
HAL Id: hal-02908808
https://hal.science/hal-02908808v1

Submitted on 29 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linking focusing and resolution with selection
Guillaume Burel

To cite this version:
Guillaume Burel. Linking focusing and resolution with selection. ACM Transactions on Computa-
tional Logic, 2020, 21 (3), pp.1-30. �10.1145/3373276�. �hal-02908808�

https://hal.science/hal-02908808v1
https://hal.archives-ouvertes.fr

1

Linking Focusing and Resolution with Selection

GUILLAUME BUREL, ENSIIE and Samovar, Télécom SudParis and CNRS, France and Inria and LSV, CNRS

and ENS Paris-Saclay, Université Paris-Saclay, France

Focusing and selection are techniques that shrink the proof-search space for respectively sequent calculi and

resolution. To bring out a link between them, we generalize them both: we introduce a sequent calculus where

each occurrence of an atomic formula can have a positive or a negative polarity; and a resolution method

where each literal, whatever its sign, can be selected in input clauses. We prove the equivalence between

cut-free proofs in this sequent calculus and derivations of the empty clause in that resolution method. Such a

generalization is not semi-complete in general, which allows us to consider complete instances that correspond

to theories of any logical strength. We present three complete instances: first, our framework allows us to

show that ordinary focusing corresponds to hyperresolution and semantic resolution; the second instance is

deduction modulo theory and the related framework called superdeduction; and a new setting, not captured

by any existing framework, extends deduction modulo theory with rewriting rules having several left-hand

sides, which restricts even more the proof-search space.

CCS Concepts: • Theory of computation→ Proof theory; Automated reasoning.

Additional Key Words and Phrases: sequent calculus, refinements of resolution, deduction modulo theory,

polarization

ACM Reference Format:
Guillaume Burel. 2019. Linking Focusing and Resolution with Selection. ACM Trans. Comput. Logic 1, 1,

Article 1 (January 2019), 29 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In addition to clever implementation techniques and data structures, a key point that explains

the success of state-of-the-art automated theorem provers is the use of calculi that dramatically

reduce proof-search space. In the last decades, the independent developments of two families of

techniques can be highlighted. First, in the kind of methods based on resolution, proof-search space

can be shrunk using ordering and selection techniques. The intuition is to restrict the application

of the resolution rule to only some literals in a clause. If equality is considered, this leads to the

superposition calculus [2] which is the base calculus of the currently most efficient automated

provers for first-order classical logic. Second, in sequent calculi, Andreoli [1] introduced a technique

called focusing to reduce non-determinism in the application of sequent-calculus rules. It works by

first applying all invertible rules (those whose conclusion is logically equivalent to their premises)

and second by chaining the application of non-invertible rules. Originally developed for linear

logic, focusing has been extended to intuitionistic and classical first-order logic [31]. Focusing is

mostly used in fields where sequent calculi, and related inverse and tableaux methods, are the

This article is an extended version of the paper presented at MFCS’18 [10]; it includes detailed proofs, and more examples

and motivations.

Author’s address: Guillaume Burel, guillaume.burel@ensiie.fr, ENSIIE and Samovar, Télécom SudParis and CNRS, 1, square

de la Résistance, 91025, Évry, France, Inria and LSV, CNRS and ENS Paris-Saclay, Université Paris-Saclay, Cachan, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1529-3785/2019/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Guillaume Burel

most accurate proving methods. For instance, there exists tools for first-order linear logic [15], for

intuitionistic logic [32] and for modal logic [33]. Focusing is also the key ingredient in Miller’s

ProofCert project aiming at building a universal framework for proof certification [18].

Despite their apparent lack of relation, we show in this paper that selection in refinements of the

resolution calculus and focusing in sequent calculus are in fact strongly related, so that ordinary

focusing in classical first-order logic corresponds actually to hyperresolution, where all negative

literals are selected in a clause and are resolved at once. This connection is obtained by relaxing

both techniques: concerning resolution, we allow any literal of the input clauses to be selected,

whatever its sign; for the focusing part, we allow polarization not only of connectives, but also

of all occurrences of literals. The main theorem of this paper, Theorem 4.2, shows that the sets of

clauses whose insatisfiability can be proved by the resolution method with arbitrary input selection

are exactly the sequents that have a cut-free proof in the generalized focusing setting.

This generalization allows us to cover a wider spectrum of proof systems. In particular, this

permits to consider systems that search for proofs modulo some theory. Indeed, in real-world

applications, proof obligations are often verified within one or several theories. This explains the

interest in and the success of Satisfiability Modulo Theory tools in recent years. Embedding a

theory in our framework amounts to giving an axiomatic presentation of it where some literals are

selected.

By relaxing the conditions for selecting literals, our framework is not always refutationaly

complete. However, this should not be considered as a drawback, but as an essential point to be able

to represent efficiently all kinds of theories. Indeed, let us consider a proof-search method P(T)
parameterized by a theory T . Ideally, P(T) should be as efficient as a generic proof-search method

if it is fed with a formula that is not related to the theory T . In particular, if it tries to refute the

true formula ⊤, it should terminate, and with the answer “NO”. Let us say that P(T) is relatively
consistent if it is the case. As we pointed out with Dowek [11], we cannot have a generic proof

of the completeness of a relatively consistent method P(T) that would work for all T . Indeed,

such a proof would imply the consistency of the theory T , and, according to Gödel, this cannot be

performed in T itself. So either the completeness of the proof system is proved once and for all,

but it cannot represent theories that are logically at least as strong as that proof of completeness; or

it is not complete in general but it can be proved to be complete for particular theories, whatever

their logical strengths. What is interesting therefore is to give proofs of completeness of P(T) for
particular theories T .

Consequently, we give three instances of our framework, where we can have proofs of complete-

ness. First, as stated above, we link ordinary focusing with hyperresolution, and, in the ground

case, with semantic resolution. Second, we show that Deduction Modulo Theory [23] is also a

particular instance of this framework, knowing that there exists numerous proof techniques to

prove the completeness of Deduction Modulo a particular theory, for instance [9, 21, 24, 28]. Third,

we show how completeness in our framework can be reduced to completeness of several instances

of Deduction Modulo Theory, thus allowing to reuse these techniques.

To give an intuition about our framework, and to illustrate how much the proof-search space

can be constrained without losing completeness, let us consider for example the theory defining

the powerset:

∀X , ∀Y , (X ∈ P (Y)) ⇔ (∀Z , (Z ∈ X) ⇒ (Z ∈ Y))

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:3

This theory can be put in clausal normal form, using d as a Skolem symbol, and we select (by

underlining them) some literals in these clauses
1
:

¬X ∈ P (Y) ⋎ ¬Z ∈ X ⋎Z ∈ Y (1)

X ∈ P (Y) ⋎ d (X ,Y) ∈ X (2)

X ∈ P (Y) ⋎ ¬d (X ,Y) ∈ Y (3)

Using focusing in general, and in our framework in particular, the decomposition of connectives is

so restricted that, given an axiom, a proof derivation decomposing this axiom would necessarily

have only certain shapes. Thus, the axiom can be replaced by new inference rules, called synthetic

rules, that are used instead of the derivation of those shapes. See Section 2.1, for more details. In

our framework, this would lead to the following three synthetic rules, that can be used in place of

the axioms (the explanation how these rules are obtained is given in Section 5.4):

∆,u ∈ P (v),t ∈ u,t ∈ v −
(1)−

∆,u ∈ P (v),t ∈ u −
(2)−

∆,¬u ∈ P (v),d (u,v) ∈ v −

∆,¬u ∈ P (v),d (u,v) ∈ u −
(3)−

∆,¬u ∈ P (v) −

If one tries to prove transitivity of the membership in the powerset, i.e. to refute the formula

∃A. ∃B. ∃C . A ∈ P (B) ∧ B ∈ P (C) ∧ ¬A ∈ P (C), only one proof can be built, namely:

(2)−
a ∈ P (b),b ∈ P (c),¬a ∈ P (c)

::::::::
,d (a,c) ∈ a,d (a,c) ∈ b,d (a,c) ∈ c

::::::::
−

(1)−
a ∈ P (b),b ∈ P (c)

:::::::
,¬a ∈ P (c),d (a,c) ∈ a,d (a,c) ∈ b

::::::::
−

(1)−
a ∈ P (b)
:::::::

,b ∈ P (c),¬a ∈ P (c),d (a,c) ∈ a
::::::::

−

(3)−
a ∈ P (b),b ∈ P (c),¬a ∈ P (c)

::::::::
−

∧−

a ∈ P (b) ∧ b ∈ P (c) ∧ ¬a ∈ P (c)
:::::::::::::::::::::::::::

−

∃−

∃A. ∃B. ∃C . A ∈ P (B) ∧ B ∈ P (C) ∧ ¬A ∈ P (C)
:::::::::::::::::::::::::::::::::::::::

−

where the active formulas in a sequent are underwaved, and double lines indicate potentially several

applications of an inference rule.

On the resolution side, clauses (1) to (3) lead to the following ground derived rules (see also

Section 5.4):

u ∈ P (v) ⋎C t ∈ u ⋎D
(1)

t ∈ v ⋎C ⋎D

¬u ∈ P (v) ⋎C
(2)

d (u,v) ∈ u ⋎C

¬u ∈ P (v) ⋎C d (u,v) ∈ v ⋎D
(3)

C ⋎D
Once again, there is only one proof of transitivity, i.e. starting from the set of clauses {a ∈ P (b);b ∈
P (c);¬a ∈ P (c)}:

1
We use the associative-commutative-idempotent symbol ⋎ in clauses to distinguish it from the symbol ∨ that is used in

formulas.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 Guillaume Burel

¬a ∈ P (c)

b ∈ P (c)

a ∈ P (b)

¬a ∈ P (c)
(2)

d (a,c) ∈ a
(1)

d (a,c) ∈ b
(1)

d (a,c) ∈ c
(3) □

and we cannot even infer other clauses than those. We let the reader compare with what happens if

we use clauses (1) to (3) in resolution, even using the ordered resolution with selection refinement.

In the next section, we present the sequent calculus LKF
⊥
, which extends the calculus LKF of

Liang and Miller [31]. Section 3 introduces the resolution method with arbitrary input selection.

Then, the main theorem of Section 4, and of this paper, namely Theorem 4.2, establishes the link

between the two proof systems. In Section 5 are highlighted particular instances where proofs of

completeness can be obtained, which also permit to show an a priori unsuspected relation between

existing proof systems such as for instance hyperresolution and ordinary focusing. We also show

how to relate completeness in our setting to completeness in Deduction Modulo Theory.

Related work
As we do here, Goubault-Larrecq [27] proves completeness of several refinements of resolution,

including hyperresolution and semantic resolution, using syntactic transformations instead of

relying on the construction of a model.

Chaudhuri, Pfenning, and Price [16] show that hyperresolution for Horn clauses can be explained

as an instance of a sequent calculus for intuitionistic linear logic with focusing where atomic

formulas are given a negative polarity.

Farooque, Graham-Lengrand, andMahboubi [26] developed a sequent calculus, based on focusing,

that is able to simulate DPLL(T), the most common calculus used in SMT provers. The main

difference with our framework is that in [26], the theory is considered as a black box which is

called as an oracle. Here, the theory is considered as a first-class citizen.

Within the ProofCert project, resolution proofs can be checked by a kernel built upon a sequent

calculus with focusing [18]. Based on this, the tool Checkers [17] is able to verify proofs coming

from automated theorem provers based on resolution such as E-prover. Different from here, they

translate resolution derivations using cuts to get smaller proofs.

Hermant [29] proves the correspondance between the cut-free fragment of a sequent calculus

and a resolution method, in the setting of Deduction Modulo Theory. Since Deduction Modulo

Theory is subsumed by our framework, Theorem 4.2 is a generalization of Hermant’s work. Proving

it is simpler in our setting because focusing restrains the shape of possible sequent calculus proofs,

whereas Hermant had to prove technical lemmas to give proofs a canonical shape.

Notations and conventions
We use standard definitions for terms, predicates, formulas (with connectives⊥,⊤,¬,∧,∨ and quan-

tifiers ∀,∃), sequents and substitutions. Since we consider classical logic, implication A⇒ B is syn-

tactic sugar for ¬A ∨ B, and similarly equivalence A ⇔ B denotes

(A ⇒ B) ∧ (B ⇒ A). A literal is an atomic formula or its negation. A clause is a set of liter-

als. We will identify a literal with the unit clause containing it. Unless stated otherwise, letters

P ,Q ,R,P ′,P1, . . . denote atomic formulas, L,K ,L′,L1, . . . denote literals, A,B,A
′,A1, . . . denote for-

mulas,C,D,C ′,C1, . . . denote clauses, Γ,∆ denote sets of clauses or multisets of formulas (depending

on the context). In particular, sequents contain multisets of formulas. A⊥ denotes the negation

normal form of ¬A.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:5

2 FOCUSINGWITH POLARIZED OCCURRENCES OF ATOMIC FORMULAS
Focusing was introduced by Andreoli [1] to restrict the non-determinism in some sequent calculus

for linear logic. It relies on the alternation of two phases: During the asynchronous phase (sequents

with ⇑), all invertible rules are applied on the formulas of the sequent. Recall that a rule is said

invertible if its conclusion implies the conjunction of its premises. During the synchronous phase

(sequents with ⇓), a particular formula is selected —the focus is on it— and all possible non-invertible

rules are successively applied on it. This idea has been extended to intuitionistic and classical first-

order logic by Liang and Miller [31]. In these, connectives may have invertible and non-invertible

versions of their sequent calculus rules. Therefore, one considers in that case two versions of a

connective, one called positive when the right introduction rule is non-invertible, and one called

negative when it is invertible. Some connectives, i.e. ∃ in classical logic, only have a positive version,

and dually, others, such as ∀ in classical logic, only have a negative version. Given a usual formula,

one can decide which version of a connective one wants to use at a particular occurrence, which

is called a polarization of the formula.
2
Note that the polarity of a connective does not affect its

semantics, it only alters the shape of the sequent calculus proofs. Similarly, one can decide the

polarity of each literal. If a literal with negative polarity L is focused on in a branch, then this

branch must necessarily be closed, with L⊥ in the context. (See rule

⌢
⇓ − in Figure 1.)

In the ordinary presentation of focusing, this polarity is chosen globally for all occurrences of

each atomic formula, and the polarity of ¬P is defined as the inverse of that of P . In our setting, the

polarity can be different for each occurrence of a literal. More precisely, the polarity is attached to

the position of the literal in the formula. Let us consider the usual subformula relation: in particular,

for all terms t , {t/x }P is a subformula of ∀x . P and of ∃x . P . In the same way as what happens for

polarities of connectives in ordinary focusing, when considering subformulas in the premises of

inference rules, the polarities of connectives and literals remain the same. In particular, if a literal L
has a negative polarity in e.g. ∀x . P , then {t/x }L will have a negative polarity too in {t/x }P . Also, if
formulas are copied by an inference rule (e.g. the formulas in ∆ in the rule ⇓∨− of Figure 1), both

copies in the premises contain the same polarities. Furthermore, when considering the application

of a first-order term substitution to a formula, the polarities of the literals in the resulting formula

remain the same. The polarity of a formula is defined as the polarity of its top connective.

Liang and Miller [31] introduce the sequent calculus LKF, and prove it to be complete for classical

first-order logic. In Figure 1, we present the calculus LKF
⊥
, which is almost the same with the

following differences:

• All formulas are put on the left-hand side of the sequent, instead of the right-hand side.

Therefore, one does not try to prove a disjunction of formulas, but one tries to refute a

conjunction of formulas. This is the same thanks to the dual nature of classical first-order

logic, and this helps to be closer to the resolution derivations. Note that, consequently, the

focus is on negative formulas, and invertible rules are applied on positive formulas.

• The polarity of atomic formulas is not chosen globally, but each occurrence of a literal can
have a positive or a negative polarity. In particular, we can have two literals L and L⊥ which

are both negative, or both positive. We denote by L the fact that the literal L has a negative

polarity. To be able to close branches on which we have two positive opposed literals, we

add a rule

⌢
⇑ −. Note that in this rule, L and L⊥ are assumed to have a positive polarity.

We denote by Γ ⇑ ∆ ⊢ (with Γ or ∆, possibly empty, containing polarized formulas) the fact that

there exists a proof of the sequent Γ ⇑ ∆ − in LKF
⊥
, that is, a derivation starting from this sequent

2
Let us note that this notion of polarity is a standard denomination when dealing with focusing, and should not be confused

with the more usual but unrelated notion defined by the parity of the negation-depth of a position in a formula.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Guillaume Burel

Asynchronous phase:

⌢
⇑ −

Γ,L,L⊥ ⇑ −
Γ ⇑ ∆,A −

⇑∃−
Γ ⇑ ∆,∃x . A −

(x not free in Γ,∆)

Γ ⇑ ∆,A − Γ ⇑ ∆,B −
⇑∨−

Γ ⇑ ∆,A ∨+ B −

Γ ⇑ ∆,A,B −
⇑∧−

Γ ⇑ ∆,A ∧+ B −

Γ ⇑ ∆ −
⇑⊤−

Γ ⇑ ∆,⊤ −

Synchronous phase:

⌢
⇓ −

Γ,L⊥ ⇓ L −
Γ ⇓ {t/x }A −

⇓∀−
Γ ⇓ ∀x . A −

⇓⊥−
Γ ⇓ ⊥ −

Γ ⇓ A − Γ ⇓ B −
⇓∨−

Γ ⇓ A ∨− B −

Γ ⇓ A −
⇓∧1−

Γ ⇓ A ∧− B −

Γ ⇓ B −
⇓∧2−

Γ ⇓ A ∧− B −

Γ,A ⇓ A −
Focus

Γ,A ⇑ −
(A negative)

Γ ⇑ A −
Release

Γ ⇓ A −
(A positive)

Γ,A ⇑ ∆ −
Store

Γ ⇑ A,∆ −
(A negative or literal)

Fig. 1. The sequent calculus LKF⊥

and whose branches are all closed (by

⌢
⇓ −,

⌢
⇑ − or ⇓⊥−). Thanks to focusing, such a proof has the

following shape :

• Since one starts in an asynchronous (⇑) phase, invertible rules are successively applied to the

positive formulas of ∆, until one obtains negative formulas or literals that are put on the left

of ⇑ using Store.
• When no formula appears on the right of ⇑, then either the branch is closed by

⌢
⇑ −; or the

focus is put on a negative formula using Focus.
• In the latter case, one is now in synchronous (⇓) phase where non-invertible rules are

successively applied to the formula upon which the focus is, until either the branch is closed

using

⌢
⇓ − or ⇓⊥−; or one obtains a positive formula and the synchronous phase ends using

Release.
• In the latter case, one starts again in the asynchronous phase.

Focusing therefore strongly constrains the shape of possible proofs, and therefore reduces the

proof-search space. The rule

⌢
⇓ − in particular imposes to close branches immediately when the

focus is on a negative literal, and thus rules out many derivations.

Soundness of LKF
⊥
comes directly from the soundness of the standard sequent calculus. Indeed,

by replacing ⇑ and ⇓ by , (comma), one obtains rules that are admissible in the standard sequent

calculus.

Example 2.1. Consider the polarized formula ∀x . (P (x)∧−∃y. ¬P (y)) (the negation of the drinker

paradox). The simplest refutation in LKF
⊥
is :

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:7

⌢
⇓ −
∀x . (P (x) ∧− ∃y. ¬P (y)),¬P (y) ⇓ P (y) −

⇓∧1−

∀x . (P (x) ∧− ∃y. ¬P (y)),¬P (y) ⇓ P (y) ∧− ∃z. ¬P (z) −
⇓∀−

∀x . (P (x) ∧− ∃y. ¬P (y)),¬P (y) ⇓ ∀x . (P (x) ∧− ∃y. ¬P (y)) −
Focus

∀x . (P (x) ∧− ∃y. ¬P (y)),¬P (y) ⇑ −
Store

∀x . (P (x) ∧− ∃y. ¬P (y)) ⇑ ¬P (y) −
⇑∃−

∀x . (P (x) ∧− ∃y. ¬P (y)) ⇑ ∃y. ¬P (y) −
Release

∀x . (P (x) ∧− ∃y. ¬P (y)) ⇓ ∃y. ¬P (y) −
⇓∧2−

∀x . (P (x) ∧− ∃y. ¬P (y)) ⇓ P (t) ∧− ∃y. ¬P (y) −
⇓∀−

∀x . (P (x) ∧− ∃y. ¬P (y)) ⇓ ∀x . (P (x) ∧− ∃y. ¬P (y)) −
Focus

∀x . (P (x) ∧− ∃y. ¬P (y)) ⇑ −
Store

⇑ ∀x . (P (x) ∧− ∃y. ¬P (y)) −

Note that it would not have been possible to apply ⇓∧1− where ⇓∧2− has been applied, because we

would be stuck with the sequent ∀x . (P (x) ∧− ∃y. ¬P (y)) ⇓ P (t) − that cannot be closed by

⌢
⇓ −.

To switch the polarity of a formula, e.g. to impose a change of phase, one can prefix it by so-called

delays: δ−A is negative whatever the polarity ofA, whereas δ+A is always positive. If a delay appears

in the corresponding phase, then it can be silently ignored. For instance, one can have the following

derivation:

A ∧− δ−∀x . B ⇓ {t/x }B −
⇓∀−

A ∧− δ−∀x . B ⇓ δ−∀x . B −
⇓∧2−

A ∧− δ−∀x . B ⇓ A ∧− δ−∀x . B −
Focus

A ∧− δ−∀x . B ⇑ −
However, if the delay appears in the opposite phase, then the phase has to end. For instance, this

gives the following derivation:

A ∧− δ+∀x . B,∀x . B ⇑ −
Store

A ∧− δ+∀x . B ⇑ ∀x . B −
Release

A ∧− δ+∀x . B ⇓ δ+∀x . B −
⇓∧2−

A ∧− δ+∀x . B ⇓ A ∧− δ+∀x . B −
Focus

A ∧− δ+∀x . B ⇑ −
There is no need to extend the syntax of first-order formulas to include delays, because they can be

defined for instance using quantifiers: δ−A = ∀x . A and δ+A = ∃x . A, where x is not free in A. We

let the reader check that this induces indeed the desired behavior.

Note that proofs can be closed when the polarities of an atomic formula and its negation are both

positive (rule

⌢
⇑ −), or when one is positive and the other negative (rule

⌢
⇓ −), but not when they are

both negative. Therefore, this restricts how formulas that contains literals with negative polarities

can interact one with the others, and this is the main point of LKF
⊥
to reduce the proof-search

space.

The sequent calculus LKF
⊥
is not complete in general. One of the simplest examples of incom-

pleteness is the sequent P ∨− Q ,¬P ∨− Q ,¬Q ⇑− which has no proof although P ∨Q ,¬P ∨Q ,¬Q
is not satisfiable.

One could choose a global polarization for atomic formulas and use delays to enforce the

polarity of occurrences of literals without compromising completeness. However, this would break

synchronization phases, and the proof-search space would not be as restricted as in our calculus.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Guillaume Burel

For instance, let A be an arbitrary large tautology, and let P be an atomic formula not appearing in

A. Obviously, the set of formulas P ∨A,¬P is satisfiable and thus cannot be refuted. If one considers

the polarization where both P and ¬P are negative in the formulas, one can quickly conclude that

no derivation of P ∨− A,¬P ⇑− exists. However, if one considers a global polarization where for

instance P is positive, even if P is enforced to be negative in the first formula using a delay δ−, then
a proof search can begin with

⌢
⇓ − Γ,P ⇓ ¬P −

Focus
Γ,P ⇑ −

Store
Γ ⇑ P −

Release
Γ ⇓ δ−P −

attempt to refute A

Γ ⇓ A −
⇓∨−

Γ ⇓ δ−P ∨− A −
Focus

δ−P ∨− A,¬P ⇑ −

where Γ is δ−P ∨− A,¬P . Depending on A, we cannot even guarantee that the attempt to refute A
will eventually end with a failure. Given a particular theory, it is therefore possible to carefully

choose the polarization of the axioms of the theory so that the proof-search space is dramatically

reduced but completeness w.r.t. that theory is not lost. Finding this particular polarization is the

interesting part of our framework, since in general completeness can be lost. Section 5 presents

some approaches to do this.

2.1 Synthetic rules
Restricting proof search using focusing leads to what are called synthetic rules (see for instance

[16, pp.148–150] where they are called derived rules). The idea is to replace some formula A in the

context of the sequent by new inference rules. Instead of proving the sequent A,Γ ⇑ ∆ − in LKF
⊥
,

one proves Γ ⇑ ∆ − in (LKF
⊥
+ the synthetic rules obtained from A). Indeed, a proof focusing on A

can only have certain shapes, and thus instead of having A in the context, it can be replaced by

new rules synthesizing those shapes. For instance, the formula P ∨− (Q ∧− R) in a context Γ can

only lead to the following derivations when the focus is put on it:

⌢
⇓ − Γ ⇓ P −

Γ,Q ⇑ −
Store

Γ ⇑ Q −
Release

Γ ⇓ Q −
⇓∧1−

Γ ⇓ Q ∧− R −
⇓∨−

Γ ⇓ P ∨− (Q ∧− R) −
Focus

Γ ⇑ −

and

⌢
⇓ − Γ ⇓ P −

⌢
⇓ − Γ ⇓ R −

⇓∧2−

Γ ⇓ Q ∧− R −
⇓∨−

Γ ⇓ P ∨− (Q ∧− R) −
Focus

Γ ⇑ −

In the left derivation, P⊥ must be in Γ to be able to close the left branch, so Γ is in fact of the form

P ∨− (Q ∧− R),∆,P⊥. In the right one, Γ must be of the form P ∨− (Q ∧− R),∆,P⊥,R⊥. Instead of

searching for a proof with P ∨− (Q ∧− R) in the context, the following two synthetic rules can

therefore be used:

∆,P⊥,Q ⇑ −
Syn1

∆,P⊥ ⇑ −

Syn2
∆,P⊥,R⊥ ⇑ −

Note that in Syn1 and Syn2, ∆ is any context. In particular it need not contain P∨− (Q∧−R). This was
the point of using synthetic rules instead of having P ∨− (Q ∧− R) in the context. This is completely

equivalent in terms of provability because each application of a synthetic rule can be replaced by

applying Focus on P ∨− (Q ∧− R) and following the derivation leading to the synthetic rule, and

vice versa. This is used for instance in provers based on the inverse method and focusing [32].

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:9

For another example, this timewith quantifiers, consider the formula∀x . P (x)∨− ((∃y.Q (x ,y))∧−

R (f (x))) in a context Γ. If the focus is put on this formula, only the following derivations are possible:

⌢
⇓ − Γ ⇓ P (t) −

Γ,Q (t ,y) ⇑ −
Store

Γ ⇑ Q (t ,y) −
⇑∃−

Γ ⇑ ∃y. Q (t ,y) −
Release

Γ ⇓ ∃y. Q (t ,y) −
⇓∧1−

Γ ⇓ (∃y. Q (t ,y)) ∧− R (f (t)) −
⇓∨−

Γ ⇓ P (t) ∨− ((∃y. Q (t ,y)) ∧− R (f (t))) −
⇓∀−

Γ ⇓ ∀x . P (x) ∨− ((∃y. Q (x ,y)) ∧− R (f (x))) −
Focus

Γ ⇑ −

with P (t)⊥ in Γ to be able to apply

⌢
⇓ −, and y not free in Γ;

⌢
⇓ − Γ ⇓ P (t) −

⌢
⇓ − Γ ⇓ R (f (t)) −

⇓∧2−

Γ ⇓ (∃y. Q (t ,y)) ∧− R (f (t)) −
⇓∨−

Γ ⇓ P (t) ∨− ((∃y. Q (t ,y)) ∧− R (f (t))) −
⇓∀−

Γ ⇓ ∀x . P (x) ∨− ((∃y. Q (x ,y)) ∧− R (f (x))) −
Focus

Γ ⇑ −

with both P (t)⊥ and R (f (t))⊥ in Γ to be able to apply

⌢
⇓ −.

In the first case, Γ is therefore ∀x . P (x) ∨− ((∃y. Q (x ,y)) ∧− R (f (x))),∆,P (t)⊥; in the second

case, it is ∀x . P (x) ∨− ((∃y. Q (x ,y)) ∧− R (f (x))),∆,P (t)⊥,R (f (t))⊥. Instead of having the formula

in the context, the following two synthetic rules can therefore be used:

∆,P (t)⊥,Q (t ,y) ⇑ −
Syn1’ y not free in ∆,P (t)⊥

∆,P (t)⊥ ⇑ −
Syn2’

∆,P (t)⊥,R (f (t))⊥ ⇑ − .

3 RESOLUTIONWITH INPUT SELECTION
Two approaches can be used to reduce the proof-search space of the resolution calculus: first, one

can restrict on which pairs of clauses the resolution rule can be applied; this leads for instance

to the set-of-support strategy [37], in which clauses are split into two sets, called the theory and

the set of support; at least one of the clauses involved in a resolution step must be in the set of

support. Second, one can restrict which literals in the clauses can be resolved upon; those literals

are said to be selected in the clause. Resolution with free selection is complete for Horn clauses, but

incomplete in general. Selecting a subset of the negative literals (if no literal is selected, then any

literal of the clause can be used in resolution) is however complete, and combining this with an

ordering restriction on clauses with no selected literals leads to Ordered Resolution with Selection,

which was introduced by Bachmair and Ganzinger [2] (see also Bachmair and Ganzinger [3]) as a

complete refinement of resolution.

Resolution with Input Selection combines these two approaches. We will consider pairs composed

of a clause and a subset of its literals (which can be empty). This subset of literals is the set of

selected literals in the clause. We represent such a pair by underlining the selected literals in the

clause. We will see that they indeed correspond to the literals that have a negative polarization in

LKF
⊥
. We denote by S the second projection on such a pair. If at least one literal is selected in a

clause, then only the selected literals can be used in Resolution. For generated clauses, we impose

that S (C) = ∅. Note that we can have several times the same clause with different selected literals.

The inference rules of Resolution with Input Selection are presented in Fig. 2. As usual, variables

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Guillaume Burel

L ⋎C L′⊥ ⋎DResolution
σ (C ⋎D)

• S (L ⋎C) = ∅
• S (L′⊥ ⋎D) = ∅
• σ is the most general unifier of L =? L′

L ⋎ L′ ⋎CFactoring
σ (L ⋎C)

• S (L ⋎ L′ ⋎C) = ∅
• σ is the most general unifier of L =? L′

K1 ⋎ . . . ⋎Kn ⋎C K ′
1

⊥ ⋎D1 . . . K ′n
⊥ ⋎Dn

Resolution with Selection
σ (C ⋎D1 ⋎ . . . ⋎Dn)

• S (K1 ⋎ . . . ⋎Kn ⋎C) = {K1; . . . ;Kn }

• S (K ′i
⊥ ⋎Di) = ∅

• σ is the mgu of the simultaneous unification problem K1 =
? K ′

1
, . . . ,Kn =

? K ′n

Fig. 2. Resolution with Input Selection

are renamed in the clauses to avoid that premises of the inference rules share variables. We have

two flavors of the resolution rule: the usual binary resolution, that is applied on two premises that

do not select any literal; and Resolution with Selection that is applied on a clause in which n literals

are selected and n clauses in which no literal is selected. Consequently, a clause with a non-empty

selection cannot be resolved with a clause with a non-empty selection. By considering them as

the theory part, and the clauses with an empty selection as the set of support, it is easy to see that

Resolution with Input Selection is a generalization of the set-of-support strategy. Notwithstanding,

note that neither Resolution with Input Selection is a generalization of Ordered Resolution with

Selection nor the converse.

There are two ways to see resolution proofs: either as the successive derivations of new clauses

until the empty clause is obtained, or as a tree whose root is the empty clause and whose leaves are

included in the set of input clauses.

Definition 3.1 (Resolution derivation). We write Γ { C if C can be derived from some renaming

of the clauses in Γ using the inference rules Resolution with Selection, Resolution, or Factoring
presented in Figure 2. We write Γ {∗ C if

• C ∈ Γ or if

• there exists D such that Γ { D and Γ,D {∗ C .

Definition 3.2 (Resolution tree). A resolution tree is a tree whose nodes contain clauses, such that

C is the father of C1, . . . ,Cn only if C can be obtained from a renaming of C1, . . . ,Cn using one of

the inference rules Resolution with Selection, Resolution, or Factoring. The multiset of the leaves

of the tree is called the axioms of the tree. Its root is called the conclusion of the tree.

Of course, the two views are the same:

Lemma 3.3. Γ {∗ C if and only if there exists a resolution tree whose axioms are included (as a set)
in Γ, and whose conclusion is C .

Proof. For the “only if” direction, we construct the resolution tree by induction on the derivation

length. If C is in Γ, then we consider the tree with only one node containing C . The conclusion of

the tree is therefore C , and its axioms are the multiset {C} which is included as a set in Γ.
For the inductive case, suppose that there exists D such that Γ { D and Γ,D {∗ C . By definition

of{, there exists C1, . . . ,Cn in Γ such that D is obtained from a renaming of C1, . . . ,Cn using one

of the inference rules Resolution with Selection, Resolution, or Factoring. By induction hypothesis,

there exists a resolution tree whose conclusion is C and whose axioms are included as a set in

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:11

Γ ∪ {D}. We can replace each occurrences of the axiom D in the resolution tree by the subtree

C1 . . . Cn

D
. The resulting tree is indeed a valid resolution tree, and its conclusion is C .

Since all Ci are in Γ, the axioms of this resolution tree are included, as a set, in Γ.

For the “if” direction, we proceed by induction on the size of the resolution tree (number of

nodes). If the size is 1, this means that the multiset of axioms is {C}. By assumption, this multiset is

included as a set in Γ, hence C ∈ Γ. By definition of{∗, we have Γ {∗ C .
For the inductive case, suppose that the size is n > 1. Let us choose any node of the tree,

containing a clause D, of which all children are leaves, containing respectively clauses C1, . . . ,Cn .

D is therefore derived from a renaming of C1, . . . ,Cn using one of the inference rules Resolution
with Selection, Resolution, or Factoring. By assumption, allCi belong to Γ. Therefore, by definition

of{, we have

Γ { D. (4)

Let us consider the resolution tree where we prune the subtree above D. Its size is strictly smaller

than n, its conclusion isC and its axioms are included, as a set, in Γ ∪ {D}. By induction hypothesis,

we have Γ,D {∗ C . Consequently, with (4), Γ {∗ C . □

Note that transforming a derivation into a tree and back into a derivation is not the identity,

because the derivation corresponds more precisely to a directed acyclic graph that is expanded into

a tree by the transformation.

As usual in resolution methods, the goal is to produce the empty clause □ starting from a set of

clauses Γ to show, since all rules are sound, that Γ is unsatisfiable. Soundness of Resolution with

Input Selection can be shown by remarking that the conclusion of each inference rule is a logical

consequence of its premises, as in standard resolution.

Here again, the calculus is not complete in general: from the set of clauses P ⋎Q ,¬P ⋎Q ,¬Q , no

inference rule can be applied: to apply Resolution with Selection, we would need a clause where P ,
or ¬P , is not selected, and Resolution needs two clauses without selection.

4 LKF⊥ SIMULATES RESOLUTIONWITH INPUT SELECTION
To link LKF

⊥
with Resolution with Input Selection, we need to indicate how clauses are related to

polarized formulas.

Definition 4.1. Given a clause C = L1 ⋎ · · · ⋎ Ln ⋎K1 ⋎ . . . ⋎Km whose free variables are

x1, . . . ,xl and such that S (C) = {L1; . . . ;Ln }, we define the associated formula ⌜C⌝ to be

∀x1, . . . ,xl . L1 ∨
− · · · ∨− Ln ∨

− δ− (K1 ∨
+ · · · ∨+ Km). ⌜C⌝ is said to be clausal. By extension, ⌜Γ⌝

is the set of the formulas associated to the clauses of the set Γ.

Note that the formula associated to the renaming of a clause is the same (modulo α-equivalence)
as the formula associated to the clause.

Note that if S (C) , ∅, or if C is not ground, then the negative delay is useless. Indeed, in such

cases, one is already in the synchronous phase when arriving at the subformula at that position,

because the surrounding connective is either ∀ or ∨−. Adding the delay makes the translation

of a clause always negative, even in the case of a ground clause without selection. It makes the

statement and the proof of Theorem 4.7 more simple.

The main theorem of this article relates LKF
⊥
with Resolution with Input Selection:

Theorem 4.2. Let Γ be a set of clauses. We have ⌜Γ⌝ ⇑⊢ iff Γ {∗ □.

The proof is detailed in the following subsections.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Guillaume Burel

4.1 From Focused Proofs to Resolution Derivations
We need a few lemmas to prove the first direction. Note that these lemmas work on clauses where

the selection is empty, which is why we have the restriction that generated clauses do not select

literals in Resolution with Input Selection.

Lemma 4.3. For all sets of clauses Γ, for all clauses C1, . . . ,Cn and D such that S (Ci) = ∅ for all
i and S (D) = ∅, if Γ,C1, . . . ,Cn {

∗ □ and Γ,D {∗ □, then Γ,C1 ⋎D, . . . ,Cn ⋎D {
∗ □ where

S (Ci ⋎D) = ∅ for all i .

Proof. By induction on the derivation length of Γ,C1, . . . ,Cn {
∗ □, generalizing on Γ.

The base case is when □ ∈ Γ or there exists i such that □ = Ci . In the former case, trivially

Γ,C1 ⋎D, . . . ,Cn ⋎D {
∗ □. In the latter case, Ci ⋎D = D, and since Γ,D {∗ □ we have a fortiori

Γ,C1 ⋎D, . . . ,Cn ⋎D {
∗ □.

For the inductive case, suppose that there exists Cn+1 such that Γ,C1, . . . ,Cn { Cn+1 and

Γ,C1, . . . ,Cn ,Cn+1 {
∗ □.

There are two cases:

• Cn+1 is derived using other clauses than one of the Ci . We therefore have

Γ,C1 ⋎D, . . . ,Cn ⋎D { Cn+1.

We can apply the induction hypothesis on Γ,C1, . . . ,Cn ,Cn+1 {
∗ □, which can be viewed

as Γ,Cn+1,C1, . . . ,Cn {
∗ □. Indeed, by weakening we have Γ,Cn+1,D {

∗ □. We obtain

Γ,Cn+1,C1 ⋎D, . . . ,Cn ⋎D {
∗ □. By definition of{∗ we therefore have

Γ,C1 ⋎D, . . . ,Cn ⋎D {
∗ □.

• At least one of the parents of Cn+1 is some Ci . Since no literal is selected in the Ci , they can

only be side clauses of Resolution with Selection, or any clause in Resolution or Factoring.
We can therefore derive Cn+1 ⋎D from Γ,C1 ⋎D, . . . ,Cn ⋎D with the same inference rule

that produced Cn+1. We can apply the induction hypothesis on Γ,C1, . . . ,Cn ,Cn+1 {
∗ □

which gives us Γ,C1 ⋎D, . . . ,Cn ⋎D,Cn+1 ⋎D {
∗ □.

Hence Γ,C1 ⋎D, . . . ,Cn ⋎D {
∗ □. □

Corollary 4.4. For all sets of clauses Γ, for all clauses C1, . . . ,Cn such that S (Ci) = ∅ for all i , if
Γ,Ci {

∗ □ for all i then Γ,C1 ⋎ · · · ⋎Cn {
∗ □ where S (C1 ⋎ · · · ⋎Cn) = ∅.

Lemma 4.5. For all multisets of clauses Γ, for all substitutions θ , for all clauses C , for all resolution
trees whose axioms are the multiset {θC} ∪ Γ with S (θC) = ∅, and whose conclusion is □, there exists
a resolution tree whose axioms are the multiset {C} ∪ Γ with S (C) = ∅, and whose conclusion is □.

Proof. By induction on the lexicographic combination of the size (number of nodes) of the tree

and the cardinal of C .
If the tree size is 1, this means that Γ = ∅ and θC = □. Thus,C = □ too and we have a trivial tree

of size 1 whose conclusion is □ and whose multiset of axioms is {□}.
If the tree size is n > 1, let us consider the inference rule of which θC is a premise.

If it is Factoring, then the conclusion of the inference rule is σθC , where σ is the most general

unifier of two literals of θC . Let us consider the tree where we prune
θCFactoring
σθC

to have just

σθC as an axiom. The axioms of this tree are {σθC} ∪ Γ and its conclusion is □. Its size is n − 1. By
induction hypothesis, using σθ instead of θ , we obtain a resolution tree whose axioms are {C} ∪ Γ
and whose conclusion is □, as was expected.

Let us consider the case when the inference rule is Resolution with Selection or Resolution. Since
S (θC) = ∅, only one literal of θC is used in the inference rule. Let it be denoted by L, then θC is

L ⋎ θC ′, and C is L1 ⋎ . . . ⋎ Lm ⋎C
′
where the Li are exactly the literals of C such that

θLi = L. (5)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:13

Ifm > 1, since θL1 = θL2 = L, the literals L1 and L2 can be unified. Let ω be their most general

unifier. By definition, there exists θ ′ such that θ = θ ′ω. The axioms of the resolution tree are

therefore the multiset {θ ′ωC} ∪ Γ. The cardinal of ωC is smaller than the cardinal of C , since at
least ωL1 and ωL2 are identical. By induction hypothesis, using θ ′ instead of θ , we get a resolution
tree whose axioms are {ωC} ∪ Γ and whose conclusion is □. We can extend this resolution tree by

replacing ωC with the subtree
CFactoring
ωC

, thus obtaining a resolution tree whose axioms

are {C} ∪ Γ and whose conclusion is □, as was expected.
If m = 1, since θC = L ⋎ θC ′ where L is the literal used in the inference rule, the latter is

therefore of the form

θC C1 ⋎D1 . . . Ck ⋎Dk

σ (θC ′ ⋎D1 ⋎ . . .Dk)
where σ is the most general solution

of a unification problem of the form L =? L′,Prob for some set of equations Prob (which may be

non-empty in the Resolution with Selection case). In particular, this means that

σL = σL′. (6)

Since clauses are renamed before applying inference rules, we can assume that the variables of

all Ci ⋎Di are not in the domain of θ . In particular, L′ and all literals in Prob are not affected by θ .
Therefore,

L′ = θL′ (7)

and

Di = θDi for all 1 ≤ i ≤ k . (8)

Combining (5), (6), and (7), we obtain

σθL1 = σθL′ (9)

σθ is therefore a solution of the unification problem L1 =
? L′,Prob (recall that variables in Prob are

unaffected by θ). Let µ be its most general solution. By definition, there exists κ such that

σθ = κµ . (10)

The conclusion of the inference rule is

σ (θC ′ ⋎D1 ⋎ . . .Dk)

= σ (θC ′ ⋎ θD1 ⋎ . . . θDk) by (8)

= σθ (C ′ ⋎D1 ⋎ . . .Dk)

= κµ (C ′ ⋎D1 ⋎ . . .Dk) by (10).

The resolution tree has the form

θC

Γ1

C1 ⋎D1

Γk

Ck ⋎Dk

κµ (C ′ ⋎D1 ⋎ . . .Dk)

Γ′

□

where Γ = Γ1 ∪ · · · ∪ Γk ∪ Γ′.
Let us consider the resolution tree where we prune the subtree above κµ (C ′ ⋎D1 ⋎ . . .Dk). Its

size is strictly smaller than n, its axioms are {κµ (C ′ ⋎D1 ⋎ . . .Dk)} ∪ Γ′, and its conclusion is □.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Guillaume Burel

Since, by definition of Resolution with Input Selection, S (κµ (C ′ ⋎D1 ⋎ . . .Dk)) = ∅, we can apply

the induction hypothesis to obtain a resolution tree whose axioms are {µ (C ′ ⋎D1 ⋎ . . .Dk)} ∪ Γ′

and whose conclusion is □. We can extend this tree by replacing the leaf µ (C ′ ⋎D1 ⋎ . . .Dk) by
the tree

C

Γ1

C1 ⋎D1

Γk

Ck ⋎Dk

µ (C ′ ⋎D1 ⋎ . . .Dk)

which is valid because µ is the most general solution to the unification problem L1 =
? L′,Prob

which is the one that needs to be solved for the inference rule to be applied. We therefore obtain a

resolution tree whose axioms are {C} ∪ Γ1 ∪ · · · ∪ Γk ∪ Γ′ = {C} ∪ Γ and whose conclusion is □, as
was expected. □

Lemma 4.6. For all sets of clauses Γ, for all substitutions θ , for all clauses C such that S (θC) = ∅, if
Γ,θC {∗ □ then Γ,C {∗ □ where S (C) = ∅.

Proof. Using Lemma 3.3, there exists a resolution tree whose axioms are included, as a set, in

Γ ∪ {θC}, and whose conclusion is □. Repetitively applying Lemma 4.5, one can replace all axioms

θC by C , thus obtaining a resolution tree whose axioms are included, as a set, in Γ ∪ {C}. Using
Lemma 3.3 in the converse direction, we obtain Γ,C {∗ □. □

Theorem 4.7. If ⌜Γ⌝ ⇑⊢, then Γ {∗ □.

Proof. By induction on the proof ⌜Γ⌝ ⇑⊢. We generalize the statement a little by allowing the

sequent to contain not only translations of clauses but also literals with a positive polarity, which

are associated to the corresponding singleton clauses. On such a sequent, only two rules can be

applied, namely

⌢
⇑ − and Focus. Since ⌜Γ⌝ contains only clausal formulas and positive literals, there

are only four cases:

•
⌢
⇑ −
⌜Γ′⌝,L,L⊥ ⇑ −

In that case, we can simply apply Resolution on L and L⊥ to derive □, hence Γ′,L,L⊥ { □.
• The proof focuses on a formula corresponding to the empty clause:

⇓⊥−
⌜Γ⌝ ⇓ ⊥ −

Focus
⌜Γ⌝ ⇑ −

In that case, □ already belongs to Γ.
• The proof focuses on a formula corresponding to a clause without selection. Because of

focusing constraints, the proof is necessarily of the form:

⌜Γ⌝,θL1 ⇑ −Store
⌜Γ⌝ ⇑ θL1 − · · ·

⌜Γ⌝,θLm ⇑ −Store
⌜Γ⌝ ⇑ θLm −

⇑∨−

⌜Γ⌝ ⇑ θ (L1 ∨
+ · · · ∨+ Lm) −

Release
⌜Γ⌝ ⇓ θ (L1 ∨

+ · · · ∨+ Lm) −
⇓∀−

⌜Γ⌝ ⇓ ∀x .δ− (L1 ∨
+ · · · ∨+ Lm) −

Focus
⌜Γ⌝ ⇑ −

By induction hypothesis, we have derivations of Γ,θLk {
∗ □ for all 1 ≤ k ≤ m. By Corollary

4.4, we have a derivation Γ,θ (L1 ⋎ · · · ⋎ Lk) {
∗ □ with nothing selected in θ (L1 ⋎ · · · ⋎ Lk).

By Lemma 4.6, we have a derivation of Γ {∗ □, with L1 ⋎ · · · ⋎ Lk in Γ.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:15

• The proof focuses on a formula corresponding to a clause with selection. Because of focusing

constraints, the proof is necessarily of the form:

⌢
⇓ −

· · · ⌜Γ⌝ ⇓ θKj − · · ·

· · ·

⌜Γ⌝,θLk ⇑ −Store
⌜Γ⌝ ⇑ θLk − · · ·

⇑∨−

⌜Γ⌝ ⇑ θ (L1 ∨
+ · · · ∨+ Lm) −

Release
⌜Γ⌝ ⇓ δ−θ (L1 ∨

+ · · · ∨+ Lm) −
⇓∨−

⌜Γ⌝ ⇓ θ (K1∨
− · · · ∨−Kn∨

−δ− (L1∨
+ · · · ∨+Lm) −

⇓∀−

⌜Γ⌝ ⇓ ∀x .K1∨
− · · · ∨−Kn∨

−δ− (L1∨
+ · · · ∨+Lm) −

Focus
⌜Γ⌝ ⇑ −

where ∀x .K1 ∨
− · · · ∨− Kn ∨

− (L1 ∨
+ · · · ∨+ Lm) and θKj

⊥
for all 1 ≤ j ≤ n are members of

⌜Γ⌝.
By induction hypothesis, we have derivations of Γ,θLk {

∗ □ for all 1 ≤ k ≤ m. By Corollary

4.4, we have a derivation Γ,θ (L1 ⋎ · · · ⋎ Lm) {∗ □.
From K1 ⋎ · · · ⋎Kn ⋎ L1 ⋎ · · · ⋎ Lm , since the application of

⌢
⇓ − above imposes that all θKj

⊥

are in Γ, we can apply Resolution with Selection to obtain θ (L1 ⋎ · · · ⋎ Lm), hence a derivation
Γ {∗ □. □

4.2 From Resolution Derivations to Focused Proofs
We prove that all inference rules of Resolution with Input Selection are admissible in LKF

⊥
: if

Γ { C then LKF
⊥
proofs of ⌜Γ⌝,⌜C⌝ ⇑− can be turned into proofs of ⌜Γ⌝ ⇑−. For this direction,

we do not need to assume that generated clauses do not select any literal: if a derivation is found

in Resolution with selection, it would be translated into LKF
⊥
even if some literals are selected in

generated clauses, as long as selection is compatible with instantiation, i.e. σS (C) ⊆ S (σC) for all
clauses C and substitutions σ . (Note that we do not need the converse inclusion.)

Lemma 4.8. For all sets of formulas Γ, for all clauses C , for all substitutions σ , assuming σS (C) ⊆
S (σC), if Γ,⌜C⌝,⌜σC⌝ ⇑⊢, then Γ,⌜C⌝ ⇑⊢.

Proof. By induction on the proof Γ,⌜C⌝,⌜σC⌝ ⇑⊢. Note that to be able to apply the induction

hypothesis directly, one needs to have a sequent of the form Γ′ ⇑⊢, so that one considers in general

coarse grain proof steps consisting of an alternation of a synchronous and an asynchronous phases.

If the proof does not begin by acting on ⌜σC⌝, this is a simple application of the induction

hypothesis. Otherwise, note that the only rule that can act on ⌜σC⌝ is Focus: even in the case

when σC consists only of a single literal, ⌜σC⌝ is δ− (σC) so that

⌢
⇑ − cannot be applied. Let σC be

K1 ⋎ · · · ⋎Kn ⋎ L1 ⋎ · · · ⋎ Lm . The proof begins with

⌢
⇓ −

· · · Γ′ ⇓ θKj − · · ·

· · ·

Γ′,θLk ⇑ −Store
Γ′ ⇑ θLk − · · ·

⇑∨−

Γ′ ⇑ θ (L1 ∨
+ · · · ∨+ Lm) −

Release
Γ′ ⇓ θδ− (L1 ∨

+ · · · ∨+ Lm) −
⇓∨−

Γ′ ⇓ θ (K1 ∨
− · · · ∨− Kn ∨

− δ− (L1 ∨
+ · · · ∨+ Lm)) −

⇓∀−

Γ′ ⇓ ∀x .K1 ∨
− · · · ∨− Kn ∨

− δ− (L1 ∨
+ · · · ∨+ Lm) −

Focus
Γ′ ⇑ −

where Γ′ = Γ,⌜C⌝,⌜σC⌝ and for all 1 ≤ j ≤ n the literal θKj
⊥
is in Γ.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 Guillaume Burel

LetC be K1

1
⋎ · · ·Kk1

1
⋎ · · ·K1

n ⋎ · · ·K
kn
n ⋎ L

1

1
⋎ · · · Ll1

1
⋎ · · · L1m ⋎ · · · L

lm
m where for all i, j we have

σK j
i = Ki and σLji = Li . By hypothesis, the literals selected in C are among the K j

i (hence the

dashed underline). For all i, j , one can either build a proof

⌢
⇓ −

Γ,⌜C⌝ ⇓ θσK j
i −

if it is selected,

or

⌢
⇑ −

Γ,⌜C⌝,θσK j
i ⇑ −Store

Γ,⌜C⌝ ⇑ θσK j
i −

if it is not.

We apply the induction hypothesis on Γ′,θLk ⇑⊢, hence we have proofs Γ,⌜C⌝,θLk ⇑⊢ for all k .
We can therefore build the proof

⌢
⇓ −

Γ,⌜C⌝ ⇓ θσK j
i − · · ·

⌢
⇑ −

Γ,⌜C⌝,θσK j
i ⇑ −Store

Γ,⌜C⌝ ⇑ θσK j
i − · · · Γ,⌜C⌝,θLi ⇑ −

⇑∨−

Γ,⌜C⌝ ⇑ · · · ∨+ θσKm
l ∨

+ · · · ∨+ θσLji ∨
+ · · · −

Release
Γ,⌜C⌝ ⇓ δ− (· · · ∨+ θσKm

l ∨
+ · · · ∨+ θσLji ∨

+ · · ·) −
⇓∨−

Γ,⌜C⌝ ⇓ · · · ∨− θσK j
i ∨
− · · · ∨− δ− (· · · ∨+ θσKm

l ∨
+ · · · ∨+ θσLji ∨

+ · · ·) −
⇓∀−

Γ,⌜C⌝ ⇓ ∀x . · · · ∨− K j
i ∨
− · · · ∨− δ− (· · · ∨+ Km

l ∨
+ · · · ∨+ Lji ∨

+ · · ·) −
Focus

Γ,⌜C⌝ ⇑ −

□

Corollary 4.9. Factoring is admissible in LKF⊥.

Lemma 4.10. Resolution is admissible in LKF⊥:
For all sets of formulas Γ, for all clauses L ⋎C and L′⊥ ⋎D without selection, if σ =mдu (L,L′),
if Γ,⌜L ⋎C⌝,⌜L′⊥ ⋎D⌝,⌜σ (C ⋎D)⌝ ⇑⊢ then Γ,⌜L ⋎C⌝,⌜L′⊥ ⋎D⌝ ⇑⊢.

Proof. By induction on the proof Γ,⌜L ⋎C⌝,⌜L′⊥ ⋎D⌝,⌜σ (C ⋎D)⌝ ⇑⊢.
Let Γ′ be Γ,⌜L ⋎C⌝,⌜L′⊥ ⋎D⌝ and Γ′′ be Γ′,⌜σ (C ⋎D)⌝. If the proof does not begin by focusing

on ⌜σ (C ⋎D)⌝, this is a simple application of the induction hypothesis. Otherwise, let σ (C ⋎D) be
I1 ⋎ · · · ⋎ In ⋎ J1 ⋎ · · · ⋎ Jm . The proof begins with

⌢
⇓ −

· · · Γ′′ ⇓ θ Ij − · · ·

· · ·

Γ′′,θ Jk ⇑ −Store
Γ′′ ⇑ θ Jk − · · ·

⇑∨−

Γ′′ ⇑ θ (J1 ∨
+ · · · ∨+ Jm) −

Release
Γ′′ ⇓ θδ− (J1 ∨

+ · · · ∨+ Jm) −
⇓∨−

Γ′′ ⇓ θ (I1 ∨
− · · · ∨− In ∨

− δ− (J1 ∨
+ · · · ∨+ Jm)) −

⇓∀−

Γ′′ ⇓ ∀x .I1 ∨
− · · · ∨− In ∨

− δ− (J1 ∨
+ · · · ∨+ Jm) −

Focus
Γ′′ ⇑ −

where, to be able to close the left branches, for all 1 ≤ j ≤ n the literal θ Ij
⊥
is in Γ′.

We know that C is · · · ⋎ I 1i ⋎ · · · I
ki
i ⋎ · · · ⋎ J 1j ⋎ · · · J

lj
j ⋎ · · · where i ranges over a subset of

{1, . . . ,n} and j over a subset of {1, . . . ,m}, and σ Ixi = Ii and σ J
y
j = Jj for all x ,y. Likewise, D is

· · · ⋎ I ′i
1 ⋎ · · · I ′i

ki ⋎ · · · ⋎ J ′j
1 ⋎ · · · J ′j

lj ⋎ · · · where i ranges over a subset of {1, . . . ,n} and j over a

subset of {1, . . . ,m}, and σ I ′i
x = Ii and σ J

′
j
y = Jj for all x ,y.

We apply the induction hypothesis on Γ′′,θ Jk ⇑⊢, hence we have a proof of
Γ,⌜L ⋎C⌝,⌜L′⊥ ⋎D⌝,θ Jk ⇑⊢.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:17

We can build the following proof of Γ′ ⇑⊢: first, we focus on ⌜L ⋎C⌝ to get the derivation

Γ′,θσL ⇑ −
Store

Γ′ ⇑ θσL − · · ·

⌢
⇑ − Γ′,θ Ii ⇑ −Store

Γ′ ⇑ θ Ii − · · ·

Γ′,θ Jj ⇑ −
Store

Γ′ ⇑ θ Jj − · · ·
⇑∨−

Γ′ ⇑ θσ (L ∨+ · · · ∨+ I 1i ∨
+ · · · Ikii ∨

+ · · · ∨+ J 1j ∨
+ · · · J

lj
j ∨

+ · · ·) −
Release

Γ′ ⇓ θσδ− (L ∨+ · · · ∨+ I 1i ∨
+ · · · Ikii ∨

+ · · · ∨+ J 1j ∨
+ · · · J

lj
j ∨

+ · · ·) −
⇓∀−

Γ′ ⇓ ∀x . δ− (L ∨+ · · · ∨+ I 1i ∨
+ · · · Ikii ∨

+ · · · ∨+ J 1j ∨
+ · · · J

lj
j ∨

+ · · ·) −
Focus

Γ′ ⇑ −

In this derivation, all right branches are closed by induction hypothesis. On the left branch, we

focus on ⌜L′⊥ ⋎D⌝. Let Γ′′′ be Γ′,θσL. We get the derivation

⌢
⇑ −

Γ′′′,θσL′⊥ ⇑ −
Store

Γ′′′ ⇑ θσL′⊥ − · · ·

⌢
⇑ − Γ′′′,θ Ii ⇑ −Store

Γ′′′ ⇑ θ Ii − · · ·

Γ′′′,θ Jj ⇑ −
Store

Γ′′′ ⇑ θ Jj − · · ·
⇑∨−

Γ′′′ ⇑ θσ (L′⊥ ∨+ · · · ∨+ I ′i
1

∨+ · · · I ′i
ki ∨+ · · · ∨+ J ′j

1

∨+ · · · J ′j
lj ∨+ · · ·) −

Release
Γ′′′ ⇓ θσδ− (L′⊥ ∨+ · · · ∨+ I ′i

1

∨+ · · · I ′i
ki ∨+ · · · ∨+ J ′j

1

∨+ · · · J ′j
lj ∨+ · · ·) −

⇓∀−

Γ′′′ ⇓ ∀x . δ− (L′⊥ ∨+ · · · ∨+ I ′i
1

∨+ · · · I ′i
ki ∨+ · · · ∨+ J ′j

1

∨+ · · · J ′j
lj ∨+ · · ·) −

Focus
Γ′′′ ⇑ −

The left branch can be closed because θσL = θσL′. The right branches are closed by induction

hypothesis. □

Lemma 4.11. Resolution with Selection is admissible in LKF⊥:
For all sets of formulas Γ, for all clauses K1 ⋎ . . . ⋎Kn ⋎C , K ′1

⊥ ⋎D1, . . . , and K ′n
⊥ ⋎Dn , where

S (K1 ⋎ . . . ⋎Kn ⋎C) = {K1; . . . ;Kn }, S (K ′i
⊥ ⋎Di) = ∅ and σ is the most general unifier of the

simultaneous unification problem K1 =
? K ′

1
, . . . ,Kn =

? K ′n ,
if Γ,⌜K1 ⋎ . . . ⋎Kn ⋎C⌝, . . . ⌜K

′
i
⊥ ⋎Di ⌝, . . . ,⌜σ (C ⋎D1 ⋎ · · · ⋎Dn)⌝ ⇑⊢

then Γ,⌜K1 ⋎ . . . ⋎Kn ⋎C⌝, . . . ⌜K
′
i
⊥ ⋎Di ⌝, . . . ⇑⊢.

Proof. By induction on the proof

Γ,⌜K1 ⋎ ... ⋎Kn ⋎C⌝, ...,⌜K
′
i
⊥ ⋎Di ⌝, ...,⌜σ (C ⋎D1 ⋎ ... ⋎Dn)⌝ ⇑⊢. We follow the same idea as in

the proofs of the two precedent lemmas.

If the proof does not begin by focusing on ⌜σ (C ⋎D1 ⋎ · · · ⋎Dn)⌝, this is a simple application of

the induction hypothesis. Otherwise, let Γ′ be Γ,⌜K1 ⋎ . . . ⋎Kn ⋎C⌝, . . . ⌜K
′
i
⊥ ⋎Di ⌝, . . . and Γ′′

be Γ′,⌜σ (C ⋎D1 ⋎ · · · ⋎Dn)⌝. Focusing leads us either to sequents Γ′′ ⇓ θ Ij −, with θ Ij
⊥
in Γ, or

to sequents Γ′′,θ Jk ⇑− upon which one can apply the induction hypothesis. Let us remark that for

each literal L of C or Di , θσL is either one of θ Ij or one of θ Jk . Therefore, we know how to close

proofs of Γ′ ⇑ θσL − for each, either by induction hypothesis or using θ Ij
⊥
in Γ.

To build the proof of Γ′ ⇑⊢, we first focus on ⌜K ′
1

⊥ ⋎D1⌝, instantiating the variables using the
substitution θσ . As explained above, we know how to close the branches coming fromD1, it remains

the branch Γ′,θσK ′
1

⊥ ⇑−.

We do the same, focusing on ⌜K ′
2

⊥ ⋎D2⌝ then ... then ⌜K ′n
⊥ ⋎Dn⌝ and the remaining branch is

Γ′,θσK ′
1

⊥, . . . θσK ′n
⊥ ⇑−.

We can close the proof by focusing on ⌜K1 ⋎ . . . ⋎Kn ⋎C⌝. Branches coming from C can be

closed as before, and the other branches are closed by

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 Guillaume Burel

⌢
⇓ −

Γ′,θσK ′
1

⊥, . . . θσK ′n
⊥ ⇓ θσKi −

since θσK ′i = θσKi for all i . □

Theorem 4.12. For all sets of clauses Γ, if Γ {∗ □, then ⌜Γ⌝ ⇑⊢.

Proof. By induction on the length of the derivation Γ {∗ □. If □ is in Γ, then we focus on

⌜□⌝ = ⊥ and apply ⇓⊥−. If the first step is Factoring, we apply Lemma 4.8. If it is Resolution, we
apply Lemma 4.10. If it is Resolution with Selection, we apply Lemma 4.11. □

Note that the rules of resolution with input selection are admissible, but they are not derivable.

In particular, the size of the proof in LKF
⊥
can be much larger than the resolution derivation, as

expected in a cut-free sequent calculus. Using cuts would lead to a closer correspondence between

resolution derivations and sequent-calculus proofs, as in [18]. However, we chose to stay in the

cut-free fragment to prove that, even in the incomplete case, resolution coincides with cut-free

proofs, as in [29].

5 COMPLETE INSTANCES
5.1 Ordinary Focusing and Semantic Hyperresolution
As said earlier, in standard LKF, not all occurrences of literals can have an arbitrary polarity. Instead,

each atomic formula P is given globally a polarity, and P⊥ has the opposite polarity.

Let us first look at the simple case where atomic formulas are given a positive polarity. We recall

the completeness theorem of LKF:

Theorem 5.1 (Corollary of [31, Theorem 17]). If the literals with a positive polarity are exactly
the atomic formulas, LKF⊥ is (sound and) complete.

If we look at the corresponding resolution calculus, Resolution with Selection for this particular

instance becomes:

¬P1 ⋎ . . . ⋎ ¬Pn ⋎C P ′
1
⋎D1 . . . P ′n ⋎Dn

R.w.S.
σ (C ⋎D1 ⋎ . . . ⋎Dn)

where C and Di for all i contain only positive literals, and σ is the most general unifier of P1 =
?

P ′
1
, . . . ,Pn =

? P ′n . Note that the clause σ (C ⋎D1 ⋎ . . . ⋎Dn) contains only atomic formulas, and in

agreement with the definition of Resolution with Selection, they have a positive polarity; therefore,

no literal would be selected in it even if it was an input clause. Besides, Resolution cannot be

applied, since there exists no clause ¬P ⋎C with S (¬P ⋎C) = ∅.
This corresponding resolution calculus is therefore exactly hyperresolution of Robinson [34]:

premises of an inference contain only positive literals, except one clause whose all negative

literals are resolved at once. Theorem 4.2 therefore links ordinary focusing with hyperresolution.

Consequently, Theorem 5.1 implies the completeness of hyperresolution.

Chaudhuri et al. [16, Theorem 16] prove a similar result by establishing a correspondence between

hyperresolution derivations and proofs in a focused sequent calculus for intuitionistic linear logic,

but only considering Horn clauses. In their setting, choosing a negative polarity for atomic formulas

leads to SLD resolution, which is the reasoning mechanism of Prolog. Note that in our case, choosing

a negative polarity for atomic formulas leads to what is called negative hyperresolution, which

is the same as hyperresolution but with the role of positive and negative literals inversed. The

difference with [16] is that it is concerned with intuitionistic logic, so that positive and negative

literals are not dual.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:19

Let us now look at the general case, where atomic formulas are given an arbitrary polarity. Let

us first stick to the ground case. We recall a refinement of resolution called Semantic hyperresolu-

tion [36][14, Sect. 1.3.5.3]. Let I be an arbitrary Herbrand interpretation, i.e. a model whose domain

is the set of terms interpreted as themselves. Note that I is not assumed to be a model of the input

set of clauses (which is fortunate, since one is trying to show that it is unsatisfiable). Given a clause

C , the idea of semantic hyperresolution is to resolve all literals of C that are valid in I at once, with
clauses in which all literals are not valid in I . This gives the rule:

K1 ⋎ . . . ⋎Kn ⋎C K1

⊥ ⋎D1 . . . Kn
⊥ ⋎DnSHR

C ⋎D1 ⋎ . . . ⋎Dn

where for all i , I |= Ki (and thus I ̸ |= K⊥i), I ̸ |= C and I ̸ |= Di . Note that I ̸ |= C ⋎D1 ⋎ . . . ⋎Dn .

Semantic hyperresolution for a Herbrand interpretation I can be seen as an instance of Resolution
with Input Selection by using the following polarization of atomic formulas: a literal L has a negative
polarity iff I |= L. In that case, SHR corresponds exactly to Resolution with Selection, and Resolution
cannot be applied since we cannot have clauses P ⋎C and ¬P ⋎D where both P and ¬P are not

valid in I .
This particular instance of polarization is in fact the ordinary version of focusing. Indeed, once

a global polarity is assigned to each atomic formula, the set of literals whose polarity is negative

defines a Herbrand interpretation, and we saw reciprocally how to design a global polarization

from the Herbrand interpretation. Theorem 4.2 therefore links ordinary focusing in the ground

case with semantic hyperresolution. They are both complete, thanks to this theorem:

Theorem 5.2 (Corollary of [31, Theorem 17]). Given a global polarization of atomic formulas,
where the polarity of P⊥ is the opposite of that of P , LKF⊥ is (sound and) complete.

Completeness of LKF therefore leads to proofs of completeness of semantic hyperresolution in

the ground case, and hyperresolution in the first-order case, that do not rely on the construction

of a model. To our knowledge, in addition to Chaudhuri et al. [16], only Goubault-Larrecq [27]

showed a similar result. We also provided a proof similar to the one in this paper, but restricted to

Ordered Resolution, without selection of literals [6].

Note that we cannot extend this link between semantic hyperresolution and focusing to the

non-ground case. Indeed, in the non-ground case, I |= L iff I is a model for all ground instances of L.
Hence, given a literal L such that I ̸ |= L, we can nonetheless have an instance σL such that I |= σL;
σL should therefore be selected in the generated clause, but our resolution calculus cannot take

this into account. However, remark that if I |= L then I |= σL, so that σ (S (C)) ⊆ S (σC). Thus, the
condition of Lemma 4.8 is fulfilled. Therefore, even in the non-ground case, Theorem 4.12 can be

used to show that the completeness of semantic hyperresolution implies the completeness of LKF.

5.2 Deduction Modulo Theory
Deduction Modulo Theory [23] is a framework that consists in applying the inference rules of an

existing proof system modulo some congruence over formulas. This congruence represents the

theory, and it is in general defined by means of rewriting rules. To be expressive enough, these

rules are defined not only at the term level, but also for formulas. To get simpler presentations

of theories, we distinguish between rewrite rules that can be applied at positive and at negative

positions by giving them a polarity
3
, where by negative position we mean under an odd number

of ¬. We therefore have positive rules P →+ A and negative rules P →− A where P is an atomic

formula andA an arbitrary formula whose free variables appear in P . The rewrite relation B1

+
−→B2

is defined by saying that there exists either a positive position p and a positive rule P →+ A, or

3
This polarity must not be confused with the other notions of polarity mentioned in the paper.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Guillaume Burel

⌢
−

Γ,L,L⊥ −
Γ −

⊤−
Γ,⊤ −

⊥−
Γ,⊥ −

Γ,A − Γ,B −
∨−

Γ,A ∨ B −

Γ,A,B −
∧−

Γ,A ∧ B −
Γ,A −

∃− x not free in Γ
Γ,∃x . A −

Γ,∀x . A, {t/x }A −
∀−

Γ,∀x . A −

Γ,P ,A −
↑− − P

−
−→AΓ,P −

Γ,¬P ,A⊥ −
↑+ − P

+
−→AΓ,¬P −

Fig. 3. The sequent calculus PUSC⊥

a negative position p and a negative rule P →− A; and a substitution σ such that the subformula

of B1 at position p is σP and B2 equals B1 where the subformula at position p is replaced by σA.
−
−→ is defined dually (negative position and positive rule, or positive position and negative rule).

In Polarized Sequent Calculus Modulo theory [20], the inference rules of the sequent calculus are

applied modulo such a polarized rewriting system, as for instance in

Γ − A,∆ Γ − B,∆
−∧ C

+
−→ ∗A ∧ BΓ − C,∆

.

Note that the implicit semantics of a negative rule P →− A is therefore ∀x . (P ⇒ A), whereas the

semantics of P →+ A is ∀x . (A⇒ P), where x are the free variables of P .
With Kirchner [12], we proved the equivalence of Polarized Sequent Calculus Modulo theory to

a sequent calculus where polarized rewriting rules are applied only on literals, using explicit rules.

This calculus, Polarized Unfolding Sequent Calculus, is almost the calculus PUSC
⊥
presented in

Figure 3. The only difference is that all formulas are put on the left of the sequent in PUSC
⊥
. We

denote by Γ ⊢R the fact that Γ − can be proved in PUSC
⊥
using the polarized rewriting system R.

Note that the rule for the universal quantifier ∀− as well as the unfolding rules ↑− − and ↑+ − contain

an implicit contraction rule, as in the sequent calculus G4 of Kleene, in order to ensure that all

rules of PUSC
⊥
are invertible.

We can translate polarized rewriting rules as formulas with selection, and see PUSC
⊥
as an

instance of LKF
⊥
. We first consider how to translate formulas of the right-hand side of polarized

rewriting rules. We polarize them by choosing positive connectives for ∨ and ∧ and, to unchain the

introduction of the universal quantifier, we introduce delays. (Let us recall that a delay δ+ allows
to force a formula to be positive, and it can be encoded using an existential quantifier.) This gives

the translation:

|L| = L when L is ⊤, ⊥ or a literal |A ∧ B | = |A| ∧+ |B |
|A ∨ B | = |A| ∨+ |B | |∃x . A| = ∃x . |A| |∀x . A| = ∀x . δ+ |A|

Definition 5.3. Given a negative rewriting rule P →− Awhere the free variables of P are x1, . . . ,xn ,
its translation as a formula with selection is [|P →− A|] = ∀x1 . . . xn . ¬P ∨

− δ+ |A|.
Given a positive rewriting rule P →+ Awhere the free variables of P are x1, . . . ,xn , its translation

as a formula with selection is [|P →+ A|] = ∀x1. . . .∀xn . P ∨
− δ+ |A⊥ |.

The translation [|R |] of a polarized rewriting system R is the multiset of the translation of its

rules.

Definition 5.4. Let A be a non-polarized formula. A is called contractible if its top connective is ∀

or ⊥, or if it is a literal.

Definition 5.5. Let N1, . . . ,Nn be a multiset of contractible formulas, and let P1, . . . ,Pm be a multi-

set of non-contractible formulas, then the translation of the PUSC
⊥
sequentN1, . . . ,Nn ,P1, . . . ,Pm −

modulo the rewriting system R is the LKF
⊥
sequent [|R |], |N1 |, . . . , |Nn | ⇑ |P1 |, . . . , |Pm | −.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:21

Theorem 5.6. N1, . . . ,Nn ,P1, . . . ,Pm ⊢R in PUSC⊥ iff [|R |], |N1 |, . . . , |Nn | ⇑ |P1 |, . . . , |Pm | ⊢ in
LKF⊥.

Proof. First, one proves that, in PUSC
⊥
, the rules ⊥−,∀− and ↑− can be delayed until the other

rules are no longer applicable. This can be done by showing that these rules permute with the

other ones, as done by Hermant [29]. Note that this fact can be related with the strategy used

in Tamed [4], a tableaux method based on Deduction Modulo Theory, where rules for universal

quantifiers and for rewriting are applied when no other rules can be.

With this proviso, proofs in both calculi correspond almost exactly. ⊤−, ∧−, ∨− and ∃− in PUSC
⊥

correspond exactly to ⇑⊤−, ⇑∧−, ⇑∨− and ⇑∃− in LKF
⊥
, except that if the subformulas in the premise(s)

are contractible, they have to be put on the left hand side of ⇑ using Store.
The translation of ⊥− corresponds to ⇓⊥−, except that the latter can only be applied when there

are only contractible formulas, which is the case if ⊥− has been delayed as mentioned above:

⊥−
N1, . . . ,⊥, . . . ,Nn − becomes

⇓⊥−
[|R |], |N1 |, . . . ,⊥, . . . , |Nn | ⇓ ⊥ −

Focus
[|R |], |N1 |, . . . ,⊥, . . . , |Nn | ⇑ −

. Conversely, if a

proof in LKF
⊥
starts by focusing on ⊥, then necessarily it is immediately closed by ⇓⊥−, which is

translated to ⊥− in PUSC
⊥
.

Similarly, ∀− corresponds to ⇓∀−, with the same condition that there are only contractible formulas:

N1, . . . ,Nn ,∀x . A, {t/x }A −
∀−

N1, . . . ,Nn ,∀x . A −
becomes

[|R |], |N1 |, . . . , |Nn |,∀x . δ
+ |A| ⇑ |{t/x }A| −

Release
[|R |], |N1 |, . . . , |Nn |,∀x . δ

+ |A| ⇓ δ+ |{t/x }A| −
⇓∀−

[|R |], |N1 |, . . . , |Nn |,∀x . δ
+ |A| ⇓ ∀x . δ+ |A| −

Focus
[|R |], |N1 |, . . . , |Nn |,∀x . δ

+ |A| ⇑ −

with an extra Store step if {t/x }A is contractible. Here again, conversely, if the proof in LKF
⊥
starts

by focusing on the translation of a formula whose top connective is ∀, then it is necessarily of the

shape above, which corresponds to ∀− in PUSC
⊥
.

For the unfolding rules, if P rewrites positively to A, then there exists a rule Q →+ B and

a substitution θ such that P = θQ and A = θB. This rule corresponds to a formula [|Q →+

B |] = ∀x . Q ∨− δ+ |B⊥ |. Always with the proviso that there are only contractible formulas, let

Γ = [|R ′ |],∀x . Q ∨− δ+ |B⊥ |, |N1 |, . . . , |Nn |,¬P , then ↑+ − therefore corresponds to

⌢
⇓ − Γ ⇓ P −

Γ ⇑ |A⊥ | −
Release

Γ ⇓ δ+ |A⊥ | −
⇓∨−

Γ ⇓ θQ ∨− δ+ |θB⊥ | −
⇓∀−

Γ ⇓ ∀x . Q ∨− δ+ |B⊥ | −
Focus

Γ ⇑ −

with an extra Store step if |A⊥ | is contractible. Conversely, let us look how the encoding of a

rewriting ruleQ →+ B, namely ∀x . Q ∨− δ+ |B⊥ |, can be involved in a LKF
⊥
proof. Given a sequent

[|R ′ |],∀x . Q ∨− δ+ |B⊥ |,Γ ⇑−, the only way to use ∀x . Q ∨− δ+ |B⊥ | is to apply a Focus on it. In that

case, the derivation is necessarily of the same shape as above, so, in order to close it, we know that

there must be a literal ¬θQ in Γ. Therefore, the derivation corresponds to an unfolding of ¬θQ into

|θB⊥ | in PUSC
⊥
.

The case of a negative rewriting is dual. □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Guillaume Burel

P ⋎C ¬Q ⋎D
Resolution a

σ (C ⋎D)
L ⋎K ⋎CFactoring σ =mдu (L, K)
σ (L ⋎C)

P ⋎C
Ext. Narr.− a

, Q →− D
σ (D ⋎C)

¬Q ⋎D
Ext. Narr.+ a

, P →+ ¬C
σ (C ⋎D)

aσ =mдu (P,Q)

Fig. 4. Inference rules of Polarized Resolution Modulo theory

Let us now consider the subcase where the rewriting rules are clausal, according to the terminol-

ogy of Dowek [22], e.g. they are of the form P →− C or P →+ ¬C for some clausal formula C . In
that case, the resolution method based on Deduction Modulo Theory [23] can be refined into what

is called Polarized Resolution Modulo theory [22], whose rules are given in Fig. 4. (A refinement

of) Polarized Resolution Modulo theory is actually implemented in the automated theorem prover

iProverModulo [7].

By noting that the translation of the rule Q →− D is [|Q →− D |] = ∀x1. . . .∀xn . ¬Q ∨
− δ+ |D |

whereas ⌜¬Q ⋎D⌝ = ∀x1. . . .∀xn . ¬Q ∨
− δ− |D |, we can relate the rule Q →− D with the clause

with selection ¬Q ⋎D, which is called a one-way clause by Dowek [22]. Indeed, they only differ by

the polarity of the delays. However, because of the presence of the ∨− connective, the delay δ−

is useless in ⌜¬Q ⋎D⌝. Similarly, since the top connective of |D | is ∨+, the delay δ+ is useless in

[|Q →− D |]. Ext. Narr.− can therefore be seen as an instance of the Resolution with Selection rule:

¬Q ⋎D P ⋎C
Resolution with Selection σ =mдu (P,Q)

σ (D ⋎C)
.

Similarly, P →+ ¬C is related to P ⋎C .
Consequently, since PUSC

⊥
corresponds to LKF

⊥
, and Resolution with Input Selection corre-

sponds to Polarized Resolution Modulo theory, Theorem 4.2 leads to a new and more generic proof

of the correspondence between PUSC
⊥
and Polarized Resolution Modulo theory.

DeductionModulo Theory is not always complete. This is the case only if the cut rule is admissible

in Polarized Sequent Calculus Modulo theory. It holds for some particular theories, e.g. Church’s

Simple Type Theory [23] and arithmetic [25]. There are more or less powerful techniques that

ensures this property [9, 21, 24, 28]. We even proved that any consistent first-order theory can be

presented by a rewriting system admitting the cut rule [8]. As presented with Dowek [11] and

discussed in the introduction, the fact that completeness is not proved once for all, but needs to be

proved for each particular theory, is essential. Indeed, if a theory is presented entirely by rewriting

rules, completeness implies the consistency of the theory, since no rule can be applied on the empty

set of clauses. Consequently, the proof of the completeness cannot be easier than the proof of

consistency of the theory, and, according to Gödel, cannot be proven in the theory itself.

5.3 Superdeduction
We can go a step further than what is done concerning Deduction Modulo Theory and benefit from

focusing to decompose the right-hand side formula after an unfolding has occurred. This leads

to what Brauner, Houtmann, and Kirchner [5] called Superdeduction. Houtmann [30] studied the

links between Superdeduction and focusing, but not with the idea that the rules themselves should

be considered as polarized formulas. To link Superdeduction with LKF
⊥
, we just need to change the

translation of rewriting rules in order to ensure that the right-hand side is decomposed as much as

possible. This is done by suppressing the positive delay δ+ and trying to stay in synchronous (i.e.

focused) phase by using negative connectives, until we reach a ∃ quantifier, after which we try to

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:23

stay in the asynchronous phase. Note, however, that literals are always given a positive polarization.

We introduce the negative translation of a formula:

⌋⌈L⌉⌊ = L when L is ⊤, ⊥ or a literal

⌋⌈A ∧ B⌉⌊ = ⌋⌈A⌉⌊∧−⌋⌈B⌉⌊ ⌋⌈A ∨ B⌉⌊ = ⌋⌈A⌉⌊∨−⌋⌈B⌉⌊
⌋⌈∃x . A⌉⌊ = ∃x . |A| ⌋⌈∀x . A⌉⌊ = ∀x . ⌋⌈A⌉⌊

and the translation of rewrite rules becomes:

[|P →− A|] = ∀x . ¬P∨−⌋⌈A⌉⌊

[|P →+ A|] = ∀x . P∨−⌋⌈A⊥⌉⌊

The synthetic rules given by the translation of rewriting rules correspond exactly to the superrules

of Superdeduction.

Example 5.7. Let us consider the proposition rewrite rules defining the natural numbers as the

set of terms verifying the inductive predicates, as in [5].

n ∈ N→ ∀p. 0 ∈ p ⇒ H (p) ⇒ n ∈ p

H (p) → ∀m.m ∈ p ⇒ s (m) ∈ p

Here, p is a term representing a class of natural number, as presented in [25]. Each rule is considered

with both positive and negative polarities.

The translation above gives the following formulas with polarization:

∀n. ¬n ∈ N ∨− (∀p. ¬0 ∈ p ∨− ¬H (p) ∨− n ∈ p) (11)

∀n. n ∈ N ∨− (∃p. 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p) (12)

∀p. ¬H (p) ∨− (∀m. ¬m ∈ p ∨− s (m) ∈ p) (13)

∀p. H (p) ∨− (∃m.m ∈ p ∧+ s (m) ∈ p) (14)

This leads to the following synthetic rules:

Γ,n ∈ N,¬0 ∈ t ⇑ − Γ,n ∈ N,¬H (t) ⇑ − Γ,n ∈ N,n ∈ t ⇑ −
(11)−

Γ,n ∈ N ⇑ −

Γ,¬n ∈ N,0 ∈ p,H (p),¬n ∈ p ⇑ −
(12)− p not free in Γ

Γ,¬n ∈ N ⇑ −

Γ,H (p),¬u ∈ p ⇑ − Γ,H (p),s (u) ∈ p ⇑ −
(13)−

Γ,H (p) ⇑ −

Γ,¬H (p),m ∈ p,¬s (m) ∈ p ⇑ −
(14)− m not free in Γ

Γ,¬H (p) ⇑ −

For instance (12)− corresponds to the following focused derivation:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 Guillaume Burel

⌢
⇓ − ∆,¬n ∈ N ⇓ n ∈ N −

∆,¬n ∈ N,0 ∈ p,H (p),¬n ∈ p ⇑ −
Store

∆,¬n ∈ N,⇑ 0 ∈ p,H (p),¬n ∈ p −
⇑∧−

∆,¬n ∈ N ⇑ 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p −
⇑∃− a

∆,¬n ∈ N ⇑ ∃p. 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p −
Release

∆,¬n ∈ N ⇓ ∃p. 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p −
⇓∨−

∆,¬n ∈ N ⇓ n ∈ N ∨− (∃p. 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p) −
⇓∀−

∆,¬n ∈ N ⇓ ∀n. n ∈ N ∨− (∃p. 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p) −
Focus

∆,¬n ∈ N ⇑ −
ap not free in ∆

where ∆ is Γ,∀n. n ∈ N ∨− (∃p. 0 ∈ p ∧+ H (p) ∧+ ¬n ∈ p).
These synthetic rules are exactly the rules ∈NL , ∈NR , heredL , and heredR obtained by Brauner

et al. [5], except that in our presentation all formulas are put on the left of the sequent.

Note that the same kind of encodings can be used to show that Definitional reflection, as defined

by Schroeder-Heister [35], can be seen as an instance of LKF
⊥
.

5.4 Beyond Deduction Modulo Theory
Example 5.8. Let us recall the set of clauses from the Introduction:

¬X ∈ P (Y) ⋎ ¬Z ∈ X ⋎Z ∈ Y (1) X ∈ P (Y) ⋎d (X ,Y) ∈ X (2)

X ∈ P (Y) ⋎ ¬d (X ,Y) ∈ Y (3)

Note that this example is not covered by Ordered Resolution with Selection, at least not if a

simplification ordering is used, because we cannot have X ∈ P (Y) ≻ d (X ,Y) ∈ X since with

θ = {X 7→ P (Z);Y 7→ Z } their instances are ordered in the wrong direction: P (Z) ∈ P (Z) ≺
d (P (Z),Z) ∈ P (Z).

The synthetic rules of the example from the Introduction correspond to the derivations when

one of the clauses is focused on. For instance, if we consider the clause (1), in a context Γ containing

this clause, a proof putting the focus on ⌜(1)⌝ is necessarily of the following shape:

⌢
⇓ − Γ ⇓ ¬u ∈ P (v) −

⌢
⇓ − Γ ⇓ ¬t ∈ u −

Γ,t ∈ v ⇑ −
Store

Γ ⇑ t ∈ v −
Release

Γ ⇓ t ∈ v −
⇓∨−

Γ ⇓ ¬u ∈ P (v) ∨− ¬t ∈ u ∨− t ∈ v −
⇓∀−

Γ ⇓ ∀X Y Z . ¬X ∈ P (Y) ∨− ¬Z ∈ X ∨− Z ∈ Y −
Focus

Γ ⇑ −

where t ,u,v are arbitrary terms, and where, to be able to close the left and middle branches,

u ∈ P (v) and t ∈ u must belong to Γ.
So Γ is in fact of the form ∀X Y Z . ¬X ∈ P (Y) ∨+ ¬Z ∈ X ∨+ Z ∈ Y ,∆,u ∈ P (v),t ∈ u for some

∆, and the axiom ∀X Y Z . ¬X ∈ P (Y) ∨+ ¬Z ∈ X ∨+ Z ∈ Y can be replaced by the synthetic rule:

∆,u ∈ P (v),t ∈ u,t ∈ v ⇑ −
(1)

∆,u ∈ P (v),t ∈ u ⇑ −
.

The computation of the other synthetic rules is left as an exercise for the reader.

Note, by analogy of this synthetic rule with the unfolding rules in PUSC
⊥
(see Section 5.2), how

(1) can be seen as a rewriting rule that rewrites simultaneously x ∈ P (y) and z ∈ x into z ∈ y.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:25

On the resolution side, if we consider the ground instances of Resolution with Selection, we
have:

¬X ∈ P (Y) ⋎ ¬Z ∈ X ⋎Z ∈ Y u ∈ P (v) ⋎C t ∈ u ⋎D
R.w.S.

t ∈ v ⋎C ⋎D

X ∈ P (Y) ⋎ d (X ,Y) ∈ X ¬u ∈ P (v) ⋎C
R.w.S.

d (u,v) ∈ u ⋎C

X ∈ P (Y) ⋎ ¬d (X ,Y) ∈ Y ¬u ∈ P (v) ⋎C d (u,v) ∈ v ⋎D
R.w.S.

C ⋎D
hence the derived rules given in the introduction, where the clauses of the theory are not mentioned.

The question that remains is how we can prove the completeness of such a selection. We consider

the case when there is a fixed selection on a finite set of clauses, and arbitrary other clauses without

selection. The intuition is that the clauses with selection constitute the theory in which the proof

is searched for, whereas the other clauses represent some goal to be proven in that theory. In that

case, one can consider the second projection S attached to the clauses of the theory, which we call

a selection.

We can in fact consider only subselections.

Definition 5.9 (Singleton subselection). Given a selection S, the selection S1 is a singleton subse-

lection of S if

• S1 (C) ⊆ S (C) for all C ∈ Γ
• if S (C) , ∅ then card(S1 (C)) = 1.

Example 5.10. A singleton subselection of Example 5.8 can be

¬X ∈ P (Y) ⋎ ¬Z ∈ X ⋎Z ∈ Y X ∈ P (Y) ⋎ d (X ,Y) ∈ X X ∈ P (Y) ⋎ ¬d (X ,Y) ∈ Y

In the case of propositional logic, it is enough to consider only singleton subselections. To show

this, given a selection S, let us arbitrarily order the occurrences of literals selected by S in each

clause of the theory. Singleton subselections can be partially ordered by the transitive closure of

the following relation : S1 is greater than S
′
1
if in some clause, S1 selects a greater literal than S

′
1
.

Since there are only finitely many subselections, this ordering is well-founded.

We prove the following lemma:

Lemma 5.11. Given a selection S and a singleton subselection S1, assume that for all literals L that
are selected by S and that are greater than the literal selected by S1, L⊥ is in Γ.
If for all singleton subselections S′

1
smaller than or equal to S1, the sequent ⌜Γ⌝ ⇑− has a proof

using S′
1
, then this sequent has a proof using S.

Proof. By lexicographic induction on S1 and on the proof of ⌜Γ⌝ ⇑− using it.

If the last proof step is valid using S, we apply it and proceed by induction on the subproofs.

If it is not, this means that the negation of some literal that is not selected in S1 but that is

selected in S is not in the context ⌜Γ⌝, thus preventing to close a branch using

⌢
⇓ −. In other words,

the proof ends by focusing on a formula corresponding to a clause K1 ⋎ · · · ⋎Kn ⋎C where the Ki s

are in decreasing order, S (K1 ⋎ . . . ⋎Kn ⋎C) = {K1, . . . ,Kn } and S1 (K1 ⋎ . . . ⋎Kn ⋎C) = {Kj },

and we have a derivation of the form:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 Guillaume Burel

⌢
⇓ − ⌜Γ⌝ ⇓ Kj − ⌜Γ⌝ ⇓ δ− (K1 ∨

+ · · · ∨+ Kn ∨
+ θC) −

⇓∨−

⌜Γ⌝ ⇓ θ (Kj∨
−δ− (K1∨

+ · · · ∨+Kn∨
+C) −

⇓∀−

⌜Γ⌝ ⇓ ∀x .Kj∨
−δ− (K1∨

+ · · · ∨+Kn∨
+C) −

Focus
⌜Γ⌝ ⇑ −

using S1.

By assumption, all Ki
⊥
for i < j are in ⌜Γ⌝. To close the left branch, we also have Kj

⊥
in ⌜Γ⌝. Let

us now consider the singleton subselection equal to S1 except that it selects Kj+1 instead of Kj in

K1 ⋎ · · · ⋎Kn ⋎C . This subselection is smaller than S1, so we can apply the induction hypothesis

to obtain a proof using S. □

Theorem 5.12. Assume that S selects only ground literals.
Resolution with input selection S is complete iff for all singleton subselections S1 of S, Resolution

with input selection S1 is complete.

Proof. For the “only if” part, just note that a Resolution with Selection step using S can easily

be simulated by a Resolution with Selection step using S1 plus possibly one or several applications

of Resolution.
Assume Γ to be unsatisfiable. Since Resolution with input selection is complete for all singleton

subselection S1, it means that for each singleton subselection S1 the sequent ⌜Γ⌝ ⇑− is provable

using S1, according to Theorem 4.12. Let us consider S1 the singleton subselection selecting the

greatest selected literal in each clause, if it exists. The hypothesis of Lemma 5.11 are fulfilled,

hence ⌜Γ⌝ ⇑− has a proof using S. Using Theorem 4.7, the empty clause can be derived from Γ in

Resolution with input selection S. It is therefore complete. □

We conjecture that the same theorem holds even if non-ground literals are selected.

Since singleton subselections can be linked with rewriting systems in Deduction Modulo Theory

according to Section 5.2, we could reduce the problem of completeness in our framework to several

problems of completeness in Deduction Modulo Theory.

In particular, to prove completeness if we have a clause L1 ⋎ . . . ⋎ Ln ⋎K1 ⋎ . . . ⋎Km , one could

prove completeness of the n singleton subselections

L1 ⋎ . . . ⋎ Ln ⋎K1 ⋎ . . . ⋎Km

...

L1 ⋎ . . . ⋎ Ln ⋎K1 ⋎ . . . ⋎Km

which correspond, according to Section 5.2, to the n rewriting systems

L1 →
± (¬)∀x . L2 ∨ · · · ∨ Ln ∨ K1 ∨ · · · ∨ Km

...

Ln →
± (¬)∀x . L1 ∨ · · · ∨ Ln−1 ∨ K1 ∨ · · · ∨ Km

in Deduction Modulo Theory.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Linking Focusing and Resolution with Selection 1:27

Example 5.13. Following Example 5.8, proving the completeness of our selection would amount

to proving cut admissibility in Deduction Modulo Theory for the four following rewriting systems:

X ∈ P (Y) →− ∀Z . ¬Z ∈ X ∨ Z ∈ Y

X ∈ P (Y) →+ ¬d (X ,Y) ∈ X

X ∈ P (Y) →+ d (X ,Y) ∈ Y

Z ∈ X →− ∀Y . ¬X ∈ P (Y) ∨ Z ∈ Y

X ∈ P (Y) →+ ¬d (X ,Y) ∈ X

X ∈ P (Y) →+ d (X ,Y) ∈ Y

X ∈ P (Y) →− ∀Z . ¬Z ∈ X ∨ Z ∈ Y

X ∈ P (Y) →+ ¬d (X ,Y) ∈ X

d (X ,Y) ∈ Y →− X ∈ P (Y)

Z ∈ X →− ∀Y . ¬X ∈ P (Y) ∨ Z ∈ Y

X ∈ P (Y) →+ ¬d (X ,Y) ∈ X

d (X ,Y) ∈ Y →− X ∈ P (Y)

Cut admissibility of these systems can be proved by analyzing so-called critical proofs as defined

by Burel and Kirchner [12].

CONCLUSION AND FURTHERWORK
We generalized focusing and resolution with selection, proved that they correspond, and showed

how known calculi are instances of this framework, namely ordinary focusing, hyperresolution,

Deduction Modulo Theory and Superdeduction. We also showed how to reduce completeness of

this framework to several completeness proofs in Deduction Modulo Theory. We can therefore

reuse the various techniques for proving completeness in Deduction Modulo Theory [9, 21, 24, 28]

in our framework. As Deduction Modulo Theory already gives significant results in industrial

applications when the theory is a variant of set theory (more precisely, set theory of the B method)

[13], we can expect our framework to lead to even better outcomes. The notable results presented

here raise the following new areas of investigations.

First, we need to study how to apply selection also in the generated clauses. This should allow

us to cover the cases of Ordered Resolution with Selection and of Semantic Resolution in the

first-order case. Dually, in the sequent calculus part, this would correspond to the possibility to

dynamically add selection in formulas of subderivations. This could probably be linked with the

work of Deplagne [19] where rewrite rules corresponding to induction hypotheses are dynamically

added in the rewriting system of a sequent calculus for Deduction Modulo Theory. Note that we

already have one direction, namely from Resolution with Input Selection to LKF
⊥
, since Lemmas

4.8, 4.10, and 4.11 do not assume anything on the generated clauses; except, for Factoring, that it
selects at least the instances of literals that were already selected. The converse direction would

require a meta-theorem of completeness, since it is obviously not complete for all possible dynamic

choices of selection.

Since focusing is defined not only for classical first-order logic but also for linear, intuitionistic,

modal logics, the work in this paper could serve as a starting point to study how to get automated

proof-search methods for these logics with a selection mechanism.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:28 Guillaume Burel

Another worthwhile point is how equality should be handled in our framework. In particular,

it would be interesting to see how paramodulation calculi, in particular superposition, can be

embedded into a sequent calculus.

Finally, it would be worth investigating whether completeness proofs based on model con-

struction, such as semantic completeness proofs of tableaux (related to sequent calculus), and

completeness proof of superposition [2], can be related one to the other in our framework.

ACKNOWLEDGMENTS
We would like to thank Dale Miller and Kaustuv Chaudhuri for their comments, as well as the

anonymous referees for their precious remarks.

REFERENCES
[1] Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation

2, 3 (1992), 297–347.

[2] L. Bachmair and H. Ganzinger. 1994. Rewrite-based equational theorem proving with selection and simplification.

Journal of Logic and Computation 4, 3 (1994), 1–31.

[3] Leo Bachmair and Harald Ganzinger. 2001. Resolution Theorem Proving. In Handbook of Automated Reasoning,
John Alan Robinson and Andrei Voronkov (Eds.). Elsevier and MIT Press, 19–99.

[4] Richard Bonichon and Olivier Hermant. 2006. A Semantic Completeness Proof for TaMed. In LPAR (LNCS), Miki

Hermann and Andrei Voronkov (Eds.), Vol. 4246. Springer, 167–181.

[5] Paul Brauner, Clément Houtmann, and Claude Kirchner. 2007. Principle of superdeduction. In LICS, Luke Ong (Ed.).
41–50.

[6] Guillaume Burel. 2010. Embedding Deduction Modulo into a Prover. In CSL (LNCS), Anuj Dawar and Helmut Veith

(Eds.), Vol. 6247. Springer, 155–169.

[7] Guillaume Burel. 2011. Experimenting with Deduction Modulo. In CADE (LNCS), Viorica Sofronie-Stokkermans and

Nikolaj Bjørner (Eds.), Vol. 6803. Springer, 162–176.

[8] Guillaume Burel. 2013. From Axioms to Rewriting Rules. (2013). Available at http://web4.ensiie.fr/~guillaume.burel/

download/burel13axioms.pdf.

[9] Guillaume Burel. 2014. Cut Admissibility by Saturation. In RTA-TLCA (LNCS), Gilles Dowek (Ed.), Vol. 8560. Springer,

124–138.

[10] Guillaume Burel. 2018. Linking Focusing and Resolution with Selection. In MFCS 2018 (LIPIcs), Igor Potapov, Paul
Spirakis, and James Worrell (Eds.), Vol. 117. Schloss Dagstuhl–Leibniz-Zentrum fÃĳr Informatik, Dagstuhl, Germany,

9:1–9:14. https://doi.org/10.4230/LIPIcs.MFCS.2018.9

[11] Guillaume Burel and Gilles Dowek. 2009. How can we prove that a proof search method is not an instance of another?.

In LFMTP (ACM International Conference Proceeding Series). ACM, 84–87.

[12] Guillaume Burel and Claude Kirchner. 2010. Regaining Cut Admissibility in Deduction Modulo using Abstract

Completion. Information and Computation 208, 2 (2010), 140–164.

[13] Guillaume Bury, David Delahaye, Damien Doligez, Pierre Halmagrand, and Olivier Hermant. 2015. Automated

Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo. In LPAR (EPiC Series in Computing),
Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov (Eds.), Vol. 35. EasyChair, 42–58. http:

//www.easychair.org/publications/volume/LPAR-20

[14] Samuel R. Buss (Ed.). 1998. Handbook of proof theory. Elsevier, Amsterdam.

[15] Kaustuv Chaudhuri and Frank Pfenning. 2005. A Focusing Inverse Method Theorem Prover for First-Order Linear

Logic. In CADE (LNCS), Robert Nieuwenhuis (Ed.), Vol. 3632. Springer, 69–83.
[16] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. 2008. A Logical Characterization of Forward and Backward

Chaining in the Inverse Method. Journal of Automated Reasoning 40, 2-3 (2008), 133–177.

[17] Zakaria Chihani, Tomer Libal, and Giselle Reis. 2015. The Proof Certifier Checkers. In TABLEAUX (LNCS), Vol. 9323.
Springer, Wroclaw, Poland, 201–210.

[18] Zakaria Chihani, Dale Miller, and Fabien Renaud. 2013. Foundational Proof Certificates in First-Order Logic. In CADE
(LNCS), Maria Paola Bonacina (Ed.), Vol. 7898. Springer, 162–177.

[19] Eric Deplagne and Claude Kirchner. 2004. Induction as Deduction Modulo. Rapport de recherche. LORIA. http:

//www.loria.fr/publications/2004/A04-R-468/A04-R-468.ps

[20] Gilles Dowek. 2002. What Is a Theory?. In STACS (LNCS), Helmut Alt and Afonso Ferreira (Eds.), Vol. 2285. Springer,

50–64.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://web4.ensiie.fr/~guillaume.burel/download/burel13axioms.pdf
http://web4.ensiie.fr/~guillaume.burel/download/burel13axioms.pdf
https://doi.org/10.4230/LIPIcs.MFCS.2018.9
http://www.easychair.org/publications/volume/LPAR-20
http://www.easychair.org/publications/volume/LPAR-20
http://www.loria.fr/publications/2004/A04-R-468/A04-R-468.ps
http://www.loria.fr/publications/2004/A04-R-468/A04-R-468.ps

Linking Focusing and Resolution with Selection 1:29

[21] Gilles Dowek. 2006. Truth Values Algebras and Proof Normalization. In TYPES (LNCS), Thorsten Altenkirch and Conor

McBride (Eds.), Vol. 4502. Springer, 110–124.

[22] Gilles Dowek. 2010. Polarized Resolution Modulo. In IFIP TCS (IFIP AICT), Cristian S. Calude and Vladimiro Sassone

(Eds.), Vol. 323. Springer, 182–196.

[23] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. 2003. Theorem Proving Modulo. Journal of Automated Reasoning
31, 1 (2003), 33–72.

[24] Gilles Dowek and Benjamin Werner. 2003. Proof Normalization Modulo. The Journal of Symbolic Logic 68, 4 (2003),
1289–1316.

[25] Gilles Dowek and Benjamin Werner. 2005. Arithmetic as a Theory Modulo. In RTA (LNCS), Jürgen Giesl (Ed.), Vol. 3467.

Springer, 423–437.

[26] Mahfuza Farooque, Stéphane Graham-Lengrand, and Assia Mahboubi. 2013. A bisimulation between DPLL(T) and a

proof-search strategy for the focused sequent calculus. In LFMTP, Alberto Momigliano, Brigitte Pientka, and Randy

Pollack (Eds.). ACM, 3–14.

[27] Jean Goubault-Larrecq. 2002. A Note on the Completeness of Certain Refinements of Resolution. Research Report LSV-02-8.
Laboratoire Spécification et Vérification, ENS Cachan, France.

[28] Olivier Hermant. 2005. Méthodes Sémantiques en Déduction Modulo. Ph.D. Dissertation. École Polytechnique.
[29] Olivier Hermant. 2009. Resolution is Cut-Free. Journal of Automated Reasoning 44, 3 (2009), 245–276.

[30] Clément Houtmann. 2008. Axiom directed Focusing. In Types for Proofs and Programs (LNCS), Stephano Berardi,

Ferruccio Damiani, and Ugo de’Liguoro (Eds.), Vol. 5497. Springer, 169–185.

[31] Chuck Liang and Dale Miller. 2009. Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical
Computer Science 410, 46 (2009), 4747–4768. Abstract Interpretation and Logic Programming: In honor of professor

Giorgio Levi.

[32] Sean McLaughlin and Frank Pfenning. 2008. Imogen: Focusing the Polarized Inverse Method for Intuitionistic

Propositional Logic. In LPAR (Lecture Notes in Computer Science), Iliano Cervesato, Helmut Veith, and Andrei Voronkov

(Eds.), Vol. 5330. Springer, 174–181.

[33] Dale Miller and Marco Volpe. 2015. Focused Labeled Proof Systems for Modal Logic. In LPAR (LNCS), Martin Davis,

Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (Eds.), Vol. 9450. Springer, 266–280.

[34] J. A. Robinson. 1965. Automatic Deduction with Hyper-Resolution. International Journal of Computer Mathematics 1
(1965), 227–234.

[35] Peter Schroeder-Heister. 1990. Cut Elimination for Logics with Definitional Reflection.. In Nonclassical Logics and
Information Processing (LNCS), Vol. 619. Springer, 146–171.

[36] James R. Slagle. 1967. Automatic Theorem Proving With Renamable and Semantic Resolution. J. ACM 14, 4 (1967),

687–697.

[37] Larry Wos, George A. Robinson, and Daniel F. Carson. 1965. Efficiency and Completeness of the Set of Support Strategy

in Theorem Proving. J. ACM 12, 4 (1965), 536–541.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Focusing with Polarized Occurrences of Atomic Formulas
	2.1 Synthetic rules

	3 Resolution with Input Selection
	4 LKF Simulates Resolution with Input Selection
	4.1 From Focused Proofs to Resolution Derivations
	4.2 From Resolution Derivations to Focused Proofs

	5 Complete Instances
	5.1 Ordinary Focusing and Semantic Hyperresolution
	5.2 Deduction Modulo Theory
	5.3 Superdeduction
	5.4 Beyond Deduction Modulo Theory

	Acknowledgments
	References

