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Introduction

Several methods have been developed over the past few decades to theoretically predict the effective mechanical properties of composite materials. For linear viscoelastic fibre-reinforced composites, most of the constitutive models can be classified into two groups.

In the first group, the viscoelastic equations are transformed to the linear elastic regime using the method of elastic-viscoelastic correspondence [START_REF] Volterra | Sur les équations intégro-différentielles et leurs applications[END_REF] and the Laplace-Carson transform. This approach allows to treat boundary value problems for linear non-ageing viscoelastic materials as linear elastic ones written in Laplace-Carson space. Thus, homogenization techniques for viscoelastic composites can be performed analytically by using elastic homogenization solutions and treating them as images in the Laplace-Carson space (see, [START_REF] Hashin | Viscoelastic fibre reinforced materials[END_REF][START_REF] Lévesque | Numerical inversion of the laplace-carson transform applied to homogenization of randomly reinforced linear viscoelastic media[END_REF]. The main challenge is to obtain analytical formulas for inverse Laplace transform to write viscoelastic solution in time space (see, [START_REF] Lévesque | Numerical inversion of the laplace-carson transform applied to homogenization of randomly reinforced linear viscoelastic media[END_REF][START_REF] Le | Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum[END_REF]. This difficulty can thus, to extend each of known micromechanical scheme from elastic materials to viscoelastic ones [START_REF] Sevostianov | Creep and relaxation contribution tensors for spheroidal pores in hereditary solids: fraction-exponential operators approach[END_REF]. The concept of creep and relaxation contribution tensor has been used by Sevostianov et al. (2016) to evaluate effective properties of fibre reinforced composites and by [START_REF] Vilchevskaya | Replacement relations for a viscoelastic material containing multiple inhomogeneities[END_REF] to describe replacement relations in viscoelastic heterogeneous materials.

In the second group, the homogenization method is applied directly in the time domain to obtain the constitutive models. The time domain solution may be also obtained with numerical inversion algorithms, such as the collocation method [START_REF] Schapery | Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media[END_REF] or quasi-elastic approximation in the Laplace-Carson space [START_REF] Brenner | A quasi-elastic affine formulation for the homogenized behavior of nonlinear viscoelastic polycristals and composites[END_REF]. This method is computationally-efficient but at the expense of accuracy. Another approach consists of a timeintegration approach, relying on variational principles [START_REF] Lahellec | Effective behavior of linear viscoelastic composites : a time-integration approach[END_REF]. While it avoids the Laplace-Carson transforms and solves the viscoelastic problem directly in the time domain, its numerical implementation is challenging.

Different contributions developed for linear viscoelastic composites have been introduced in several recent papers. For example, the authors in [START_REF] Wang | Locally-exact homogenization of viscoelastic unidirectional composites[END_REF] extend the elasticitybased, locally-exact homogenization theory for periodic materials with hexagonal and tetragonal symmetries to viscoelastic unidirectional composites. In addition, a spatial-temporal nonlocal homogenization model for transient anti-plane shear wave propagation in viscoelastic composites is presented in [START_REF] Hu | Spatial-temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites[END_REF] . Another fruitful research approach is the variational framework developed in [START_REF] Tressou | Application of the incremental variational approach (eiv model) to the linear viscoelastic homogenization of different types of microstructures: long fiber,-particle reinforced and strand-based composites[END_REF] , which focus its attention on the incremental variational approach commonly called EIV approach in the literature proposed by [START_REF] Lahellec | Effective behavior of linear viscoelastic composites : a time-integration approach[END_REF] for dealing with the linear viscoelastic behavior of different types of microstructures. Also, solutions based on Fourier series analysis are studied in [START_REF] To | Overall viscoelastic properties of 2d and two-phase periodic composites constituted of elliptical and rectangular heterogeneities[END_REF] .

This work has some differences with respect to recently contributions already presented in the literature, see e.g. [START_REF] Yi | Asymptotic homogenization of viscoelastic composites with periodic microstructures[END_REF] , Tran et al. (2011[START_REF] Liu | Prediction of viscoelastic property of layered materials[END_REF] , [START_REF] Cai | Prediction on viscoelastic properties of three-dimensionally braided composites by multi-scale model[END_REF] , [START_REF] Daridon | Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase[END_REF] , [START_REF] Tang | Computational evaluation of effective stress relaxation behavior of polymer composites[END_REF] . In the aforementioned works, the main relevant issues are summarized as follows: a way to obtain the effective viscoelastic moduli both in the time and frequency domain for viscoelastic composites with periodic microstructures is formulated in [START_REF] Yi | Asymptotic homogenization of viscoelastic composites with periodic microstructures[END_REF] by using the asymptotic homogenization method; Tran et al. (2011) proposed a numerical multiscale method computing the response of structures made of linearly non-aging viscoelastic in the time domain based on RVE method; [START_REF] Liu | Prediction of viscoelastic property of layered materials[END_REF] predicted the viscoelastic properties of layered materials and obtained explicit formulas for predicting the viscoelastic relaxation modulus of layered materials; [START_REF] Cai | Prediction on viscoelastic properties of three-dimensionally braided composites by multi-scale model[END_REF] works with four-step three-dimensionally (3D) braided composites; [START_REF] Daridon | Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase[END_REF] deals with imperfect (Kelvin-Voigt) viscoelastic interphases and [START_REF] Tang | Computational evaluation of effective stress relaxation behavior of polymer composites[END_REF] proposes an homogenization methodology based on the variational asymptotic method for the unit cell (VAMUCH), where the predictions of effective stress relaxation stiffness are obtained in the time domain without applying the Laplace transform. However, in the present work, the two-scale asymptotic homogenization method initially developed in [START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF][START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF] for calculating the effective properties of elastic fibrous composites is extended and generalized to a non-ageing linear viscoelasticity framework. The investigation of the effective properties is based on the correspondence principle and the Laplace transform. The numerical algorithm proposed by [START_REF] Hollenbeck | INVLAP.M: a Matlab function for numerical inversion of laplace transforms by the Hoog algorithm[END_REF] to invert the Laplace transform is used to calculate the properties of the homogenized composites in the time domain. Consequently, the present formulation contributes with analytical solutions, in the Laplace-Carson space, for the local problems and the effective coefficients for fibrous viscoelastic composites with square and hexagonal cells; closed form expressions eas-ily for their computation are ensured; moreover the behavior of the effective coefficients for square and hexagonal cells for different relaxation kernels as Maxwell-Kelvin model, the fractionexponential function or Rabotnov's kernel and the Kelvin model are analyzed; finally, numerical results and comparisons with other models are provided as validation of the proposed approach.

Viscoelastic heterogeneous problem. Basic equations

Let us denote by ∈ R 3 a linear viscoelastic composite material with periodic structure and cylindrical cross-section fibres (see Fig. 1 (a)). The domain is constituted by two phases: the matrix ξ m and the finite collection of disjoints cylindrical cross-section fibres

ξ f , such that = ξ m ∪ ξ f and ξ m ∩ ξ f = ∅ .
The fibres are oriented along the Ox 3 -axis. The interface between the two constituents is denoted by Ŵ ξ (see Fig. 1 (b)). The fibres are embed- ded into the matrix within the unit cell, which can be square or hexagonal. Besides, the unitary periodic cell is denoted by Y (see Fig. 1 (c)).

Then, ignoring inertia term, the equilibrium equation under the action of external volume forces is written as,

∇ • σ σ σ ( x x x , t ) + f f f ( x x x , t ) = 0 0 0 in ( \ Ŵ ξ ) × R (1a) u u u ( x x x , t ) = ū u u on d × R (1b) σ σ σ ( x x x , t ) • n n n = S S S on ∂ n × R (1c) u u u ( x x x , t ) = 0 0 0 in × { 0 } (1d) 
where σ σ σ (σ ij ) represents the second-order stress tensor, u u u (u i ) is the viscoelastic displacement, x x x (x i ) denotes the global Cartesian coordinates, f f f ( f i ) represents the action of external volume forces and satisfies f f f ( x x x , t ) ∈ L 2 ( × R ) , ū u u ( ū i ) and S S S ( S i ) are the prescribed displacement and traction on the boundary

∂ = ∂ d ∪ ∂ n , with ∂ d ∩ ∂ n = ∅ , ∂ d
is a part of the surface ∂ where the displacement is prescribed and n n n (n i ) is the outward unit vector normal to the surface ∂ .

In the process of two scales asymptotic homogenization method, it is natural to use L as the characteristic length of the heterogeneous medium and l referring to the length of the periodic cell, such that l ≪ L . In addition, a small geometric parameter ξ = l/L with ξ ≪ 1 is introduced. Therefore, the macro or global variable x x x ( x i ) and micro or local variable y y y ( y i ) are related to y y y = x x x /ξ .

The viscoelastic stress and strain fields are linearly related by the constitutive law (see, [START_REF] Christensen | Theory of Viscoelasticity -2nd Edition An Introduction[END_REF][START_REF] Pipkin | Lectures on Viscoelasticity Theory[END_REF],

σ σ σ ( x x x , t ) = t 0 R R R ( y y y , t -τ ) : ∂ ε ε ε ( u u u ( x x x , τ ) ) ∂τ dτ, ( 2 
)
where R R R ( R ijkl ) denotes the relaxation modulus and it fulfills the symmetry properties

R ijkl = R jikl = R ijlk = R kli j . We assume R R R ∈ L ∞ ( × R
) , also that it is positively defined and Y-periodic related to the variable y. In addition, the second-order strain tensor is re-

ferred to as ε ε ε ( ε kl ) in components.
The following relationship is ensured for small displacements

ε kl ( u u u ( x x x , t ) ) = 1 2 ∂u k ( x x x , t ) ∂x l + ∂u l ( x x x , t ) ∂x k . ( 3 
)
The statement of the constitutive law (2) corresponds to the special form of non-ageing linear viscoelastic materials [START_REF] Maghous | Periodic homogenization in thermoviscoelasticity: case of multilayered media with ageing[END_REF]. Therefore, the problem (1a) -( 2) can be transformed into an elastic one using the Laplace-Carson transform. The aforementioned is known as the correspondence principle. Thus, applying the Laplace-Carson transform to (1a) -( 2) , the mathematical expression for the linear viscoelastic heterogeneous problems in the Laplace-Carson space is written,

∂ ∂x j ˆ R ijkl ( y y y , s ) ξ kl ˆ u u u ( x x x , s ) + ˆ f i ( x x x , s ) = 0 , in ( \ Ŵ ξ ) × [0 , + ∞ ) . ( 4 
)
where ξ kl denotes de strain (3) in the Laplace-Carson space. The corresponding boundary conditions associated to (4) are

ˆ u i ( x x x , s ) = u i , on ∂ d × [0 , + ∞ ) , (5) 
ˆ R ijkl ( y y y , s ) ξ kl ˆ u u u ( x x x , s ) n j = S i , on ∂ n × [0 , + ∞ ) , (6) 
and the initial condition is taken as follows ˆ

u i ( x x x , s ) = 0 , in × { 0 } . (7) 
From now on, the functions with the symbol ( ˆ ) depending on the parameter s denote corresponding the Laplace-Carson transform.

Two-scale asymptotic homogenization method applied to heterogeneous problem

The aim of this section is to solve the heterogeneous problem ( 4) -( 7) using AHM.

A formal asymptotic solution for the problem is proposed as follows, ˆ

u u u ( x x x , ξ , s ) = + ∞ a =0 ξ a ˆ u u u (a ) ( x x x , y y y , s ) , (8) where ˆ u u u (a ) ( ˆ u (a ) i ) is Y-periodic related to the variable y y y ∀ a, ∀ x x x ∈ , ∀ s ∈ [0 , + ∞ ) and ˆ u u u (a ) ( x x x , y y y , s ) ∈ C ∞ ( × R 3 × [0 , + ∞ )) .
As the material property is periodic in y y y then, according to the chain rule, the derivative in relation to the global coordinate yields the transformation

∂ (•) ∂x j = ∂ (•) ∂x j + 1 ξ ∂ (•) ∂y j . ( 9 
)
Using a similar idea (9) , the Eq. ( 3) applied to an arbitrary function of the form ˆ ( x x x , x x x /ξ , s ) becomes,

ε kl ˆ ( x x x , x x x /ξ , s ) = ε klx ˆ ( x x x , y y y , s ) + ξ -1 ε kly ˆ ( x x x , y y y , s ) , (10) 
where the expressions ε klx and ε kly are defined as follows [START_REF] Persson | The homogenization method[END_REF] ,

ε klx ˆ ( x x x , s ) = 1 2 ∂ ˆ k ( x x x , s ) ∂x l + ∂ ˆ l ( x x x , s ) ∂x k , (11) 
and

ε kly ˆ ( y y y , s ) = 1 2 ∂ ˆ k ( y y y , s ) ∂y l + ∂ ˆ l ( y y y , s ) ∂y k . ( 12 
)
In this particular case, it is possible to significantly simplify the expressions in the homogenization process using the following operator,

L αβ (•) := - ∂ ∂α j ˆ R ijkl ( y y y , s ) ε klβ (•) , (13) 
for α, β = x x x , y y y , indistinctly.

Replacing ( 8) into (4) , taking into account ( 9) -( 13) , after some simplifications and grouping in powers of ξ , the following sequence of problems is obtained for different orders of the small parameter, ξ -2 :

L yy ˆ u u u (0) ( x x x , y y y , s ) = 0 0 0 , (14) 
ξ -1 :

L xy ˆ u u u (0) ( x x x , y y y , s ) + L yx ˆ u u u (0) ( x x x , y y y , s ) + L yy ˆ u u u (1) ( x x x , y y y , s ) = 0 0 0 , (15) 
ξ 0 :

L xx ˆ u u u (0) ( x x x , y y y , s ) + L xy ˆ u u u (1) ( x x x , y y y , s ) + L yx ˆ u u u (1) ( x x x , y y y , s ) + L yy ˆ u u u (2) ( x x x , y y y , s ) -f f f ( x x x ) = 0 0 0 . (16) 
Problems ( 14) -( 16) can be solved recursively form considering the solvability condition presented in the following lemma (see Persson et al., 1993, Bakhvalov and[START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF], In what follows, the main results for each power of ξ are given.

Lemma 1. Let F F F (F i ) be

Contribution of order ξ -2

The problem ( 14) has the trivial solution ˆ u u u (0) ( x x x , y y y , s ) ≡ 0 0 0 . Therefore, Lemma 1 indicates that ˆ u u u (0) ( x x x , y y y , s ) is a solution of ( 14) if and

only if it is constant in relation to the variable y y y . It implies that, ˆ u u u (0) ( x x x , y y y , s ) = ˆ v v v ( x x x , s ) , (17) where 
ˆ v v v ( x x x , t ) is a infinitely differentiable function. Contribution of order ξ -1 Using (17) , the first term of (15) is zero, L xy ˆ u u u (0) ( x x x , y y y , s ) = L xy ˆ v v v ( x x x , s ) = 0 0 0 . Therefore, the problem (15) becomes, L yy ˆ u u u (1) ( x x x , y y y , s ) = -L yx ˆ u u u (0) ( x x x , y y y , s ) , (18) 
Applying Lemma 1 on (18) , taking into account ( 17) , the divergence theorem and the Y -periodicity condition of ˆ R R R ( y y y , s ) , the following result can be verified

-L yx ˆ u u u (0) ( x x x , y y y , s ) = 0 .
Consequently, the existence and uniqueness of a solution for problem (18) is guaranteed. Applying separation of variables, a general solution for ( 18) is given by ˆ u u u

(1) ( x x x , y y y , s ) = ˆ N N N rs ( y y y , s ) ε rsx ( ˆ v v v ( x x x , s )) , (19) 
where ˆ N N N rs ( ˆ N rs i ) is called the local function . Finally, substituting ( 17) and ( 19) into (18) and after some simplifications the local problem in relation to the local function is obtained

- ∂ ∂y j ˆ R ijkl ( y y y , s ) ε kly ˆ N N N rs ( y y y , s ) = ∂ ∂y j ˆ R ijrs ( y y y , s ) , (20) 
where ˆ N N N rs is a Y -periodic function.

Contribution of order ξ 0

The existence and uniqueness of a Y -periodic solution for the problem ( 16) is guaranteed if and only if

f f f ( x x x ) -L xx ˆ u u u (0) ( x x x , y y y , s ) -L xy ˆ u u u (1) ( x x x , y y y , s ) -L yx ˆ u u u (1) ( x x x , y y y , s ) = 0 . ( 21 
)
The functions ˆ R R R ( y y y , s ) and ˆ N N N rs ( y y y , s ) are Y -periodic, hence by ( 19) and the divergence theorem it is proved that,

L yx ˆ u u u (1) ( x x x , y y y , s ) = 0 .
Finally, working on (21) , the homogenized problem is obtained and it can be written in the form

-ˆ R ( * ) ijrs (s ) ∂ ∂x j ε rsx ( ˆ v v v ( x x x , s )) = f i ( x x x ) , (22) where 
ˆ R ( * ) ijrs (s ) = ˆ R ijrs ( y y y , s ) + ˆ R ijkl ( y y y , s ) ε kly ˆ N N N rs ( y y y , s ) , (23) 
is the effective coefficient . The boundary conditions for the homogenized problem (22) and ( 23) are rewritten replacing (8) into ( 5) and (6) , respectively. Applying the average operator, we obtain

ˆ v i ( x x x , s ) = u i , on ∂ d × [ 0 , + ∞ ) , (24) 
ˆ R ( * ) ijrs (s ) ξ kl ˆ v v v ( x x x , s ) n j = S i , on ∂ n × [ 0 , + ∞ ) , (25) 
and the initial condition is taken as follows

ˆ v i ( x x x , s ) = 0 , in × { 0 } . (26) 
Consequently, from the previous steps, a recurrent sequence can be obtained allowing the formulation of the local problems (20) defined on the periodic cell Y and the effective coefficients (23) that do not depend on the small epsilon parameter. Thus, the application of the asymptotic homogenization method generates two types of fundamental problems: a) the determination of the effective coefficients from the solutions of the local problems in which the epsilon parameter does not appear, which constitutes the main objective of the present work and, b) from the homogenized problem, the calculation of the boundary problems associated with concrete contour conditions to determine the displacements, deformations and stresses field in which the epsilon parameter plays an important role using the asymptotic expansion proposed in (8) . This topic is outside of this work purpose.

It is well known that due to correspondence principle there is an equivalence between elastic and viscoelastic problems in terms of Laplace transforms. Regarding the homogenization approach, in Chapter 2, paragraph 2 of [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF] is demonstrated the principal steps in constructing and justifying an asymptotic expansion solution. The accuracy of the asymptotic expansion for the small parameter is illustrated in Table 1 on page. 16 of [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF] where is shown the discrepancies and errors for the order of the expansion n = 0 , 1 , 2 and the small parameter ξ ≪ 1. Besides, in Chapter 6, paragraph 2 on page 205 of [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF] , the principle of equivalent homogeneity is asserted and the relationship between local characteristics of heterogeneous medium and those of the homogeneous medium described by the averaged equation is carefully studied and proved. The accuracy between heterogeneous solution can be compared with that obtained by the homogenized model using the estimation u -ˆ v L 2 ( ) ≤ C ξ , where C is a positive constant independent of the small parameter ξ .

Two-phase viscoelastic composite. analytical expressions for effective properties

The idea in this section is to provide closed formulae analogous to Valdivieso-Mijangos et al. ( 2002) , [START_REF] Sabina | Overall behavior of two-dimensional periodic composites[END_REF] but now for the effective viscoelastic characteristics of composites with square and hexagonal arrangement cells. In this sense, two-phase unidirectional fibre reinforced viscoelastic composites are studied here, which consist of identical circular cylindrical isotropic homogeneous fibres embedded in a isotropic homogeneous matrix.

A Cartesian coordinate system Ox 1 x 2 x 3 is employed for the geometrical description of composites. The fibres are assumed infinite in the Ox 3 direction and periodically distributed without overlapping in directions parallel to the Ox 1 axis and the lines with slope at an angle θ = π /a, a = 2 for the squared array and a = 3 for hexagonal array. R is the radius of the fibre circular cross-section and The effective properties of these media via AHM have been investigated by many authors. In [START_REF] Otero | Computation of effective properties in elastic composites under imperfect contact with different inclusion shapes[END_REF] semi-analytical formulae were derived for composites under imperfect contact with different inclusions shapes where AHM and finite element method are combined for the computation of the effective characteristics; AHM is used for obtaining the local problems and the analytical expression of the effective properties and finite element method for solving the corresponding two dimensional local problems. The results of [START_REF] Pobedria | Mechanics of Composite Materials[END_REF] were extended in [START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF] (for hexagonal cell) and in [START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF] (for square cell) to the case of transversely isotropic elastic constituents. The formulae for global properties require numerical solution of a infinite linear system of equations. The formulae involve products of vectors and matrices of infinite order which require to be truncated.

V 2 = π R 2 with 0 ≤ V 2 ≤ π
Based on the correspondence principle, and the results obtained in [START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF][START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF] and [START_REF] Bravo-Castillero | Unified analytical formulae for the effective properties of periodic fibrous composites[END_REF] , the effective coefficients for two phase viscoelastic composites with isotropic components can be listed as an extension of previous works in the following form, ˆ

k (s ) = k v (s ) -V 2 ( k 1 (s ) -k 2 (s ) ) 2 K α (a, s ) /m 1 (s ) , ˆ l (s ) = l v (s ) -V 2 ( k 1 (s ) -k 2 (s ) ) ( l 1 (s ) -l 2 (s ) ) K α (a, s ) /m 1 (s ) , ˆ n (s ) = n v (s ) -V 2 ( l 1 (s ) -l 2 (s ) ) 2 K α (a, s ) /m 1 (s ) , (27) ˆ p (s ) = p 1 (s ) -2 V 2 p 1 (s ) P α (a, s ) , ˆ m (s ) = m 1 (s ) -V 2 ( m 1 (s ) -m 2 (s ) ) M α (a, s ) , ˆ m ′ (s ) = m 1 (s ) -V 2 ( m 1 (s ) -m 2 (s ) ) M ′ α (s ) ,
where the index v denotes an average property over the peri-

odic cell, i.e. k v (s ) = V 1 k 1 (s ) + V 2 k 2 (s ) and V 1 + V 2 = 1 . The func- tions K α ( a, s ), P α ( a, s ), M α ( a, s
) and M ′ α (s ) which involve the order of accuracy α are given by

K α (a, s ) = C(s ) V 1 + δ α2 (2 a -1)(1 + κ 1 (s )) C(s ) 2 R 4 a (S 2 a ) 2 B -1 ( s ) + R 4 a -2 E(a, s ) , P α (a, s ) = χ p (s ) 1 + V 2 χ p (s ) -δ α2 (2 a -1)(χ p (s ) 2 R 4 a (S 2 a ) 2 , M α (a, s ) = 1 + κ 1 (s ) (1 + κ 1 (s ) χ m (s ))(1 + R 2 H -(a, s ) -δ α2 I(a, s )) , M ′ α (a, s ) = 1 + κ 1 (s ) (1 + κ 1 (s ) χ m (s ))(1 + R 2 H + (a, s ) -δ α2 I + (s )) , ( 28 
)
where E(a, s

) = A (s ) B -1 (s ) r(a ) + g(a ) + (2 a -1) D (s ) R 2 (S 2 
a ) 2 , δ kl is the Kronecker's delta and the expressions involved in the above formulae are written as,

H ± (a, s ) = A (s ) r 1 (a, s ) + B (s ) πκ 1 / sin (π /a ) ±(3 -a ) B (s )(S 4 /π + π 1 ) , I(a, s ) = I -(s ) for a = 2 , 3 R 8 B 2 (s ) ( 15 R 2 S 6 -4 T 5 ) 2 1+10 0 R 12 A (s )(S 6 ) 2
for a = 3 ,

I ± = R 12 ( A (s ) r 2 ± B (s ) g 2 ) ( A (s ) r 3 ± B (s ) g 3 ) 1 + R 10 A (s ) r 4 ± B (s ) g 4 , r(a ) = c 2 a -1 4 a -1 c 2 a +1 4 a -1 R 4 a -2 (S 4 a ) 2 , r 1 (a ) = (2 a -1)(S 2 a ) 2 R 4 a -2 , r 2 = c 3 3 c 5 7 R 6 (S 4 )(S 8 ) , r 3 = c 1 3 c 3 7 R 6 (S 4 )(S 8 ) , r 4 = c 3 7 c 5 7 R 6 (S 8 ) 2 , g(a ) = -(2 a -1) R 2 c 2 a 4 a S 4 a -c 2 a -1 4 a -2 T 4 a -1 , g 1 = -6 S 4 R 2 , g 2 = -R 2 c 2 8 S 8 + c 5 6 T 7 , g 3 = -5 R 2 c 6 8 S 8 + 5 c 5 6 T 7 , g 4 = -5 R 2 c 6 12 S 12 + 5 c 5 10 T 11 , (29) 
where,

κ β (s ) = 1 + 2 m β k β , (β = 1 , 2) , χ m (s ) = m 2 m 1 , χ p (s ) = p 1 -p 2 p 1 + p 2 , A (s ) = (κ 1 χ m -κ 2 ) B (s ) / (κ 2 + χ m ) , B (s ) = (1 -χ m ) / (1 + κ 1 χ m ) , C(s ) = 1 1 + (k 1 V 2 + k 2 V 1 ) /m 1 , D (s ) = 2 k 2 k 1 -1 C(s ) , c l k = k ! l!(k -l)! .
Replacing a = 2 (or a = 3 ) into the above formulae the effective relaxation viscoelastic properties ˆ

R 11 = ˆ k + ˆ m ′ , ˆ R 12 = ˆ k -ˆ m ′ , ˆ R 13 = R 23 = ˆ l , ˆ R 33 = ˆ n , ˆ R 44 = ˆ p , ˆ R 66 = ˆ
m in the Laplace-Carson space of two phase fibrous composites with a square (or hexagonal) distribution of fibres can be computed. The corresponding lattice sums for square ( a = 2 ) are S 4 = 3 . 1512120 , S 8 = 4 . 2557731 , S 12 = 3 . 9388490 , T 7 = 4 . 5155155 , T 11 = 3 . 8807309 , S 6 = T 5 = 0 ; and for an hexagonal array ( a = 3 ) S 6 = 5 . 8630316 , S 12 = 6 . 0 0 096399 , T 5 = 5 . 6568027 , T 11 = 6 . 0301854 , S 4 = S 8 = T 7 = 0 . The infinite system ( 27) -( 29) is used such that it is truncated for obtaining an n × n order system. It is interesting to note that the effective properties are monotonic functions of order n of the solution of the system. In general, the numerical results converge well to the exact solutions when an adequate order in the solution of the system is chosen as n increases. The truncation order for solving the system increases as the parameters and the fiber volume fraction are high. In the numerical examples the solutions are given for n = 1 , because this order of n achieves the required accuracy for the used parameters. An analysis of different truncation order of the system is carried out in [START_REF] Bravo-Castillero | Unified analytical formulae for the effective properties of periodic fibrous composites[END_REF] .

Numerical results

The above described formulae allow to find the value of the effective properties in the time space using the Laplace-Carson in-Table 1 Comparison between AHM and [START_REF] Luciano | Formulas for the stiffness of composites with periodic microstructure[END_REF] for the elastic limit case. verse transform, which is denoted by R ( * ) ij for two-phase viscoelastic medium with isotropic constituents for both types of cell. In the literature, there are different relaxation kernels that describe viscoelastic properties of materials. In this section, different viscoelastic models depending of the kernel types are analyzed. For instance, Maxwell, Kelvin and Rabotnov kernels are used in the computational algorithm for computing the effective properties.

R ( * ) 11 (Gpa) R ( * ) 12 (Gpa) R ( * ) 13 (Gpa) V 2 AHM Luciano

Validation of the present model

The limit case when t = 0 yields the elastic behavior for the composites. In Table 1 , 

Numerical behavior of the relaxation moduli

(1) Figs. 234show the behavior of the relaxation moduli computed by asymptotic homogenization method (AHM) using the formulae ( 27) -( 29) .

Comparisons for the whole set of relaxation effective components between the present model via AHM with the results reported in [START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF] for a composite with elastic circular fibres embbeded in a viscoelastic matrix are displayed in Fig. 2 . The input material parameters are E ( f ) = 68 . 67 Gpa (fibre Young modulus), ν ( f ) = 0 . 21 (fibre Poisson ratio), and the four-parameter model, involving Maxwell element and Kelvin-Voight element connected in series [START_REF] Mainardi | Creep, relaxation and viscosity properties for basic fractional models in rheology[END_REF] Fig. 2. Viscoelastic effective moduli obtained by AHM with Maxwell-Kelvin kernel and the results obtained by [START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF] . The square unit cell is used in the computation. is used for the matrix viscoelastic Young modulus following the analysis reported in [START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF] 

(see, for- mulae (49)) ˆ E (m ) (s ) = E e η M ( E V + η V s ) s E e E V + ( E V η M + E e ( η V + η M ) ) s + η V η M s 2
where E e = 3 . 27 GPa, E V = 1 . 8 GPa, η M = 80 0 0 GPa • hr, η V = 300 GPa • hr, and ν (m ) = 0 . 38 (matrix Poisson ratio). In Fig. 2 , the effective co- efficients for the Maxwell-Kelvin kernel (see [START_REF] Zhang | Mesoscale bounds in viscoelasticity of random composites[END_REF] are shown with different volume fractions, i.e., V 2 = 0 . 1 , V 2 = 0 . 5 and V 2 = 0 . 65 . We can observe a good agree-ment between both approaches (AHM and the results reported in [START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF]. The models practically coincide for small volume fractions and exhibit slight difference for higher volume fractions.

(2) Nowadays, the fractional exponential function ∋ α ( β, t ) introduced by Rabotnov (see [START_REF] Rabotnov | Equilibrium of an elastic medium with after-effects[END_REF] 

as ∋ α (β, t -τ ) = (t - τ ) α ∞ n =0 (β ) n (t-τ ) n (1+ α) Γ [(n +1)(1+ α)]
, is also known as the Rabotnov function and as a special case of the Mittag-Leffler function widely used in Besides, Fig. 4 shows the viscoelastic effective properties for circular fibres with hexagonal and square cells using Rabotnov kernel for two volume fractions V 2 = 0 . 1 and V 2 = 0 . 5 . The material parameters used are the same to the previous figure. It is worth remarking that the effective coefficients R ( * ) 11 , R ( * ) 12 , R ( * ) 66 for V 2 = 0 . 5 volume fraction exhibit a difference between square and hexagonal cells for low values of time whereas for V 2 = 0 . 1 volume fraction the curves do not show difference in the whole time range. Moreover, R ( * ) 13 , R ( * ) 33 , R ( * ) 44 for square and hexagonal cells behave in a similar form and they coincide in the whole time interval.

In addition, as a particular case of Rabotnov model for α = 0 , Fig. 5 displays the numerical simulation between the two aforementioned approaches for the Kelvin kernel with volume fraction V 2 = 0 . 1 , and V 2 = 0 . 65 . Notice the remarkable difference in the effective coefficients R ( * ) 11 , R ( * ) 12 , R ( * ) 13 , for high volume fraction. A possible source that contributes to the discrepancy for high volume fraction may be related to the fact that the systems are truncated to the second order. However, the obtention of unified analytical expressions for different geometries justifies the procedure followed in the model.

(3) Recently, [START_REF] Tang | Computational evaluation of effective stress relaxation behavior of polymer composites[END_REF] reports a micromechanic model to characterize the effective stress relaxation stiffness of polymer composites. The linear viscoelastic behavior of polymer material is modeled by hereditary integral. The proposed model is established based on the variational asymptotic method for unit cell homogenization (VAMUCH). The computations using this model is done in the time domain, where the Laplace transform and inversion commonly used for linear viscoelastic composites are not needed. The accuracy and efficiency of the proposed model is verified by comparing with the results of Representative Volume Element Model developed using ABAQUS. The present model is validated with the efficient approach VAMUCH for different fibre volume fraction and the results are displayed in Fig. 6 . The fibres direction x 1 reported by [START_REF] Tang | Computational evaluation of effective stress relaxation behavior of polymer composites[END_REF] has been interchanged to x 3 in AHM. The material parameters used [START_REF] Tang | Computational evaluation of effective stress relaxation behavior of polymer composites[END_REF] are: for the elastic fibre E ( f ) = 80 Gpa (Young modulus) and ν ( f ) = 0 . 3 (Poisson ratio); and the viscoelastic matrix using Prony series as E (m ) (t) = 0 . 5 E (m ) 0 (1 + exp(-t/ 30))

(Young modulus) where E (m ) 0 = 8 Gpa and ν (m ) = 0 . 4 (Poisson ratio).

Conclusions

In this work, the two-scale asymptotic homogenization method is applied to calculate the linear viscoelastic effective properties for fibrous composites where the distribution of the fibres have a preferential axis. The local problems and the analytical expressions of the effective relaxation coefficients are obtained for square and hexagonal cells as an extension of previous works (see [START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF][START_REF] Rodríguez-Ramos | Closedform expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. i: elastic and square symmetry[END_REF], where the overall properties were derived for fibrous elastic composites. In addition, the influence of different viscoelastic models on the relaxation effective behavior is considered, in particular, the Maxwell-Kelvin model, Rabotnov's fractional exponential kernel and Kelvin model are analyzed. Numerical computations of Laplace-Carson's inverse are implemented for the calculation of the effective viscoelastic relaxation properties. Comparisons with other approaches show the efficiency of the method and it provides a good benchmark with theoretical and experimental models.

Also, this work establishes new perspectives for further investigations; for instance, the results can be extended to the case of imperfect contact conditions by following the methodology in [START_REF] Otero | Computation of effective properties in elastic composites under imperfect contact with different inclusion shapes[END_REF] and considering viscoelastic interfaces (see [START_REF] Daridon | Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase[END_REF]. Another natural step is to generalize the present work to ageing viscoelastic solids (see [START_REF] Sanahuja | Effective behaviour of ageing linear viscoelastic composites: homogenization approach[END_REF].

Fig. 1 .

 1 Fig. 1. Macroscopic heterogeneous structure with square and hexagonal cells.

  square integrable function over Y and consider the boundary value problem L yy = F F F , where is Y -periodic. Then the following conditions hold, (i) A Y -periodic solution exists if and only if F F F = 0 . (ii) If a Y -periodic solution exists, then it is unique up to a constant vector c c c . The proof of this lemma is given in Section 4.3 of Persson et al. (1993) . The notation • defines the cell average operator, i.e., F F F := 1 | Y | Y F F F dy, where | Y | represents the periodic cell volume.

4

  sin θ is the fibre volume fraction on the square and hexagonal periodic cells (see Fig. 1 (b)-(c)). Perfect contact conditions are assumed on the interface between matrix and fibre. The relaxation modulus ˆ R R R ( x x x , s ) is a periodic function of the coordinate x 1 and x 2 .

  the comparison of the transversally isotropic elastic effective properties R ( * ) 11 , R ( * ) 12 , R ( * ) 13 , R ( * ) 33 , R ( * ) 44 , R ( * ) 66 between the present model with square cell and ( Luciano and Barbero, 1994 ) are shown. The elastic material parameters used in the computation are E (m ) = 3 . 27 Gpa (Young modulus matrix), ν (m ) = 0 . 38 (matrix Poisson ratio), E ( f ) = 68 . 67 Gpa (Young modulus fibre), and ν ( f ) = 0 . 21 (Poisson ratio fibre). Both methods exhibit good agreement for the whole fibre volume fraction range.

Fig. 3 .

 3 Fig. 3. Comparison between the effective moduli obtained by AHM with[START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF] for the Rabotnov kernel and square cell.

Fig. 4 .

 4 Fig. 4. Effective moduli obtained by AHM using Rabotnov kernel for both (hexagonal and square) cells.
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 [START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF]for the Kelvin kernel. The square unit cell is used in the computation. fractional calculus [START_REF] Rossikhin | The simplest models of viscoelasticity involving fractional derivatives and their connectedness with the Rabotnov fractional order operators[END_REF]. In this sense, Fig. 3 presents the computation of

66 relaxation effective properties using both models (AHM and [START_REF] Barbero | Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers[END_REF] with Rabotnov kernel (see, [START_REF] Rabotnov | Equilibrium of an elastic medium with after-effects[END_REF][START_REF] Rabotnov | Elements of Hereditary Solid Mechanics[END_REF] and V 2 = 0 . 1 , V 2 = 0 . 65 volume fractions. The material parameters used in the computation are: elastic fibre ( μ ( f ) = 8 . 571 × 10 9 , K ( f ) = 10 . 0 × 10 9 ) and viscoelastic matrix ( α (m ) = 0 . 47 , β (m ) = 0 . 98 , λ (m ) = 49 . 6 , μ (m ) 0 = 1 . 7 × 10 6 , K (m ) = 5 . 97 × 10 9 ), and

s (1 -α (m ) ) + β (m ) ) . Notice that for V 2 = 0 . 1 volume fraction all the effective properties coincide whereas for higher volume fraction, for instance, V 2 = 0 . 65 , there are differences for R ( * ) 11 , R ( * ) 12 , R ( * ) 13 overall coefficients, however the coefficients exhibit the same tendency.
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