flexoelectric materials with cubic symmetry. The
second example deals with the computation of the macroscopic charac-
teristics for a wavy periodic bi-laminated medium with the same ma-
terial parameters, considering the dependence of the coefficients with
respect to the stratification function. The solution of the local problems
for stratified structures is introduced in the Appendix D.

2. Equilibrium equation

Let Q ¢ R3 be a three-dimensional open connected bounded domain
with an infinitely smooth boundary 0Q. The equilibrium problem on a
flexoelectric structure Q is given by the equation

905+ f;=0, in Q (1)

0;D; =0, in Q, @)
and boundary conditions

u; = u?, ono0Q,, t

;=1°, on 09, ©)
duin; =), on 0Qq,  uy Eynn; = 1), on 0Q,, @)

$=¢°, onodQ,, Dn =-7, onodQ, 5)

Fig. 1. Flexoelectric multilayered composite: a) rectangular geometry at the
periodic cell and b) with complex geometrical shape microstructure.

where 0,(s) = d(+)/0x,; o is the general stress tensor; f is the exter-
nal forces vector; D is the electric displacement vector; u, u® are
the displacement and prescribed displacement vectors, respectively;
n is the normal vector to the corresponding surface; E is the elec-
tric field vector; t, t° are the traction and prescribed traction vec-
tors, respectively; s® is the prescribed normal derivative of the dis-
placement vector and ¢, ¢°, 1%, are the electrical potential, the pre-
scribed electrical potential, prescribed higher-order traction and surface
charge, respectively; where 0Q = 0Q,, U 0Q, = 0Q, U 9Q, = 0Q, UdQ, and
f = 0Q, N 0Q, = 00, N 00, = 90, N Q.

The constitutive relationships between stress o, electrical displace-
ment D, strain e and electrical field E have the following form written
by components

6ij = Cijr€rr — ekij Ex + 1yijioi Eyps (6)
D; = ey + Hijri9i€ + ki Ej, )]

where C, e, k and u denote the stiffness, piezoelectric, permittivity and
flexoelectric tensors, respectively. The matrix representation of the con-
stitutive relations (6)—(7) and some explanations about the flexoelectric
tensor are reported in Appendix A. For small deformations, the strain
€ and the electrical field E relate to the displacement tensor u and the
electrical potential ¢ as

€ = %(@»ui + diuj),
The mathematical statement for a flexoelectric media is derived substi-
tuting (6)—(8) into (1)-(2) under boundary conditions (3)—(5).

The mechanical and electrical properties of a curvilinear flexoelec-
tric periodic heterogeneous structure, C¢* = C*(x, y), e* = e*(x, y),
k¢ = k4(x,y), and u® = pf(x,y) are regular functions with respect the
variable x € R and periodic with respect the variable y = o(x)/¢ € Y,
where o(x) is the surface that describes the geometry, 0 < ¢ < < 1
is a very small parameter that characterizes the heterogeneity of the
structure and Y c R? is called the periodic cell. As an example, a bi-
materials multilayered flexoelectric composite with generalized period-
icity is shown in Fig. 1b. The geometry of the periodic cell Y is described
by the function ¢(x). The small parameter ¢ characterizes the periodic-
ity of the layers. The variable y = o(x)/¢ has a wavy behavior due to the
presence of o(x). In this particular case, the wavy is changing along ys,
the layers are transversal to the y5 axis, while the properties are constant
along the y; axis.

Ej = _ajqb’ (8)



The material properties satisfy the usual symmetry conditions given
by

13 — € — I3 13 t3 — L€ £ __ '3
Ciikt = Cii = Cijie = Chaijp - Cje = @G> Kij = Kjie (€

Substituting the formulas (6)-(8) into the Egs. (1)-(5), based on the
slow x variable and rapid y variable, the heterogeneous flexoelectric
equilibrium problem for a composite with perfect contact at the inter-
face, can be written, using the total derivative operator 0 () = 0(e)/0x; +
(05;/€)0(+)/ 9y, as

Omj e € OLj e € ¢
< P Cuk1|m+ci/k1,j k1+cz/k1 kl/+ . ekzj|/+ekij‘j %
R S W T (10)
kij Pk e Hiijkyn T Hiiji ) Pare T HiipePag T =
Osii ¢ 3 £ € Os,i €
<e Cinrps T i st it . ”uk1|Y z/kl,,- U 1
wul ot — (D 4 ¢ — k5, =0 )
Hijra™; ki e ij|l u, ij P =Y

where (+)|; = 3(+)/9y;, (+) ; = 9(+)/0x,, with boundary conditions

ut =u’, on 0Q,, 1 =1° onoQ, (12)
"zJ"/ = s on 0Q,, n,-njﬂlgijkElE = r?, on 0Q,, (13)
¢ =4¢", ondQ,, Dfn =-r, onoQ,, (14)

and continuity conditions at interface

(111 = 0. [[]] =0. [[o*m]] =0. |[ D5

where I is the interface surface between two different components. The
Eq. (15) implies that the stress tensor o, the displacement vector u, the
electrical displacement vector D and the electric potential ¢ are consid-
ered continuous functions at the interface (perfect contact condition).

The problem (10)-(14) for the particular case when o; ;=0 is re-
ported in [13]. On the other hand, the equilibrium problem (10)-(14) is
a generalization of Eq. (6)-(7) obtained in [23] for the case of an elastic
structure.

m]| =0 on, (15)

3. Asymptotic homogenization method

The basic idea is to expand the fields in term of the aforementioned
small parameter. Therefore, the asymptotic expansions for the functions
o Df Uy and ¢*° are given by

u (x,y) = uio)(x) + eug)(x,y) + ezuf)(x, +..., (16)
%, y) = ¢V + ¢V (x,y) + 26D y) + ..., an
of(x,y) = o) (%, ¥) + €0} (%, Y) + €0 (X Y) + .o, (18)
Dix,y) = DV(x,y) + €DV (x,y) + 2 DP (X, y) + ... (19)

The fact that uﬁ{o) and $© depend only on the macrovariable x can be
proved by the same procedure presented in Section 5 of the Introduction
of [21], see Eq. (3)-(5).

From now on, for simplicity the superscript “c” on the magnitudes is
omitted. The asymptotic expansions (16)-(17) are substituted into con-
stitutive relationships (6)-(8), see Appendix B, Egs. (B.1)—(B.2). In order
to avoid singularities when £ — 0, the coefficients for £~! are equated
to zero

“g”

(1) (D
H1ijk@r1Os kP = 05 Hikj10r105 1, = 0. (20)

Consequently, the following recurrent formulas for a ) and D(") are de-

rived from (B.3)-(B.4), for e, n > 0
(n) _ (n) (n+1)
o5 = uklukl +Gj lerI”k|, '+ exijd; + exijor i),
n+2)
—#ujk%k = (i + ”lijk)or,/¢|r,k ”lukorl(’ykd’m , n
o _ ) (n+1) (n) (n+1)
Dl. = ejquy, + CiklOr Uy, K'l]dJ Kl]()”qb
(n) (n+2)
+ pigt g + (Mg + ”ikjl)or,luk’ i+ HiKiLOr 105 Uy s (22)

Equating to zero the contributions of the terms ¢! and £° derived from
(B.5)-(B.6), the following equations are obtained

-1 0

(E ) ij ’]|k 0 Oy [Df‘/z O’ (23)
0y . (0 (N — (0) () _

(e") : TRy UIk+f,»—0, D;; +ok»iDi|k_0' (24)

It is known that for the AHM, the first order approximation gives a good
approach for the solution of the heterogeneous equilibrium problem (1)-
(2) and it has an accuracy of order £1/2, see Theorem 6.3 in [20] and
Chapter 6 in [21]. Hence, the higher order of ¢ are neglected. The ho-
mogenized equations of a flexoelectric medium can be obtained apply-
ing the average operator (+) = 1/|Y| f(+)dy to the Eq. (24) and consid-
ering the periodicity of ai(}) and D?” with respect the variable y. Thus,
the homogenized problem takes the form,

8 +/fi=0, 25

b;; =0, (26)

ij
heterogeneous equlhbrlum problem (10)-(14) approaches to the solu-
tion of the homogeneous problem as £ — 0, using the two-scales asymp-
totic homogenization rnethod

To find an expression for o‘

where 6;; = < © > and D = <D(O)> It is known that the solution of the

9 and D(O) the system of partlal differen-

tial Eq. (23) must be solved. Therefore, the expressions of "ij ) and DEO)
derived from (21)-(22) for n = 0, are substituted into (23),
% (C,-,-uui(f; + Cijkl@r,lu5€]|)r + ejik¢f;‘3) + ejikor,k¢|(:)
_lllijkd)f,(),() — (i + Mlijk)pr,lqﬁirl’)k - Mlijkor,lox,kqbffz)lt =0, (27)
0 (e + emporiy) =kt = 04
+M1k11”k 1T i + ll,kjl)é’rl”k”, + ﬂikjlgr,los,juﬁ)m)lt =0. (28)

Due to the linearity of the system (27)-(28) and assuming the regularity
of the components and the smoothness in variation of the coefficients,
the following decomposition of the functions uﬁ(") and ¢™, n > 1, is con-

sidered [21],
u"x,y) = Ny + 1 w)e|) ™, 29)

Pp"x,y) =¥yl +

where N®@, I, ¥ and @™ are Y-periodic continuous functions
and for their uniqueness, the functions satisfy (N®) = (II"") = (¢ =
©™) =0

Substituting (29)—(30) into (27)-(28) (contribution £~!), we have

+0" (g, (30)

u© (0) ©) _ ©) _
_lenp m,np + Lzmnum n + P ¢ szn¢ =0, (€2V)
u© (0) ©0) _ ) _
anp m,np + anum n +R ¢ mrl¢¢mn =0, (32)

where the coefficients L, P, Q and R involve derivatives with respect to
the rapid variable y of the local functions N™, I, ¥ and ™. Notice
that the coefficients with higher orders Liynp, Pinn» Q,,,, and R, are as-
sociated with the flexoelectric tensor u; on the other hand, the remaining
coefficients Ly, Ppm, Q,,, and R, are related to stiffness, piezoelectric
and dielectric tensors. See the derlvatlon in Appendix B Egs. (B.7)—(B.8).



3.1. Local problems

The local function N®, I, ¥ and @® are necessary to obtain
the expressions of 4; ; and 15[ of the homogenized problem (25)-(26).
Substituting (29)—(30) into (20) the following equations are derived

) @1 (0 _
HiijicOr19s, k\I’k”” k1l + H1ijkOr,1Os, k®””¢ =0, (33)
0 @ 1(0)
Hikj10r10s; Ny i+ Hij10105, 510, ) = 0. (34
Considering the linear independence between the functions uiol)q, ug)]),

¢(0) and ¢(0) the continuity and the periodicity of the local functions, we

can concluded that ¥, =@W =nN® —® —q. Moreover, due
mlrs nmk|rs mrs

to the above mentloned linear independence, the coefficients of (31)-
(32) are identically zero.
The local functions ¥V, @ NI = nO (9(1) e? nV n® a

mns Emnps i Y e mn> g > Hmk
the solutions of the following local problems

= (1) (2) —
Limnp = (Ox,l(ﬂpilj + ﬂj”[’)g&jlpmn\s + 0“”"”/oxn/OVsklpmanS)lt =0, (35)

- (eY] 1
Lip, = (Or,/cijmn +0r1Cijki 01 N iy + Ot,jekijpr,k\l’m’”r)lt =0, (36)

— )
anp =04 (ﬂimnp + (llikpl + ﬂiklp)gr INmnk|r + Hikij0r,1 05, /Nr(nnpk|rs)| =0,
37

— )]
Q = <@t1 Cimn T 01,i€iki O kNm,,”,. OI,iKijgx,j\PE,,,,h)lt = 0’ (38)

— 2
Pi = (01 [ Hmitn + 0[/(””11} + Mmjl)ov!@mh +o l”kll/pr ka‘lemnhs)l =0,

(39)

pl = (0[1 m:l + ek”grkgrjem\r + Otfcl/klprlnmkh)l =0, (40)
= 1

R, = (0:/ jklprlek‘r 01 jKjm — O’V/K/"O’vk@inl)r)lt =0, @n

R, (01,[ (ﬂikpm + ﬂikmp)@r,pngcllir + Qt,iﬂikpngr,n@s,pnf,zn)kvs)lt =0. (42)
and satisfy the continuity conditions at the interface given in (B.12)-
(B.21).

Solving the LQ (35)-(38) and PR (39)—(42) systems, the local func-
tions are obtained. As a particular case, the LQ and PR problems for
one-dimensional flexoelectric rod are deduced in [24] (Egs. (13)-(20)).

3.2. Effective coefficients and homogenized problem
Finally, the expressions of the effective stress 6;; and the effective

electric displacement l5,~ from the Egs. (25)—(26), can be written in terms
of the effective coefficients as follows

~ A ©) | A (0) ~ (0)

6ij = Cijuattyy +Cijb . = Riijd 4 (43)
A s (0) | ©0) ~ 1(0)

Di = eikluk,[ + ”ijkluj,k/ - K—ijqbyj s (44)

where

Cipmn = <Clpmn + Clpklgrle,,k‘,. + eklppr klym,,|,-> (45)

ﬁmipn = <Mmlpn + MkthOA jor k®mk|rs + (Mmpk + Mk!pn)gr k®m|r> (46)

fimipn = $Hmipn + (Hmient + Ponkin) 0r Ny + HnkjOs,0rt Ny ) “7)
mipn — \Mmipn ‘mknl mkin ) €r,1 ipk|r mklj¥s,jOr,1 ipnk|sr’’

Cmin = (€min + €kin0r k®m|r + Clnklorlnmk|r>

5 0]
Cmin = (€min + emklorlek|, Kpjgr,kl{,imr)’ (43)

k\-mn = < Kmn + KnkOr, kem‘, ~ CnkiOr lnmk‘,> 49)

The expression (45) is known as the effective stiffness tensor. The
Eq. (48) represent the effective piezoelectric tensor. In addition, (49) is
called the permittivity tensor and finally (46) and (47) denote the effec-
tive flexoelectric tensor.

The equality of the equations of the piezoelectric tensor (48) is ob-
tained by the solution of the LQ problems (36), (38) and the PR problems
(40), (42), see Lemma 4.4 of [25].

Substituting the Eqgs. (43)-(44) into (25)-(26), the homogenized
problem associated to (10)-(14), takes the following form

A O, 4 O _ A (0) _
(C[jklukJ + 80y — Mlijk‘ﬁ,/k) ; +/fi=0, (50)

ij¢$)))[_ =0, D

(0) (0)
( rk[uk/ + ”zjkI“J kl
with boundary conditions

©) _ 0 7=
u; —ui,onaﬂu, t,=t

i i’

on 0€,, (52)

ufg)nj =50 onaQ,, fyEmn; =), on 0Q,, (53)
¢ =¢°, on 9Q,. D;n;=-1, on dQ,, (54)

where 7, E;, D, are the effective traction, electric field and electrical
displacement respectively.

4. Numerical calculations

In this section, firstly, the model is validated, computing the effective
properties of the structure presented in [22]. The intention is to verify
the accuracy of the methodology described in Section 3, considering
piezoelectric laminated composites PZT-5A/Araldite (Table 1) as limit
case of flexoelectric materials. Now, two different cases of flexoelectric
laminated media are considered. Case 1: rectangular bi-laminated com-
posite with flexoelectric components is analyzed. The materials of the
layers are Barium Titanate (BaTiO3) and Gallium Arsenide (GaAs), see
Table 2. Finally, Case 2: a flexoelectric wavy-laminated structure made
of two layers of Barium Titanate (BaTiO3) and Gallium Arsenide (GaAs)
is studied.

All numerical examples presented in the following sections are par-
ticular cases of stratified composites, i.e. the function ¢ : R” — R [17].
Therefore, the local problems are solved using the description given in
Appendix D.

4.1. Limit case: piezoelectric non-wavy laminated composite

Piezoelectric structures are particular cases of flexoelectric materi-
als when u = 0. To validate the method presented in this work, a bi-
laminated piezocomposite material is studied. The constituents of the
structure are PZT-5A and Araldite with volume fractions V; and V,, re-
spectively. The mechanical properties of these materials are given in
Table 2. As it is described in [22], the layers are considered transversal
to the x5 axis, i.e. o(x;, X, x3) = x3 and y = x3 /¢, see Fig. 1a.

The effective properties of the bi-laminate piezocomposite are esti-
mated using two different methods: the Eqs. (45), (48), (49) (Present
model) and the approach described in [22]. In Fig. 2, a comparison of
the effective coefficients Cyy,,, &3, £1; and &, are shown. The numer-
ical results are computed using the two methods for different volume
fractions. The dashed lines represent the coefficients derived from the
present model (AHM) and the circles are the effective properties ob-
tained from Grekov et al. [22]. A good concordance between the two



Table 1

Mechanical properties of the PZT-5A and Araldite, [22]. The parameters Cyq, €, ky/ko are the
constituents of the stiffness (GPa), piezoelectric (C/m?) and relative permittivity tensors, respec-

tively.
Parameters Cin Ciio2 Ciisz Ca333 Caz3 €311 €333 €313 K11/Ko K33/Ko
PZT-5A 121 75.4 75.2 111 21.1 -5.4 15.8 123 916 830
Araldite 5.46 2.94 2.94 5.46 1.26 0 0 0 7.0 7.0
Table 2

Mechanical properties of BaTiO; and GaAs. The parameters Cy, €, kj/ko and pyy are
the constituents of the stiffness (GPa), piezoelectric (C/m?), relative permittivity and flex-

oelectric (nC/m) tensors, respectively.

Parameters Cin Ciize Cazo3 €123 K11/Ko Him Hi221 Hi212
BaTiO; [13] 358.1 115.2 149.8 1408 0.15 -5.46 1.90
GaAs [26,27] 118.8 538 59.4 -0.16  10.99 0.514  -0.838  0.265
14
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Fig. 2. Comparison of the effective coefficients Cy,5,, €113, k17 and k,, obtained using the formulas (45), (48),(49) and the model described in [22].

methods is appreciated. Finally, this example validates the procedure
presented in Section 3, taking the piezocomposites as a limit case of
flexoelectric structures.

4.2. Case 1: non-wavy laminated flexoelectric composite

In this section a flexoelectric rectangular multilayered composite is
proposed, where the layers are transversal to the axis x5, Fig. 1 a. For
this particular case, the fast variation of the properties occurs in the
X3 direction, i.e. y = x3/¢, where o(x,, x5, X3) = x5, see [23]. The con-
stituents are two cubic symmetric materials, Barium Titanate (BaTiO3)
and Gallium Arsenide (GaAs), with volume fractions V| = ¥, = 0.5. The
materials properties are given in Table 2.

Solving the LQ (35)-(38) and PR (39)-(42) systems and substituting
the solution into (45)-(49), the effective coefficients are computed. The
average operator for a laminate composite takes the form (s) = 0.5(s)(V +
0.5(+). The obtained effective coefficient matrices Cg,g &34, £35; and

flgxo are given as follows

234497  80.547  69.095 0 0 0
80.547  234.497  69.095 0 0 0
~ | 69095  69.095 178412 0 0 0
06 = o 0 0 85.068 0 o |
0 0 0 0 85.068 0
0 0 0 0 0 104.600
(55)
0 0 0 —0.090 0 0
&e=10 0 0 0 —0.090 o | (56)
0 0 0 0 0 —0.159
709.495 0 0
Rya=| O 709.495 o | 57
0 0 21.8081
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Fig. 3. Effective coefficients components Cy333, Cy33, Cy133 (stiffness), é,,3, &5, (piezoelectric), #,,, &35 (relative effective permittivity) and fis333, A3131> Ai331> Aioo

(flexoelectric).
0.334 0 0 0 —0.090 0 0
~009 0 0 0 0.334 0 0
o |-0757 0 0 0 —0757 0 0
Hoo =1 ¢ 0 0 0 0 —0.346 0
0 0  —0346 0 0 0 ~0.184
0 0.495 0 0.495 0 0 0

Notice that the constituents of the original heterogeneous body are
two cubic symmetric layers, however the global properties of the ho-
mogenized solid after homogenization process have a tetragonal (42m)
symmetry. The structure of the matrices Cgy ., &34 and &, are char-
acterized in Figure 3.14 of [26] and for the flexoelectric contribution
tensor, the matrix fig,o has the same linearly independent components
as it is shown in the appendix of [28].

Notice that the effective coefficients for the particular case of rect-
angular laminate composites with a fixed volume fraction are constant
functions.

4.3. Case 2: wavy flexoelectric composite

In order to point out the influence of the composite geometry into the
effective properties, a two-element wavy laminate composite is studied
as it is illustrated in Fig. 1b. The stratification function used to describe
the undulating layers is given by

1 .
o(xy, Xy, X3) = X3 — 1 sin (27rx2), (59)

and the corresponding gradient is

-z o _
= -7 cos (27x,) PR =1

do do
ox, 0xy

The constituents of the bi-layered composite are the cubic symmetric
materials Barium Titanate (BaTiO3) and Gallium Arsenide (GaAs). The
properties of the layers are presented in Table 2. The local problems

0 —2.286
0 —2.286
0 0.232
—-0.184 0 8
0 0
0 0

(35)—(42) are solved for the case of a stratified composite, following the
approach described in Appendix D. The expressions of the local func-
tions are substituted in (45)-(49) to compute the effective coefficients
C, & & and j.

To illustrate the behavior of the effective coefficients of the stud-
ied wavy composite, some non-zero components of the effective tensors
are computed. In Fig. 3, the effective components Cy333, Cr303, Ci133
(stiffness), é,,3, &3, (piezoelectric), &y, k33 (relative effective permit-
tivity) and fi3333, #3131, A1331> A1 (flexoelectric) tensors are shown,
considering the volume fraction V| = ¥, = 0.5. Distinctly for the rectan-
gular case, where all the effective coefficients are constants along the
medium, for the wavy laminate structure, the effective coefficients are
variable and depend on the position throughout the composite [17]. It
can be seen that the average properties expressions (45)-(49) are re-
lated to the gradient of the stratification function (59). Thus, the overall
tensors for this particular example are smooth continuous functions and
1-periodic respect to x,. Due to the continuity of the coefficients, the
homogenized problem (50)-(54) is easier to solve compared with the
heterogeneous problem, where the coefficients are rapidly oscillating
discontinuous functions.

Although many methods offer efficient strategies and techniques for
calculating effective coefficients, such as FEM [29,30], the asymptotic
homogenization method is an important tool for calculating effective
properties. First of all, the equations presented in this manuscript are ex-
plicit expressions and they are easy to compute. The local problems are
partial differential equations, but for the particular case of multilayered
composites, the local problems are reduced to systems of linear alge-
braic equations and they can be solved analytically. On the other hand,



the formulas obtained are not limited to the case of wavy structures; the
calculations were made with a general ¢ function, which allows adapt-
ing the formulas to different geometries, including more general cases of
composites such as quasi-periodic structures. The computational cost of
programming the effective coefficients is low compared with other sim-
ilar methods, such as FEM. Finally, these expressions allow to calibrate
numerical algorithms as reflected for FEM in [31].

5. Conclusions

The manuscript offers an extended study to find the effective co-
efficients of flexoelectric composite with complex geometry. The equi-
librium problem for a flexoelectric structure is derived for the case of
three-dimensional solid. In this work, the symmetry of the flexoelectric
tensor is taken into account, as a low symmetry tensor, due to the gra-
dient term of its definition. The matrix representation and symmetry of
the flexoelectric tensor are provided.

The validation with the results reported in the literature for piezo-
electric materials provides reliability to extend the two scales asymptotic
homogenization method to the case of flexoelectric composites. The
AHM is used to find the effective material properties. The manuscript
presents a step-by-step strategy to derive the local problems and the
effective coefficients equations for structures with generalized periodic-
ity. The existence and uniqueness of the solution of the local problems
are guaranteed. Following the proposal, the homogenized problem for
three-dimensional flexoelectric composites is derived.

Bi-materials rectangular and wavy laminated composites are consid-
ered. A comparison between the effective properties of a rectangular
and a wavy media provides important outcomes about the behavior of
the coefficients of the homogenized problem. In the case of rectangular
multi-layered composites, the global properties are constant throughout
the structure, however, in the case of wavy structures, the average prop-
erties are continuous functions that depend on the stratifying function.
The numerical results yield information about the flexoelectric effect for
future research, as well as its applications, for example, in the regener-
ation of bone tissues.

This method is an extension of the procedure presented in previ-
ous mentioned works to flexoelectric composites with perfect contact at
the interface. It can be extended to other types of composite with dif-
ferent interface contact conditions. Several applications in engineering,
biomechanics can be considered due to the broad spectrum of compos-
ites covered by the present approach.
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Appendix A. Flexoelectric tensor

The ambiguity in the definition of the flexoelectric tensor has led
several authors to adopt different constitutive equations and therefore
different versions of the flexoelectric tensor have been studied [32]. But
all authors agree that the flexoelectric tensor is a low symmetry fourth-
order tensor [28]. The general expression of the flexoelectric tensor has
54 linearly independent components. This leads to consider a symmetry
of the tensor with respect to two of the indices, in this work we have
assumed 5 = g, the same symmetry is taken in [13].

The equilibrium Egs. (1)-(5) are reported in [13] for a flexoelectric
structure, where the tensor u is combined from the direct and converse
flexoelectric tensors [1]. A matrix representation of the constitutive re-

lations (6)-(7) is

€ox1
[06x1]=[C6x6 —e§X3 Os1s  Hexo|| Esxi (A.1)
D3y €3%6 K33 Hias  Ono]| Ve | '
VEQXI

where

T
Ooxl = [‘711"722v033’5237‘713’012] >

Dy, = [Dy. Dy, Ds]T

>

T
€ox1 = [611’€22v€33!2€23’2€13’2€12] >

E; = [El’Ez,E,%]Ts

T
Vega = [511.1’522,1,533,1’2523,1’~~~’2€12,3] ,
T
VEg = [Ey 1. Eyy Esys oo Es
The matrices Cgyg, €346 and k3,3 are the classical matrices of the elas-
tic, piezoelectric and permittivity tensors respectively [26]. Finally, the
flexoelectric matrices s, g, Mexo are deduced following the approach
described in [28] and yields

i=1,23 n=123,..18, (A2)

H3xis = (M),

where n=1,2,3,...,18 refers to the combinations of the indexes jkI =
111,221,331,231, 131,121,112, ..., 123, i.e. ;, = ;4 as follows

Hin n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
=1 pyn Hinai Hi331 Hi231 Hi131 Hii21 Hin Hin Hi3z
=2 Ha1 H2331 H2231 H2131 Ha121 Har12 Ha22 Ha332
i=3 H3221 H3331 H3231 H3131 H3121 H3112 H3222 H3332
Hin n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18

i=1 ppy Hizz Hiin Hins Hin3 Hi333 Hi233 Hi33 Hii3
=2 sy H2132 Ha122 Ha113 Ha23 H2333 H2233 H2133 Ha123
=3 H3132 H3122 H3113 H3223 H3333 H3233 H3133 H3123

The flexoelectric matrix (A.2) described in the above table can be
split in three sub-matrices

1 2 3
s = | [0] [152%) [150] | (A3)
On the other hand, the matrix pg¢, o has the form

T
Hexo = [Hpq " - (A4)
where ¢=1,2,3,4,5,6 refers to the middle indexes jk=
11,22,33,23,13,12 and p=1,2,3,4,...,9 refers to all possible com-
binations of the outer indexes il = 11,21,31,12,22,32,13,23,33, i.e.
Hpq = Miji as follows

" p=1 p=2 p=3 p=4 p=5 p=6 p=T p=8 p=9
q=1 Himn Hoin H3111 Hinz Hain2 H3112 Hins Hani3 H3113
q=2 Hi221 Ha21 H3221 Hian Ha22 H3222 Hi223 Ha223 H3223
q=3 Hi331 H2331 H3331 Hi332 H2332 H3332 Hi333 H2333 H3333

g=4 Hi231 H2231 H3231 Hia32 M3z H3232 Hi233 H233 H3233
q=>5 Hi31 Ha131 H3131 Hii32 H2132 H3132 Hi33 H2133 H3133
q=6 Hizt Ha121 H3121 Hiiz H2122 H3122 Hi3 Ha123 H3123

Notice that the matrix (A.4) can be written in terms of the sub-
matrices given in (A.3) as follows

1T 11" 1,017
oo = | [ue] (2] ]| (*5)



In the case of flexoelectric materials with cubic and tetragonal (42m)
symmetries, [13,28], the matrix ug,o has the forms

Cubic:
i O 0 0 His 0 0 0 H1s
His 0 0 0 Hy 0 0 0 H1s
s 0 0 0 His 0 0 0 K11
Hoxo = g
0 0 0 0 0 g 0  jg O
0 0 mg O 0 0  jg O 0
0 g O e O O 0 0 0

(A.6)

Tetragonal 42m:

i 0 0 0 His 0 0 0 Hi9

s 0 0 0 Huy 0 0 0 H19

My 0 0 0 My 0 0 0 H39
Hoo=l o 00 00 0 0 e 0 ms O

0 0 g O 0 0 g O 0

0 sy O wg O O 0 0 0

(A7)
Appendix B. Asymptotic homogenization method

Substituting (16)—(19) into the constitutive relations (6)-(8), the fol-
lowing expressions are derived

0 1 2 0 1 2
a,.(j)(x,y) + eafj)(x, y)+ ezo-f/.)(x, y+..= Cijk,d,(ui) + S”L) + ezuﬁc) + )
+e;0; (0 + eV + 20D + ) = 1,,,0,0, (6 + eV + 20D + ),
(B.1)
0 1 2 0 1 2
Dﬁ )(x,y) + 6D§ )(x,y) + ezDﬁ )(x,y) + = eikla,<u§( ) +eu5{ )+ eszugC 4 )
+ﬂikﬂ(3,6j (ug]) + sug) + £2u§(2> + ... ) - Kijt)j (¢(0) +epV + €29 + .. )
(B.2)
Grouping by power of ¢ in the right-hand sides of (B.1)-(B.2) and consid-
ering the above mentioned total derivative operator, yields
0 1 2 _ 1
aPxy) +e0 P x,y) + 260, Y) + .. = € (Hyjpo,0,0 9
j i J J Irs
©) (1) (0) (1) (0)
FChjiathey + CijaOrithyy, + ;@ + ewij0r; b)) = Hiijad
(1) (2)
—(I‘kfjl + ”Ii/'k)gr,]d)h‘k - ”Iijkpr.lps,kd’m
(1) (2) (1) (2) (1)
+5(Cuk1“k,, + C[jklor,luk|r +eyd, + ek[jgr‘jqb\,' — Hiijx Py
2) (3)
_(ﬂkiﬂ + ”Ii/'k)gr,ld)vvk - Ilnjk!’r.té’s,k‘ﬁm)
2 2) (3) (2) (3) (2)
+e (Ciju“k,, + G0y, + e+ ew0, ;8 = ik d
(3) (4)
—(ﬂkfjl + ”Ii/'k)ar,]d)vvk - ”Iijkpr.lps,k¢|,s)
: (B.3)

0 1 2 - 1
D? )(x, y)+ eDf )(x,y) + £2D§ )(x, V+..=¢! (Mikj,o,’,gs,jui‘)m)

0) (D (0) (1) 0)
ety F g0ty = Ky ;= K05 ;B F Mty )

(1) )

+(Hig; + ﬂ[kﬂ)or,/“k,ﬂ,  Hij10r 10 j Uy
(¢)] 2) (1) ) [¢))
+£(eik1uk.[ + ikt O Uy, — Kb, — Kij":,j‘/’\s + Higjity g

(2) (3)
+(Hip; + ﬂfkjt)or,/“k,ﬂ, + ﬂikﬂor,/&,/“km)
2 2) 3) (2) 3) 2)
+e (eikluk,I + ik O Uy, — Kb = Kijpx,j¢|s + Higjity

©) @
+(Hipy; + ﬂfkjt)or,/“m, + ”ikjlar,los,jukm)

B4

Replacing the expansions (18) and (19) into the equilibrium problem (1)-
(2), the following is derived

-1 0) (0) (0))] (eY] 2) —

3 gk.fo-ij\k+O—ij,j+0k»l'o-ij\k+6(O—ij,j+pk~jo—ij|k)"'+fi =0 (B.5)
-1 (0) (0) (1) (1) (2) —

€ Qk,iDi\k +D;; + pkviDiM + S<Di,i + okv"Di|k)"' =0 (B.6)

Substituting (29)—(30) into (27)—(28) and regrouping in terms of the
derivatives of uj{o) and ¢, it yields
©0) 2) (1)
uk.lq (_/"mijn01,j0r,mos,n‘qu1|rs - (.Mmijq + Mqijm)gt,jpr.mlyk”r)“
7

<

Likiq

0) @) (1)
+“k7[ <0t,jcijkl + OI,jCijnmgr,me1n|, + ot,jejimOr,mlPk”,)lt

~~

Li

(0) (¢)) (1)
+¢’1 <Qt,jejil + Qt,jcijnmor,ml-[,,”, + ot,jejimor,rn@”,)lt

N

Py

(0) (1) (2)
- Ui+ . L+ L e - U ® =0
> > > r > SIS, rs
1k (Otj”ll/k gtj(”ml/k /“‘kum)orm | Ot,jBmijn©rmOs,n kl| >|t >

Pik
B.7)

) QY] )
U iq (Or,f#fkql + 01 (Ilinjl + ﬂin[j)@r,ijq,,|, + gt,i”imjpgr,pps,quk[mVS>“

Qg

0) (e)) (1)
+uk’/ (or,ieikl + or,ieimngr,nNk/mV - ot,iKijox,j\Pk”S)lt

Qi
0) (1 (1)
+¢’/ <_ot,i’(il + ot,ieimlor,lnk“r - ot,iKijos,j®1|s )|’
-
R,
0) e9] (2) _
—b,; <0t,i(”ikpj + Of,iﬂikfl’)ghl’nkﬂr + "r,i”ikpﬂ"r,n(’s,pnzjkm>|t =0
/
R
(B.8)
where
@ _ A @A) @)g(D)
Nipn = NignNmpie + 11 Prnp»
2) _ Ar@h 2) (1)
l_Ilmn - Nklnnkm + l_Inl ®m ’ B9
2) _ @@ A (D) 2) (D)
llen - lIJkl Nmnk + ®I \Pkn’
2) _ @) 2 (1)
®nl = ‘I‘kl Hkn + ®/ e,". (B.10)

Now, the asymptotic expansions (16)-(19) are substituted into the
interface conditions (15), where the different order of ¢ contributions
are

4] = f16771 =0,
] =o. [fo] o

Moreover, the equations (29)-(30) are substituted into (21)-(22), and
the resulting expressions in terms of the local functions N™, 1™, w®
and ® are replaced in (B.11).

(B.11)



The continuity conditions at the interface of the local functions ‘I’f,},),

(2) ()] (2) 1) @ 1 (2)
Wonps Nopis N> Om's @ 1L, T - are obtained from the first two

equations of (B.11) forn = 1,2

[[va]] =0 [[m]] =o.

] -o. [ -
2) _ @ || =
[ =0 [[mzi] ] =0
[[#ome]] = - [ [0 =0 .15
and the remaining two equations of (B.11), for n =0
1 2
[[((ﬂpuj + ity 05 ¥, + ”kfl/os,jor,k“’fnipm)"j]] =0, (B.14)
[[(c,/m,, + 00 CaND,, + ek,jg,k\ymnlr) ]] -0 (B.15)
2
”:(Hlmnp (:Mlkpl + szlp)pr /Nmnklr + ”Ikljorlgst,(nn)lk‘,.s)ni]] =0, (B16)
[[(eimn + tklgrkNm,,”,» zj(’s,jlpmnlv) ]] =0 (B.17)
”:(Hmun (:umjl +Hmlj)0?I®m|S +Mk1/[0rkos I®mn‘”)nj:|] =0, (B18)
[[(emlj + ekuork@mv + Ctjkl@r lnmk|,) ]] =0, (B19)
[[( lklorlnmk|r Kim — lkgrk®m|,) ]:| = 03 (BZO)
1 2
I:I:((Mikpm + ”ikmp)gr,pni/)v + ”ikpngr,nos,pnjm)kvs)ni]] =0. (BZI)

The expressions (B.12)—(B.21) are the interface conditions for the local
functions ‘I’f,i,), ‘Pff,),p, an'n)k, N,(nz;,k, G)(]) G)Efz H;CI,)~ H;il)k

Appendix C. Existence and uniqueness of the solution of the local
problems

Let’s assume that Q c R3 is a three-dimensional open connected
bounded domain with an infinitely smooth boundary 0Q. The material
functions are supposed to be infinitely differentiable, rapidly oscillating
and eY-periodic in the local variable y = g(x)/e where £ > 0 is the usual
small geometric parameter, and Y is the so-called periodic cell. For each
X = (x1, Xp, X3) € Q the material functions are defined as the following
e—family of functions:

C=C(x,y), e =ex,y),
K =k(X,Y), u= uXx,y).

The material functions satisfy the usual symmetry conditions given by
(9). Let’s consider the system of Eqgs. (36) and (38) for each value of
m,n = 1,2,3. The system can be written in the matrix form as follows,

9 <D1N> =) .1
9y, \ 9y, 9y
where

T
— (3} (€] (1) (1)
N= [Nmn] Nng Nmn3 lIlm" ’

0.1C110;  011C1 01 001C1j3101; 0 €110
_|01Coju0r;  01Comor;  0,Co301; 010

0.1C3j1101;  0.1C3j0101;  0,1C3j310; 01 €130 |

01,j€j110r1 01,j€j210r1 01,j€310r1 —0:,jKj10r1

r
b:[gt,jcljmn 01;Cojmn 01;C3jmn (’t./e/»m]‘

Besides, we make the further assumption that there exist a constant & > 0
such that, for any vector a = (a;, a,, a3), and any third-order symmetric
matrix M = (M)

CijuM;My > EM;; M5, Kj;0;a; > Ea;a;.

Using the Cauchy—Schwarz inequality [33], it is shown that the matrix
D, satisfies the following

d d d
(ram i) udinio)

where &; > 0 and {e, *} denotes the scalar product. Under the assump-
tion that (db,/dy,) =0, the Theorem 1, p. 346 of [21] guarantee the
existence of a general solution in the form,

N=Nj+ec,

where (N;) = 0. On the other hand, considering the condition (N) = 0
it turns out that ¢ = 0, and the solution of the problem is unique, see
Proposition 1 in [17].

Following a similar idea, the existence and uniqueness of the solution
of the LQ and PR problems can be proved.

Appendix D. Solution of the local problem for stratified
composites

As a particular example of the given methodology, a stratified com-
posite is considered, i.e. the case of a function ¢ : R> — R [17]; then,
the local variable y € R. Also, a methodology to solve the local problems
(35)-(42) for a stratified composite is presented.

From the expressions (45)-(49), the functions N, (1) ‘I/f,}; G)“) H(l)
are not necessary for finding the effective coefﬁcients, only the derlva-
tives are sufficient to get (45)-(49). For that reason, the systems of partial
differential equations LQ and PR can be reduced. Following this idea, a
methodology described in [17] is extended for the case of stratified flex-
oelectric composites.

For the case of stratified composite, the local problems (36),
(38) (LQ) have the following expressions

(0} 1

o [ oo 0 90 Ny 00 9o 9% o
| = Cimt s Cs S T sk =Y (D.1)
dy 0xj 0x; 0xj dy 0x ox;, dy

(03] 1
o ( do do 90 WNyu 00 9o ¥\ _ 0 -
_— —.ejmn+f€jk/— j =Y. ( . )
dy \ 0x; 0x; ox; dy 6x Bxk dy

For every value of m,n = 1,2, 3, the systems (D.1)-(D.2) are 4 X 4 systems.
Taking into account that the average of the local functions is zero, the
solution of the LQ problems (D.1)-(D.2) satisfies the system

[DaplaxaNaxi = Agxi — baxr (D.3)
where
1 1 1
ToN, ond, oND oued
dy ~ ady ~ dy = ady ’
do d0
Dy=—C,y—, ab=1273,
ab axl ajblaxj a
do do
Dy = ~epgj -, a=1,2,3,
a4 6xjek”’0xk a
do 9o
Dy=-2e, <2 =123,
4b ox, ’bldxl
do do
Dy = -2k, 2,
4 0x; k0%,
do 00 do 90 ’
b e

ax,CUm"’ ax‘Cijm ox. 3jmn> ox., jmn| >
J J J J



and A satisfies the linear system

<[DabJ_] >4><4)“4><1 = <[Dab]_]b>4><1’

where (o) denotes the average operator. This methodology is described
in [17] for the case of wavy-laminated elastic composite materials. Sim-
ilarly, the rest of the LQ and PR problems can be solved.
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