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We present a simulation-and-regression method for solving dynamic portfolio allocation problems in the presence of general transaction costs, liquidity costs and market impacts. This method extends the classical least squares Monte Carlo algorithm to incorporate switching costs, corresponding to transaction costs and transient liquidity costs, as well as multiple endogenous state variables, namely the portfolio value and the asset prices subject to permanent market impacts. To do so, we improve the accuracy of the control randomization approach in the case of discrete controls, and propose a global iteration procedure to further improve the allocation estimates. We validate our numerical method by solving a realistic cash-and-stock portfolio with a power-law liquidity model.

We quantify the certainty equivalent losses associated with ignoring liquidity effects, and illustrate how our dynamic allocation protects the investor's capital under illiquid market conditions. Lastly, we analyze, under different liquidity conditions, the sensitivities of certainty equivalent returns and optimal allocations with respect to trading volume, stock price volatility, initial investment amount, risk-aversion level and investment horizon.

Introduction

The effect of liquidity on the design of dynamic multi-period portfolio selection methods (a.k.a. asset allocation, portfolio optimization or portfolio management) has drawn great attention from academics and practitioners alike. Liquidity affects portfolio allocation in two main ways: temporary liquidity cost and permanent market impact. Liquidity cost, also known as implementation shortfall, temporary market impact or transitory market impact, is the difference between the realized transaction price and the pre-transaction price. Market impact is the permanent shift in the asset price after a transaction, due to the post-transaction "resilience" of the limit order book. These liquidity effects depend on several factors, such as the nature of the exchange platform, the duration of the trade execution, the transaction volume, the asset volatility and so on. Up to now, liquidity modeling for dynamic portfolio selection has been impeded by the intractability of analytical solutions and by the limited capability of numerical methods to handle endogenous stochastic prices. The purpose of the present paper is to introduce a new simulation-and-regression method capable of handling multivariate portfolio allocation problems under general transaction costs, liquidity costs and market impacts.

The original literature on dynamic portfolio selection started with simple problems without transaction costs. The seminal papers, Mossin (1968), [START_REF] Samuelson | Lifetime portfolio selection by dynamic stochastic programming[END_REF], [START_REF] Merton | Lifetime portfolio selection under uncertainty: the continuous-time case[END_REF] and [START_REF] Merton | Optimum consumption and portfolio rules in a continuous-time model[END_REF] provide closed-form solutions of optimal asset allocation strategies for long-term investors. In reality though, every transaction incurs commission fee (or brokerage cost), and several improvements have therefore been proposed to account for transaction cost. Examples of closed-form solutions are [START_REF] Davis | Portfolio selection with transaction costs[END_REF], [START_REF] Shreve | Optimal investment and consumption with transaction costs[END_REF], [START_REF] Liu | Optimal consumption and investment with transaction costs and multiple risky assets[END_REF] and [START_REF] Gârleanu | Dynamic trading with predictable returns and transaction costs[END_REF]. Examples of numerical methods are [START_REF] Lynch | Multiple risky assets, transaction costs and return predictability: Allocation rules and implication for U.S. investors[END_REF], [START_REF] Muthuraman | Simulation-based portfolio optimization for large portfolios with transaction costs[END_REF] and [START_REF] Brown | Dynamic portfolio optimization with transaction costs: Heuristics and dual bounds[END_REF].

Transient liquidity cost, viewed as another type of transaction cost, has also been studied by many researchers in the context of dynamic portfolio selection problems. [START_REF] Çetin | Modeling liquidity effects in discrete time[END_REF] show the existence of optimal portfolios and how to turn the marginal price process under the optimal strategy into a martingale using the optimal terminal wealth as change of measure. We refer to [START_REF] Ma | Optimal portfolio selection under concave price impact[END_REF] and [START_REF] Lim | Dynamic portfolio selection with market impact costs[END_REF] for examples of solving the Hamilton-Jacobi-Bellman (HJB) equation. Other than liquidity cost, permanent market impact is also a crucial element when dealing with large transactions, as it affects portfolio valuation due to the shifts in asset prices. This effect has been widely incorporated in the studies of portfolio liquidation problems. For example, Bertsimas and Lo (1998), [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF], [START_REF] Obizhaeva | Optimal trading strategy and supply/demand dynamics[END_REF] and [START_REF] Tsoukalas | Dynamic portfolio execution[END_REF]. These works, although restricted to either linear or linear-quadratic objective functions, provide a broad overview of trading modeling in illiquid markets. Dynamic portfolio selection under permanent market impact has been formulated in Ly Vath, [START_REF] Ly Vath | A model of optimal portfolio selection under liquidity risk and price impact[END_REF] as an impulse control problem under state constraints, where the authors characterize the value function as the unique constrained viscosity solution to the associated quasi-variational HJB inequality. This framework has been extended to numerical approximation in [START_REF] Gaigi | Numerical approximation for a portfolio optimization problem under liquidity risk and costs[END_REF]. [START_REF] Gârleanu | Dynamic trading with predictable returns and transaction costs[END_REF] derive a closed-form optimal portfolio policy for the mean-variance framework with quadratic transaction costs such that liquidity cost and market impact are included. Following on this framework, many extensions have been proposed, for example [START_REF] Collin-Dufresne | Dynamic asset allocation with predictable returns and transaction costs[END_REF] and [START_REF] Mei | Multiperiod portfolio optimization with multiple risky assets and general transaction costs[END_REF]. However, due to the analytically intractable formulation, these methods are restricted in the range of applications when market impacts are present.

To broaden the range of applications, the least-squares Monte Carlo (LSMC) algorithm is a possible solution. The LSMC algorithm, originally developed by [START_REF] Carriere | Valuation of the early-exercise price for options using simulations and nonparametric regression[END_REF], [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares approach[END_REF] and [START_REF] Tsitsiklis | Regression methods for pricing complex American-style options[END_REF] for the pricing of American options, has been extended to solve dynamic portfolio selection problems in [START_REF] Brandt | A simulation approach to dynamic portfolio choice with an application to learning about return predictability[END_REF], [START_REF] Garlappi | Solving consumption and portfolio choice problems: The state variable decomposition method[END_REF] and [START_REF] Cong | Multi-period mean-variance portfolio optimization based on Monte Carlo simulation[END_REF]. [START_REF] Brandt | A simulation approach to dynamic portfolio choice with an application to learning about return predictability[END_REF] determine a semi-closed form by solving the first order condition of the Taylor series expansion of the future value function. [START_REF] Garlappi | Solving consumption and portfolio choice problems: The state variable decomposition method[END_REF] claim that the convergence of [START_REF] Brandt | A simulation approach to dynamic portfolio choice with an application to learning about return predictability[END_REF]'s method is not stable and that it cannot handle problems where the control variable depends on the endogenous wealth variable.

Instead, they introduce a state variable decomposition method to overcome this drawback. However, this decomposition relies on a linear separation between the observable component and stochastic deviation of returns, which cannot be applied to general return distributions. [START_REF] Cong | Multi-period mean-variance portfolio optimization based on Monte Carlo simulation[END_REF] use a multistage strategy to perform forward simulation of control variables which are iteratively updated in the backward recursive program, where the admissible control sets are constructed as small neighborhoods of the solutions to the multi-stage strategy. Later, [START_REF] Cong | Accurate and robust numerical methods for the dynamic portfolio management problem[END_REF] combine [START_REF] Jain | The stochastic grid bundling method: efficient pricing of Bermudan options and their Greeks[END_REF]'s stochastic bundling technique with [START_REF] Brandt | A simulation approach to dynamic portfolio choice with an application to learning about return predictability[END_REF]'s method. To sum up, these three papers have opened the way to the use of the LSMC algorithm for solving dynamic portfolio selection problems, but are at this stage still limited and constrained in their possible formulations of transaction cost, liquidity cost and market impact.

In this paper, we make three contributions to this literature. Our first contribution is to propose a LSMC algorithm to solve dynamic portfolio selection problems with no restriction in the formulations of transaction cost, liquidity cost and market impact, and allowing for multiple assets with general dynamics in a computationally tractable way. Our method is the most general and versatile available in the literature, and can be easily adapted to other applications involving optimal multiple switching problems.

Our second contribution is to improve the numerical performance of [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF]'s control randomization algorithm in the case of discrete control. In [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF], the randomized controls are part of the regression inputs, and the regression basis is extended accordingly.

However, an inadequate regression basis for the control variable can slow down the convergence of this approach, all the more so for highly nonlinear payoffs. Moreover, finding an adequate basis for the controls can be problematic in practice. To avoid this difficulty, we account for the control information by discretizing the control space and performing one regression per control level. This discrete control approach extends the optimal switching approach [START_REF] Boogert | Gas storage valuation using a Monte Carlo method[END_REF], [START_REF] Aïd | A probabilistic numerical method for optimal multiple switching problems in high dimension[END_REF]) to the case with endogenous state variables. Finally, we iterate the whole algorithm by replacing the initial randomized controls by the optimal control estimates from the previous run. We show that these combined modifications improve the portfolio allocation estimates.

Our third contribution is to present an empirical study on how dynamic portfolio allocations are affected by transient and permanent liquidity effects. We apply our method to solve a realistic cash-and-stock portfolio allocation problem, for which we adopt the power-law liquidity model of [START_REF] Almgren | Equity market impact[END_REF]. We measure the certainty equivalent losses associated with ignoring liquidity issues, and illustrate the ability of our dynamic allocation to protect the investor's capital in illiquid markets. Finally, based on different liquidity scenarios, we analyze the sensitivity of certainty equivalent returns and portfolio allocations with respect to trading volumes, stock price volatility, initial investment amount, risk-aversion level and investment horizon. transaction cost, liquidity cost and market impact. Section 3 describes the LSMC algorithm developed to solve this problem. Section 4 describes the parametric liquidity model we used. Section 5 describes our numerical experiments and Section 6 concludes the paper.

Problem Description

In this section, we provide the detailed mathematical description of the portfolio allocation problem we aim to solve. Consider a dynamic portfolio selection problem over a finite time horizon T . Suppose there are d risky assets available for investment. Denote r f as the risk-free rate. Let

{r t } 0≤t≤T = r i t 1≤i≤d 0≤t≤T and {S t } 0≤t≤T = S i t 1≤i≤d
0≤t≤T respectively denote the asset returns and prices. Denote {Z t } 0≤t≤T as the vector of return predictors. This vector {Z t } 0≤t≤T is used to construct the dynamics of the assets. Let α t = α i t 1≤i≤d be the portfolio allocation in each risky asset at time t; the allocation in the risk-free asset is then given by α f t = 1-1≤i≤d α i t . In a similar manner, let q t = q i t 1≤i≤d 0≤t≤T describes the number of units held in each risky asset and let q f t 0≤t≤T denote the amount allocated in the risk-free cash.

Define ∆q i t := q i t -q i t -as the transaction volume for the i th risky asset at time t. Let A ⊆ R d be the set of admissible portfolio strategies. These sets may include constraints defined by the investor, such as weight limits in each individual asset for example. Finally, let {W t } 0≤t≤T denote the portfolio value (or wealth) process.

For every transaction, due to transaction cost, liquidity cost and market impact, there are immediate shifts to the endogenous asset prices and portfolio value. Let TC (∆q t ) = TC i ∆q i t 1≤i≤d , LC (∆q t ) = LC i ∆q i t 1≤i≤d and MI (∆q t ) = MI i ∆q i t 1≤i≤d respectively denote the vector of transaction costs, liquidity costs and market impacts generated by the transaction ∆q i t for each risky asset i = 1, ..., d. In general, we write these quantities as deterministic functions of transaction volume: TC i : R → R, LC i : R → R and MI i : R → R, and thus TC : R d → R d , LC : R d → R d and MI : R d → R d . Given a transaction ∆q i t 1≤i≤d at time t, the following immediate changes occur:

S t = S t -+ MI (∆q t ) , W t = W t --TC (∆q t ) • 1 d -LC (∆q t ) • 1 d + MI (∆q t ) • q t . (2.1)
where 1 d is a vector of size d with all the entries equal to 1.

It is important to note that there are two possible descriptions of the portfolio positions: absolute positions using the quantity (number of units) in each asset q t and relative positions using the proportions of wealth in each asset α t . We describe our portfolio allocation decisions using α t , while transaction cost, liquidity cost and market impact depend on q t . Fortunately, there is a natural one-to-one correspondence between these two descriptions, namely,

α t × W t = q t × S t , (2.2)
where "×" denotes the element-wise multiplication and we also denote "÷" as element-wise division.

Suppose that at time t, one wants to rebalance the portfolio from the absolute position q t-1 to the relative weight α t ∈ A. Then, using the dynamics (2.1) and the relation (2.2), the following system of equations holds:

α t × W t --TC(∆q t ) • 1 d -LC(∆q t ) • 1 d + MI(∆q t ) • q t = q t × (S t -+ MI(∆q t )) .
(2.3) This is a system of nonlinear equations coupled by the wealth variable. Solving these equations enables us to simultaneously update α t and q t , and thus avoid the potential mismatch between actual allocation and target allocation. To solve it numerically (i.e. being given α t and q t -, find q t ) we use a fixed-point argument as described by Algorithm 1. Based on our numerical experiment, a stable solution can be reached within three iterations for a tolerance set to tol = 10 -4 . This algorithm ensures that the posttransaction portfolio holdings, accounting for immediate transaction costs, liquidity costs and market impacts, match exactly the required portfolio allocation α t . Ignoring this actual rebalancing could result in a large mismatch between the actual post-transaction allocation and the initial target allocation. We denote the transaction volume as a function of α t , S t -and W t -, i.e., ∆q t = Q(α t , S t -, W t -) where

Q : R d × R d × R → R d .
Algorithme 1 Compute q t and q f t 1: Input: q t -, S t -, W t -and α t 2: Result: q t , q f t , S t and W t 3: Set tol 4: Initial guess:

q t = α t × W t -÷ S t - 5: while dist > tol do 6: S t = S t -+ MI(∆q t ) 7: W t = W t --TC(∆q t ) • 1 d -LC(∆q t ) • 1 d + MI(∆q t ) • q t 8: q aux t = α t × W t ÷ S t 9:
dist = |q aux t -q t |/q aux t 10: q t = q aux t 11: end while 12:

q f t = W t -q t • S t
The dynamic portfolio allocation is chosen to maximize the investor's expected utility of final wealth

E [U (W T )
] over all the possible strategies {α t ∈ A} 0≤t≤T . Let F = {F t } 0≤t≤T be the filtration generated by all the state variables. At any time t ∈ [0, T ], the objective function reads

v t (z, s, w) = sup {ατ ∈A} t≤τ ≤T E [U (W T ) |Z t = z, S t -= s, W t -= w ] , (2.4) where V t = v t (Z t , S t -, W t -) and α t are F t -adapted.
The state variables of the problem are:

1. Exogenous state variables: the return predictors Z t 2. Endogenous state variables: the relative portfolio weights α t , the absolute portfolio holdings q t , the asset prices S t and the portfolio value W t Henceforth, we restrict the rebalancing times to an equally-spaced discrete grid 0

= t 0 < • • • < t N = T .
The asset price processes evolve as

S tn+1 = S tn × exp r tn+1 + MI (∆q tn ) , (2.5)
and the wealth process evolves as

W tn+1 = W tn + r f q f tn + q tn • S tn × r tn+1 -TC ∆q tn+1 • 1 d -LC ∆q tn+1 • 1 d + MI ∆q tn+1 • q tn+1 , (2.6)
where q in (2.5)-(2.6) satisfy the relation (2.3). The value function satisfies the following discrete dynamic programming principle

v tn (z, s, w) = sup αt n ∈A E v tn+1 Z tn+1 , S tn+1 , W tn+1 |Z tn = z, S tn = s, W tn = w v t N (z, s, w) = U (w) (2.7)
and we assume that the investor begins with 100% holding in the cash account and liquidate all the risky assets at the terminal time, i.e., α (t0) -= α t N = 0.

Solution

In this section, we describe our method for solving the recursive dynamic programming problem (2.7).

Our algorithm can be decomposed into three main parts:

1. First, a forward simulation of all the state variables of the problem, including the endogenous state variables, following the control randomization method of [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF], described in Section 3.1;

2. Then, a backward recursive dynamic programming where the conditional expectations are approximated by least squares regressions, and the optimal allocation obtained by exhaustive search, described in Section 3.2;

3. Finally, an iteration procedure for updating the simulated control variables of the first step by the estimates generated from the second step, described in Section 3.3.

Step 1: Monte Carlo simulations

The first main part consists in simulating a large sample of all the stochastic state variables. The return predictors Z t and the asset excess returns r t are exogenous risk factors, and therefore easy to simulate.

By contrast, the asset prices S t and the portfolio value W t are endogenous risk factors, i.e. their dynamics depend on the control α t . In order to simulate S t , W t , which is necessary to initiate the algorithm, we rely on the control randomization technique of [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF]. In summary, we first simulate according to Algorithm 1. The next subsection explains how these initial random weights will be turned into estimates of the optimal allocation.

Step 2: discretization, regression and maximization

The second part of our LSMC algorithm is the regression and maximization by exhaustive search. We discretize the control space as A ≈ A d = {a 1 , ..., a J }. According to the dynamic programming principle (2.7), at time t N , the objective function (2.4) is equal to vt N (z, s, w) = U (w). At time t n , assume that the mapping vtn+1 : (z, s, w) → vtn+1 (z, s, w) has been estimated, one obtains

v tn (z, s, w) = sup αt n ∈A E vtn+1 Z tn+1 , S (tn+1) -, W (tn+1) -Z tn = z, S (tn) -= s, W (tn) -= w ≈ max aj ∈A d E vtn+1 Z tn+1 , S (tn+1) -, W (tn+1) -Z tn = z, α tn = a j , S (tn) -= s, W (tn) -= w .
By taking the decision α tn = a j , the endogenous state variables at time (t n )

-can be updated to their post-transaction values at time t n :

v tn (z, s, w) = max aj ∈A d E vtn+1 Z tn+1 , S (tn+1) -, W (tn+1) - Z tn = Z tn , α tn = α tn , q tn = q tn , S tn = S tn , W tn = W tn (3.1)
where

Z tn = z α tn = a j q tn = q tn-1 + Q (a j , s, w) S tn = s + MI (Q (a j , s, w)) W tn = w -TC (Q (a j , s, w)) • 1 d -LC (Q (a j , s, w)) • 1 d + MI (Q (a j , s, w)) • q tn
Therefore, for each Monte Carlo path m = 1, ..., M , we update the decisions α m tn to a j and recompute the corresponding endogenous variables at time t n

∆q m tn = Q a j , Sm (tn) -, W m (tn) - qm tn = qm tn-1 + ∆q m tn Ŝm tn = Sm (tn) -+ MI ∆q m tn Ŵ m tn = W m (tn) --TC ∆q m tn • 1 d -LC ∆q m tn • 1 d + MI ∆q m tn • qm tn ,
then recompute the endogenous state variables one time-step forward at time t (n+1) -, i.e., Ŝm

(tn+1) - = Ŝm tn × exp r m tn+1 Ŵ m (tn+1) - = Ŵ m tn + r f q f,m tn + qm tn • Ŝm tn × r m tn+1 .
Finally, set {L k (z, s, w)} 1≤k≤K to be a vector of basis functions of state variables. We estimate the "continuation values" (the conditional expectations in equation (3.1)) by least squares minimization, i.e., βj

k,tn 1≤k≤K = arg min β∈R K M m=1   K k=1 β k L k Z m tn , Ŝm tn , Ŵ m tn α m tn = a j -v tn+1 Z m tn+1 , Ŝm (tn+1) -, Ŵ m (tn+1) -α m tn = a j   2 . (3.2)
Therefore the "continuation value" at time t n for a j ∈ A d is formulated as

ĈV j tn (z, s, w) = K k=1 βj k,tn L k (z, s, w) ,
and the mappings αtn : (z, s, w) → αtn (z, s, w) and vtn : (z, s, w) → vtn (z, s, w) are estimated by αtn (z, s, w) = arg max

aj ∈A d ĈV j tn (z, s, w) or vtn (z, s, w) = max aj ∈A d ĈV j tn (z, s, w) .
It is important to remark that the discretization of the control allowed us to substitute the extended control regression of [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF] by one regression (3.2) for each control level.

Step 3: control iteration

In the forward simulation, the endogenous state variables are generated using the randomized controls αm tn 1≤m≤M 0≤n≤N . Although the endogenous state variables will be updated and corrected backwards during Step 2, the evaluation of

v tn (z, s, w) = sup αt n ∈A E vtn+1 Z tn+1 , S (tn+1) -, W (tn+1) -Z tn = z, S (tn) -= s, W (tn) -= w is made on the sample of path-dependent variables S m (tn) -, W m (tn) - 1≤m≤M
which still depend on the historical randomized controls αm tn 1≤m≤M 0≤n ≤n-1 . In theory, this fact does not affect the optimality of the allocation estimates, as the regression provides an estimate of v tn (z, s, w) everywhere, including the region where the optimally controlled endogenous variables S (tn) -and W (tn) -will eventually lie. In practice, it may lead to possibly large numerical errors if the regression is numerically inaccurate in the optimal region, due to an insufficiently large sample size or inadequate regression basis for example. To mitigate this possibility, we propose to iterate the whole algorithm, with the initial randomized controls replaced by the estimated optimal controls produced by the previous run. This iteration procedure will bring the whole sample S m (tn

) -, W m (tn) - 1≤m≤M
closer to the optimal region, and thus improve the overall portfolio allocation estimates. Our numerical experiments in Section 5 show that this iteration procedure does improve accuracy, especially for small sample sizes and highly nonlinear utility functions, and that most of the improvements occur after one single additional iteration.

Summary and remarks

Finally, this subsection provides a detailed description of the backward iterations, followed by a few additional implementation details.

mentation of one backward iteration (cf. Section 3.2) is summarized in Algorithm 2, where we set αm Compute Ŝm

(t0) - 1≤m≤M = 0, qm (t0) - 1≤m≤M = 0 and qf,m (t0) -= W (t0) -=
(tn+1) -= Ŝm tn × exp r m tn+1 and Ŵ m (tn+1) -= Ŵ m tn + r f q f,m tn + qm tn • Ŝm tn × r m tn+1 8:
for all rebalancing time t n = t n+1 , . . . , t N -1 do 9:

for all decision a l ∈ A d do 10:

Compute qm t n , Ŝm t n , Ŵ m t n from qm t n -1 , Ŝm (t n ) -, Ŵ m (t n ) -, α t n = a l using Algorithm 1 11: Compute ĈV l t n Z m t n , Ŝm t n , Ŵ m t n = K k=1 βl k,t n L k Z m t n , Ŝm t n , Ŵ m t n α m t n = a l 12:
end for 13:

Update qm t n , Ŝm t n , Ŵ m t n with α t n = arg max a l ∈A d ĈV l t n Z m t n , Ŝm t n , Ŵ m t n 14: Compute Ŝm (t n +1 ) -= Ŝm t n ×exp r m t n +1 and Ŵ m (t n +1 ) -= Ŵ m t n +r f q f,m t n +q m t n • Ŝm t n × r m t n +1
15:

end for 16: = arg min

Compute Ŵ m t N from qm t N -1 , Ŝm (t N ) -, Ŵ m (t N ) -, α m t N = 0
β∈R K M m=1 K k=1 β k L k Z m tn , Ŝm tn , Ŵ m tn α m tn = a j -U Ŵ m t N 2 20: Formulate: ĈV j tn (z, s, w) = K k=1 βj k,tn • L k (z, s, w) 21: else 22: Compute: ĈV j t0 = 1 M M m=1 U Ŵ m t N 23: end if 24:
end for 25: end for 26: Initial optimal control: αt0 = arg max

aj ∈A d ĈV j t0
VFI versus PFI Two alternative implementations of the LSMC algorithm can be used: value function iteration (VFI, Carriere (1996), [START_REF] Tsitsiklis | Regression methods for pricing complex American-style options[END_REF], a.k.a. regression surface value iteration), and performance function iteration (PFI, [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares approach[END_REF], a.k.a. realized value iteration, or portfolio weight iteration). The difference lies in the t n+1 -response in the least squares regressions (3.2): the VFI scheme regresses the estimated continuation value function from the previous regression, while the PFI scheme regresses the realized paths under the estimated optimal policy. The PFI scheme produces more accurate results, as it avoids the compounding of regression errors of the VFI scheme.

However, when some state variables are endogenous, the PFI scheme requires to recompute all the endogenous state variables until the end of the horizon, which increases the computational complexity from linear to quadratic in time. By contrast, the computational complexity of the VFI is linear in the number of time steps. More discussions on VFI versus PFI are available in [START_REF] Van Binsbergen | Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function[END_REF], [START_REF] Garlappi | Numerical solutions to dynamic portfolio problems: The case for value function iteration using Taylor approximation[END_REF] and [START_REF] Denault | Dynamic portfolio choices by simulation-and-regression: Revisiting the issue of value function vs portfolio weight recursions[END_REF]. In this paper, we choose to implement the PFI scheme for its greater accuracy and stability.

Dimension reduction of state vector

Although in theory all the risk factors need to be included in the regression so as to take all the available information into account when making decisions, in practice the bias-variance tradeoff suggests to omit the variables that bring little additional information. In portfolio allocation problems, the portfolio wealth is a linear combination of the asset prices, determined by W tn = S tn • q tn , such that most of the relevant price changes can be reflected in a single wealth variable. Moreover, our objective is to maximize the expected utility of final wealth, thus the wealth variable plays a much more crucial role when approximating such objective function than the price variables. After testing and comparing different subsets of regression inputs, we decided to remove the endogenous price variables in the regressions and only regress on (Z, W ). Doing so improves the out-of-sample quality of regression estimates, and has the advantage that the number of assets does not increase the numerical complexity of each least-squares regression in the LSMC algorithm.

Regressing on post-versus pre-transaction variables

The evolution of the endogenous state variables from time t n -to t N can be decomposed into an immediate deterministic component depending on the switching costs TC (∆q tn ), LC (∆q tn ) and MI (∆q tn ), and a stochastic component depending on the dynamics of the state variables from time t n to t N . For demonstration purposes, we use in this paragraph the wealth variable W as one single regressor in the regression, use a simple linear utility function U(w) = w, denote SC (∆q tn ) as the corresponding overall switching cost which is the immediate deterministic component at time t n , and denote the stochastic component evolving from time t n to t N as ∆ tn,t N . Then the two alternative regressions are given by regression on W (tn) -:

E W (tn) --SC (∆q tn ) + ∆ tn,t N W (tn) -≈ βW (tn) - (3.3) regression on W tn : E W (tn) --SC (∆q tn ) + ∆ tn,t N |W tn ≈ β W (tn) --SC (∆q tn ) (3.4)
Here, the pre-transaction regression (3.3) accounts for both the deterministic and stochastic evolutions, while the post-transaction regression (3.4) accounts for the stochastic evolution only. We favor the regression on post-transaction variables for several reasons. Firstly, the deterministic component SC (∆q tn ) is F tn -adapted, and thus not necessary for the regression. Secondly, the switching costs SC (∆q tn ) are, at this stage of the algorithm, computed from randomized portfolio positions qtn-1 , and thus also randomized. Consequently, the switching costs SC ∆q m tn 1≤m≤M are not smooth w.r.t the regressor W m (tn) - 1≤m≤M

, which may lead to a substantial information loss w.r.t. the switching cost by anchoring the unsmoothness around E SC (∆q tn )| W (tn) -(overestimation of the conditional expectation (3.3) for large SC (∆q tn ) realizations, and underestimation of the conditional expectation (3.3) for small SC (∆q tn ) realizations). Therefore, subtracting the switching costs from the regressor will avoid this problem by removing this auxiliary randomness from the regression.

Finally, from a practical decision point of view, an investor would consider the known, immediate transaction cost, liquidity cost and market impact when making a portfolio rebalancing decision.

Power law liquidity function

One key feature of the presented portfolio allocation algorithm is its flexibility to accommodate general transaction cost, liquidity cost and market impact. This is the reason why the presented algorithm has so far involved general costs TC, LC and MI. In this section, we now specify a realistic model for these costs in view of implementation and testing in the next Section 5.

Transaction cost refers to the commission fee charged by the broker, usually a fixed amount or a fixed proportional rate, and therefore easy to account for. The focus of the paper will be liquidity cost and market impact. During a transaction, the following are the key observables:

S t -= market price before the transaction begins S t = market price immediately after the transaction is completed St = trading volume-weighted average price on the transaction

In our framework, the post-transaction price S t captures the (permanent) market impact, i.e., MI = S t -S t -and the average price captures the (temporary) liquidity cost, i.e., LC = St -S t -.

In reality, the shape of the limit order book differs by the characteristics of the portfolio assets. A power law of both liquidity cost and market impact for the U.S. stock markets has been found in [START_REF] Almgren | Equity market impact[END_REF]. Obizhaeva and Wang (2013) assume a linear price shift and uses a negative exponential function to model the resilience of the limit order book. Tian, Rood, and Oosterlee (2013) found a 'square-root' relation between the price and the available market orders and for large or medium-cap equities and a 'square' relation for small-cap equities in the European market. A different type of 'square-root' relation is shown in [START_REF] Cont | The price impact of order book events[END_REF] for the stocks listed on NYSE.

In this paper, we adopt the calibrated power law functions of [START_REF] Almgren | Equity market impact[END_REF] to analyze the impact of the market illiquidity on the dynamic portfolio selection problem. These power law functions are given by

MI(∆q) = 0.314 • σ day • ∆q Vol day • Θ Vol day 1/4 (4.1) LC(∆q) = MI(∆q) 2 + 0.142 • sign(∆q) • σ day • ∆q δ • Vol day 3/5 (4.2)
where Vol day is the daily trading volume of the stock, σ day is the daily volatility of the stock price, δ is the time length of trade execution, Θ is the number of outstanding shares. In the following numerical section, we will fix the values of δ and Θ and focus on the impact of σ day and Vol day on the portfolio selection problem.

Numerical experiments

In this section, we test our algorithm on a cash and stock portfolio. The outline of this numerical section is as follows:

1. Subection 5.1 validates the Monte Carlo convergence of our method with different risk aversion levels, investment horizon and liquidity settings. But first, we detail the numerical settings used to perform the numerical experiments reported in this section. 1 summarizes the financial instruments considered for return predictors.

Data and modeling Table

We calibrate a first order vector autoregressive model to monthly log-returns (i.e., log S t -log S t-1 ) from October 2007 to January 20161 . We assume the annual interest rate on the cash account is 1.2% and use SPDR S&P500 index ETF as the proxy for the stock return.

Switching costs

To focus on the liquidity effects, we assume for simplicity no fixed or proportional transaction cost in the numerical study. Regarding liquidity cost and market impact modeling, we use the power law functions (4.2), where we assume the number of outstanding share Θ = 988m and the trading duration δ = 5 min. We will analyze the liquidity effects characterized by different levels of (σ day , Vol day ) and we follow the usual U.S. equity markets such that σ day ∈ [2, 13] and Vol day ∈ [10m, 120m].

Certainty equivalent return For all the numerical tests, we report the portfolio performances in terms of monthly adjusted certainty equivalent returns (CER) calculated by

CER = U -1 (E [U (W T )]) 1 T -1 ≈ U -1 1 M M m=1 U (W m T ) 1 T -1.
The magnitude of monthly returns is usually less than one percent, thus we display the certainty equivalent returns in basis points (0.01%) to make comparisons easier.

LSMC settings

We use M = 10 5 Monte Carlo simulations and N = 12 monthly time steps (one year horizon and 12 rebalancing periods), except when we test the numerical sensitivity to these two parameters (subsection 5.1). After the LSMC algorithm is completed, we generate another sample of M = 10 5 to calculate the CER. We denote I as the number of additional control iterations of the whole LSMC algorithm (subsection 3.3), I = 0 meaning only one LSMC run and no additional iterations.

Portfolio weight

We denote α as the percentage allocation to the stock component, and 1 -α as the allocation to the cash component. We assume a discrete set of admissible controls with step size 0.01, i.e., α ∈ {0.01, 0.02, ...0.99, 1.00} = A d .

Basis function and regression

We first scale all the exogenous risk factors (in our case the logreturns) by dividing by their unconditional mean. For the endogenous risk factor (the portfolio wealth W ), we transform it as U (W/W 0 ), where W 0 is the initial portfolio wealth and U (•) is the CRRA utility function. These transformed quantities form the inputs of our regression basis. For the regression basis, we use a simple second order multivariate polynomial basis. We chose this basis and its order by observing the plots of the objective function w.r.t. the regression bases at various intermediate times.

The surface shape was found to be close to linear but slightly curved, suggesting that polynomials of order two could be sufficient. or small sample size (M = 10 3 ). In these three cases, the benefit of using control iteration (subsection 3.3) is noticeable, and most of the improvement is achieved after one single additional control iteration (I = 1).

Monte Carlo convergence

A similar result can be observed in Table 3 where the Monte Carlo convergence of CER is reported for different liquidity settings characterized by daily volatility σ day and daily trading volume Vol day . Once again, Algorithm 2 with one additional control iteration (I = 1) is superior to both KLP and Algorithm 2 with no additional iteration (I = 0). Adding further control iterations (I = 2 and more) does not bring significant improvement over I = 1. When the market liquidity effects are small, e.g., small σ day or large Vol day , a small Monte Carlo sample size is enough for convergence, while a large sample size is needed for large market liquidity effects, e.g., large σ day or small Vol day . For the rest of this numerical section, we will use M = 10 5 with I = 1 to ensure convergence and accuracy.

A final remark is that, for large enough sample size (M ≥ 10 4 ), our LSMC method with I = 0 greatly outperforms the KLP algorithm for large risk-aversion levels (Table 2), but makes little difference for large switching costs but low risk-aversion levels (Table 3), indicating that the nonlinearity of the final payoff function plays a more crucial role than the size of switching costs in the accuracy of simulationand-regression approximating dynamic programming schemes.

Time-evolution of distribution of control and wealth

Figure 1 shows the time evolution of the portfolio allocation distribution and the wealth distribution.

When the market liquidity effects are small (σ day = 2.5, Vol day = 120m, left-hand side column), both the portfolio allocation and the wealth are widely spread, along with large portfolio turnovers at the beginning and at the end of the investment horizon. By contrast, for large market liquidity effects (σ day = 12.5, Vol day = 12m, right-hand side column) transactions become very costly and the algorithm disallows large portfolio turnovers. As a consequence, the portfolio allocation distribution is tightened at a relatively low level (α 0.2) and its time evolution is smooth. Regarding the wealth distribution, as expected, the less liquid the market, the lower the CER (as was shown in Table 3) and the lower the dispersion of the wealth distribution. This is due to the lower and more stable allocation in stock.

Certainty equivalent losses associated with ignoring liquidity effects

Table 4 compares the CER of an investor who takes heed of liquidity effects when making allocation decisions to the CER of an investor who ignores liquidity effects. For the investor who ignores liquidity effects, we set LC = MI = 0 in the LSMC algorithm, then reset LC = LC (∆q) and MI = MI (∆q)

for calculating CER. Unsurprisingly, the liquidity-aware investor always has a positive CER, while the CER of the liquidity-blind investor can reach negative territory in illiquid markets. The massive gain in CER of liquidity-aware portfolio allocation over liquidity-blind portfolio allocation illustrates how taking these costs into account is vital for reaching one's performance target in real life situations where these liquidity effects do occur. It also illustrates the ability of our algorithm to properly cope with intermediate costs.

Sensitivity analysis

Table 5 reports the sensitivity of CER and of the initial stock allocation α 0 with respect to the daily trading volume. The effect of increasing daily trading volume (and therefore increasing liquidity, cf.

equations (4.1)-(4.2)) on CER and α 0 is consistent under different levels of daily volatility: CER and α 0 increase at diminishing rates. Similarly, Table 6 shows that increasing daily volatility (and therefore decreasing liquidity, cf. equations (4.1)-(4.2)) decreases CER and α 0 at diminishing rates.

Table 7 reports the sensitivity of CER and the initial stock allocation α 0 with respect to the initial investment amount W 0 -. As expected, the CER and α 0 decrease with respect to W 0 -due to the larger liquidity effects on bigger portfolios. Under extreme liquidity effects (σ day , Vol day ) = (12.5, 12m), α 0 remains zero for W 0 -> 600m, meaning that the quasi impossibility to rebalance the portfolio makes a full risk-free allocation the best initial investment in terms of expected utility.

Table 8 reports the sensitivity of CER and α 0 with respect to the investment horizon. The initial allocations quickly converge to a certain level when the time horizon is increased: they decrease towards this limit when liquidity effect is small (σ day = 2.5, Vol day = 120m) while they increase towards this limit in the two other cases (σ day = 7.5, Vol day = 55m and σ day = 12.5, Vol day = 12m). The CER first increases then decreases with time horizon for the two cases σ day = 2.5, Vol day = 120m and σ day = 7.5, Vol day = 55m while monotonically increases when liquidity effect is large (σ day = 12.5, Vol day = 12m).

Finally, Table 9 reports the sensitivity of CER and α 0 with respect to the risk-aversion level γ of the CRRA utility. As expected, CER and α 0 both decrease under every liquidity situation when risk-aversion is increased.

To conclude this numerical section, we can emphasize that a key feature of the general portfolio allocation algorithm proposed in this paper is the ability to measure and account for the effect of imperfect liquidity on dynamic portfolio allocation. After having validated the stability and convergence of the algorithm, we were able to compute and report the sensitivities of portfolio allocation and portfolio performance with respect to various parameters. Such analyzes can be adapted to different models, markets and investment styles, and bring insights into the most advantageous way to adjust dynamic portfolio allocation in less liquid markets.

Conclusion

This paper describes a simulation-and-regression method for solving portfolio allocation problems with general transaction costs, temporary liquidity costs and permanent market impacts. To deal with permanent market impacts, we model the price dynamics as endogenous state variables which are separate from the exogenous return dynamics, while maintain the same computational complexity of the algorithm with these additional endogenous variables. The simulation nature of the chosen algorithm makes it suitable for multivariate portfolios with realistic asset dynamics and realistic liquidity effects. The algorithm adapts [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF]'s control randomization approach to the discrete portfolio allocation. For each allocation level, the endogenous state variables are correspondingly updated and are used to estimate the value function by a simple linear least-squares regression. We iterate the whole algorithm by using the optimal control estimates of the first run as the initial controls of the second run.

Our numerical tests show that, with second-order polynomial basis, the proposed control discretization combined with global control iteration outperforms the control regression approach of [START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF], all the more so with highly nonlinear utility functions (high risk-aversion).

We apply our method to solve a realistic cash-and-stock portfolio with the power-law liquidity model of [START_REF] Almgren | Equity market impact[END_REF]. We show that the losses associated with ignoring liquidity effects can be substantial, indicating the necessity to account for liquidity effects when making portfolio allocation decisions in real markets. Most importantly, our algorithm is able to protect the portfolio value in illiquid markets. Going further, we analyze the sensitivities of certainty equivalent returns and optimal allocations with respect to trading volume, stock price volatility, initial capital, risk-aversion level and investment horizon.

The flexibility of the algorithm motivates future studies to investigate alternative portfolio performance measures beyond expected utility, alternative liquidity models, or to incorporate additional features such as cross-asset price impact. It could also be easily adapted to the problems of optimal portfolio liquidation and more general optimal switching problems with endogenous uncertainty. -29.7 -104.3 -150.9 This table compares the monthly adjusted certainty equivalent return (in basis points) for two CRRA investor with γ = 5, 10 and investment horizon N = 12 months: the first one takes heed of liquidity effects (liquidity-aware) while the second one ignores liquidity effects (liquidity-blind). The results are compared under different daily volatilities (σ day = 2.5, 7.5, 12.5), different daily trading volumes (Vol day = 120m, 55m, 12m), and different initial investment amount (W 0 -= $100m, 500m, 1b), using M = 10 5 Monte Carlo simulations with one control iteration I = 1. A portfolio of cash and SPDR S&P 500 ETF is investigated, with annual risk free rate r f = 0.012, and portfolio weight increment 0.01. This table reports the sensitivity of the monthly adjusted certainty equivalent return (in basis points) and the initial stock allocation with respect to the daily volatility σ day = 2, 3, ..., 13, for a CRRA utility with γ = 5 and investment horizonN = 12 months under different daily trading volume (Vol day = 120m, 55m, 12m), using M = 10 5 Monte Carlo simulations with one control iteration I = 1. A portfolio of cash and SPDR S&P 500 ETF is investigated, with annual risk free rate r f = 0.012, portfolio weight increment 0.01 and initial investment amount W 0 -= $100m. This table reports the sensitivity of the monthly adjusted certainty equivalent return (in basis points) and the initial stock allocation with respect to the initial investment amount W 0 -= $100, 200, ..., 1000m, for a CRRA utility with γ = 5 and investment horizonN = 12 months under different liquidity settings (σ day , Vol day ) = (2.5, 120m) , (7.5, 55m), (12.5, 12m), using M = 10 5 Monte Carlo simulations with one control iteration I = 1. A portfolio of cash and SPDR S&P 500 ETF is investigated, with annual risk free rate r f = 0.012, portfolio weight increment 0.01. This table reports the sensitivity of the monthly adjusted certainty equivalent return (in basis points) and the initial stock allocation with respect to the investment horizon N = 2, 3, ..., 12 months, for a CRRA utility with γ = 5 under different liquidity settings (σ day , Vol day ) = (2.5, 120m) , (7.5, 55m), (12.5, 12m), using M = 10 5 Monte Carlo simulations with one control iteration I = 1. A portfolio of cash and SPDR S&P 500 ETF is investigated, with annual risk free rate r f = 0.012, portfolio weight increment 0.01 and initial investment amount W 0 -= $100m. This table reports the sensitivity of the monthly adjusted certainty equivalent return (in basis points) and the initial stock allocation with respect to the risk-aversion level γ = 2, 3, ..., 10 for a CRRA utility for investment horizon N = 12 months, under different liquidity settings (σ day , Vol day ) = (2.5, 120m) , (7.5, 55m), (12.5, 12m), using M = 10 5 Monte Carlo simulations with one control iteration I = 1. A portfolio of cash and SPDR S&P 500 ETF is investigated, with annual risk free rate r f = 0.012, portfolio weight increment 0.01 and initial investment amount W 0 -= $100m.
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2.

  Subection 5.2 discusses the time evolution of the distribution of portfolio value and the percentage allocation under different liquidity settings. 3. Subection 5.3 identifies the certainty equivalent losses associated with ignoring liquidity effects. 4. Finally, subection 5.4 provides sensitivity analyzes of the portfolio performance and allocation with respect to liquidity settings.
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 1 Figure 1: Time evolution of the distribution of the control and wealth

  initial investment amount. Additional implementation details are discussed below.

	Algorithm 2 Backward Dynamic Programming
	1: Input: Z m tn , r m tn , αm tn , qm tn , Sm (tn) -, W m (tn) -	1≤m≤M 0≤n≤N , ĈV	j t N -1 , βj t N -1 1≤j≤J
	2: Result: αt0	
	3: for all rebalancing time t n = t N -1 , . . . , t 0 do
	4:	for all decision a j ∈ A d do	
	5:	for all Monte Carlo path m = 1, ..., M do
	6:	Compute qm tn , Ŝm tn , Ŵ m tn	from qm tn-1 , Sm (tn) -, W m (tn) -, α m tn = a j using Algorithm 1
	7:		

  using Algorithm 1

	17:	end for
	18:	if t n > t 0 then

19:

Least-squares approximation with basis functions of state variables, {L k (z, s, w)} 1≤k≤K : βj k,tn 1≤k≤K

Table 2

 2 

reports the Monte Carlo convergence of the portfolio allocation algorithm 2 described in Section 3 on a simple cash and stock allocation problem with CARA utility U (w) = -exp(-γw), risk-free rate 0.012, and a stock annual return with mean 0.03 and volatility 0.15. These convergence results are compared to the original control randomization algorithm of

[START_REF] Kharroubi | A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization[END_REF] 

(KLP) for which we include the portfolio allocation into the same second-order global polynomial basis. The main observation is that Algorithm 2 uniformly improves the accuracy of the KLP algorithm with second-order basis. The improvement is more substantial with long maturities (N = 15), large risk-aversion (γ = 15)

Table 1 :

 1 Return predictors (exogenous state variables)

	Return Predictors	ETF Name	ETF Ticker
	U.S. stock	SPDR S&P 500 ETF	SPY
	U.S. bond	Vanguard Total Bond Market ETF	BND
	International stock	iShares MSCI EAFE ETF	EFA
	Emerging market stock	iShares MSCI Emerging Markets ETF	EEM
	Gold	SPDR Gold Shares ETF	GLD
	International bond	SPDR Barclays International Treasury Bond ETF	BWX
	Silver	iShares Silver Trust ETF	SLV
	Crude oil	U.S. Oil ETF	USO
	U.S. dollar	PowerShares Deutsche Bank U.S. Dollar Bullish ETF	UUP
	Euro	CurrencyShares Euro ETF	FXE
	Japanese Yen	CurrencyShares Japanese Yen ETF	FXY
	Australian dollar	CurrencyShares Australian dollar ETF	FXA

Table 2 :

 2 Monte Carlo convergence with respect to risk aversion level and time horizon

Table 3 :

 3 Monte Carlo convergence under liquidity cost and market impact

	Vol day = 120m	Vol day = 55m	Vol day = 12m

Table 4 :

 4 Certainty equivalent losses with ignoring liquidity effects

	γ = 5

Table 5 :

 5 Sensitivity to daily trading volatilityThis table reports the sensitivity of the monthly adjusted certainty equivalent return (in basis points) and the initial stock allocation with respect to the daily trading volume Vol day = 10m, 20m, ..., 120m, for a CRRA utility with γ = 5 and investment horizon N = 12 months under different daily volatilities (σ day = 2.5, 7.5, 12.5), using M = 10 5 Monte Carlo simulations with one control iteration I = 1. A portfolio of cash and SPDR S&P 500 ETF is investigated, with annual risk free rate r f = 0.012, portfolio weight increment 0.01 and initial investment amount W 0 -= $100m.

		CER			Initial allocation α 0
	Vol day	σ day =2.5 =7.5 =12.5 σ day σ day	σ day =2.5 =7.5 =12.5 σ day σ day
	10m	42.8	28.6	22.9	0.31	0.18	0.12
	20m	47.9	33.8	27.4	0.36	0.23	0.16
	30m	50.6	37.0	30.4	0.41	0.26	0.19
	40m	52.4	39.3	32.6	0.42	0.27	0.21
	50m	53.7	41.1	34.3	0.45	0.30	0.23
	60m	54.7	42.5	35.8	0.45	0.31	0.25
	70m	55.4	43.7	37.0	0.46	0.32	0.26
	80m	56.1	44.7	38.0	0.48	0.33	0.27
	90m	56.6	45.5	39.0	0.50	0.34	0.27
	100m	57.1	46.3	39.0	0.51	0.34	0.28
	110m	57.5	47.0	40.6	0.52	0.35	0.29
	120m	57.8	47.6	41.1	0.53	0.37	0.29

Table 6 :

 6 Sensitivity to daily volatility

		CER			Initial allocation α 0	
	σ day	Vol day =120m =55m Vol day	Vol day =12m	Vol day =120m =55m Vol day	Vol day =12m
	2	59.2	56.1	46.9	0.55	0.48	0.35
	3	56.5	52.5	41.8	0.50	0.44	0.30
	4	54.2	49.5	38.1	0.45	0.39	0.25
	5	52.1	46.9	35.1	0.42	0.36	0.24
	6	50.2.	44.6	32.7	0.40	0.33	0.22
	7	48.4	42.7	30.8	0.39	0.31	0.20
	8	46.9	41.0	29.1	0.35	0.29	0.18
	9	45.4	39.4	27.7	0.34	0.28	0.17
	10	44.1	38.0	26.5	0.33	0.27	0.16
	11	42.9	36.7	25.4	0.31	0.26	0.14
	12	41.8	35.6	24.5	0.31	0.25	0.14
	13	40.7	34.6	23.6	0.30	0.23	0.12

Table 7 :

 7 Sensitivity to Investment Amount

			CER			Initial allocation α 0
	W 0 -	σ day Vol day	2.5 120m	7.5 55m	12.5 12m	2.5 120m	7.5 55m	12.5 12m
	$100m		57.8	41.8	24.0	0.52	0.31	0.13
	$200m		54.7	36.3	19.9	0.47	0.25	0.09
	$300m		52.4	33.1	17.8	0.43	0.22	0.07
	$400m		50.6	30.9	16.1	0.40	0.20	0.04
	$500m		49.2	29.3	14.1	0.38	0.19	0.02
	$600m		47.9	28.0	12.0	0.36	0.18	0.01
	$700m		46.8	26.9	10.8	0.35	0.16	0.00
	$800m		45.8	25.9	10.3	0.34	0.15	0.00
	$900m		45.0	25.2	8.3	0.33	0.14	0.00
	$1b		44.2	24.5	7.3	0.32	0.13	0.00

Table 8 :

 8 Sensitivity to investment horizon

			CER			Initial allocation α 0
	N	σ day Vol day	2.5 120m 55m 12m 7.5 12.5	2.5 120m	7.5 55m	12.5 12m
	2		54.0	26.3	12.3	0.60	0.24	0.04
	3		67.0	39.8	16.0	0.58	0.30	0.07
	4		65.8	43.3	18.6	0.57	0.31	0.09
	5		63.7	43.8	20.4	0.55	0.31	0.11
	6		62.0	43.5	21.6	0.55	0.31	0.12
	7		60.8	43.3	22.4	0.54	0.31	0.13
	8		60.1	42.9	23.0	0.54	0.31	0.13
	9		59.4	42.6	23.4	0.53	0.31	0.13
	10		58.7	42.3	23.6	0.53	0.31	0.13
	11		58.2	42.0	23.8	0.53	0.31	0.13
	12		57.8	41.8	24.0	0.53	0.31	0.13

Table 9 :

 9 Sensitivity to risk-aversion level

			CER			Initial allocation α 0
	γ	σ day Vol day	2.5 120m	7.5 55m	12.5 12m	2.5 120m 55m 7.5	12.5 12m
	2		82.2	61.8	34.0	1.00	0.52	0.23
	3		72.6	53.4	29.5	0.81	0.42	0.19
	4		64.5	46.8	26.4	0.66	0.35	0.16
	5		57.8	41.8	24.0	0.53	0.31	0.13
	6		52.3	37.9	22.1	0.45	0.27	0.11
	7		47.6	34.7	20.4	0.38	0.23	0.10
	8		43.8	32.1	18.9	0.33	0.22	0.09
	9		40.5	30.0	17.8	0.29	0.20	0.08
	10		37.7	28.2	16.4	0.27	0.18	0.08

These data are obtained from Yahoo Finance.