
HAL Id: hal-02908793
https://hal.science/hal-02908793

Submitted on 29 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stable and Optimal Interface Treatment for Partitioned
Conjugate Heat Transfer Problems

Marc-Paul Errera, Rocco Moretti, Yohann Bachelier, Tristan Soubrié

To cite this version:
Marc-Paul Errera, Rocco Moretti, Yohann Bachelier, Tristan Soubrié. Stable and Optimal Interface
Treatment for Partitioned Conjugate Heat Transfer Problems. AIAA Scitech 2019 Forum, Jan 2019,
SAN DIEGO, United States. �10.2514/6.2019-1561�. �hal-02908793�

https://hal.science/hal-02908793
https://hal.archives-ouvertes.fr


 1 

Stable and Optimal Interface Treatment for Partitioned 
Conjugate Heat Transfer Problems 

Marc-Paul Errera,1  Rocco Moretti2, Yohann Bachelier3 
DAAA-NFLU, ONERA, Université Paris Saclay, Châtillon, France 99232 

 
and 
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In conjugate heat transfer (CHT) analysis, the fluid-solid heat transfer 

calculation is realized by expanding the fluid capability to include heat conduction  
in solid regions neighboring the fluid. Stability conditions of CHT analysis can be 
provided by a simplified model problem and from this model, two fundamental 
parameters are introduced in the coupled approach : a "numerical" Biot number, and 
an optimal coefficient. The first parameter defines the nature of the fluid-solid 
interaction. The optimal coefficient ensures unconditional stability. Results 
presented in this paper consider a wide range of steady thermal phenomena from 
weak to very strong fluid-solid interaction (insulating materials). At the end of the 
paper, an example of transient CHT is also shown.  The methods proposed in this 
paper illustrate that a model problem can provide effective and practical solutions 
directly applicable to complex conjugate heat transfer problems. 

I. Nomenclature 

 a =    thermal diffusivity, m2/s 
)(∆Bi  =  mesh Biot number   

νBi  =  numerical Biot number   

D  =  Fourier number    

D  =  normalized Fourier number  
h  =  coupling coefficient, Wm-2 K-1 
K  =  thermal conductance, Wm-2 K -1 
q  = heat flux, Wm-2 
T  = temperature, K 
α  =  coupling coefficient, Wm-2 K-1 
λ  = thermal conductivity, Wm-1 K-1 

y∆   =  size 1st cell, m 
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II. Introduction 

   Conjugate heat transfer (CHT) is employed to analyze thermal interaction processes at a fluid-solid 
interface. Heat transfer is of fundamental importance in many fluid dynamics applications [1][2] since 
flows are often confined within some material. Moreover, heat is in general transferred and change the flow 
properties in a non-trivial way. As a result, a coupled approach is the most accurate way to implement when 
all boundary conditions and thermal state of a device are interactively evaluated. It is the reason why, CHT, 
also called thermal fluid-solid interaction (FSI) has become an important subfield of numerical simulation. 
In recent years, many papers were published concerning the numerical modeling of CHT problems and 
many interesting stability studies are available [3][4][5][6][7][8][9][10]. 
 Recently, we have shown using a 1D thermal model problem that in a coupled system, a numerical 
transition can be identified [11][12]. This fundamental result has been derived from a normal mode stability 
analysis based on the theory of Godunov-Ryabenkii [13] applied to a model problem. This transition can be 
regarded as an optimal choice in terms of stability and convergence. The performance of this method was 
tested in an industrial furnace and the relevance of this model was fully confirmed [14]. On this 
mathematical basis, the influence of the main numerical and physical parameters can be understood and 
evaluated.  
 This paper presents the main results of this model problem with a Dirichlet-Robin interfacial procedure. 
The model higlights two fundamental parameters, a "numerical" Biot number and an optimal coupling 
coefficient. The first parameter determines the nature (weak, moderate, strong) of the fluid-solid interaction 
The optimal coefficient ensures, at least theoretically, unconditional stability. However, in the case of strong 
FSI, numerical stability issues may arise. The final part of the paper will focus on unsteady CHT and it will 
be shown that the model problem can also provide efficient solutions for obtaining stable coupled 
computations. 

III. Dirichlet-Robin Interface treatment 

A. Partitioned approach  
 The simulation of multiphysics problems, i.e. fluid-solid interaction, is generally accomplished by 
partitioned staggered schemes [15][16][17]. Each system is treated by discretization techniques with 
algorithms that are known to perform well individually. As a result, a stable fluid-solid solution will be 
sought for steady CHT by coupling a transient fluid solution with a steady solid state.  

B. Model problem 
 The nature of instabilities derived from a 1D model problem can give insight into the potential 
instabilities in 2D/3D computations. Thus, the behavior of interface conditions in CHT is often studied 
using a normal mode analysis applied to a 1D model. This model is composed of two partitions with a 
shared interface. 
 Interface conditions are needed on either side of the shared interface, where coupling conditions are 
applied. Our goal is to ensure a stable CHT process and to avoid destabilizing effects. It is well known that 
Robin conditions have many attractive features and thus a Robin condition is applied to the solid side 

                              fffsfs TqTq αα +=+ ˆˆ                                                                    (1) 

 The subscripts f and s denote the fluid and solid domain respectively and the (^) notation indicates the 
sought values. q  is the interface heat flux and T is the interface temperature. The general Robin condition 

(1) introduces the numerical coupling parameter fα the choice of which directly influences the stability of 

the coupling process. On the fluid side, a Dirichlet condition is imposed: 

                                      sf TT =ˆ                                                                                                (2) 

C. Amplification factor and mesh Biot number 
 The Godunov-Ryabenkii (G-R) stability analysis is very similar to the standard Fourier stability method 
except that the Fourier analysis ignores boundary conditions. A normal mode solution is applied to the case 
defined by the equations in the discrete model problem, and, after elementary transformations, we obtain 
(see [11][12] for more details) the following temporal amplification factor    
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Where fa is the thermal diffusivity and fκ  is the “spatial” amplification factor that depends on fα and on 

the Fourier number D, expressed by 
                      2

ff xtaD ∆∆=                          (4) 

fK  and sK are the fluid and solid conductances respectively.  The ratio of these two conductances can 

thus be defined : 

                 
s

f

K

K
Bi =∆)(                                    (5) 

and this dimensionless number can be regarded as a mesh Biot number.  

D. Numerical Biot number : Nature of the thermal Fluid-Structure Interaction  

 The CHT model is stable in the sense of G-R if 1),( <fzg α  . This condition applied to (3) leads, after 

some basic calculus manipulations and after introducing a normalized Fourier number fD , to two  zones : 

• Weak interaction : 1)1()( ≤−= ∆
fDBiBiν . The coupling process is stable 0≥∀ fα . If this condition 

holds,  the "transient" thermal resistance of the fluid domain at the shared interface is greater than the 
resistance offered by the whole solid domain. A Dirichlet condition on the fluid side is therefore 
appropriate. 

• Moderate/Strong interaction : 1)1()( ≥−= ∆
fDBiBiν . The coupling procedure exhibits a lower stability 

bound min
fα and this implies either that the solid thermal gradients are not negligible or that the thermal 

fluid conductance is larger than that of the solid.  
 This demonstrates how stability depends mainly on the ratio of thermal resistances, but also on the 
dynamics of the transient fluid system. The higher the local Biot number, the more difficult it will be to 
stabilize the coupling.  

E. Optimal coefficient 
 It is noteworthy that the modulus of the amplification factor does not have a monotonic variation (in 

terms of fα ) but goes through an absolute minimum, denoted opt
fα . In other words, the existence of a 

transition value for fα can be identified. At this transition value, the shape of the curve of the amplification 

factor switches and turns back as can be seen in Figure 1.  

 This transition occurs at a unique and remarkable value opt
fα  whose exact expression is given by   

                ( )f
fopt

f D
K

−= 1
2

α                                                                   (6) 

When the optimal value defined by (6) is employed, we obtain the best-case scenario with no additional 

computational effort. The point opt
fα  is the intersection of two opposite zones. The left half-line 

( <fα opt
fα ) is a fast process prone to instability. The right half-line ( opt

ff αα > ) is a low but always 

stable process. The intersection opt
fα is a perfect equilibrium between both. The role of opt

fα  in controlling 

and guiding the behavior of the CHT process is fundamental. Figure 1 illustrates three types of interaction. 
The amplification factor is represented vs the coupling coefficient. The left curve can be totally inside the 
stability zone (weak interaction), partially outside (moderate interaction) or mainly outside (strong 
interaction). 
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Fig. 1 Temporal amplification factor of Dirichlet-Robin condition for three numerical Biot numbers 
Blue curve : weak FSI. Green curve : moderate FSI. Red curve : strong FSI. 

IV. Steady CHT computations in an academic test case 

A.  Numerical tools 
 In the following, computing results are presented to illustrate the importance of the interface treatment 
in CHT problems. The numerical procedure is applied to the problem of convective heat transfer over, and  
conduction heat transfer within, a flat plate (see [18] for details). The fluid code, referred to as the elsA 
software package, is the ONERA multi-purpose tool for applied aerodynamics and multi-physics, which 
capitalizes on the innovative results of CFD research [19][20][21]. The solid software package, called Z-
set, is a comprehensive suite of integrated analysis programs for general purpose structural analysis [22]. 
The exchange of data between the two aforementioned solvers is carried out through the CWIPI library 
[23]. This library takes into account the grids, as well as the processes in which the data are located. 
 
B.  Residuals and fluctuations 
 Convergence, expressed by the decay of residuals, is fundamental but it can mask the fluctuations that 
inevitably occur during the coupling. Therefore, we have decided to look precisely at the amplitude of these 
fluctuations which are expressed by a Reynolds-averaged procedure.  

C.  Weak interaction   
 Weak interaction is considered here by implementing a solid conductivity such as to obtain a numerical 
Biot number 5.0=νBi , i.e. lower than unity. The convergence history for four values of the coupling 

coefficient, fα , is shown in Figure 2 by means of the interface temperature residual plotted as a function 

of the coupling iteration. In weak FSI, there are no significant differences for low values of the coupling 

coefficient fα  and it is seen that the trends marked by the two lines 0=fα  and opt
ff αα =  are roughly 

the same.  For high values of the coupling coefficient, convergence is a little slower, but at a tolerable level.  
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Fig. 2  Convergence history for weak thermal FSI and for 4 coupling coefficients. 

 Figure 3 shows simultaneously residuals and fluctuations vs the coupling coefficient, for a weak FSI 
( 07.1=νBi ). 

 

Fig. 3  Residuals and fluctuations for weak thermal FSI. 

 
In this case the CHT process is stable for any coupling coefficient. The resisuals also show that the 
fluctuations intensity is a decreasing function of the coupling coefficient. The slope of this process is very 

slow (from 4.10-6 for 0≈fα to 6.10-6 for ).5 opt
ff αα =  
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D.  Moderate interaction   
 Moderate interaction has been considered by implementing a solid conductivity such as to obtain a 
numerical Biot number 67.2=νBi . The results are roughly the same as previously, however the main 

difference is that the CHT process is unstable for a low coupling coefficient. The fluctuations are always 
decreasing but they become acceptable, only around the value of the optimal coefficient. Greater values of 
the coupling coefficient slow down the CHT process. 
 

 
 

Fig. 4  Residuals and fluctuations for weak/moderate thermal FSI. 

E.  Strong and stable interaction 
 Unsurprisingly, at strong thermal FSI, the residuals are very large and the coupled simulation, as shown 
in Figure 5, is unstable when the coupling coefficient is small. The residuals decrease drastically and are 
ideal about the optimal coefficient. The CHT process becomes stable and the fluctuations are reasonable. 
This highlights the importance of this remarkable coefficient. When the coupling coefficient is large, the 
residuals decrease slowly, in a stable or overstable process, that is to say accompanied by small 
fluctuations. This demonstrates that a relevant CHT methodology is a trade-off between a fast but 
potentially unstable computation (low coefficient) and a stable process which can be quite slow.  
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Fig. 5  Residuals and fluctuations for strong thermal FSI. 

F.  Very strong interaction  
 As the numerical Biot number increases further, the optimal Dirichlet-Robin does not achieve 
convergence (the temperature oscillates with a very large amplitude). As a result, a Neumann-Dirichlet 
interface condition has been considered here (heat flux imposed on the fluid side, temperature prescribed 
on the solid side). This is clearly the most physics-based procedure for a large Biot number, in other words 
when thermal gradients are significant in the solid material (strong thermal interaction problems). Figure 6 
shows that convergence is obtained after 104 iterations. This is a satisfactory result, just slightly less than 
the one obtained with an optimal approach at weak or moderate FSI. 

 
Fig. 6  Convergence history for very strong thermal FSI - The optimal coefficient of Dirichlet-Robin 

procedure and the Neumann-Robin procedure have been considered. 
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 As mentioned above, the Neumann-Dirichlet condition needs a number of iterations around 25% higher 
than a Dirichlet-Robin condition (104 iterations required to converge instead of 83 iterations) and with a 
smaller sensibility, the gap between the two coupling computations grows. However, it is important to 
stress that contrary to the cases using a Dirichlet-Robin condition, all the computations based on a 
Neumann condition are not prone to instabilities either when the solid conductivity or the coupling time 
step are getting smaller. 

V. Unsteady CHT computations:  cooling of a turbine disk 
A.  Quasi-steady assumption  
 The optimal schemes just presented in the case of a steady CHT can likewise be applied to transient 
coupling. Transient coupling is beginning to be employed in turbomachinery applications to account for the 
time-dependent thermal response of structures to ambient conditions. This approach is expected to grow 
rapidly since the transient heat load could lead to substantial gains in engine performance and component 
reliability. In such a context, the aim of unsteady CHT is to define relevant interfacial conditions of a two-
way coupling procedure for practical CHT applications during a full transient flight cycle. This cycle is  
characterised by a long period of time, that is, the entire duration of a flight. This is needed since high 
requirements about the life-span of the engine elements are needed, in particular heat load characteristics 
during all the stages of a flight. 
 A computationally cheap procedure is to account for the time scale disparities between the fluid and 
solid domains and thus consider the flow solution as a sequence of steady states. The resulting "quasi-
steady assumption" is valid since the fluid and the solid operate on different time constants. This means that 
the influence of unsteadiness in the fluid domain is negligible and thus the flow solution is considered as a 
sequence of steady states. On the contrary, the solid is allowed to evolve over time.  
 
B.  Relevant interface conditions 
 The key point remains the choice of relevant interface conditions since they have a direct impact on 
numerical properties of the coupling methodology. However, the numerical expressions presented are 
devoted to steady CHT solutions only, and it is not possible to employ them directly. Another stability 
analysis adapted to transient problems is necessary. In effect, steady and unsteady CHT have very little in 
common. This analysis was carried out in another work [24] and only the expression of the optimal 
coefficient, in Dirichlet-Robin procedure, is provided here : 

                                                             
s

opt
f D

h

−
=

1

2α                                                                                     (7) 

where h is the heat transfer coefficient and sD is the normalized Fourier number as expressed in the first 

part of this paper. However, note that this dimensionless number is, this time, defined in the transient solid 
domain. 
 It should be emphasized that the "steady strategy" in which only a coupled steady state is sought (first 
part of the current paper) is considerably different from that in the transient numerical approach constructed 
from the "quasi-steady-assumption". For instance, the Dirichlet-Robin procedure proposed for the first time 
in [11] based on the "optimal coefficient" (see Eq. 6) is radically different in several ways with the Dirichlet 
procedure where the influence of unsteadiness in the fluid domain is negligible (see Eq. 7). In the latter 
case, it can be seen that the optimal coefficient corresponds to the quotient between h2  and a solid 

transient effect (term )1( sD− ). 

C.  An example 
 Figure 7 depicts the temperature contours of a fluid-solid coupled system represented by an HP turbine 
disk and a cooling circuit on the left. This configuration has been used to account for the time-dependent 
thermal response of the disk structure over a long period of time (several hours). A two-way coupling of a 
dynamic thermal modeling in the solid and a sequence of fluid steady states has been considered. The most 
important point in this transient calculation is the choice of relevant interface conditions. It has been shown 
that when a Dirichlet-Robin procedure is employed, the coupling coefficient defined by (7) provides the 
best-performing method. 
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Fig. 7  Temperature contours in an HP turbine disk & cooling circuit.  

VI. Conclusion 
  The CHT computations highlight the importance of a relevant transmission procedure taking into 
account the heterogeneous nature of complex systems. It has been shown that a so-called numerical Biot 
number represents a criterion to determine locally the nature of the thermal fluid-structure interaction. This 
number plays a key role in the stability process. From there, it is rather easy to analyze the effect and the 
influence of any parameter involved in CHT problems. 
 The tests in steady FSI have illustrated that a Dirichlet-Robin condition can be used ideally for low or 
moderate fluid-solid interaction since the optimal coefficient can turn the coupling process into an 
unconditionally stable method providing solutions quickly and effectively. However, for strong or very 
strong fluid-structure interaction, in other words when thermal gradients within the solid become important 
a Neumann condition imposed on the fluid side provides excellent results without the need for any coupling 
coefficient. In unsteady FSI, the results coming from a model problem can also be used efficiently. 
However, each problem is different and new optimal coupling coefficients must then be estimated from the 
model problem. 
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