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Computation of the relaxation effective moduli for fibrous viscoelastic
composites using the asymptotic homogenization method

R. Rodríguez-Ramos a , ∗, J.A. Otero 
b , O.L. Cruz-González c , R. Guinovart-Díaz a ,

J. Bravo-Castillero 
d , F.J. Sabina d , P. Padilla d , F. Lebon 

c , I. Sevostianov 
e 

A two-phase parallel fibre-reinforced periodic viscoelastic composite is considered wherein the con- 

stituents are isotropy. Simple closed-form formulae are obtained for the effective properties of composites

with square and hexagonal cells by means of the two-scale asymptotic homogenization method. The com- 

putation of the effective properties of non-ageing linear viscoelastic composites with periodic structure

containing long cylindrical fibres of circular cross-section is performed. The local problems and overall

viscoelastic properties are obtained in explicit form using the elastic-viscoelastic correspondence princi- 

ple and assuming perfect contact conditions at the interface between constituents. Comparison with dif- 

ferent viscoelastic models allowing explicit inverse Laplace transforms such as, traditional Maxwell and

Kelvin models and Rabotnov-Scott Blair fractional exponential model are shown. The analytical results

are verified by comparison with computational ones.

1. Introduction

Several methods have been developed over the past few 

decades to theoretically predict the effective mechanical properties 

of composite materials. For linear viscoelastic fibre-reinforced com- 

posites, most of the constitutive models can be classified into two 

groups. 

In the first group, the viscoelastic equations are transformed to 

the linear elastic regime using the method of elastic-viscoelastic 

correspondence ( Volterra, 1912 ) and the Laplace-Carson transform. 

This approach allows to treat boundary value problems for lin- 

ear non-ageing viscoelastic materials as linear elastic ones writ- 

ten in Laplace-Carson space. Thus, homogenization techniques for 

viscoelastic composites can be performed analytically by using 

elastic homogenization solutions and treating them as images in 

the Laplace-Carson space (see, Hashin, 1966 and Lévesque et al., 

2007 ). The main challenge is to obtain analytical formulas for in- 

verse Laplace transform to write viscoelastic solution in time space 

(see, Lévesque et al., 2007 and Le et al., 2007 ). This difficulty can 
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be overcome if the integral operator describing viscoelastic ef- 

fects contains an exponential kernel (that corresponds to various 

dashpot-spring models). Such kernels, however, are often not ap- 

propriate for matching experimental data. 

In order to solve this problem, an alternative methodology has 

been developed based on experimental measurements and theo- 

retical considerations by Scott Blair and Coppen (1939) , Scott Blair 

and Coppen (1943) and Rabotnov (1948) , respectively. Herein, they 

proposed to use fraction-exponential operators instead of the ex- 

ponential ones. A detailed description of the approach is given 

in the books of Rabotnov (1977) and Podlubny (1998) . Fraction- 

exponential operators are sufficiently flexible to describe experi- 

mental data and, at the same time, allow inverse Laplace trans- 

forms in explicit analytical form. In addition, they involve parame- 

ters that have clear physical sense. To the best of our knowledge, 

application of the fraction-exponential operators to heterogeneous 

materials has been first proposed by Shermergor (1977) and co- 

authors for layered composites. In Levin and Sevostianov (2005) is 

used this approach to describe overall viscoelastic behavior of ma- 

trix composites. They also introduced creep and relaxation contri- 

bution tensors that allow one to describe the effect of inhomo- 

geneities on the overall viscoelastic properties in a unified way and 
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thus, to extend each of known micromechanical scheme from elas- 

tic materials to viscoelastic ones ( Sevostianov and Levin, 2015 ). The 

concept of creep and relaxation contribution tensor has been used 

by Sevostianov et al. (2016) to evaluate effective properties of fibre 

reinforced composites and by Vilchevskaya et al. (2019) to describe 

replacement relations in viscoelastic heterogeneous materials. 

In the second group, the homogenization method is applied 

directly in the time domain to obtain the constitutive models. 

The time domain solution may be also obtained with numerical 

inversion algorithms, such as the collocation method ( Schapery, 

1964 ) or quasi-elastic approximation in the Laplace-Carson space 

( Brenner et al., 2002 ). This method is computationally-efficient but 

at the expense of accuracy. Another approach consists of a time- 

integration approach, relying on variational principles ( Lahellec 

and Suquet, 2007 ). While it avoids the Laplace-Carson transforms 

and solves the viscoelastic problem directly in the time domain, its 

numerical implementation is challenging. 

Different contributions developed for linear viscoelastic com- 

posites have been introduced in several recent papers. For exam- 

ple, the authors in Wang and Pindera (2016) extend the elasticity- 

based, locally-exact homogenization theory for periodic materials 

with hexagonal and tetragonal symmetries to viscoelastic unidirec- 

tional composites. In addition, a spatial-temporal nonlocal homog- 

enization model for transient anti-plane shear wave propagation in 

viscoelastic composites is presented in Hu and Oskay (2018) . An- 

other fruitful research approach is the variational framework de- 

veloped in Tressou et al. (2018) , which focus its attention on the 

incremental variational approach commonly called EIV approach 

in the literature proposed by Lahellec and Suquet (2007) for deal- 

ing with the linear viscoelastic behavior of different types of mi- 

crostructures. Also, solutions based on Fourier series analysis are 

studied in To et al. (2017) . 

This work has some differences with respect to recently con- 

tributions already presented in the literature, see e.g. Yi et al. 

(1998) , Tran et al. (2011) , Liu et al. (2004) , Cai and Sun (2013) , 

Daridon et al. (2016) , Tang and Felicelli (2015) . In the aforemen- 

tioned works, the main relevant issues are summarized as fol- 

lows: a way to obtain the effective viscoelastic moduli both in the 

time and frequency domain for viscoelastic composites with peri- 

odic microstructures is formulated in Yi et al. (1998) by using the 

asymptotic homogenization method; Tran et al. (2011) proposed 

a numerical multiscale method computing the response of struc- 

tures made of linearly non-aging viscoelastic in the time domain 

based on RVE method; Liu et al. (2004) predicted the viscoelastic 

properties of layered materials and obtained explicit formulas for 

predicting the viscoelastic relaxation modulus of layered materi- 

als; ( Cai and Sun, 2013 ) works with four-step three-dimensionally 

(3D) braided composites; Daridon et al. (2016) deals with imper- 

fect (Kelvin–Voigt) viscoelastic interphases and Tang and Felicelli 

(2015) proposes an homogenization methodology based on the 

variational asymptotic method for the unit cell (VAMUCH), where 

the predictions of effective stress relaxation stiffness are obtained 

in the time domain without applying the Laplace transform. How- 

ever, in the present work, the two-scale asymptotic homogeniza- 

tion method initially developed in Guinovart-Díaz et al. (2001) , 

Rodríguez-Ramos et al. (2001) for calculating the effective prop- 

erties of elastic fibrous composites is extended and generalized to 

a non-ageing linear viscoelasticity framework. The investigation of 

the effective properties is based on the correspondence principle 

and the Laplace transform. The numerical algorithm proposed by 

Hollenbeck (1998) to invert the Laplace transform is used to calcu- 

late the properties of the homogenized composites in the time do- 

main. Consequently, the present formulation contributes with an- 

alytical solutions, in the Laplace-Carson space, for the local prob- 

lems and the effective coefficients for fibrous viscoelastic compos- 

ites with square and hexagonal cells; closed form expressions eas- 

ily for their computation are ensured; moreover the behavior of 

the effective coefficients for square and hexagonal cells for dif- 

ferent relaxation kernels as Maxwell-Kelvin model, the fraction- 

exponential function or Rabotnov’s kernel and the Kelvin model 

are analyzed; finally, numerical results and comparisons with other 

models are provided as validation of the proposed approach. 

2. Viscoelastic heterogeneous problem. Basic equations

Let us denote by � ∈ R 3 a linear viscoelastic composite mate- 

rial with periodic structure and cylindrical cross-section fibres (see 

Fig. 1 (a)). The domain � is constituted by two phases: the matrix 

�
ξ
m and the finite collection of disjoints cylindrical cross-section fi- 

bres �
ξ
f 
, such that � = �

ξ
m ∪ �

ξ
f and �

ξ
m ∩ �

ξ
f 

= ∅ . The fibres are

oriented along the Ox 3 -axis. The interface between the two con- 

stituents is denoted by Ŵξ (see Fig. 1 (b)). The fibres are embed- 

ded into the matrix within the unit cell, which can be square or 

hexagonal. Besides, the unitary periodic cell is denoted by Y (see 

Fig. 1 (c)). 

Then, ignoring inertia term, the equilibrium equation under the 

action of external volume forces is written as, 

∇ ·σσσ ( x x x , t) + f f f ( x x x , t) = 000 in (� \ Ŵξ ) × R (1a) 

u u u ( x x x , t) = ū u u on �d × R (1b) 

σσσ ( x x x , t ) · n n n = S S S on ∂�n × R (1c) 

u u u ( x x x , t) = 0 0 0 in � × { 0 } (1d) 

where σσσ (σi j ) represents the second-order stress tensor, u u u (u i ) is 

the viscoelastic displacement, x x x (x i ) denotes the global Cartesian 

coordinates, f f f ( f i ) represents the action of external volume forces 

and satisfies f f f ( x x x , t) ∈ L 2 (� × R ) , ū u u ( ̄u i ) and S̄ S S ( ̄S i ) are the pre- 

scribed displacement and traction on the boundary ∂� = ∂ �d ∪ 

∂ �n , with ∂ �d ∩ ∂ �n = ∅ , ∂�d is a part of the surface ∂� where 

the displacement is prescribed and n n n (n i ) is the outward unit vec- 

tor normal to the surface ∂�. 

In the process of two scales asymptotic homogenization 

method, it is natural to use L as the characteristic length of the 

heterogeneous medium and l referring to the length of the peri- 

odic cell, such that l ≪ L . In addition, a small geometric param- 

eter ξ = l/L with ξ ≪ 1 is introduced. Therefore, the macro or 

global variable x x x ( x i ) and micro or local variable y y y ( y i ) are related 

to y y y = x x x /ξ . 
The viscoelastic stress and strain fields are linearly related by 

the constitutive law (see, Christensen, 1982 and Pipkin, 1986 ), 

σσσ ( x x x , t) = 

∫ t

0
R R R ( y y y , t − τ ) : 

∂ ε ε ε ( u u u ( x x x , τ ) ) 

∂τ
dτ, (2) 

where R R R ( R ijkl ) denotes the relaxation modulus and it fulfills 

the symmetry properties R i jkl = R jikl = R i jlk = R kli j . We assume R R R ∈ 

L ∞ (� × R ) , also that it is positively defined and Y-periodic related 

to the variable y. In addition, the second-order strain tensor is re- 

ferred to as ε ε ε ( εkl ) in components. 

The following relationship is ensured for small displacements 

ε kl ( u u u ( x x x , t) ) = 
1

2 

(

∂u k ( x x x , t) 

∂x l 
+ 

∂u l ( x x x , t)

∂x k 

)

. (3) 

The statement of the constitutive law (2) corresponds to the 

special form of non-ageing linear viscoelastic materials ( Maghous 

and Creus, 2003 ). Therefore, the problem (1a) –(2) can be trans- 

formed into an elastic one using the Laplace-Carson transform. The 

aforementioned is known as the correspondence principle. Thus, 
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Fig. 1. Macroscopic heterogeneous structure with square and hexagonal cells.

applying the Laplace-Carson transform to (1a) –(2) , the mathemat- 

ical expression for the linear viscoelastic heterogeneous problems 

in the Laplace-Carson space is written, 

∂ 

∂x j 

[

ˆ R i jkl ( y y y , s ) ξkl 
(

ˆ u u u ( x x x , s ) 
)]

+ ˆ f i ( x x x , s ) = 0 , in (� \ Ŵξ ) × [0 , + ∞ ) . 

(4) 

where ξ kl denotes de strain (3) in the Laplace-Carson space. The 

corresponding boundary conditions associated to (4) are 

ˆ u i ( x x x , s ) = u i , on ∂�d × [0 , + ∞ ) , (5) 

ˆ R i jkl ( y y y , s ) ξkl 
(

ˆ u u u ( x x x , s ) 
)

n j = S i , on ∂�n × [0 , + ∞ ) , (6) 

and the initial condition is taken as follows 

ˆ u i ( x x x , s ) = 0 , in � × { 0 } . (7) 

From now on, the functions with the symbol ( ̂ ) depending on 

the parameter s denote corresponding the Laplace–Carson trans- 

form. 

3. Two-scale asymptotic homogenization method applied to

heterogeneous problem 

The aim of this section is to solve the heterogeneous problem 

(4) –(7) using AHM. 

A formal asymptotic solution for the problem is proposed as 

follows, 

ˆ u u u ( x x x , ξ , s ) = 

+ ∞ 
∑ 

a =0

ξ a ˆ u u u 
(a ) 

( x x x , y y y , s ) , (8) 

where ˆ u u u 
(a ) 

( ̂  u (a ) 
i 

) is Y-periodic related to the variable y y y ∀ a, ∀ x x x ∈ 

�, ∀ s ∈ [0 , + ∞ ) and ˆ u u u 
(a ) 

( x x x , y y y , s ) ∈ C ∞ (� × R 3 × [0 , + ∞ )) . 

As the material property is periodic in y y y then, according to the 

chain rule, the derivative in relation to the global coordinate yields 

the transformation 

∂ (·) 

∂x j 
= 

∂ (·)

∂x j 
+ 

1 

ξ

∂ (·) 

∂y j 
. (9) 

Using a similar idea (9) , the Eq. (3) applied to an arbitrary func- 

tion of the form ˆ 			( x x x , x x x /ξ , s ) becomes, 

ε kl 
(

ˆ 			( x x x , x x x /ξ , s ) 
)

= ε klx 
(

ˆ 			( x x x , y y y , s ) 
)

+ ξ−1 ε kly 
(

ˆ 			( x x x , y y y , s ) 
)

, (10) 
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where the expressions εklx and εkly are defined as follows Persson 

et al. (1993) , 

ε klx 
(

ˆ 			( x x x , s ) 
)

= 
1 

2 

(

∂ ˆ 	k ( x x x , s ) 

∂x l 
+ 

∂ ˆ 	l ( x x x , s )

∂x k 

)

, (11) 

and 

ε kly 
(

ˆ 			( y y y , s ) 
)

= 
1

2 

(

∂ ˆ 	k ( y y y , s ) 

∂y l 
+ 

∂ ˆ 	l ( y y y , s )

∂y k 

)

. (12) 

In this particular case, it is possible to significantly simplify the 

expressions in the homogenization process using the following op- 

erator, 

L αβ (•) := −
∂ 

∂α j 

(

ˆ R i jkl ( y y y , s ) ε klβ (•) 
)

, (13) 

for α, β = x x x , y y y , indistinctly. 

Replacing (8) into (4) , taking into account (9) –(13) , after some 

simplifications and grouping in powers of ξ , the following se- 

quence of problems is obtained for different orders of the small 

parameter, 

ξ−2 : L yy ̂  u u u 
(0) 

( x x x , y y y , s ) = 0 0 0 , (14) 

ξ−1 : L xy ̂  u u u 
(0) 

( x x x , y y y , s ) + L yx ̂  u u u 
(0) 

( x x x , y y y , s ) + L yy ̂  u u u 
(1) 

( x x x , y y y , s ) = 0 0 0 ,

(15) 

ξ 0 : L xx ̂  u u u 
(0) 

( x x x , y y y , s ) + L xy ̂  u u u 
(1) 

( x x x , y y y , s ) + L yx ̂  u u u 
(1) 

( x x x , y y y , s )

+ L yy ̂  u u u 
(2) 

( x x x , y y y , s ) − f f f ( x x x ) = 0 0 0 . (16) 

Problems (14) –(16) can be solved recursively form considering 

the solvability condition presented in the following lemma (see 

Persson et al., 1993, Bakhvalov and Panasenko, 1989 ), 

Lemma 1. Let F F F (F i ) be square integrable function over Y and con- 

sider the boundary value problem 

L yy 			 = F F F , 

where 			 is Y −periodic. Then the following conditions hold, 

(i) A Y −periodic solution 			 exists if and only if 〈 F F F 〉 = 0 . 

(ii) If a Y −periodic solution 			 exists, then it is unique up to a con- 

stant vector c c c . 

The proof of this lemma is given in Section 4.3 of Persson 

et al. (1993) . The notation 〈 • 〉 defines the cell average operator, i.e., 
〈 F F F 〉 := 

1 
| Y | 

∫ 

Y F F F dy, where | Y | represents the periodic cell volume. 

In what follows, the main results for each power of ξ are given. 

Contribution of order ξ−2 

The problem (14) has the trivial solution ˆ u u u 
(0) 

( x x x , y y y , s ) ≡ 0 0 0 . There- 

fore, Lemma 1 indicates that ˆ u u u 
(0) 

( x x x , y y y , s ) is a solution of (14) if and 

only if it is constant in relation to the variable y y y . It implies that, 

ˆ u u u 
(0) 

( x x x , y y y , s ) = ˆ v v v ( x x x , s ) , (17) 

where ˆ v v v ( x x x , t) is a infinitely differentiable function. 

Contribution of order ξ−1 

Using (17) , the first term of (15) is zero, L xy ̂  u u u 
(0) 

( x x x , y y y , s ) = 

L xy ̂ v v v ( x x x , s ) = 0 0 0 . Therefore, the problem (15) becomes, 

L yy ̂  u u u 
(1) 

( x x x , y y y , s ) = −L yx ̂  u u u 
(0) 

( x x x , y y y , s ) , (18) 

Applying Lemma 1 on (18) , taking into account (17) , the diver- 

gence theorem and the Y −periodicity condition of ˆ R R R ( y y y , s ) , the fol- 

lowing result can be verified 
〈 

−L yx ̂  u u u 
(0) 

( x x x , y y y , s ) 

〉

= 0 .

Consequently, the existence and uniqueness of a solution for 

problem (18) is guaranteed. Applying separation of variables, a 

general solution for (18) is given by 

ˆ u u u 
(1) 

( x x x , y y y , s ) = ˆ N N N 
rs 
( y y y , s ) ε rsx ( ̂ v v v ( x x x , s )) , (19) 

where ˆ N N N 
rs 

( ̂  N rs 
i 
) is called the local function . 

Finally, substituting (17) and (19) into (18) and after some sim- 

plifications the local problem in relation to the local function is 

obtained 

−
∂

∂y j 

(

ˆ R i jkl ( y y y , s ) ε kly 

(

ˆ N N N 
rs 
( y y y , s )

))

= 
∂

∂y j 

(

ˆ R i jrs ( y y y , s ) 
)

, (20) 

where ˆ N N N 
rs 

is a Y −periodic function.

Contribution of order ξ 0 

The existence and uniqueness of a Y −periodic solution for the 

problem (16) is guaranteed if and only if
〈 

f f f ( x x x ) − L xx ̂  u u u 
(0) 

( x x x , y y y , s ) − L xy ̂  u u u 
(1) 

( x x x , y y y , s ) − L yx ̂  u u u 
(1) 

( x x x , y y y , s ) 

〉

= 0 . 

(21) 

The functions ˆ R R R ( y y y , s ) and ˆ N N N 
rs 
( y y y , s ) are Y −periodic, hence

by (19) and the divergence theorem it is proved that, 

〈 L yx ̂  u u u 
(1) 

( x x x , y y y , s ) 〉 = 0 .

Finally, working on (21) , the homogenized problem is obtained 

and it can be written in the form 

− ˆ R (∗) 
i jrs 

(s ) 
∂ 

∂x j 
ε rsx ( ̂ v v v ( x x x , s )) = f i ( x x x ) , (22) 

where 

ˆ R (∗) 
i jrs 

(s ) = 

〈

ˆ R i jrs ( y y y , s ) + ˆ R i jkl ( y y y , s ) ε kly 

(

ˆ N N N 
rs 
( y y y , s )

)〉

, (23) 

is the effective coefficient . 

The boundary conditions for the homogenized problem (22) and 

(23) are rewritten replacing (8) into (5) and (6) , respectively. Ap- 

plying the average operator, we obtain 

ˆ v i ( x x x , s ) = u i , on ∂�d × [ 0 , + ∞ ) , (24) 

ˆ R (∗) 
i jrs 

(s ) ξkl 
(

ˆ v v v ( x x x , s ) 
)

n j = S i , on ∂�n × [ 0 , + ∞ ) , (25) 

and the initial condition is taken as follows 

ˆ v i ( x x x , s ) = 0 , in � × { 0 } . (26) 

Consequently, from the previous steps, a recurrent sequence can be 

obtained allowing the formulation of the local problems (20) de- 

fined on the periodic cell Y and the effective coefficients (23) that 

do not depend on the small epsilon parameter. Thus, the appli- 

cation of the asymptotic homogenization method generates two 

types of fundamental problems: a) the determination of the effec- 

tive coefficients from the solutions of the local problems in which 

the epsilon parameter does not appear, which constitutes the main 

objective of the present work and, b) from the homogenized prob- 

lem, the calculation of the boundary problems associated with 

concrete contour conditions to determine the displacements, de- 

formations and stresses field in which the epsilon parameter plays 

an important role using the asymptotic expansion proposed in (8) . 

This topic is outside of this work purpose. 

It is well known that due to correspondence principle there 

is an equivalence between elastic and viscoelastic problems in 

terms of Laplace transforms. Regarding the homogenization ap- 

proach, in Chapter 2, paragraph 2 of Bakhvalov and Panasenko 

(1989) is demonstrated the principal steps in constructing and 

justifying an asymptotic expansion solution. The accuracy of the 

asymptotic expansion for the small parameter is illustrated in 

Table 1 on page. 16 of Bakhvalov and Panasenko (1989) where is 
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shown the discrepancies and errors for the order of the expan- 

sion n = 0 , 1 , 2 and the small parameter ξ ≪ 1. Besides, in Chapter 

6, paragraph 2 on page 205 of Bakhvalov and Panasenko (1989) , 

the principle of equivalent homogeneity is asserted and the rela- 

tionship between local characteristics of heterogeneous medium 

and those of the homogeneous medium described by the aver- 

aged equation is carefully studied and proved. The accuracy be- 

tween heterogeneous solution can be compared with that obtained 

by the homogenized model using the estimation ‖ u − ˆ v ‖ L 2 (�) ≤

C 
√ 

ξ , where C is a positive constant independent of the small 

parameter ξ . 

4. Two-phase viscoelastic composite. analytical expressions for

effective properties 

The idea in this section is to provide closed formulae analo- 

gous to Valdivieso-Mijangos et al. (2002) , Sabina et al. (2002) but 

now for the effective viscoelastic characteristics of composites with 

square and hexagonal arrangement cells. In this sense, two-phase 

unidirectional fibre reinforced viscoelastic composites are stud- 

ied here, which consist of identical circular cylindrical isotropic 

homogeneous fibres embedded in a isotropic homogeneous 

matrix. 

A Cartesian coordinate system Ox 1 x 2 x 3 is employed for the geo- 

metrical description of composites. The fibres are assumed infinite 

in the Ox 3 direction and periodically distributed without overlap- 

ping in directions parallel to the Ox 1 axis and the lines with slope 

at an angle θ = π/a, a = 2 for the squared array and a = 3 for 

hexagonal array. R is the radius of the fibre circular cross-section 

and V 2 = πR 2 with 0 ≤ V 2 ≤
π

4 sin θ
is the fibre volume fraction on 

the square and hexagonal periodic cells (see Fig. 1 (b)-(c)). Perfect 

contact conditions are assumed on the interface between matrix 

and fibre. The relaxation modulus ˆ R R R ( x x x , s ) is a periodic function of 

the coordinate x 1 and x 2 . 

The effective properties of these media via AHM have been in- 

vestigated by many authors. In Otero et al. (2016) semi-analytical 

formulae were derived for composites under imperfect contact 

with different inclusions shapes where AHM and finite element 

method are combined for the computation of the effective char- 

acteristics; AHM is used for obtaining the local problems and the 

analytical expression of the effective properties and finite element 

method for solving the corresponding two dimensional local prob- 

lems. The results of Pobedria (1984) were extended in Guinovart- 

Díaz et al. (2001) (for hexagonal cell) and in Rodríguez-Ramos 

et al. (2001) (for square cell) to the case of transversely isotropic 

elastic constituents. The formulae for global properties require nu- 

merical solution of a infinite linear system of equations. The for- 

mulae involve products of vectors and matrices of infinite order 

which require to be truncated. 

Based on the correspondence principle, and the results obtained 

in Guinovart-Díaz et al. (2001) , Rodríguez-Ramos et al. (2001) and 

Bravo-Castillero et al. (2012) , the effective coefficients for two 

phase viscoelastic composites with isotropic components can be 

listed as an extension of previous works in the following form, 

ˆ k (s ) = k v (s ) −V 2 ( k 1 (s ) − k 2 (s ) ) 
2 
K α(a, s ) /m 1 (s ) ,

ˆ l (s ) = l v (s ) −V 2 ( k 1 (s ) − k 2 (s ) ) ( l 1 (s ) − l 2 (s ) ) K α(a, s ) /m 1 (s ) , 

ˆ n (s ) = n v (s ) −V 2 ( l 1 (s ) − l 2 (s ) ) 
2 
K α(a, s ) /m 1 (s ) , (27) 

ˆ p (s ) = p 1 (s ) − 2 V 2 p 1 (s ) P α(a, s ) , 

ˆ m (s ) = m 1 (s ) −V 2 ( m 1 (s ) − m 2 (s ) ) M α(a, s ) , 

ˆ m 
′ (s ) = m 1 (s ) −V 2 ( m 1 (s ) − m 2 (s ) ) M 

′ 
α(s ) ,

where the index v denotes an average property over the peri- 

odic cell, i.e. k v (s ) = V 1 k 1 (s ) + V 2 k 2 (s ) and V 1 + V 2 = 1 . The func- 

tions K α( a, s ), P α( a, s ), M α( a, s ) and M ′ α(s ) which involve the order

of accuracy α are given by 

K α(a, s ) = C(s ) V 1 + 
δα2 (2 a − 1)(1 + κ1 (s )) C(s ) 2 R 4 a (S 2 a ) 

2

B −1 ( s ) + R 4 a −2 E(a, s ) 
,

P α(a, s ) = 
χp (s ) 

1 + V 2 χp (s ) − δα2 (2 a − 1)(χp (s ) 2 R 4 a (S 2 a ) 2 
,

M α(a, s ) = 
1 + κ1 (s ) 

(1 + κ1 (s ) χm (s ))(1 + R 2 H −(a, s ) − δα2 I(a, s )) 
,

M 
′ 
α(a, s ) =

1 + κ1 (s ) 

(1 + κ1 (s ) χm (s ))(1 + R 2 H + (a, s ) − δα2 I + (s )) 
, (28) 

where E(a, s ) = A (s ) B −1 (s ) r(a ) + g(a ) + (2 a − 1) D (s ) R 2 (S 2 a ) 
2 , δkl is

the Kronecker’s delta and the expressions involved in the above 

formulae are written as, 

H 
±(a, s ) = A (s ) r 1 (a, s ) + B (s ) πκ1 / sin (π/a )

±(3 − a ) B (s )(S 4 /π + π1 ) ,

I(a, s ) = 

{ 
I −(s ) for a = 2 , 

3 R 8 B 2 (s ) ( 15 R 2 S 6 −4 T 5 ) 
2 

1+100 R 12 A (s )(S 6 ) 2 
for a = 3 , 

I ± = 
R 12 ( A (s ) r 2 ± B (s ) g 2 ) ( A (s ) r 3 ± B (s ) g 3 )

1 + R 10 A (s ) r 4 ± B (s ) g 4 
,

r(a ) = c 2 a −1 
4 a −1 c 

2 a +1 
4 a −1 R 

4 a −2 (S 4 a ) 
2 , r 1 (a ) = (2 a − 1)(S 2 a ) 

2 R 4 a −2 ,

r 2 = c 3 3 c 
5 
7 R 

6 (S 4 )(S 8 ) , r 3 = c 1 3 c 
3 
7 R 

6 (S 4 )(S 8 ) , r 4 = c 3 7 c 
5 
7 R 

6 (S 8 ) 
2 , 

g(a ) = −(2 a − 1) 
(

R 2 c 2 a 4 a S 4 a − c 2 a −1 
4 a −2 T 4 a −1 

)

, g 1 = −6 S 4 R 
2 , 

g 2 = −R 2 c 2 8 S 8 + c 5 6 T 7 , g 3 = −5 R 2 c 6 8 S 8 + 5 c 5 6 T 7 , 

g 4 = −5 R 2 c 6 12 S 12 + 5 c 5 10 T 11 , (29) 

where, 

κβ (s ) = 
1 + 2 m β

k β
, (β = 1 , 2) , χm (s ) = 

m 2

m 1 
, χp (s ) = 

p 1 − p 2
p 1 + p 2 

,

A (s ) = (κ1 χm − κ2 ) B (s ) / (κ2 + χm ) , B (s ) = (1 − χm ) / (1 + κ1 χm ) , 

C(s ) = 
1 

1 + (k 1 V 2 + k 2 V 1 ) /m 1 
, D (s ) = 2 

(

k 2 
k 1 

− 1 

)

C(s ) , 

c l k = 
k ! 

l!(k − l)! 
.

Replacing a = 2 (or a = 3 ) into the above formulae the effective 

relaxation viscoelastic properties ˆ R 11 = ̂  k + ˆ m ′ , ˆ R 12 = ̂  k − ˆ m ′ , ˆ R 13 = 

R 23 = ̂  l , ˆ R 33 = ˆ n , ˆ R 44 = ˆ p , ˆ R 66 = ˆ m in the Laplace-Carson space of 

two phase fibrous composites with a square (or hexagonal) dis- 

tribution of fibres can be computed. The corresponding lattice 

sums for square ( a = 2 ) are S 4 = 3 . 1512120 , S 8 = 4 . 2557731 , S 12 = 

3 . 9388490 , T 7 = 4 . 5155155 , T 11 = 3 . 8807309 , S 6 = T 5 = 0 ; and for 

an hexagonal array ( a = 3 ) S 6 = 5 . 8630316 , S 12 = 6 . 0 0 096399 , T 5 = 

5 . 6568027 , T 11 = 6 . 0301854 , S 4 = S 8 = T 7 = 0 . The infinite system 

(27) –(29) is used such that it is truncated for obtaining an n × n 

order system. It is interesting to note that the effective properties 

are monotonic functions of order n of the solution of the system. In 

general, the numerical results converge well to the exact solutions 

when an adequate order in the solution of the system is chosen as 

n increases. The truncation order for solving the system increases 

as the parameters and the fiber volume fraction are high. In the 

numerical examples the solutions are given for n = 1 , because this 

order of n achieves the required accuracy for the used parameters. 

An analysis of different truncation order of the system is carried 

out in Bravo-Castillero et al. (2012) . 

5. Numerical results

The above described formulae allow to find the value of the ef- 

fective properties in the time space using the Laplace-Carson in- 
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Table 1

Comparison between AHM and ( Luciano and Barbero, 1994 ) for the elastic limit case.

R (∗) 11 (Gpa) R (∗) 12 (Gpa) R (∗) 13 (Gpa)

V 2 AHM Luciano and Barbero (1994) AHM Luciano and Barbero (1994) AHM Luciano and Barbero (1994)

0.1 6.936594879 6.945135868 4.114809778 4.118314686 3.976769783 3.979069602

0.2 7.985585572 8.005989411 4.495272042 4.503534289 4.249682969 4.255155939

0.3 9.369227804 9.400964062 4.885181938 4.900928021 4.588292058 4.597357453

0.4 11.25076105 11.26778928 5.27452862 5.311466277 5.021851675 5.03215492

0.5 13.9198188 13.78735459 5.66188142 5.778415812 5.605385914 5.602344571

0.6 17.96594014 17.16219628 6.114763016 6.486650719 6.464341937 6.381891347

R (∗) 33 (Gpa) R (∗) 44 (Gpa) R (∗) 66 (Gpa)

V 2 AHM Luciano and Barbero (1994) AHM Luciano and Barbero (1994) AHM Luciano and Barbero (1994)

0.1 12.6838726 12.68475077 1.424840615 1.427492938 1.370697667 1.372776844

0.2 19.26465085 19.26674067 1.71926491 1.723652839 1.567873934 1.570729617

0.3 25.87051461 25.87397617 2.090516656 2.094394163 1.794030412 1.796104297

0.4 32.51263455 32.51656877 2.578777628 2.573622151 2.077515799 2.074583565

0.5 39.21202123 39.21085991 3.264965853 3.219412229 2.472442658 2.451878559

0.6 46.01657574 45.98509257 4.339418865 4.14022079 3.106691102 3.025649366

verse transform, which is denoted by R (∗) 
i j

for two-phase viscoelas- 

tic medium with isotropic constituents for both types of cell. In 

the literature, there are different relaxation kernels that describe 

viscoelastic properties of materials. In this section, different vis- 

coelastic models depending of the kernel types are analyzed. For 

instance, Maxwell, Kelvin and Rabotnov kernels are used in the 

computational algorithm for computing the effective properties. 

5.1. Validation of the present model 

The limit case when t = 0 yields the elastic behavior for 

the composites. In Table 1 , the comparison of the transversally 

isotropic elastic effective properties R (∗) 
11 , R 

(∗) 
12 , R 

(∗) 
13 , R 

(∗) 
33 , R 

(∗) 
44 , R 

(∗)
66

between the present model with square cell and ( Luciano and 

Barbero, 1994 ) are shown. The elastic material parameters used 

in the computation are E (m ) = 3 . 27 Gpa (Young modulus matrix), 

ν(m ) = 0 . 38 (matrix Poisson ratio), E ( f ) = 68 . 67 Gpa (Young mod- 

ulus fibre), and ν( f ) = 0 . 21 (Poisson ratio fibre). Both methods ex- 

hibit good agreement for the whole fibre volume fraction range. 

5.2. Numerical behavior of the relaxation moduli 

(1) Figs. 2 –4 show the behavior of the relaxation moduli com- 

puted by asymptotic homogenization method (AHM) using the for- 

mulae (27) –(29) . 

Comparisons for the whole set of relaxation effective compo- 

nents between the present model via AHM with the results re- 

ported in Barbero and Luciano (1995) for a composite with elas- 

tic circular fibres embbeded in a viscoelastic matrix are displayed 

in Fig. 2 . The input material parameters are E ( f ) = 68 . 67 Gpa 

(fibre Young modulus), ν( f ) = 0 . 21 (fibre Poisson ratio), and the 

four-parameter model, involving Maxwell element and Kelvin- 

Voight element connected in series ( Mainardi and Spada, 2011 ) 

Fig. 2. Viscoelastic effective moduli obtained by AHM with Maxwell-Kelvin kernel and the results obtained by Barbero and Luciano (1995) . The square unit cell is used in

the computation.
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Fig. 3. Comparison between the effective moduli obtained by AHM with ( Barbero and Luciano, 1995 ) for the Rabotnov kernel and square cell.

Fig. 4. Effective moduli obtained by AHM using Rabotnov kernel for both (hexagonal and square) cells.

is used for the matrix viscoelastic Young modulus following 

the analysis reported in Barbero and Luciano (1995) (see, for- 

mulae (49)) ˆ E (m ) (s ) = 
E e ηM ( E V + ηV s ) s 

E e E V + ( E V ηM + E e ( ηV + ηM ) ) s + ηV ηM s 2 
where E e = 

3 . 27 GPa, E V = 1 . 8 GPa, ηM = 80 0 0 GPa · hr, ηV = 300 GPa · hr, 

and ν(m ) = 0 . 38 (matrix Poisson ratio). In Fig. 2 , the effective co- 

efficients for the Maxwell-Kelvin kernel (see Zhang and Ostoja- 

Starzewski, 2015 ) are shown with different volume fractions, i.e., 

V 2 = 0 . 1 , V 2 = 0 . 5 and V 2 = 0 . 65 . We can observe a good agree- 

ment between both approaches (AHM and the results reported in 

Barbero and Luciano, 1995 ). The models practically coincide for 

small volume fractions and exhibit slight difference for higher vol- 

ume fractions. 

(2) Nowadays, the fractional exponential function ∋ α( β , t ) in- 

troduced by Rabotnov (see Rabotnov, 1948 ) as ∋ α (β, t − τ ) = (t −

τ ) α
∑ ∞ 

n =0 
(β) n (t−τ ) n (1+ α) 

Γ [(n +1)(1+ α)] 
, is also known as the Rabotnov function

and as a special case of the Mittag-Leffler function widely used in 
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Fig. 5. Comparison of the effective moduli obtained by AHM with Barbero and Luciano (1995) for the Kelvin kernel. The square unit cell is used in the computation.

Fig. 6. Comparison of the effective moduli obtained by AHM with VAMUCH ( Tang and Felicelli, 2015 ) using Prony series. The square unit cell is used in the computation.

fractional calculus ( Rossikhin and Shitikova, 2014 ). In this sense, 

Fig. 3 presents the computation of R (∗) 
11 , R 

(∗) 
12 , R 

(∗) 
13 , R 

(∗) 
33 , R 

(∗)
44

,

R (∗) 
66 relaxation effective properties using both models (AHM and 

Barbero and Luciano, 1995 ) with Rabotnov kernel (see, Rabotnov, 

1948, Rabotnov, 1977 ) and V 2 = 0 . 1 , V 2 = 0 . 65 volume fractions. 

The material parameters used in the computation are: elastic fi- 

bre ( μ( f ) = 8 . 571 × 10 9 , K ( f ) = 10 . 0 × 10 9 ) and viscoelastic matrix 

( α(m ) = 0 . 47 , β (m ) = 0 . 98 , λ(m ) = 49 . 6 , μ(m ) 
0 = 1 . 7 × 10 6 , K (m ) = 

5 . 97 × 10 9 ), and μ(m ) = s · μ(m ) 
0 · (1 + λ(m )

s (1 −α(m ) ) + β(m ) 
) . Notice that 

for V 2 = 0 . 1 volume fraction all the effective properties coincide 

whereas for higher volume fraction, for instance, V 2 = 0 . 65 , there 

are differences for R (∗) 
11 , R 

(∗) 
12 , R 

(∗) 
13

overall coefficients, however the 

coefficients exhibit the same tendency. 
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Besides, Fig. 4 shows the viscoelastic effective properties for cir- 

cular fibres with hexagonal and square cells using Rabotnov kernel 

for two volume fractions V 2 = 0 . 1 and V 2 = 0 . 5 . The material pa- 

rameters used are the same to the previous figure. It is worth re- 

marking that the effective coefficients R (∗) 
11 , R 

(∗) 
12 , R 

(∗) 
66

for V 2 = 0 . 5 

volume fraction exhibit a difference between square and hexago- 

nal cells for low values of time whereas for V 2 = 0 . 1 volume frac- 

tion the curves do not show difference in the whole time range. 

Moreover, R (∗) 
13 , R 

(∗) 
33 , R 

(∗) 
44 for square and hexagonal cells behave in 

a similar form and they coincide in the whole time interval. 

In addition, as a particular case of Rabotnov model for α = 0 , 

Fig. 5 displays the numerical simulation between the two afore- 

mentioned approaches for the Kelvin kernel with volume fraction 

V 2 = 0 . 1 , and V 2 = 0 . 65 . Notice the remarkable difference in the 

effective coefficients R (∗) 
11 , R 

(∗) 
12 , R 

(∗) 
13 , for high volume fraction. A 

possible source that contributes to the discrepancy for high vol- 

ume fraction may be related to the fact that the systems are trun- 

cated to the second order. However, the obtention of unified ana- 

lytical expressions for different geometries justifies the procedure 

followed in the model. 

(3) Recently, ( Tang and Felicelli, 2015 ) reports a microme- 

chanic model to characterize the effective stress relaxation stiff- 

ness of polymer composites. The linear viscoelastic behavior of 

polymer material is modeled by hereditary integral. The proposed 

model is established based on the variational asymptotic method 

for unit cell homogenization (VAMUCH). The computations using 

this model is done in the time domain, where the Laplace trans- 

form and inversion commonly used for linear viscoelastic compos- 

ites are not needed. The accuracy and efficiency of the proposed 

model is verified by comparing with the results of Representa- 

tive Volume Element Model developed using ABAQUS. The present 

model is validated with the efficient approach VAMUCH for differ- 

ent fibre volume fraction and the results are displayed in Fig. 6 . 

The fibres direction x 1 reported by Tang and Felicelli (2015) has 

been interchanged to x 3 in AHM. The material parameters used 

( Tang and Felicelli, 2015 ) are: for the elastic fibre E ( f ) = 80 Gpa 

(Young modulus) and ν( f ) = 0 . 3 (Poisson ratio); and the viscoelas- 

tic matrix using Prony series as E (m ) (t) = 0 . 5 E (m ) 
0 (1 + exp(−t/ 30)) 

(Young modulus) where E (m ) 
0 = 8 Gpa and ν(m ) = 0 . 4 (Poisson ra- 

tio). 

6. Conclusions

In this work, the two-scale asymptotic homogenization method 

is applied to calculate the linear viscoelastic effective properties 

for fibrous composites where the distribution of the fibres have a 

preferential axis. The local problems and the analytical expressions 

of the effective relaxation coefficients are obtained for square and 

hexagonal cells as an extension of previous works (see Guinovart- 

Díaz et al., 2001; Rodríguez-Ramos et al., 2001 ), where the overall 

properties were derived for fibrous elastic composites. In addition, 

the influence of different viscoelastic models on the relaxation ef- 

fective behavior is considered, in particular, the Maxwell-Kelvin 

model, Rabotnov’s fractional exponential kernel and Kelvin model 

are analyzed. Numerical computations of Laplace-Carson’s inverse 

are implemented for the calculation of the effective viscoelastic re- 

laxation properties. Comparisons with other approaches show the 

efficiency of the method and it provides a good benchmark with 

theoretical and experimental models. 

Also, this work establishes new perspectives for further investi- 

gations; for instance, the results can be extended to the case of im- 

perfect contact conditions by following the methodology in Otero 

et al. (2016) and considering viscoelastic interfaces (see Daridon 

et al., 2016 ). Another natural step is to generalize the present work 

to ageing viscoelastic solids (see Sanahuja, 2013 ). 
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