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Work-hardening behavior of single-phase steel and dual-phase steel which is made of hard martensite surrounded by soft ferrite is analyzed by using an 
elastoplastic crystal plasticity model in conjunction with the incremental self-consistent model. Two-stage loading paths consisting of uniaxial tension, 
unloading and subsequent uniaxial tension/compression for various directions are applied. Bauschinger effect and transitional re-yielding behavior,

which depends on the direction of the second loading path, are pre-dicted and analyzed with respect to the distribution of the residual resolved shear 
stresses within the material. These features, which are caused by the inhomogeneity of the residual stress field, are especially pronounced in the case of 
the dual-phase steel because of the strong mechanical contrast between ferrite and martensite phases.

1. Introduction

In the context of metal forming processes, a sheet metal

undergoes complex strain paths. In the last decades, intensive

experimental works have been carried out to understand the defor-

mation behavior of low carbon and IF steels under complex strain

paths. In some of the studies [1–3] various two-stage strain paths

were applied to sheet samples and the mechanical behavior and

dislocation substructures were observed. A lower re-yield stress

with work-hardening stagnation was observed under the reverse

loading path (i.e. the directions of strain increment in the first

and second paths are opposite). An increase of the re-yield stress

followed by work softening was detected under the orthogonal

loading path (i.e. the contracted product of the strain increments in

the first and second path is zero). These behaviors are often called

as the Bauschinger and cross-hardening effects, respectively. Based

on TEM observations, these mechanical behaviors were correlated

to dislocation substructures. When the loading is reversed, dislo-

cation cell structure dissolves and mobile dislocations annihilate

with the dislocations with the opposite sign. Consequently, the

re-yield stress is lowered. The cross-hardening effect is caused by

dislocation cells walls formed parallel to the active slip systems in
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the first loading, which becomes obstacles to mobile dislocations

on new active slip systems during the second loading. The work-

hardening behavior of IF steel is now well recognized in terms of

the dislocation substructure.

Unlike IF and mild steels, there have been fewer studies on the

plastic deformation behavior of dual-phase steel under complex

loading paths. In some of the experimental works [4–8] com-

plex loading paths were applied to dual-phase steels, and it was

observed that in the reverse loading path, the stress–strain curve

during unloading deviates from the one estimated by the Hooke’s

law, and large Bauschinger effect and permanent softening were

observed. The Bauschinger effect is more pronounced for the dual-

phase steel than for IF steel. In the work of Haddadi et al. [6]

and Gardey et al. [4], the orthogonal loading path is applied to a

dual-phase steel and they revealed that almost no cross-hardening

effect takes place for the material, which is clear difference from

the IF/mild steels. Following the traditional approach, Gardey et al.

[4] observed dislocation substructure by means of TEM and found

that the dislocation cell structures were more difficult to form and

to dissolve in dual-phase steel than in IF steel. However, there is

quite a difference in the formation of dislocation cell structures and

this observation cannot explain the different mechanical behav-

iors observed in the two kinds of steels. Unlike IF steel, there is no

clear one to one correlation between dislocation substructure and

work-hardening behavior.

The two following mechanisms could explain the difference

in the work-hardening behavior: (i) martensite is formed by dis-

placive transformation so that internal residual stresses can exist
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within the material at the initial state, and/or (ii) the mechan-

ical contrast between ferrite and martensite leads to a highly

heterogeneous stress field. From the latter point of view, the

Bauschinger effect was numerically studied by Zhonghua and

Haicheng [9] for a dual-phase steel and by Terada et al. [10] for a

ferrite–cementite two-phase material, for instance. In both studies,

two-dimensional finite elements model consisting of hard phase

surrounded by soft phase is constructed, and uniaxial tension fol-

lowed by uniaxial compression was considered in [9] while plane

strain tension followed by plane strain compression was applied in

[10]. They reported that the heterogeneous stress field derives the

Bauschinger effect. In these works, however, isotropic phenomeno-

logical constitutive model was adopted so that the heterogeneity

among grains was neglected. Furthermore the work-hardening

behavior was investigated only for the tension–compression load-

ing.

The present investigation is an attempt to capture the influ-

ence of stress and strain heterogeneities within the polycrystal

on the work-hardening behavior under complex loading paths.

The mechanical behavior of single- and dual-phase steel is esti-

mated by means of homogenization techniques in the framework

of crystalline plasticity. To give an insight into the sole influence

of the stress heterogeneity, other mechanisms which contribute

to Bauschinger and cross-hardening effects are neglected. For

instance, initial residual stresses are not considered, the slip sys-

tems are assumed to harden isotropically while texture evolution

is neglected. The brief outline of the paper is as follows. In Section 2,

a rate-independent crystal plasticity model and the Hill’s incremen-

tal self-consistent model [11], which is one of the most customary

approaches, are briefly reviewed. In Section 3, two-stage loading

paths and material properties used in simulation are given. For

comparison, in addition to a dual-phase steel, a single-phase steel

the strength of which is almost the same as the dual-phase steel

is also considered. In Section 4, the heterogeneity within single-

phase steel, which emerges due to the crystalline anisotropy of the

grains, is investigated first. Then, in Section 5, the work-hardening

behavior of dual-phase steel is studied.

2. Theoretical frameworks

2.1. Rate-independent crystal plasticity model

In this study, we use the crystal plasticity formulation described

in [12,13]. We confine attention to small strain conditions. The

strain rate is given by the symmetry part of ∂v/∂ x, where v and x are

velocity and position, respectively. We consider additive decompo-

sition of strain rate into elastic and plastic parts.

�̇ = �̇e
+ �̇p. (1)

Elastic relation is given by Hooke’s law.

�̇ = Ce : �̇e
= Ce : (�̇ − �̇p

), (2)

where � and Ce are the true stress and the forth-order elastic mod-

uli tensor, respectively.

Crystallographic slips are considered to be the source for the

plastic deformation, and the plastic strain rate takes the form

�̇p
=

∑

˛

sgn(�(˛))̇ (˛)p(˛), (3)

p(˛):= 1
2

(s(˛) ⊗ m(˛) + m(˛) ⊗ s(˛)), (4)

where ̇ (˛), s(˛), and m(˛) are the positive slip rate, the slip direc-

tion and the slip plane normal for the ˛th slip system, respectively.

Based on the Schmid law, the yield function is written as

f (˛) = |�(˛)| − g(˛) = 0, (5)

where the resolved shear stress for the ˛th slip system, �(˛), is given

as

�(˛) = s(˛) · � · m(˛) = � : p(˛) (6)

Based on yield function, potentially active and inactive slip sys-

tems are classified as

̇ (˛) ≥ 0, for f (˛) = 0 and ḟ (˛) = 0, (7a)

̇ (˛) = 0, for f (˛) < 0, or f (˛) = 0 and ḟ (˛) < 0. (7b)

Evolution of a resolved shear stress and slip resistance are writ-

ten as

�̇(˛) = p(˛) : Ce : �̇ −

∑

ˇ

̇ (ˇ)p(˛) : Ce : p(ˇ), (8)

ġ(˛) =

∑

ˇ

h(˛ˇ)|̇ (ˇ)|, h(˛ˇ) = h0

(

1 +
h0a

�0n

)n−1

,

a =

∫ t

0

∑

˛

|̇ (˛)|dt, (9)

where s(˛) and m(˛) are assumed to be constant, h(˛ˇ) denotes hard-

ening moduli and �0, h0 and n are material parameters. In Eq. (9)2,

the latent hardening is neglected.

From the consistency condition of the yield function, the slip

rates, ̇ (˛), on the active slip systems are determined as

ḟ (˛) = R(˛) −

∑

ˇ

X(˛ˇ)̇ (ˇ) = 0, (10)

̇ (˛) =

∑

ˇ

Y (˛ˇ)R(ˇ), (11)

where

R(˛):=sgn(�(˛))p(˛) : Ce : �̇, (12a)

X(˛ˇ):=h(˛ˇ) + sgn(�(˛))sgn(�(ˇ))p(˛) : Ce : p(ˇ), (12b)

[Y (˛ˇ)] = [X(˛ˇ)]
−1

, (12c)

where ( · )−1 denotes the inverse. Depending on h(˛ˇ), X(˛ˇ) may

become singular. In that case, slip systems equal to or less than

five linearly independent slip systems are selected as active sys-

tems from a set of potential slip systems and the other potentially

active slip systems are taken to be inactive. The set of potentially

active slip systems will be known from Eq. (7). In this computation,

isotropic hardening of slip systems is assumed and texture evolu-

tion is neglected so that the selection of active slip systems has little

influence on the predictions.

We finally obtain the rate-form of the constitutive equation, �̇ =

L : �̇,

L:=Ce
−

∑

˛

⎧

⎨

⎩

(sgn(�(˛))Ce : p(˛)) ⊗

∑

ˇ

(sgn(�(ˇ))Y (˛ˇ)p(ˇ) : Ce)

⎫

⎬

⎭

.

(13)

2.2. Incremental self-consistent model

The incremental self-consistent model proposed by Hill [11],

which is widely used for elastoplastic polycrystal, is adopted. With

the assumption of equiaxed grains randomly distributed, the poly-

crystal is considered to consist of spherical phases with a given

crystalline orientation. In the self-consistent approach, each con-

stitutive spherical phase is assumed to be embedded in an infinite

linear comparison homogenous medium which has a unique tan-

gent moduli corresponding to the effective tangent ones. The phase
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average stress and strain rates can be related to the macroscopic

ones through the localization tensors, Ar and Br,

〈�̇〉
r

= Ar : ˙̄�, 〈�̇〉
r

= Br : ˙̄�, (14)

where the superscript r refers to the quantity for the rth phase, a

bar indicates a macroscopic value and 〈·〉 stands for a volume aver-

age. Macroscopic plastic strain rate and equivalent plastic strain are

given by

˙̄�
p

= 〈BT(x) : �̇p
(x)〉, (15)

ε̄eq =

∫ t

0

√

(2/3) ˙̄�
p

: ˙̄�
p
dt, (16)

where a superscript T stands for transpose. The rate-form constitu-

tive equation is used to represent linear relationship between the

stress and strain rates. The constitutive equations of a phase and

effective medium are respectively denoted as

〈�̇〉
r

= Lr : 〈�̇〉
r, (17)

˙̄� = L̃ : ˙̄�, (18)

with

L̃ = 〈Lr : Ar
〉, (19)

where Lr and L̃ are the tangent moduli of a phase and effective

medium, respectively. Lr is assumed to be homogeneous within a

phase and can be calculated by Eq. (13) replacing the local quan-

tities with the phase average ones, for instance, a resolved shear

stress 〈�(˛)〉
r

= p(˛) : 〈�〉r is used instead of �(˛) = p(˛) : �. The strain

localization tensor is given by

Ar
= {1 + P : (Lr

− L̃)}
−1

. (20)

where 1 is a fourth-order identity tensor and P is so called Hill’s

tensor described as

P =

∫

˝

ŴdV, (21)

where

�ijkl = 1
4

(K−1
ik

�j�l + K−1
jk

�i�l + K−1
il

�j�k + K−1
jl

�i�k), (22a)

K = � · L̃ · �, (22b)

where ˝ is the domain within the rth phase and � is a position

vector on the surface of a phase (see, for instance, [14]). This set of

relations defines a nonlinear systems for the average strain rates

per phase, 〈�̇〉
r
, which can be solved using a fixed-point iterative

algorithm.

3. Material parameters and two-stage loading paths

3.1. Material parameters for single- and dual-phase steels

The incremental self-consistent model and rate-independent

crystal plasticity theory described in the previous section are used

to estimate the mechanical behavior of 600 MPa grade dual-phase

steel consisting of ferrite and martensite. In the simulation, both

ferrite and martensite are represented by 216 spherical phases with

random crystalline orientations and are assumed to have 24 slip

systems ({1 1 0}〈1 1 1〉 and {1 1 2}〈1 1 1〉). The volume fractions of

ferrite and martensite are 90% and 10%, respectively. Since it is dif-

ficult to conduct mechanical test, such as uniaxial tensile test, to

identify material parameters in the hardening law only for ferrite

(or martensite), they are identified so that simulation reproduces an

experimental stress–strain relationship for a 600 MPa grade dual-

phase steel. The determined material parameters are shown in

Table 1 and a stress–strain curve simulated by the model is depicted

Table 1

Material parameters for dual-phase steel composing of ferrite and martensite and

single-phase steel.

�0 (MPa) h0 (MPa) n E (GPa) �

Ferrite 135 1835 0.15 210 1/3

Martensite 950 1122000 0.03 210 1/3

Single phase 140 5500 0.15 210 1/3
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σ

Fig. 1. Comparison of stress–strain curves predicted for single- and dual-phase

steels with experimental result.

in Fig. 1 with an experimental curve. The prediction agrees with the

experimental data. However, it is noted that these material param-

eters are not a unique set of parameters for the dual-phase steel,

and alternative sets of material parameters which gives almost the

same stress–strain curve would exist.

For comparison purpose, a fictitious single-phase steel which

has the same strength as the dual-phase steel is also considered.

The single-phase steel is represented by the same number of phases

and slip systems as the dual-phase steel, i.e. 216 phases with the

24 slip systems. The material parameters for this polycrystal are

listed in Table 1 and the predicted stress–strain curve is shown in

Fig. 1. The stress–strain relationship of the single-phase steel is in

agreement with that of the dual-phase steel and experiment.

3.2. Two-stage loading paths

In this study, the single- and dual-phase steels are subjected

to a two-stage loading path. Uniaxial tension is first applied to a

material element in the x1-direction until ε̄11 reaches 0.03 and the

material is fully unloaded (i.e. �̄ = 0). It is rotated by an angle �
about the x3-axis and then subjected to uniaxial tension or com-

pression in the x1-direction until ε̄eq reaches 0.08. Hereafter, these

three loading stages are called as the pre-loading, unloading and

subsequent loading stages. When � = 55 ◦, the loading path is almost

orthogonal loading, that is, the inner product of incremental strain

in the pre-loading and subsequent loading stages is about zero.

4. Results for single-phase steel

4.1. Stress–strain curves for two-stage loading paths

First, an investigation is carried out for the single-phase steel to

make clear the heterogeneity of stress and strain in the polycrystal

and its influence on the work-hardening. The specific influence of

the hard martensite phase on the heterogeneity inside the mate-

rial as well as its work-hardening behavior is further studied in the

next section. Fig. 2 shows stress–strain relationships of the single-

phase steel under the two-stage loading paths denoted in Section

3
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Fig. 2. Macroscopic stress–strain curve of single phase polycrystal under uniaxial

tension followed by (a) uniaxial tension and (b) uniaxial compression.

3.2. The stress–strain curve for the monotonic uniaxial tension is

also depicted in the figure as a reference. When the material is sub-

jected to the uniaxial tension in the subsequent loading with � = 0 ◦,

the re-yield stress is identical to the stress state before unload-

ing and the subsequent flow stress corresponds to the one under

the monotonic loading, since the material deforms elastically dur-

ing unloading. For the other loading paths, the plastic deformation

takes place at a stress level which is lower than the flow stress

before unloading. Namely, a cross-softening behavior is predicted

for each change of loading paths. Macroscopic stress at re-yielding

is evaluated quantitatively by using two definitions: (i) the stress

state at incipience of a slip (i.e. microplastic yield) and (ii) 0.2%

proof stress determined by means of a conventional offset-strain

method (i.e. macroplastic yield). The re-yield stress is shown in

Fig. 3 as a function of �. The re-yield stress is normalized by the one,

denoted by �̄0, for the uniaxial tension with � = 0 ◦. When uniax-

ial tension is applied subsequently, the re-yield stress determined

by the incipient of a slip (microplastic yield) decreases drastically

with increasing the rotation angle �. Indeed, |�̄11|/�̄0 becomes less

than 0.1 for � ≥ 30 ◦. The same trend is predicted when the uniax-

ial compression is applied in the subsequent loading stage. On the

other hand, the re-yield stress determined as the 0.2% proof stress

(macroplastic yield) shows different types of orientation depen-

dence in tension and compression. For the uniaxial tension, the

0.2% proof stress decreases with increasing �, whereas it increases

when the subsequent loading is uniaxial compression. The nor-

malized 0.2% proof stress is the lowest for the compression with

� = 0 ◦, and the so called Bauschinger effect is predicted to appear

(a)
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Fig. 3. Orientation dependence of re-yield stress evaluated at (a) incipience of a slip

and (b) 0.2% accumulation of macroscopic equivalent plastic strain. Re-yield stress

is normalized by one for � = 0◦ with uniaxial tension in subsequent loading stage,

which is denoted by �̄0 .

for this material. After re-yielding the flow stress grows approach-

ing to the reference monotonic loading curve. Thus, the orientation

dependence of flow stress weakens with the plastic deformation.

At ε̄eq = 0.08, deviations of the flow stress from the reference curve

are within −1.6% to 1.3% when the uniaxial tension is applied in the

subsequent loading and within −4.7% to −0.2% when the uniaxial

compression is applied.

From these computations, it is found on one hand that the strain-

path change causes the Bauschinger effect as well as the orientation

dependent transitional re-yielding behavior. On the other hand, the

degree of path-dependence weakens with the plastic deformation.

In the following sections, our investigation will be devoted to clarify

the mechanisms for the transitional re-yielding behavior, espe-

cially, the ones causing (i) the Bauschinger effect for � = 0 ◦, (ii) the

orientation dependence of the stress for incipient slip (microplastic

yield), and (iii) the orientation dependence of the 0.2% proof stress

(macroplastic yield).

4.2. Resolved shear stress before and after unloading stage

To understand the mechanism behind the Bauschinger effect,

the resolved shear stress on slip systems, which plays an essen-

tial role in crystal plasticity model, is examined. Hereafter, the

resolved shear stress is simply denoted by RSS. RSS before and after
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Fig. 4. Change of resolved shear stress, �(˛) , before and after unloading stage.

Resolved stress is normalized by corresponding slip resistance, g(˛) . (a) Scatter dia-

gram and (b) schematic illustration of change of �(˛) in the first and fourth quadrants

in (a).

unloading is shown in Fig. 4(a), where RSS is normalized by its slip

resistance, �(˛)/g(˛). In the figure, the plots are classified into four

groups, A, B, C and D, and different marks are used for the data

belonging in each group. The changes of RSS in the first and fourth

quadrants are schematically illustrated in Fig. 4(b) (Note that the

reasoning is the same for the second and third quadrants with RSS

having opposite signs). The RSS in the group A is changed such that

the absolute value is decreased during unloading stage with keep-

ing its sign the same. For the group B, the absolute value of RSS is

increased without the change of the sign, hence the RSS approaches

to the slip resistance. For the group C, the absolute value of RSS is

increased with changing the sign. The RSS becomes close to the slip

resistance (yield stress) in the opposite direction. For the group D,

the absolute value of RSS is decreased with the change of the sign,

and the absolute values of RSS become smaller after unloading.

Thus, the macroscopic unloading leads to unloading, in the sense

that the absolute value of RSS decreases, for the groups A and D,

on the contrary, for the groups B and C, the RSS becomes closer to

the slip resistance due to macroscopic unloading. In fact, 26% of the

data belongs in the groups B and C. Concerning the reversed sub-

sequent loading stage (Bauschinger loading), the variation of the

applied macroscopic stress follows the one during unloading, so

that the RSS changes in the same way as shown in Fig. 4(b). Conse-

quently, the RSS in the groups B and C reaches the slip resistance

earlier, and therefore the Bauschinger effect occurs.

From Fig. 4, it has become clear that the RSS is neither zero nor

uniform after unloading, besides, its magnitude becomes higher

for some slip systems during the macroscopic unloading stage. As

a result, the Bauschinger effect appears within the polycrystal. It is

recalled that in the present case an isotropic hardening at the slip

system scale has been considered.

4.3. Change of resolved shear stress due to uniaxial stress

increment/decrement

In this section, the investigation on the RSS proceeds fur-

ther to elucidate the mechanism for the orientation dependence

of the transitional re-yielding behavior. Re-yielding can occur at

lower macroscopic stress level if the large residual RSS exist after

unloading, since small stress increment is required for re-yielding.

However, even if the residual RSS is small, re-yield is possible to

occur at lower stress level as long as the RSS changes notably

during the subsequent loading. Thus, the magnitude of RSS after

unloading (cf. Fig. 4) as well as the degree of change of the

RSS in the subsequent loading are the two main parameters to

describe the re-yielding behavior. In the subsequent loading stage,

all phases undergo uniaxial stress increment/decrement, because

of the assumed elastic isotropy, until a phase begins to yield (note

however that the stress state is not uniaxial because of the resid-

ual stress state). After yielding, no phase is subjected to exact

uniaxial stress increment/decrement. However, since the focus is

on the incipient re-yielding state, the assumption that all phases

undergo uniaxial tension is a reasonable approximation. Before

a slip system activates, the change of the RSS, ��(˛), on the slip

system due to the uniaxial stress increment/decrement, ��̄11, is

given by ��(˛) = s(˛)
1

��̄11m(˛)
1

. The change of the normalized RSS

��(˛)/��̄11 (i.e. the Schmid factor for a given slip system) for � = 0 ◦

and 90 ◦ is shown in Fig. 5(a) and (b) as a function of �(˛)/g(˛) after

unloading. The classification of the data into A, B, C and D corre-

sponds to the one used in Fig. 4. For � = 0 ◦ (Fig. 5(a)), the slip systems

with an absolute value of �(˛)/g(˛) close to 1 presents a Schmid fac-

tor ��(˛)/��̄11 which is almost zero. This can be explained by the

fact that during uniaxial tension in the pre-loading stage, a multi-

axial stress state is created because of the plastic anisotropy of the

crystals. During the unloading stage, only tensile stress component

decreases for all phases and the RSS can be hardly changed for the

slip systems with a Schmid factor close to zero, and consequently

|�(˛)|/g(˛) stays about one.

On the other hand, for � = 90 ◦ (Fig. 5(b)), the width of the

distribution of ��(˛)/��̄11 is almost constant for any �(˛)/g(˛)

after unloading. This difference arises from the rotation of the

subsequent loading, which changes the orientation of slip sys-

tems (s(˛) and m(˛)) with respect to the loading direction (the

x1-direction) while the RSS remains constant. For � = 90 ◦, the slip

system where |�(˛)|/g(˛) ≈ 1 and ��(˛)/��̄11 is large activates first

with a small stress increment in the subsequent loading. The

macroscopic stress required to activate this slip system is obviously

smaller than the one required to activate any slip systems for � = 0 ◦.

The relationship between ��(˛)/��̄11 and |�(˛)|/g(˛) after unload-

ing has been checked for the other rotation angles and it has been

found that the trend of the distribution of ��(˛)/��̄11 varies con-

tinuously from the case for � = 0 ◦ to 90 ◦. Therefore, the larger � is,

the smaller the macroscopic stress required to cause a slip becomes.

This explains the orientation dependence of the incipience of the

plastic slip as shown in Fig. 3. When the subsequent loading is uni-

axial stress decrement, the distribution of ��(˛)/��̄11 remains the

same. Therefore, the stress state at the incipience of re-yielding

becomes also lower with increasing �.

The macroscopic stress at the incipience of a slip is governed

by the lowest macroscopic stress increment that activates one slip

system, on the contrary, numerous slip systems have already been

activated within the polycrystal when the offset strain is 0.2%. To

study the 0.2% proof stress, all data points in Fig. 5(a) and (b) are
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Fig. 5. Change of resolved shear stress due to uniaxial stress increment for (a) � = 0◦ and (b) � = 90◦ (��(˛)/��̄11 corresponds to the Schmid factor for a slip system), (c) a

distance of stress between unloaded state and re-yield state, and (d) fraction of data belonging to the first and third quadrants and the second and forth quadrants in (a), (b)

and figures for other �.

considered. Firstly, let us examine the case that ��̄11 is positive,

which corresponds to the macroscopic uniaxial tension in the sub-

sequent loading stage. For the data in the first and third quadrants,

the RSS after unloading and ��(˛) have the same sign, therefore the

change of RSS required for re-yielding is g(˛) − |�(˛)|. This is illus-

trated in Fig. 5(c). On the other hand, the RSS and ��(˛) in the second

and fourth quadrants have the opposite sign, and an increment of

g(˛) + |�(˛)| is accordingly required for re-yielding. Consequently,

the slip system belonging to the second and fourth quadrants

require a higher stress increment to yield than those in the first

and third quadrants. Thus, it is expected that the 0.2% proof stress

becomes lower when less data on the slip systems belong to the sec-

ond and fourth quadrants. For each �, the data belonging to each

quadrant have been calculated and the result is shown in Fig. 5(d).

The fraction of the data in the second and fourth quadrants decrease

with increasing �. This implies that the 0.2% proof stress decreases

with increasing �. A good correlation is thus obtained with the

orientation dependence of 0.2% proof stress shown in Fig. 3(b).

Next, we consider the case with negative ��̄11, which is anal-

ogous to the macroscopic uniaxial compression in the subsequent

loading stage. Then, the sign of ��(˛) becomes opposite without any

influence on the distribution of data in Fig. 5(a) and (b). Namely,

��(˛) is negative in the first and second quadrants and is pos-

itive in the third and fourth quadrants. Due to this change, the

relationship discussed above, accordingly, becomes opposite. Thus,

the 0.2% proof stress becomes lower when less data belong in the

first and third quadrants. The fraction of the data in the first and

third quadrants shown in Fig. 5(d) is consistent with the orientation

dependence of the 0.2% stress.

In this subsection, the mechanism behind the orientation

dependence of the re-yield behavior has been investigated in terms

of the magnitude of the RSS after unloading and the degree of the

change of RSS due to the uniaxial stress increment/decrement (geo-

metrical Schmid factor). The rotation of the subsequent loading

path, which changes the relationship between the slip systems,

described by s(˛) and m(˛), and the loading direction leads to the

orientation dependence of the re-yielding behavior. Based on the

knowledge obtained for single-phase polycrystals, the investiga-

tion is extended to the work-hardening behavior of the dual-phase

steel under the two-stage loading paths.
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Fig. 6. Macroscopic stress–strain curve of dual-phase steel under uniaxial tension

followed by (a) uniaxial tension and (b) uniaxial compression.

5. Results for dual-phase steel

5.1. Stress–strain relationship for dual-phase steel

In this section our investigation is extended to the dual-phase

steel described in Section 3.1 by comparison with the mechan-

ical behavior of single-phase steel. Stress–strain relationships of

the dual-phase steel estimated under the two-stage loading paths,

which are the same as the ones prescribed for the single-phase steel,

are shown in Fig. 6. The transient re-yielding behavior, which has

been observed for the single-phase steel, is also predicted for the

dual-phase steel. For the quantitative assessment, 0.2% proof stress

is determined by using the offset-strain method employed in the

previous section, and the result is shown in Fig. 7. The dual-phase

steel possesses the same trend in the orientation dependence of

0.2% proof stress as the single-phase steel. The decrease of the re-

yield stress is, however, more significant for the dual-phase steel,

thus, the orientation dependence of the 0.2% proof stress is more

pronounced due to the existence of the hard martensite. After re-

yielding the flow stress becomes higher or lower than the reference

stress–strain curve under the monotonic loading depending on the

rotation angle, �. The flow stresses do not asymptotically approach

to the reference curve, at least in the strain range considered in this

study, unlike the single-phase steel case. The deviation from the

reference curve is within −5.1% to 7.8% when the uniaxial tension

is applied in the subsequent loading and within −8.7% to 5.1% when

the uniaxial compression is applied.

In the following sections, the mechanisms being responsible for

(i) the enhancement of orientation dependence of 0.2% proof stress

and (ii) the deviation of the flow stress from the reference curve is

investigated in details.
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Fig. 7. Orientation dependence of re-yield stress evaluated as 0.2% proof stress,

normalized by the one for uniaxial tension with � = 0◦ , denoted by �̄0 .

5.2. Resolved shear stress of slip systems in ferrite

Since the orientation dependence of the re-yield behavior is

qualitatively the same for the single- and dual-phase steels, the

behavior observed for the dual-phase steel can be explained by

applying the same approach used in the previous section, i.e. the

examination of the RSS. Because the martensite deforms elastically

during the pre-loading and unloading stages, the RSS before and

after unloading are only shown for the ferrite phase (Fig. 8). It can be

observed that the area where the data of RSS is plotted is stretched

into the positive and negative vertical directions in the figure with

respective to the one for the single-phase steel. This extension of the

plotted area means that the residual RSS in the ferrite is higher than

that for the single-phase steel. Thus, the martensite enhances the

residual RSS in ferrite. Before unloading, the macroscopic tensile

stress and the average tensile stresses for ferrite and martensite are

580 MPa, 532 MPa and 1019 MPa, respectively. Since the same elas-

tic properties are assigned for all phases, these stresses decrease

equally by an amount of 580 MPa during unloading and conse-

quently become 0 MPa, −48 MPa and 437 MPa, respectively. On

the other hand, for the single-phase steel, the average stress is, of

course, 0 MPa, since the macroscopic stress is identical to the aver-

age stress in this case. From the viewpoint of average stress, the
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7



9075604530150

20

30

40

50

60

70

80

first and third quadrants

second and forth quadrants
F

ra
ct

io
n
 o

f 
d
at

a 
 (

%
)

θ  (°)

Fig. 9. Fraction of data belonging in the first and third quadrants and the second and

forth quadrants in figure showing relationship between ��(˛)/��̄11 and �(˛)/g(˛)

after unloading.

ferrite is more loaded in inverse direction after unloading. Thus, the

residual RSS becomes higher when the hard martensite is present.

In Fig. 8, the mapped area of B, C, and D are especially expanded,

while the area for A does not changed. As shown in Fig. 4(b), the RSS

after unloading in the groups B and C play an important role for the

Bauschinger effect. When the RSS in the groups B and C are high,

the Bauschinger effect is pronounced. This explains the reason why

the Bauschinger effect and the orientation dependence of the 0.2%

proof stress are enhanced for the dual-phase steel.

The change of the RSS, ��(˛), due to the uniaxial stress incre-

ment/decrement, ��̄11, is calculated for the ferrite by using the

same method adopted in the previous section. The distribution of

the data is similar to the one for the single-phase steel, since the cal-

culated shear stress increment, ��(˛) = s(˛)
1

��̄11m(˛)
1

, is the same

for each slip systems. Difference is derived only from the increase

of �(˛)/g(˛) after unloading. For the figure showing the relationship

between ��(˛)/��̄11 and �(˛)/g(˛) after unloading, the fraction of

the data mapped in each quadrant has been calculated. The result

is shown in Fig. 9. The figure shows the same trend than the one

observed for the single-phase steel, and the variation of the fraction

is enhanced for the ferrite in the dual-phase steel. This is consistent

with the observation that the same orientation dependence is pre-

dicted for the single- and dual-phase steels and the magnitude of

the orientation dependence is more pronounced for the dual-phase

steel.

5.3. Localization of stress and strain in martensite

In this section, the mechanism for the increase and decrease of

the flow stress after re-yielding is investigated. The macroscopic

stress is given by the sum of the average stresses in the ferrite

and martensite multiplied by the volume fractions: �̄ = 0.9〈�〉F +

0.1〈�〉M. The deviation of the flow stresses in the two-stage load-

ing paths from that for the monotonic loading is calculated for the

macroscopic stress and average stresses in the ferrite and marten-

site at ε̄eq = 0.08. The results are shown in Fig. 10. The summation

of the deviations in the average stresses of ferrite and martensite

are identical to that in the macroscopic stress. The absolute value

of the flow stress is compared when the subsequent loading is the

uniaxial compression. Deviation of flow stress appears for the aver-

age stresses in both ferrite and martensite, and the deviation of

the average stress of martensite contributes to the deviation of the
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Fig. 10. Deviation of macroscopic tensile stress for two-stage loading paths from

that for monotonic loading is decomposed into average stresses of ferrite and

martensite.

macroscopic stress for most of the loading paths. The development

of stress and strain states in the martensite will be examined first

and then those in ferrite. In the series of computation, the marten-

site stays in elastic regime during the pre-loading and unloading

stages. In the subsequent loading stage, it remains in the elas-

tic regime for the case that the uniaxial tension is applied with

� = 0◦, 60◦, 75◦ and 90◦ and the uniaxial compression is applied

with � = 60◦, 75◦ and 90◦. For the other loading paths, the marten-

site remains in the elastic regime until ε̄eq reaches 0.042 and the

plastic deformation begins to grow after this strain level. The aver-

age equivalent plastic strain in the martensite is less than 0.004

at ε̄eq = 0.08. For half of the loading paths, no plastic deforma-

tion takes place and the elastic behavior of each phase is the same,

so that the stress and strain are the same for all martensite crys-

talline phases. Because of this, the investigation can be made on

the average stress and strains rather than the RSS for each phase.

Developments of the average tensile stress in martensite, 〈�11 〉 M,

is shown in Fig. 11. The dot in the figure indicates the stress state

after rotation (just before subsequent loading). Since the mate-

rial element is rotated about the x3-axis, 〈�11 〉 M varies with �.

The development of stress is rapid at the beginning of subsequent

loading stage and then becomes slow for all loading paths, except

for the uniaxial tension with � = 0 ◦, in which the stresses grow
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more slowly. The stresses in martensite grow with almost the same

speed. The occurrence of the plastic deformation in the marten-

site, the amount of which is about 0.004, has little influence on the

growth of the average stress. The stresses do not tend to approach

to the stress for the monotonic loading, � = 0 ◦. This behavior is the

same as the trend which appears in the macroscopic flow stress in

Fig. 6. The difference of stresses between � = 15◦ and 90◦ is 659 MPa

after the rotation, and at ε̄eq = 0.08 it becomes to 565 MPa and

639 MPa for tension and compression, respectively. They are 86%

and 97% of the original difference induced by the rotation. There-

fore it can be concluded that the difference of stress which appears

in the martensite in the subsequent loading stage is mainly due

to the change of stress components caused by the rotation of the

subsequent loading path.

Only for the uniaxial tension with � = 0 ◦, the martensite stress

grows more slowly than for the other loading paths. The develop-

ment of the strain for martensite is checked for all loading paths.

Macroscopic strain and average strain of the martensite in the sub-

sequent loading, which are respectively denoted by ε̄II
11

and 〈εII
11

〉
M

,

are shown in Fig. 12. Strain localization is less for � = 0 ◦ than for

the other loading paths. This low localization is consistent with the

smaller stress growth in Fig. 11 and is relevant with the transitional

yielding behavior: for the tension with � = 0 ◦, some of the ferrite

phases enter the plastic regime simultaneously and the gradient

of the stress–strain curve (and tangent moduli) of ferrite suddenly

decreases, whereas for the other cases the ferrite phases begin to

re-yield one by one and the gradient of the stress–strain curve

decreases gradually. At the beginning of the subsequent loading

the tangent moduli of the ferrite are smaller for � = 0 ◦ than for the

other loading paths, which means the ferrite is weaker for � = 0 ◦.

Therefore, the strain concentration in martensite is weak for � = 0 ◦

and the growth of flow stress is accordingly less. The transitional

re-yielding behavior is responsible for the strong strain localization

in the martensite.

The difference of stress state in the martensite, which is the

main source of the discrepancy of the macroscopic flow stress,

is caused by the change of stress state due to the rotation of the

material element as well as the strong strain localization caused

by the transitional re-yielding behavior. In the next subsection, the

discrepancy of stress in the ferrite is discussed.

5.4. Stress state in ferrite

As is shown in Fig. 10, the average stress in the ferrite for the

two-stage loading path also deviates from that for the monotonic

loadings. The development of stress in ferrite under the two-stage

loading path is compared with that for the monotonic loading path,

and it is found that various mechanisms influence the flow stress

with the same order of significance. A difference is observed in the

amount of the hydrostatic stress depending on the rotation angle.

The hydrostatic stress has no influence on the yielding behavior

of a crystal, however, the degree of tensile stress depends on the

amount of superposed hydrostatic stress. The ratio of the stress

deviator also varies with the loading paths. In the ferrite, multi-

axial stress state is created and the change of stress ratio makes the

amount of tensile stress required for yielding different. For exam-

ple, concerning to the two-dimensional yield surface of an isotropic

polycrystal, the major stress component is higher at stress point

corresponding to the plane strain stretching than to the uniaxial

tension. From these reasons, the flow stress in the ferrite depends

on the loading path.

6. Discussion

In this work, the work-hardening behavior of single- and dual-

phase steels have been investigated by means of the incremental

self-consistent model with a rate-independent crystal plasticity

model. For the dual-phase steel, a strong Bauschinger effect is

predicted under the uniaxial tension followed by the uniaxial com-

pression. This behavior is caused by the heterogeneous stress field

within the material due to the mechanical contrast of two phases.

This is consistent with the numerical results shown by Zhonghua

and Haicheng [9] and Terada et al. [10], who adopted the finite

element method. In the work of Terada et al. [10], two types of two-

phase material, in which fiber- or spherical-types of hard phase

are reinforced, are modeled and it was shown that the inhomo-

geneity of stress/strain field is higher for the fiber-type model and

the Bauschinger effect is more significant for this material. This

conclusion is consistent with our results, as expected, since the

larger Bauschinger effect has been predicted for the dual-phase

steel, in which the heterogeneity of the stress field is enhanced with

respect to the single-phase steel. From these comparisons, the self-

consistent model adopted here, which is more efficient than the

finite element model in terms of computational cost, is able to cap-

ture the main influence of the heterogeneity features of the local

stress field.

Tarigopula et al. [7] observed the work-hardening behavior of

a 800 MPa grade dual-phase steel under two-stage loading paths

consisting of uniaxial tension, unloading, rotation of material and

subsequent uniaxial tension. In the experiment, uniaxial tension

was, first, applied to a large specimen in the rolling direction until

tensile strain reaches 0.01, 0.04 and 0.08, and after unloading small

specimens were cut from it at 0◦, 45◦ and 90◦ inclined from the

rolling direction. It was shown that the re-yield stress becomes

low with increasing the rotation angle. This is agreement with our

prediction shown in Fig. 6. However, none of their experimental

stress–strain curves becomes greater than the one for the mono-
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tonic uniaxial tension after re-yielding, which is different from

what has been found in the present study. The volume fraction of

martensite is 0.3 in their study while it is 0.1 in the present com-

putation. The influence of volume fraction of martensite is still an

open question.

7. Summary

In this work, the work hardening behavior of dual-phase as

well as single-phase steel has been inferred from a self-consistent

micromechanical modeling. Two-stage loading paths consisting

of pre-loading, unloading and subsequent loading for various

directions have been considered. The Bauschinger effect and the

orientation dependent transitional re-yielding behavior have been

predicted for both types of polycrystals. It has been found that

the resolved shear stresses on some slip systems are raised dur-

ing macroscopic unloading stage, and this results in the early

re-yielding (i.e. Bauschinger effect). The rotation of the subsequent

loading changes the orientation of the slip systems with respect

to the loading direction as well as the relationship between the

RSS after unloading and the direction and amount of the increment

of RSS in the subsequent loading. Consequently, the increment of

RSS required for the re-yielding on a slip system varies with the

rotation angle. This is responsible for the orientation dependent

re-yielding behavior. After the beginning of re-yielding the orien-

tation dependence weakens and the flow stress tends to approach

the one corresponding to the monotonic loading.

On one hand, for the dual-phase steel, the orientation depen-

dence of re-yielding behavior is more pronounced and the

permanent hardening and/or softening is predicted. After unload-

ing, the average stress in the ferrite is negative and the one in

martensite is positive. The mechanical contrast of the ferrite and

martensite enhances the heterogeneity of the stress field. The

negative residual stresses in the ferrite leads to a pronounced

Bauschinger effect and the orientation dependent re-yielding

behavior. The permanent hardening or softening of flow stress,

which is not observed for the single-phase steel, is caused by the

change of the stress components in martensite due to the rotation

of the material.

In this work, the investigation has been focused on the influence

of the heterogeneity of stress/strain field on the work-hardening

behavior by neglecting the development of texture and latent hard-

ening of slip systems. These different features of course emerge in

the deformation process of a real material and affect the work-

hardening behavior. An investigation considering these different

topics as well as an experimental validation are the next target of

this research.
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