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Abstract—In this paper, we discover the special properties of
neurons in terms of compression. Neurons are able to transform a
visual stimulus into a sequence of discrete biphasic events, called
spikes trains, forming the neural code. The neural spike gener-
ation properties are beneficial to image processing community
as the neural code is very compact, yet informative enough, to
be used in the input stimulus recovery. We show that the spike-
based compression enables to improve the reconstruction quality
in time which is a completely novel feature compared to com-
pression standards. In addition, we mathematically prove that the
proposed neuro-inspired mechanism behave either as a uniform
or a non-uniform quantizer depending on its parameter. Last
but not least, we build an end-to-end spike-based coding/decoding
architecture that first transforms an image with a DCT filter and
then, it generates spikes to compress the transformed coefficients.
Based on these spike trains we reconstruct the input image and
we estimate the rate-distortion performance of the whole system.
Last but not least, we provide numerical results that confirm that
our proposed architecture is much more efficient compared to
the JPEG standards.

Index Terms—spikes, leaky integrate-and-fire (LIF) neurons,
quantization, image coding/ decoding.

I. INTRODUCTION

The human visual system (HVS) has gaining an increasing

interest as a powerful and intelligent mechanism that operates

numerous complex tasks during the reception, transformation

and propagation of the visual stimulus to the visual cortex,

such as object detection and identification, distance assessment

to and between objects, motion perception, and color vision,

just to name a few. The signal processing society, being in-

spired by the structure and functionalities of the HVS, has built

several neuromimetic systems such as neuromorphic chips [1],

neuromorphic vision sensors [2], [3], deep learning [4], virtual

retina [5], neuro-inspired image and video coding/decoding

mechanisms [6]–[9], etc.

This work is motivated by the capacity of the HVS to

transform the visual world into a sequence of discrete biphasic

events, called spike trains, forming a highly compact yet infor-

mative code that flows through the visual system processing

layers and carries every detail concerning the input stimulus to

the visual cortex. It is proven in [9] that a spike train generated

according to the leaky integrate-and-fire (LIF) neurons; a very
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well-known neuroscience model that approximates the spike

generation mechanism, could be used to code natural images

in a lossless manner. Here, we are interested in studying the

compression properties of neurons as the compactness of the

neural code seems to be groundbreaking comparing to the

state-of-the-art compression standards. We propose a neuro-

inspired lossy coding/decoding method while discovering the

impact of each LIF parameter on the uniform or non-uniform

behavior of the proposed mechanism.

II. LIF BACKGROUND

The well-known LIF model approximates the neuronal

encoding by a first order differential equation derived from

a resistor-capacitor circuit

I(t) =
u(t)

R
+ C

du

dt
(t), (1)

where I(t) is the input current standing for the intensity of

light running through the circuit, C is the capacitance, R is the

resistance and u(t) is the voltage across the resistor modeling

the membrane potential of neuron [10]. If voltage value u =
RI is higher than the membrane threshold θ, the neuron emits

a spike, otherwise it remains silent.

For a temporally constant input signal during a given

duration T > 0 the LIF model offers a precise calculation

of the exact moment tk+1 when the k + 1th spike is emitted

just after the emission of kth spike. In this case, the interspike

delay d(I) = tk+1
− tk is constant (see Fig. 1) given by

d(I) =







+∞, if RI < θ,

h(I) = −τ ln

[

1−
θ

RI

]

, if RI > θ.
(2)
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Fig. 1. LIF model with observation window T and threshold θ. If the intensity
I satisfies RI > θ, the neuron spikes (case I ∈ {I2, I3}), otherwise it
remains silent (case I = I1).



It was proposed in [11] that if one (i) transforms the pixel

intensities of an image into a sequence of spikes and (ii)

encodes for each intensity the exact time when the first spike

appears, it is possible to perfectly recover the initial image.

The authors proposed in [9] that the duration of time T during

which the input signal remains constant is the upper bound of

the interspike delays that can participate to reconstruction of

the input signal. In addition, instead of encoding the interspike

delays, one can “listen” to the neural firing response and

describe each pixel intensity by the number of spikes emitted

during the observation window T .

N(I) =







0, if RI < θ,
T

d(I)
, if RI > θ.

(3)

III. IMPACT OF LIF PARAMETERS

A mechanism that encodes pixel intensities based on the

number of emitted spikes behaves as a quantizer. The authors

proposed in [12] that counting the number of spikes is more

efficient in terms of compression than quantizing the interspike

delays. The properties of this neuro-inspired quantizer (NQ)

highly depends on LIF parameters which tune the frequency

of spike emission. In this work we extensively study the

impact of parameters R and T on the behavior of the NQ.

In addition, we build an end-to-end compression algorithm

that (i) transforms the pixel intensities with the Discrete

Cosine Transform (DCT) and (ii) use LIF-based quantizer to

reduce the spatial redundancy. We compare the rate-distortion

performance of the end-to-end NQ to JPEG standard.

A. Resistance R

It has been mathematically proven in [12] that the resistance

R affects the behavior of the NQ that performs as uniform

or non-uniform. When R is small the NQ is non-uniform but

when R is arbitrarily large its behavior approximates a uniform

quantizer with a constant quantization step size ℓ (see Fig. 2).
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Fig. 2. Performance of the NQ as (i) non-uniform (small R) and (ii) uniform
(R arbitrarily large). The number of spikes varies in function of the intensity
I (set of parameters: θ = 5 V, C = 10 F and T = 100 ms.

B. Observation Window T

It is easy to note in Fig. 2 that as the number of spikes

increases, the behavior of the NQ is always uniform. A

high number of spikes might be caused either by high pixel

intensity values (as in Fig. 2) or because of an arbitrarily large

observation window T . Here, we are studying whether the size

of the observation window could also lead to a uniform or a

non-uniform behavior of the NQ.

Proposition 1: Given that the input intensity I , the resistance

R and the membrane threshold θ are constant and the obser-

vation window T is the only parameter that influences number

of emitted spikes k, the quantization length ℓk converges to

an asymptotic value

lim
k→∞

ℓk = 0. (4)

Proof 1: The proof is omitted due to lack of space.

We verify numerically proposition 1 and we present in Fig

4 the asymptotic behavior the NQ for 4 different intensity

values when the observation window T ∈ [1, 200] ms. As

expected when the number of spikes increases due to the size

of the observation window the length of the quantization step

converges to the zero value. We also show in Fig. 3 that by

increasing the observation window T there is no impact on the

behavior of the NQ. Rather, it is only the parameter R that

cause this effect as for large R values, either small or large T

values result in a uniform behavior (see Fig. 4 (a)), while for

small R values the quantizer follows a non-uniform behavior

(see Fig. 4 (b)).
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Fig. 3. Performance of the NQ when the number of spikes varies in function
of the observation window T (set of parameters: θ = 5 V, C = 10 F R = 1Ω
and T ∈ [1, 200] ms.
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Fig. 4. (a) Uniform NQ for different T values when the parameter R = 104.
(b) Non-uniform NQ for different T values when the parameter R = 1.

The size of the observation window has also a strong impact

on the quality of the reconstruction. Figure 5 depicts that

reconstruction is poor when T is small because most of the

small intensities will be represented by one or none spikes.

On the other hand, when T is large the reconstruction quality

is improved. This progressive reconstruction has yet to be

addressed in the state-of-the-art.



(a) θ = 500 V

= 38.93 dB

r = 3.6 bpp

(b) θ = 4000 V

= 14.50 dB

r = 0.9 bpp
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(d) θ = 4000 V

= 27.9 dB

r = 2.27 bpp

Fig. 5. Progressive reconstruction for T = 50 ms (a)-(b) and T = 150 ms
(c)-(d) (set of parameters: R = 103 Ω and C = 1 F).

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the NQ we built an end-

to-end coding/decoding mechanism that first transforms an

input image using the DCT transform and then encodes using

spikes the transformed coefficients. Figure 6 shows the average

response when 100 images have been compressed either by the

proposed architecture or the JPEG standard. According to two

different image quality metrics; the peak signal to noise ratio

(PSNR) and the structure similarity index (SSIM) the proposed

architecture outperforms the state-of-the-art.
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Fig. 6. Comparison between the proposed neuro-inspired end-to-end archi-
tecture and the JPEG standard.
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