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Introduction

In this paper we study the ergodicity of the following underdamped mean-field Langevin (MFL) equation:

dX t = V t dt, dV t = -D m F (L(X t ), X t ) + γV t dt + σdW t , (1.1) 
where L(X t ) represents the law of X t , F : P(R n ) → R is a function on P(R n ) (the space of all probability measures on R n ), D m F is its intrinsic derivative (recalled in Section 2.1), and W is an n-dimensional standard Brownian motion. Note that the marginal distribution m t = L(X t , V t ) satisfies the nonlinear kinetic Fokker-Planck equation

∂ t m = -v • ∇ x m + ∇ v • (D m F (m X , x) + γv)m + 1 2 σ 2 ∆ v m, (1.2) 
where m X denotes the marginal distribution of m on X t .

Ignoring the mean-field interaction, the standard underdamped Langevin dynamics was first introduced in statistical physics to describe the motion of a particle with position X and velocity V in a potential field ∇ x F subject to damping and random collisions, see e.g. [START_REF] Einstein | Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen[END_REF][START_REF] Langevin | Sur la théorie du mouvement brownien[END_REF][START_REF] Nelson | Dynamical theories of Brownian motion[END_REF]. It is well known that under mild conditions the Langevin dynamics has a unique invariant measure on R n × R n with the density:

m ∞ (x, v) = Ce -2 σ 2 F (x)+ 1 2 |v| 2 , (1.3) 
where C is the normalization constant. This observation brings up the interest in developing Hamiltonian Monte Carlo methods, based on various discrete time analogues to the underdamped Langevin dynamics, for sampling according to the distributions in form of (1.3), see e.g. Lelièvre, Rousset and Stoltz [START_REF] Lelièvre | Free Energy Computations[END_REF], Neal [START_REF] Neal | MCMC using Hamiltonian dynamics, Handbook of Markov chain Monte Carlo[END_REF]. Nowadays this interest resurges in the community of machine learning. Notably, the underdamped Langevin dynamics has been empirically observed to converge more quickly to the invariant measure compared to the overdamped Langevin dynamics (of which the related MCMC was studied in e.g. Dalalyan [START_REF] Dalalyan | Theoretical guarantees for approximate sampling from smooth and logconcave densities[END_REF], Durmus and Moulines [START_REF] Durmus | Sampling from strongly log-concave distributions with the Unadjusted Langevin Algorithm[END_REF]), and it was theoretically justified by Cheng, Chatterji, Bartlett and Jordan in [START_REF] Cheng | Underdamped Langevin MCMC: A non-asymptotic analysis[END_REF] for some particular choice of coefficients.

More recently, the mean-field Langevin dynamics draws increasing attention among the attempts to rigorously prove the trainability of neural networks, in particular the two-layer networks (with one hidden layer). It becomes popular (see e.g. Chizat and Bach [START_REF] Chizat | On the global convergence of gradient descent for overparameterized models using optimal transport[END_REF], Mei, Montanari and Nguyen [START_REF] Mei | A mean field view of the landscape of two-layer neural networks[END_REF], Rotskoff and Vanden-Eijnden [START_REF] Rotskoff | Neural networks as interacting particle systems: Asymptotic convexity of the loss landscape and universal scaling of the approximation error[END_REF], Hu, Ren, Šiška and Szpruch [START_REF] Hu | Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks[END_REF]) to relax the optimization over the weights of the two-layer network, namely, Denote by F (m) := y -E m [cϕ(Az + b)] 2 µ(dy, dz). In Mei, Montanari and Nguyen [START_REF] Mei | A mean field view of the landscape of two-layer neural networks[END_REF] and Hu, Ren, Šiška and Szpruch [START_REF] Hu | Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks[END_REF] the authors further add an entropic regularization to the minimization:

inf m∈P F (m) + σ 2 2 H(m), (1.4) 
where H is the relative entropy with respect to Lebesgue measure. It follows by a variational calculus, see e.g. [START_REF] Hu | Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks[END_REF], that the necessary first order condition of the minimization above reads

D m F (m * , x) + σ 2 2 ∇ x ln m * (x) = 0.
Moreover, since F defined above is convex, this is also a sufficient condition for m * being a minimizer. It has been proved that such m * can be characterized as the invariant measure of the overdamped mean-field Langevin dynamics:

dX t = -D m F (L(X t ), X t )dt + σdW t .
Also it has been shown that the marginal laws m t converge towards m * in Wasserstein metric. Notably, the (stochastic) gradient descent algorithm used in training the neural networks can be viewed as a numerical discretization scheme for the overdamped MFL dynamics. Similar mean-field analysis has been done to deep networks, optimal controls and games, see e.g. Hu, Kazeykina and Ren [START_REF] Hu | Mean-field Langevin System, Optimal Control and Deep Neural Networks[END_REF], Jabir, Šiška and Szpruch [START_REF] Jabir | Mean-Field Neural ODEs via Relaxed Optimal Control[END_REF], Conforti, Kazeykina and Ren [START_REF] Conforti | Game on Random Environement, Mean-field Langevin System and Neural networks[END_REF], Domingo-Enrich, Jelassi and Mensch [START_REF] Domingo-Enrich | A mean-field analysis of two-player zero-sum games[END_REF], Šiška and Szpruch [START_REF] Siska | Gradient Flows for Regularized Stochastic Control Problems[END_REF], Lu, Ma, Lu, Lu and Ying [START_REF] Lu | A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth[END_REF]. This paper is devoted to study the analog to the underdamped MFL dynamics. When considering the optimization (1.4), one may in addition introduce a velocity variable V and regularize the problem as

inf m∈P F(m), with F(m) := F (m X ) + 1 2 E m |V | 2 + σ 2 2 H(m), (1.5) 
where m becomes the joint distribution of (X, V ), and m X represents its marginal distribution on X. By the same variational calculus as above, the first order condition reads

D m F (m * ,X , x) + σ 2 2 ∇ x ln m * (x, v) = 0 and v + σ 2 2 ∇ v ln m * (x, v) = 0. (1.6)
We are going to identify the minimizer m * as the unique invariant measure of the underdamped MFL dynamics (1.1) in two cases: (i) F is convex; (ii) F is possibly non-convex but satisfies further technical conditions. Moreover, in case (i) we prove the marginal laws m t of (1.1) converge to m * under very mild conditions. In case (ii) we show that the convergence is exponentially quick, and notably the convergence rate is dimension-free under a Wassestein distance.

Related works

The underdamped Langevin dynamics, even in case without mean-field interaction, is degenerate, so the classical approaches cannot be applied straightforwardly to show the (exponential) ergodicity. In [START_REF] Villani | Hypocoercive diffusion operators, Boll. Unione Mat[END_REF][START_REF] Villani | Hypocoercivity[END_REF], Villani introduced the term "hypocoercivity" and prove the exponential convergence of m t in H 1 m∞ . A more direct approach was later developed in Dolbeault, Mouhot and Schmeiser [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], and it triggered many results on kinetic equations. Note that both Villani's and DMS's results on the exponential convergence rate highly depends on the dimension, and (therefore) does not apply to the case with mean-field interaction. It is noteworthy that in the recent paper by Cao, Lu and Wang [START_REF] Cao | On explicit l2-convergence rate estimate for underdamped langevin dynamics[END_REF], they developed a new estimate on the convergence rate based on the variational method proposed by Armstrong and Mourrat [START_REF] Armstrong | Variational methods for the kinetic fokker-planck equation[END_REF]. There are few articles in the literature studying the ergodicity of underdamped Langevin dynamics using more probabilistic arguments, see e.g. Wu [START_REF] Wu | Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems[END_REF], Rotskoff and Rey-Bellet and Thomas [START_REF] Rey-Bellet | Exponential convergence to non-equilibrium stationary states in classical statistical mechanics[END_REF], Talay [START_REF] Talay | Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process[END_REF], Bakry, Cattiaux and Guillin [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF]. These works are mostly based on Lyapunov conditions and the rates they obtained also depends on the dimension. In the recent work by Guillin, Liu, Wu and Zhang [START_REF] Guillin | The kinetic Fokker-Planck equation with mean field interaction[END_REF], it has been shown for the first time that the underdamped Langevin equation with non-convex potential is exponentially ergodic in H 1 m∞ . Their argument combines Villani's hypocoercivity with the uniform functional inequality and Lyapunov conditions. To complete the brief literature review, we would draw special attention to the coupling argument applied in Bolley, Guillin and Malrieu [START_REF] Bolley | Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation[END_REF] and Eberle, Guillin and Zimmer [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF], which found transparent convergence rates in sense of Wasserstein-type distance.

Theoretical novelty Most of the articles concerning the ergodicity of underdamped Langevin dynamics obtain the convergence rates depending on the dimension, and in particular very few allow both non-convex potential and the mean-field interaction. One exception would be the paper of Guillin, Liu, Wu and Zhang [START_REF] Guillin | The kinetic Fokker-Planck equation with mean field interaction[END_REF], but it focuses on a particular convolutiontype interaction and their assumption of uniform functional inequality is quite demanding. As mentioned, in the paper we address the ergodicity of the underdamped MFL dynamics in two cases.

In case that F is convex (on the probability measure space), we provide a general ergodicity result, which mainly relies on the observation in Theorem 2.6, namely, the value of the function F defined in (1.5) decreases along the dynamics of the MFL and the derivative dF(mt) dt can be explicitly computed. This can viewed as an analog of the gradient flow for the overdamped Langevin equation, initiated in the seminal paper by Jordan, Kinderlehrer, and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], see also the monograph by Ambrosio, Gigli and Savaré [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]. Due to the degeneracy and the meanfield interaction of the underdamped MFL process, the proof for the claim is non-trivial. Base on this observation and using an argument similar to that in Mei, Montanari and Nguyen [START_REF] Mei | A mean field view of the landscape of two-layer neural networks[END_REF], Hu, Ren, Šiška and Szpruch [START_REF] Hu | Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks[END_REF], we prove (in Lemma 4.9) that all cluster points of (m t ) should satisfy

v + σ 2 2 ∇ v ln m * (x, v) = 0.
Finally, by intriguing LaSalle's invariance principle for the dynamic system, we show that m * must satisfy the first order condition (1.6). Since F is convex, (1.6) is sufficient to identify m * as the unique minimizer of F. To our knowledge, this approach for proving the ergodicity of the underdamped MFL dynamics is original and the result holds true under very mild condition.

In case that F is possibly non-convex but satisfies further technical conditions, we adopt the reflection-synchronous coupling technique that initiated in Eberle, Guillin and Zimmer [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF][START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF] to obtain an exponential contraction result. Note that [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF] is not concerned with mean-field interaction and the rate found there is dimension dependent. In our context, we design a new Lyapunov function in a quadratic form (see Section 4.4.2) to obtain the contraction when the coupled particles are far away, and as a result obtain a dimension-free convergence rate. The construction of the quadratic form shares some flavor with the argument in Bolley, Guillin and Malrieu [START_REF] Bolley | Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation[END_REF]. Notably, our construction helps to capture the optimal rate in the area of interest (see Remark 4.15), so may be more intrinsic.

The rest of the paper is organized as follows. In Section 2 we annonce the main results. Before entering the detailed proofs, we study a numerical example concerning the nowadays popular generative adversarial networks (GAN). The main theorems in Section 2 guides us to propose a theoretical convergent algorithm for the GAN, and the numerical test in Section 3 shows a satisfactory result. Finally we report the proofs in Section 4.

2 Ergodicity of the mean-field Langevin dynamics

Preliminaries

Let P(R n ) denote the space of the probability measures on R n , and by P p (R n ) the subspace of those with finite p-th moment. Without further specifying, in this paper the continuity on P(R n ) is with respect to the weak topology, while the continuity on P p (R n ) is in the sense of W p (p-Wasserstein) distance.

A function F : P(R n ) → R is said to belong to C 1 , if there exists a jointly continuous function δF δm :

P(R n ) × R n → R such that F (m ) -F (m) = 1 0 R n δF δm (1 -u)m + um , x (m -m)(dx)du.
When δF δm is continuously differentiable in x, we denote by

D m F (m, x) := ∇ x δF δm (m, x) the intrin- sic derivative of F . We say function F ∈ C ∞ b if all the derivatives ∂ i x 1 ,••• ,x k D k m F (m, x 1 , • • • , x k ) exist and are bounded.
Let (X, V ) denote the canonical variable on R n × R n . For m ∈ P(R n × R n ), we denote by m X := L m (X) = m • X -1 the marginal law of the variable X under m. Denote by H(m) the relative entropy of the measure m ∈ P(R n × R n ) with respect to the Lebesgue measure, that is,

H(m) := E m ln ρ m (X, V ) = R n ×R n ln ρ m (x, v) ρ m (x, v)dxdv,
if m has a density function ρ m : R n ×R n → R + ; or H(m) := ∞ if m is not absolutely continuous.

Optimization with entropy regularizer

Throughout the paper, we fix a potential function F : P(R n ) → R, and study the following optimization problem:

inf m∈P(R × R n ) F(m), with F(m) := F (m X ) + 1 2 E m |V | 2 + σ 2 2γ H(m). (2.1)
Assumption 2.1. The potential function F : P(R n ) → R is given by

F (m) = F • (m) + E m [f (X)],
where F • ∈ C ∞ b , f : R n → R belongs to C ∞ with bounded derivatives of all orders larger or equal to 2, and |f (x)| ≥ λ|x| 2 , for some λ > 0.

(2.

2)

The following result is due to a variational calculus argument, see e.g. Hu, Ren, Šiška and Szpruch [START_REF] Hu | Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks[END_REF] for a proof. 

δF δm (m X , x) + |v| 2 2 + σ 2 2γ ln m(x, v) = C, for all (x, v) ∈ R 2n , (2.3) 
or equivalently

m(x, v) = C exp - 2γ σ 2 δF δm (m X , x) + |v| 2 2 .
(2.4)

Moreover, if F is convex then (2.
3) is sufficient for m = argmin µ∈P F(µ).

Remark 2.3. In case

F • ≡ 0, note that m → F (m) = E m [f (X)
] is linear and hence convex. Moreover, one has δF δm (m X , x) = f (x), and the result above reduces to the classical result in the variational calculus literature.

Remark 2.4. To intuitively understand the first order condition (2.3), we may analyze the simple case without the terms 1 2 E m |V | 2 and σ 2 2γ H(m) in F(m). Given a convex function F :

P(R n ) → R, we have for m ε = (1 -ε)m + εm that F (m ) -F (m) ≥ 1 ε F (m ε ) -F (m) = 1 ε ε 0 R n δF δm (1 -u)m + um , x (m -m)(dx)du -→ R n δF δm m, x (m -m)(dx)du, as ε → 0.
Therefore, δF δm m, x = C is sufficient for m being a minimizer of F .

Lyapunov function and ergodicity

From the first order optimization condition (2.3), one can check by direct computation that a solution to the optimization problem (2.1) is also an invariant measure of the mean-field Langevin dynamic (1.1), which we recall below:

dX t = V t dt, dV t = -D m F (L(X t ), X t ) + γV t dt + σdW t . (2.5) 
Assumption 2.5. The initial distribution of the MFL equation has finite p-th moment for all p ≥ 0, i.e.

E[|X 0 | p + |V 0 | p ] < ∞.
Under Assumption 2.1 and 2.5, it is well known that the MFL equation (2.5) admits a unique strong solution (X t , V t ) t≥0 , see e.g. Sznitman [START_REF] Sznitman | Topics in propagation of chaos, École d' Été[END_REF]. In this paper we first prove that the function F defined in (2.1) acts as a Lyapunov function for the marginal flow of the MFL dynamics (2.5) in the following sense.

Theorem 2.6. Let Assumptions 2.1 and 2.5 hold true, denote m t := L(X t , V t ) for all t ≥ 0. Then, for all t > s > 0,

F(m t ) -F(m s ) = - t s γE V r + σ 2 2γ ∇ v ln m r (X r , V r ) 2 dr.
With the help of the Lyapunov function F, we may prove the convergence of the marginal laws of (2.5) towards to the minimizer m := argmin m∈P F(m), provided that the function F is convex.

Theorem 2.7. Let Assumptions 2.1 and 2.5 hold true. Suppose in addition that the function F is convex. Then the MFL dynamic (2.5) has a unique invariant measure m, which is also the unique minimizer of (2.1), and moreover lim t→∞ W 1 (m t , m) = 0, Remark 2.8. The ergodicity of the diffusions with mean-field interaction is a long-standing problem. One may taste the non-triviality through the following simple example. Consider the process dX t = (-X t + αE[X t ])dt + dW t .

It is not hard to show that the process X has a unique invariant measure N (0, 1/2) when α < 1 and has none of them when α > 1. Therefore a structural condition is inevitable to ensure the existence of a unique invariant measure and the convergence of the marginal distributions towards it. Theorem 2.7 shows that F being convex on the probability measure space is sufficient for the underdamped MFL dynamics to be ergodic. It is a sound analogue of Theorem 2.11 in Hu, Ren, Šiška and Szpruch [START_REF] Hu | Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks[END_REF], where it has been proved that the convexity of the potential function ensures the ergodicity of the overdamped MFL dynamics.

Exponential ergodicity given small mean-field dependence

We next study the case where F is possibly non-convex, and are going to obtain an exponential convergence rate if the invariant measure exists.

Assumption 2.9. Assume that the function F • ∈ C 1 and D m F • exists and is Lipschitz continuous. Further assume that for any ε > 0 there exists K > 0 such that for all m, m ∈ P(R n )

D m F • (m, x) -D m F • (m , x ) ≤ ε|x -x | whenever |x -x | ≥ K,
and the function

f (x) = λ 2 |x| 2 with some λ > 0. Note that that D m E m [f (X)](m, x) = ∇ x f (x) = λx.
Example 2.10. The function F • , of which the intrinsic derivative D m F • is uniformly bounded, satisfies Assumption 2.9.

Given (X, V ), (X , V ) ∈ R 2d , we denote

P := V -V + γ(X -X ), r := |X -X |, u := |P |, z := (X -X ) • P,
and define the function

ψ(X -X , V -V ) := 1 + βG(X -X , P ) h(ηu + r), (2.6) 
where the positive constants β, η, the quadratic form G and the function h : R → R will be determined later. Finally define the semi-metric:

W ψ (m, m ) = inf ψ(x -x , v -v )dπ(x, v, x , v ) : π is a coupling of m, m ∈ P(R 2n ) .
Theorem 2.11. Let Assumption 2.9 hold true. Further assume that

|D m F • (m, x) -D m F • (m , x)| ≤ ιW 1 (m, m ).
Then for ι > 0 small enough, we have

W ψ (m t , m t ) ≤ e -ct W ψ (m 0 , m 0 ),
for a constant c > 0 defined below in (4.41). In parituclar, the rate c does not depend on the dimension n.

Remark 2.12. The proof of Theorem 2.11 are mainly based on the reflection-synchronous coupling technique developed by Eberle, Guillin and Zimmer in [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF]. Note that the contraction obtained in [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF] holds true under the assumptions more general than Assumption 2.9, but the convergence rate there is dimension-dependent. We manage to make this tradeoff by considering a new Lyapunov function (see Section 4.4.2) and a new semi-metric, allowing to obtain the exponential ergodicity in the case with small mean-field dependence. Notice also that Guillin, Liu, Wu and Zhang proved the exponential ergodicity in [START_REF] Guillin | The kinetic Fokker-Planck equation with mean field interaction[END_REF] for the underdamped Langevin dynamics with a convolution-type interactions, by a completely different approach based on Villani's hypocoercivity and the uniform functional inequality.

Remark 2.13. Since the function ψ is not concave, the semi-metric W ψ is not necessarily a metric, and therefore the contraction proved above does not imply the existence of the invariant measure, but only describes the convergence rate whenever the invariant measure exists, in particular when F is convex.

Application to GAN

Recently there is a strong interest in generating samplings according to a distribution only empirically known using the so-called generative adversarial networks (GAN). From a mathematical perspective, the GAN can be viewed as a (zero-sum) game between two players: the generator and the discriminator, and can be trained through an overdamped Langevin process, see e.g. Conforti, Kazeykina and Ren [START_REF] Conforti | Game on Random Environement, Mean-field Langevin System and Neural networks[END_REF], Domingo-Enrich, Jelassi, Mensch, Rotskoff and Bruna [START_REF] Domingo-Enrich | A mean-field analysis of two-player zero-sum games[END_REF]. On the other hand, it has been empirically observed and theoretically proved (in case with convex potentials) by Cheng, Chatterji, Bartlett and Jordan in [START_REF] Cheng | Underdamped Langevin MCMC: A non-asymptotic analysis[END_REF] that the simulation of the underdamped Langevin process converges more quickly than that of the overdamped Langevin dynamics. Therefore, in this section we shall implement an algorithm to train the GAN through the underdamped mean-field Langevin dynamics. Denote by µ the empirically known distribution. The generator aims at generating samplings of a random variable Y so that its distribution is eventually close to µ. Meanwhile, the discriminator trains a parametrized function y → Φ(m X , y) in the form:

Φ(m X , y) = E m X [Cφ(Ay + b)], (3.1) 
where φ is a fixed activation function and the random variable X := (C, A, b) satisfies the law m X , to distinguish the distributions µ and . Such parametrization is expressive enough to represent all continuous functions on a compact set according to the Universal Representation Theorem, see e.g. Hornik [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF]. Since we are going to make use of the underdamped MFL process to train the discriminator, we also introduce the random variable V , so that together (X, V ) satisfies a distribution m. Define

F(m, ) := Φ(m X , y)( -µ)(dy) - η 2 E m [|V | 2 ] + σ 2 0 2 H( ) - σ 2 1 2γ H(m).
Remark 3.1. To make the following discussion mathematically rigorous, one need to :

• truncate the variable C in (3.1) to make Φ bounded;

• add the small ridge rigularization to the function F:

F(m, ) := F(m, ) + λ 0 2 |y| 2 (dy) - λ 1 2 E m [|X| 2 ].
For the notational simplicity, we omit these technical details in this section.

Consider the zero-sum game between the two players:

generator : inf F(m, ) discriminator : sup m F(m, ) .

One may view

d( , µ) := sup m Φ(m X , y)( -µ)(dy) - η 2 E m [|V | 2 ] - σ 2 1 2γ H(m)
as a distance between the distributions and µ. Then by solving the zero-sum game above, one may achieve as a part of the equilibrium: * ∈ argmin {d( , µ) + σ 2 0 2 H( )}, which is intuitively close to µ whereas σ 0 is small.

In order to compute the equilibrium of the game, we observe as in Conforti, Kazeykina and Ren [START_REF] Conforti | Game on Random Environement, Mean-field Langevin System and Neural networks[END_REF] that given the choice m of the discriminator, the optimal response of the generative can be computed explicitly: it has the density

* [m](y) = C(m)e -2 σ 2 0 Φ(m X ,y) , (3.2) 
where C(m) is the normalization constant depending on m. Then computing the value of the zero-sum game becomes an optimization over m:

sup m inf F(m, ) = sup m F(m, * [m]).
As the main result of this paper goes, the optimizer of the problem above can be characterized by the invariant measure of the underdamped MFL dynamics

dX t = ηV t dt, dV t = -D m F (L(X t ), X t ) + γV t dt + σ 1 dW t , (3.3) 
with the potential function:

F (m) := -Φ(m X , y)( * [m] -µ)(dy) - σ 2 0 2 H( * [m]).
Together with (3.2), we may calculate and obtain

D m F (m, x) = D m Φ(m X , y, x)(µ - * [m])(dy).
Next we shall support the theoretical result with a simple numerical test. We set µ as the empirical law of 2000 samples of the distribution 1 2 N (-1, 1) + 1 2 N (4, 1), and the coefficients of game as:

φ(z) = max{-10, min{10, z}}, σ 0 = 0.1, σ 1 = 1, γ = 1, λ 0 = 0.01, λ 1 = 0.1.
In order to compute the optimal response of the generator * [m], we use the Gaussian random walk Metropolis Hasting algorithm, with the optimal scaling proposed in Gelman, Roberts and Gilks [START_REF] Gelman | Efficient Metropolis Jumping Rules[END_REF]. Further, as the numerical scheme for the underdamped Langevin process (3.3), we adopt the well-known splitting procedure, the Brünger-Brooks-Karplus integrator [START_REF] Brünger | Stochastic boundary conditions for molecular dynamics simulations of ST2 water[END_REF], see also Section 2.2.3.2 of Lelièvre, Rousset and Stoltz [START_REF] Lelièvre | Free Energy Computations[END_REF]. Also, in the numerical implementation, the marginal law L(X t ) in (3.3) is replaced by the empirical law of 2000 samples of X t . Along the training (the underdamped MFL dynamics), we record the potential energy:

Φ(m X , y)(µ - * [m])(dy),
as well as the kinetic energy η 2 E m [|V | 2 ], and we stop the iteration once the potential energy stays considerably small. The result of the numerical test is shown in the following Figure 1. Observe that the total energy is almost monotonously decreasing, as foreseen by Theorem 2.6, and that the samplings generated by the GAN is visibly close to the µ given. 

|b(t, x, v) -b(t, x , v )| ≤ C(|x -x | + |v -v |), for all (t, x, v, x , v ) ∈ [0, T ] × R 2n × R 2n ,
and σ > 0 be a positive constant, we consider the stochastic differential equation (SDE):

dX t = V t dt, dV t = b(t, X t , V t ) dt + σdW t , (4.1) 
where the initial condition (X 0 , V 0 ) satisfies

E[|X 0 | 2 + |V 0 | 2 ] < ∞.
The above SDE has a unique strong solution (X, V ), and the marginal distribution m t := L(X t , V t ) satisfies the corresponding Fokker-Planck equation:

∂ t m + v • ∇ x m + ∇ v • bm - 1 2 σ 2 ∆ v m = 0. (4.2)
In this subsection we are going to prove some properties of the density function ρ t (x, v) of m t .

Existence of positive densities Let us fix a time horizon

T > 0, let C([0, T ], R n ) be the space of all R n -valued continuous paths on [0, T ]. Denote by Ω := C([0, T ], R n ) × C([0, T ], R n ) the canonical space, with canonical process (X, V ) = (X t , V t ) 0≤t≤1 and canonical filtration F = (F t ) t∈[0,T ] defined by F t := σ(X s , V s : s ≤ t).
Let P be a (Borel) probability measure on Ω, under which

X t := X 0 + t 0 V s ds, σ -1 V t t≥0 is a Brownian motion, (4.3) and P • (X 0 , V 0 ) -1 = P • (X 0 , V 0 ) -1 .
Then under the measure P, (X 0 , V 0 ) is independent of (X t -X 0 -V 0 t, V t -V 0 ), and the latter follows a Gaussian distribution with mean value 0 and 2n × 2n variance matrix

σ 2 t 3 I n /3 t 2 I n /2 t 2 I n /2 tI n . (4.4) 
Let Q := P • (X, V ) -1 be the image measure of the solution (X, V ) to the SDE (4.1), so that

dX t = V t dt, dV t = b(t, X t , V t )dt + σdW t , Q-a.s., (4.5) 
with a Q-Brownian motion W . We are going to prove that Q is equivalent to P and

dQ dP F T = Z T , with Z t := exp t 0 σ -2 bs • dV s - 1 2 t 0 σ -1 bs 2 ds , (4.6) 
where bs := b(s, X s , V s ).

Lemma 4.1. The strictly positive random variable Z T is a density under P, i.e. E P [Z T ] = 1.

Proof

We follow the arguments in [28, Lemma A.1] by Hu, Ren, Šiška and Szpruch. For simplification of the notation, we consider the case σ = 1. The general case follows by exactly the same arguments or simply by considering the corresponding SDE on (σ -1 X, σ -1 V ).

Let us denote bt

:= b(t, X t , V t ), Y t := Z t (|X t | 2 + |V t | 2 ) and f ε (x) := x 1+εx .
By Itô formula, one has

d Y t = Z t 2X t • V t + 2 bt • V t + n dt + Z t 2V t + bt (|X t | 2 + |V t | 2 ) • dV t , P-a.s.
and

dE P f ε ( Y t ) = E Z t 2X t • V t + 2 bt • V t + n (1 + ε Y t ) 2 - εZ 2 t 2V t + bt |X t | 2 + |V t | 2 2 (1 + ε Y t ) 3 dt ≤ CE Z t |X t | 2 + |V t | 2 + Z t 1 + ε Y t dt,
where we use the fact that b(t, x, v) is of linear growth in (x, v), and C > 0 is a constant independent of ε.

Next, notice that Z = (Z t ) 0≤t≤T is a positive local martingale under P, and hence a P-super martingale, so that E P [Z t ] ≤ 1 for all t ∈ [0, T ]. Then

dE P f ε ( Y t ) ≤ C E P f ε ( Y t ) + 1 dt =⇒ sup t∈[0,T ] E P f ε ( Y t ) < ∞.
Letting ε 0, it follows by Fatou Lemma that sup t∈[0,T ]

E P Y t = sup t∈[0,T ] E P Z t |X t | 2 + |V t | 2 < ∞. (4.7) 
By the Itô formula, one obtains that, for all t ∈ [0, T ],

d Z t 1 + εZ t = Z t bt (1 + εZ t ) 2 • dW t - εZ 2 t | bt | 2 (1 + εZ t ) 3 dt
Taking expectation on both sides, we get

E P Z t 1 + εZ t - 1 1 + ε = -E P t 0 εZ 2 s | bs | 2 (1 + εZ s ) 3 ds .
Together with the estimate (4.7), it follows from the monotone convergence and the dominated convergence theorem that E P Z t = 1 for all t ∈ [0, T ]. Lemma 4.2 (Existence of positive density). Let (X, V ) be the solution of (4.1). Then for all t ∈ (0, T ], (X t , V t ) has a strictly positive density function, denoted by ρ t .

Proof

Notice that under P, (X, V ) can be written as the sum of a square integrable r.v. and an independent Gaussian r.v. with variance (4.4), then P • (X t , V t ) -1 has strictly positive and smooth density function. Besides, Q is equivalent to P, with strictly positive density dQ/dP = Z T , it follows that P • (X t , V t ) -1 = Q • (X t , V t ) -1 has also a strictly positive density function.

Estimates on the densities We next provide an estimate on ∇ v (ln ρ t (x, v)), which is crucial for proving Theorem 2.6.

Lemma 4.3 (Moment estimate). Suppose that E |X

0 | 2p + |V 0 | 2p < ∞ for p ≥ 1, then E sup 0≤t≤T |X t | 2p + |V t | 2p < ∞. (4.8)
Consequently, the relative entropy between Q and P is finite, i.e. 

H Q P := E Q log dQ dP = E 1 2 T 0 σ -1 b(t, X t , V t ) 2 dt < ∞. ( 4 
H Q P = E Q 1 2 T 0 σ -1 b(t, X t , V t ) 2 dt = E 1 2 T 0 σ -1 b(t, X t , V t ) 2 dt < ∞.
Let us introduce the time reverse process ( X, V ) and time reverse probability measures P and Q on the canonical space Ω by

X t := X T -t , V t := V T -t , and P := P • ( X, V ) -1 , Q := Q • ( X, V ) -1 .
Lemma 4.4. The density function ρ t (x, v) is absolutely continuous in v, and it holds that

E T t ∇ v ln ρ s (X s , V s )
2 ds < ∞, for all t > 0. Step 1. We first prove that, (X, V ) is an Itô process under Q, and there exists a F-predictable process b = ( bs ) 0≤s≤T such that

E Q T -t 0 bs 2 ds < ∞, and V t = V 0 + t 0 bs ds + W t , for all t > 0, (4.11) 
with a (F, Q)-Brownian motion W .

Let P x 0 ,v 0 be the conditional probability of P given X 0 = x 0 , V 0 = v 0 ,

P x 0 ,v 0 [•] = P • X 0 = x 0 , V 0 = v 0 , and P x 0 ,v 0 := P x 0 ,v 0 • (X, V ) -1 .
Recall the dynamic of (X, V ) under P in (4.3) and note that the marginal distribution of (X t , V t ) under P x 0 ,v 0 is Gaussian, in particular, its density function ρ x 0 ,v 0 t (x, v) is smooth. It follows from Theorem 2.1 of Haussmann and Pardoux [START_REF] Haussmann | Time reversal of diffusions[END_REF]) (or Theorem 2.3 of Millet, Nualart and Sanz [START_REF] Millet | Integration by parts and time reversal for diffusion processes[END_REF]) that V is still a diffusion process w.r.t. (F, P x 0 ,v 0 ), and

V t -V 0 - t 0 ∇ v ln ρ x 0 ,v 0 T -s (X s , V s )ds is a (F, P x 0 ,v 0 )-Brownian motion,
where by direct computation we know

∇ v ln ρ x 0 ,v 0 T -s (X s , V s ) = 6(x 0 + (T -s)v 0 -X s ) (T -s) 2 + 4(v 0 -V s ) T -s =: cs (x 0 , v 0 ).
Therefore,

W 1 t := V t -V 0 - t 0 cs (X T , V T )ds is a (F * , P)-Brownian motion,
where the enlarged filtration F * = (F * t ) 0≤t≤T is defined by

F * t := σ X T , V T , X s , V s : s ∈ [0, t] .
By the moment estimate (4.8), we have

E Q T -t 0 |c s (X T , V T )| 2 ds = E Q T t |c s (X 0 , V 0 )| 2 ds < ∞, for t > 0.
Next note that the relative entropy satisfies

H( Q| P) = H(Q|P) < ∞.
Therefore, there exists a F * -predictable process ã such that

E Q T 0 |ã t | 2 dt < ∞ and W 2 t := W 1 t - t 0 ãs ds = V t -V 0 - t 0 ãs + cs (X T , V T ) ds is a (F * , P)-Brownian motion.
Finally we prove Claim (4.11), by letting bt denote an optional version of the process

E Q ãt + ct (X T , V T ) F t .
Step 2. Let R : Ω → Ω be the reverse operator defined by R(ω) = (ω T -t ) 0≤t≤T . Then for every fixed t < T and ϕ ∈ C c (R 2n ), one has

E Q bT -t • R ϕ(X t , V t ) = -lim h 0 1 h E Q V t -V t-h ϕ X t , V t .
Recall the dynamic of (X, V ) under Q in (4.5), and thus

ϕ X t , V t = ϕ X t-h , V t-h + t t-h ∇ x ϕ(X s , V s ) • V s ds + t t-h ∇ v ϕ(X s , V s ) • dV s + 1 2 t t-h ∆ v ϕ(X s , V s )ds, Q-a.s. Denoting bt := b(t, X t , V t ), which clearly satisfies that E Q T 0 bt 2 dt < ∞, (4.12) 
we have

E Q bT -t • R ϕ(X t , V t ) = -E Q bt ϕ(X t , V t ) -E Q ∇ v ϕ(X s , V s ) .
Therefore, denoting by ∇ v ρ t (x, v) the weak derivative of ρ in sense of distribution, one has

R 2n ∇ v ρ t (x, v)ϕ(x, v)dxdv = -E Q ∇ v ϕ(X s , V s ) = E Q bT -t • R + bt ϕ(X t , V t ) .
As ϕ ∈ C c (R 2n ) is arbitrary, this implies that, for a.e. (x, v),

∇ v ρ t (x, v) = ρ t (x, v)E Q bT -t • R + bt X t = x, V t = v .
Finally, it follows from the moment estimates in (4.11) and (4.12) that

E Q t 1 t 0 ∇ v ln ρ t (X t , V t ) 2 dt = E Q t 1 t 0 ∇ v ρ t ρ t (X t , V t ) 2 dt < ∞.
We hence conclude the proof by the fact that P

• (X, V ) -1 = Q • (X, V ) -1 .
From (4.11), we already know that V is a diffusion process w.r.t. (F, Q). With the integrability result (4.10), we can say more on its dynamics.

Lemma 4.5. The reverse process ( X, V ) is a diffusion process under Q, or equivalently, the canonical process (X, V ) is a diffusion process under the reverse probability Q. Moreover, Q is a weak solution to the SDE:

dX t = -V t dt, dV t = -b(t, X t , V t ) + σ 2 ∇ v ln ρ T -t (X t , V t ) dt + σd W t , Q-a.s., (4.13)
where W is a (F, Q)-Brownian motion.

Proof It follows from the Cauchy-Schwarz inequality and (4.10) that

T t R 2n |∇ v ρ s (x, v)|dxdv ≤ T t R 2n |∇ v ρ s (x, v)| 2 ρ s (x, v) 2 ρ s (x, v)dxdv 1 2
< ∞, for all T > t > 0.

Together with the Lipschitz assumption on the coefficient b(t, x, v), the desired result is a direct consequence of Theorem 2.1 of Haussmann and Pardoux [START_REF] Haussmann | Time reversal of diffusions[END_REF], or Theorem 2.3 of Millet, Nualart and Sanz [START_REF] Millet | Integration by parts and time reversal for diffusion processes[END_REF].

Finally, we provide a sufficient condition on b to ensure that the density function ρ of (X, V ) is a smooth function. Lemma 4.6 (Regularity of the density). Assume in addition that b ∈ C ∞ ((0, T ) × R 2n ) with all derivatives of order k bounded for all k ≥ 1. Then the function (t, x, v) → ρ t (x, v) belongs to C ∞ ((0, T ) × R 2n ).

Proof

Under the additional regularity conditions on b, it is easy to check that the coefficients of SDE (4.1) satisfies the Hörmander's conditions, and hence the density function ρ ∈ C ∞ ((0, T ) × R 2n ) (see e.g. Bally [4, Theorem 5.1, Remark 5.2]).

Application to the MFL equation (2.5) We will apply the above technical results to the MFL equation (2.5). Let (X, V ) be the unique solution of (2.5), and m X t := L(X t ), then (X, V ) is also the unique solution of SDE (4.1) with drift coefficient function (ii) Suppose in addition that Assumption 2.5 holds true, then b ∈ C ∞ ((0, ∞) × R n × R n ) and and for each k ≥ 1, its derivative of order k is bounded.

b(t, x, v) := D m F • (m X t , x) + ∇ x f (x) + γv. ( 4 
Proof (i) For a diffusion process (X, V ), it is clear that t → m X t is continuous, then (t, x, v) → b(t, x, v) := D m F (m X t , x) + γv is continuous. Moreover, it is clear that b is globally Lipschitz in (x, v) under Assumption 2.1. (ii) Let us denote b • (t, x) := D m F • (m X t , x
). We claim that for the coefficient function b defined in (4.14), for all k ≥ 0, one has

∂ k t b • (t, x) = E k i=0 k-i j=0 ϕ n i,j m X t , X t , V t , x X i t V j t , (4.15) 
where ϕ n i,j are smooth functions with bounded derivatives of any order. Further, it follows by Lemma 4.3 that, under additional conditions in Assumption 2.5, one has

E sup 0≤t≤T (|X t | p + |V t | p ) < ∞ for all T > 0 and p ≥ 1. Therefore, one has b • ∈ C ∞ ((0, ∞) × R n ) and hence b ∈ C ∞ ((0, ∞) × R n × R n ).
It is enough to prove (4.15). Recall (see e.g. Carmona and Delarue [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications II[END_REF]) that for a smooth function ϕ :

P(R n ) × R n × R n → R, one has the Itô formula dϕ(m X t , X t , V t ) = E D m ϕ(m X t )(X t ) • V t dt + ∇ x ϕ(m X t , X t , V t ) • V t dt -∇ v ϕ(m X t , X t , V t ) D m F (m X t , X t ), X t ) + γV t dt + 1 2 σ 2 ∆ v ϕ(m X t , X t , V t )dt +∇ v ϕ(m X t , X t , V t ) • σdW t .
Then we can easily conclude the proof of (4.15) by the induction argument.

Proof of Theorem 2.6

Let us fix T > 0, and consider the reverse probability Q given before Lemma 4.4 with coefficient function b in (4.14). Recall also the dynamic of (X, V ) under Q in (4.13). Applying Itô formula on ln ρ T -t (X t , V t ) , and then using the Fokker-Planck equation (1.2), it follows that

d ln ρ T -t (X t , V t ) = - ∂ t ρ T -t ρ T -t (X t , V t ) -∇ x ln ρ T -t (X t , V t ) • V t + 1 2 σ 2 ∆ v ln ρ T -t (X t , V t ) +∇ v ln ρ T -t (X t , V t ) • -b(t, X t , V t ) + σ 2 ∇ v ln ρ T -t (X t , V t ) dt + ∇ v ln ρ T -t (X t , V t ) • σdW t = -nγ + 1 2 σ∇ v ρ T -t ρ T -t (X t , V t ) 2 dt + ∇ v ln ρ T -t (X t , V t ) • σd W t , Q-a.s.
By (4.10), it follows that for t > 0

dH(m t ) = dE Q ln ρ t (X T -t , V T -t ) = -nγ + 1 2 E σ∇ v ln ρ t (X t , X t ) 2 dt. (4.16)
On the other hand, recall that

F (m) = F • (m) + E m [f (X)], and D m F L(X t ) = D m F • L(X t ) + ∇f. (4.17)
By a direct computation, one has

dF • L(X t ) = E D m F • L(X t ), X t • V t dt. (4.18)
By Itô formula and (4.17), one has 

d f (X t ) + 1 2 |V t | 2 = ∇f (X t ) • V t -V t • D m F (L(X t ), X t ) + γV t + 1 2 σ 2 n dt + V t • σdW t = -D m F • (L(X t ), X t ) • V t -γ|V t | 2 + 1 2 σ 2 n dt + V t • σdW t . ( 4 
dF(m t ) = d F L(X t ) + 1 2 E |V t | 2 + σ 2 2γ H(m t ) = E -γ|V t | 2 + σ 2 n - σ 4 4γ ∇ v ln ρ t (X t , V t ) 2 dt. (4.20)
Further, by Lemmas 4.3 and 4.4, it is clear that E ∇ v ln ρ t (X t , V t ) • V t < ∞ and by integration by parts we have

E ∇ v ln ρ t (X t , V t ) • V t = 1 2 R n R n ∇ v ρ t (x, v) • ∇ v |v| 2 dxdv = - 1 2 R n R n ρ t (x, v)∆ v |v| 2 dxdv = -n.
Together with (4.20), it follows

dF(m t ) = -γE V t + σ 2 2γ ∇ v ln ρ t (X t , V t ) 2 dt.

Proof of Theorem 2.7

Let (m t ) t∈R + be the flow of marginal laws of the solution to (2.5), given an initial law m 0 ∈ P 2n 2 . Define a dynamic system S(t)[m 0 ] := m t . We shall consider the so-called w-limit set:

w(m 0 ) := µ ∈ P 2n 2 : there exist t k → ∞ such that W 1 S(t k )[m 0 ], µ → 0
We recall LaSalle's invariance principle. 2. for any µ ∈ w(m 0 ) and all t ≥ 0, there exits µ ∈ w(m 0 ) such that S(t)[µ ] = µ.

Proof Under the upholding assumptions, it follows from Lemma 4.3 that t → S(t) is continuous with respect to the W 1 -topology. On the other side, due to Theorem 2.6 and the fact that the relative entropy H ≥ 0, we know that {F (m t ) + 

E |X t | 2 + |V t | 2 < ∞.
Therefore S(t)[m 0 ] t≥0 = (m t ) t≥0 live in a W 1 -compact subset of P 2n 2 . The desired result follows from the invariance principle, see e.g. Henry [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF]Theorem 4.3.3]. Lemma 4.9. Let Assumption 2.1 and 2.5 hold true. Then, every m * ∈ w(m 0 ) has a density and we have

v + σ 2 2γ ∇ v ln m * (x, v) = 0, Leb 2n -a.s. (4.21)
Proof Let m * ∈ w(m 0 ) and denote by (m t k ) k∈N the subesquence converging to m * in W 1 .

Step 1. We first prove that there exists a sequence δ i → 0 such that

lim inf k→∞ E V t k +δ i + σ 2 2γ ∇ v ln m t k +δ i (X t k +δ i , V t k +δ i ) 2 = 0, for all i ∈ N. (4.22)
Suppose the contrary. Then we would have for some δ > 0

0 < δ 0 lim inf k→∞ E V t k +s + σ 2 2γ ∇ v ln m t k +s (X t k +s , V t k +s ) 2 ds ≤ lim inf k→∞ δ 0 E V t k +s + σ 2 2γ ∇ v ln m t k +s (X t k +s , V t k +s ) 2 ds,
where the last inequality is due to Fatou's lemma. This is a contradiction against Theorem 2.6 and the fact that F is bounded from below.

Step 2. Denote by ) k∈N are uniformly integrable with respect to Lebesgue measure, and thus m * has a density. Note that

t i k := t k + δ i and m * t := S(t)[m * ]. Note that lim k→∞ W 1 m t k , m * = 0 =⇒ lim k→∞ W 1 m t i k , m * δ i = lim k→∞ W 1 S(δ i )[m t k ], S(δ i )[m * ] = 0. Now fix i ∈ N.
E V t i k + σ 2 2γ ∇ v ln m t i k (X t i k , V t i k ) 2 = σ 4 4γ 2 R 2n ∇ v m t i k (x, v)e γ σ 2 |v| 2 2 m t i k (x, v)e γ σ 2 |v| 2 e -γ σ 2 |v| 2 dxdv Denote by µ * v := N (0, σ 2 2γ I n ) and define the function h i k (x, v) := m t i k (x, v)e γ σ 2 |v| 2
. By logarithmic Sobolev inequality for the Gaussian distribution we obtain

h i k ln h i k dµ * v -h i k dµ * v ln h i k dµ * v dx ≤ C |∇ v h i k | 2 h i k dµ * v dx.
Together with (4.22) we obtain

0 = lim k→∞ E V t i k + σ 2 2γ ∇ v ln m t i k (X t i k , V t i k ) 2 ≥ C lim sup k→∞ h i k ln h i k dµ * v -h i k dµ * v ln h i k dµ * v dx. (4.23) Since h i k dµ * v = m t i k dv = m X t i k , we further have 0 ≥ C lim sup k→∞ m t i k ln h i k -m t i k ln m X t i k dvdx = C lim sup k→∞   m t i k ln m t i k m X t i k e -γ σ 2 |v| 2   dvdx = C lim sup k→∞ H m t i k m X t i k × N (0, σ 2 2γ I n ) ≥ CH m * δ i m * ,X δ i × N (0, σ 2 2γ I n ) .
The last inequality is due to the lower semi-continuity of the relative entropy in weak topology.

Finally, since lim i→∞ W 1 (m * δ i , m * ) = 0, we get H m * m * ,X × N (0, σ 2 2γ I n ) = 0 and thus m * = m * ,X × N (0, σ 2 2γ I n ).
This immediately implies (4.21).

Lemma 4.10. Let Assumption 2.1 and 2.5 hold true. Then, each m * ∈ w(m 0 ) is equivalent to Lebesgue measure.

Proof By the invariant principle we may find a probability measure m • ∈ w(m 0 ) such that m * = S(t)[m • ] for a fixed t > 0. Then the desired result follows from Lemma 4.2.

Note that the necessary condition (4.21) for m * ∈ w(m 0 ) is not enough to identify m * = m. We are going to trigger the invariance principle to complete the proof of Theorem 2.7.

Proof of Theorem 2.7. Let m * ∈ w(m 0 ) and define m * t := S(t)[m * ] for all t ≥ 0. Denote by (X * t , V * t ) t≥0 the solution to the MFL equation (2.5) with initial distribution m * . Take a test function h ∈ C 1 (R n ) with compact support. It follows from Itô's formula that

dV * t h(X * t ) = -h(X * t ) D m F (m * t,X , X * t ) + γV * t + ∇ x h(X * t ) • V * t V * t dt + σh(X * t )dW t . (4.24) 
By the invariance principle, we have m * t ∈ w(m 0 ) for all t ≥ 0, and by Lemma 4.9 we have

v + σ 2 2γ ∇ v ln m * t (x, v) = 0, Leb 2n -a.s.
So there exists a measurable function

(t, x) → mt (x) such that m * t (x, v) = e -γ σ 2 |v| 2 mt (x).
In particular, we observe that for each t ≥ 0, the random variables X * t , V * t are independent and V * t follows the Gaussian distribution N (0, σ 2 2γ I n ). Taking expectation on both sides of (4.24), we obtain

0 = E -h(X * t ) D m F (m * t,X , X * t ) + γV * t + ∇ x h(X * t ) • V * t V * t for a.s. t = E -h(X * t )D m F (m * t,X , X * t ) + σ 2 2γ ∇ x h(X * t ) . (4.25) 
Observe that

E [∇ x h(X * t )] = C t R n ∇ x h(x) mt (x)dx = -C t R n h(x)∇ x mt (x)dx,
where C t is the normalization constant such that C t mt is a density function, and ∇ x mt is the weak derivative in sense of distribution. Together with (4.25) we have

R n h(x) -D m F (m * t,X , x) mt (x) - σ 2 2γ ∇ x mt (x) dx = 0.
Since h is arbitrary, we have 

D m F (m * t,X , x) + σ 2 2γ ∇ x ln mt (x) = 0, m * t -
D m F (m * t,X , x) + σ 2 2γ ∇ x ln m * t (x, v) = 0, v + σ 2 2γ ∇ v ln m * t (x, v) = 0, for all (x, v) ∈ R + × R 2n , for a.s. t.
Since F is convex, by Lemma 2.2 we have m * t = argmin m∈P 2n F(m) =: m for a.s. t. Taking into account that lim t→0 W 1 (m * t , m * ) = 0, we obtain m * = m. Finally, since m * is arbitrary, we conclude that w(m 0 ) = {m} is a singleton, and thus lim t→∞ W 1 (m t , m) = 0.

Exponential ergodicity given small mean-field dependence

Under Assumption 2.1 and Assumption 2.9, we consider the following equation:

dX t = V t dt, dV t = -b(m X t , X t ) + λX t + γV t dt + σdW t , (4.26) 
where b :

P(R n ) × R n → R is Lipschitz in the variable x b(m, x) -b(m, x ) ≤ L x |x -x |,
and for any ε > 0 there exists M > 0 such that for any m, m

∈ P(R n ) b(m, x) -b(m , x ) ≤ ε|x -x |, whenever |x -x | ≥ M,
and for each x ∈ R n b(m, x) -b(m , x) ≤ ιW 1 (m, m
), with some sufficiently small ι > 0. (4.27)

Reflection-Synchronous Coupling

We are going to show the contraction result in Theorem 2.11 via the coupling technique. Let (X, V ) and (X , V ) be the two solutions of (4.26) driven by the Brownian motions W and W , respectively. Define δX = X -X and δV = V -V . We introduce the change of variable

P t := δV t + γδX t .
Then, the processes δX and P satisfy the following stochastic differential equations

dδX t = (P t -γδX t )dt, dP t = -δb t + λδX t dt + σdδW t ,
where δW = W -W and

δb t := b m X t , X t -b m X t , X t .
Remark 4.11. We shall apply the reflection-synchronous coupling following the blueprint in Eberle, Guillin and Zimmer [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF], of which the main idea is to separate the space R n × R n into two parts: (i). (δX t , P t ) locates in a compact set; (ii). |δX t | + η|P t | is big enough, where the constant η is to be determined. As in [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF] we are going to apply the reflection coupling on the area (i) and the synchronous coupling on the area (ii). However, note that in [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF] the argument for the contraction on the area (ii) relies on a Lyapunov function, which can no longer play its role in the mean-field context. Therefore, we are going to construct another function (the function G in (2.6)) which decays exponentially on the area (ii).

Recall the definitions

r t := |δX t |, u t := |P t |, z t := δX t • P t .
Let ξ > 0. For technical reason we shall also apply the synchronous coupling on the area u t < ξ, and eventually we will let ξ ↓ 0. In order to couple the two processes (X, V ), (X , V ), we consider two Lipschitz continuous functions rc, sc : R 2n → [0, 1] such that rc For the sake of simplicity, denote rc t := rc(δX t , P t ). We notice that the Lipschitz continuity of the functions rc, sc ensures the existence and uniqueness of the coupling process.

To conclude, with the reflection-synchronous coupling, the processes δX and P satisfy the following stochastic differential equations 

dδX t = (P t -γδX t )
A :=   -γ -λ 1 2 -2γ 0 -2λ 0 0   .
Remark 4.12. As we will show later, the value of δb t is small whereas r t + ηu t is big enough. Therefore, the coupling system is nearly linear and its contraction rate mainly depends on the matrix A.

The eigenvalues of A solve the equation:

0 = (ζ + γ)(ζ + 2γ)ξ + 2λ(ζ + 2γ) + 2λζ = (ζ + γ)(ζ 2 + 2γζ + 4λ).
We divide the discussion into two cases, based on the different values of λ and γ.

(a) If λ < γ 2 4 , the matrix has three different negative eigenvalues

ζ = -γ, ζ = -γ + γ 2 -4λ, ζ = -γ -γ 2 -4λ,
in particular, it can be diagonalized. More precisely, we have QA = ΛQ with the transformation matrix

Q :=     -γ λ 1 -γ + γ 2 -4λ 1 2 γ 2 -2λ -γ γ 2 -4λ 1 -γ -γ 2 -4λ 1 2 γ 2 -2λ + γ γ 2 -4λ 1    
and the diagonal matrix Λ = diag -γ, -γ + γ 2 -4λ, -γ -γ 2 -4λ . Multiply Q on both sides of (4.29) and obtain

dQ   z t r 2 t u 2 t   = ΛQ   z t r 2 t u 2 t   dt + Q   -δb t • δX t 0 -2δb t • P t + 4rc 2 t σ 2   dt + Q   2 zt ut 0 4u t   σrc t dB t . (4.30)
Further note that 

-γ + γ 2 -4λ z t + 1 2 γ 2 -2λ -γ γ 2 -4λ r 2 t + u 2 t = γ -γ 2 -4λ 2 δX t -P t 2 , -γ -γ 2 -4λ z t + 1 2 γ 2 -2λ + γ γ 2 -4λ r 2 t + u 2 t = γ + γ 2 -
dG t ≤ -γ -γ 2 -4λ G t dt +   0 1 1   Q      -δb t • δX t 0 -2δb t • P t + 4rc 2 t σ 2   dt+   2 zt ut 0 4u t   σrc t dB t    . (b) If λ > γ 2 4 , the eigenvalues of A are ζ = -γ, ζ = -γ + i 4λ -γ 2 , ζ = -γ -i 4λ -γ 2 .
We have QA = ΛQ with the transformation matrix

Q :=   -γ λ 1 4λ -λγ -γ 0 λ 4λ -γ 2 -4λ -γ 2  
and the standard form

Λ :=   -γ 0 0 0 -γ -4λ -γ 2 0 4λ -γ 2 -γ   .
Multiplying Q on both sides of (4.29), we again obtain (4.30). Now note that

-γz t + λr 2 t + u 2 t = γ 2 δX t -P t 2 + λ - γ 2 4 |δX t | 2 =: G(δX t , P t ).
Together with (4.30), we obtain

dG t = -γG t dt +   1 0 0   Q      -δb t • δX t 0 -2δb t • P t + 4rc 2 t σ 2   dt +   2 zt ut 0 4u t   σrc t dB t    .
By defining

γ := γ -γ 2 -4λ, if γ 2 > 4λ γ, if γ 2 < 4λ , Q :=    0 1 1 Q, if γ 2 > 4λ 1 0 0 Q, if γ 2 < 4λ , we have dG t ≤ -γG t dt + Q      -δb t • δX t 0 -2δb t • P t + 4rc 2 t σ 2   dt +   2 zt ut 0 4u t   σrc t dB t    . (4.32) 
Finally, notice that in each case the function G is a quadratic form and is coercive, that is, Lemma 4.13. There exists λ G > 0 such that G t ≥ λ G (r 2 t + u 2 t ).

Proof

In both cases, the functions G can be written in the form: G t = Σ δX t P t

2

, where the matrices Σ are of full rank in both cases. Denote by λ G the smallest eigenvalue of the matrix Σ Σ. Clearly λ G > 0. Then we have G t ≥ λ G (r 2 t + u 2 t ).

Remark 4.14. Careful readers have noticed that we did not discuss the case λ = γ 2 4 . Indeed, in this case one may extract ε > 0 from λ and define the new λ := λ -ε < γ 2 4 . Provided that ε is small enough, it will not cause trouble to the following analysis. 

. Since λ G (r 2 t + u 2 t ) ≤ G t ≤ C G (r 2 t + u 2 t ), it follows from (4.32) that W 2 (m t , m t ) ≤ C G λ G e -γ 2 t W 2 (m 0 , m 0 ).
On the other hand, it follows from Theorem 6.4 of Pavliotis [START_REF] Pavliotis | Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations[END_REF] that the spectral gap of the operator

-L := -v • ∇ x + λx • ∇ v -γ(∆ v -v • ∇ v )
is also equal to γ 2 . It justifies that using the quadratic forms G constructed above, we may capture the optimal contraction rate on the area of interest.

Proof of contraction

Lemma 4.16. Let c ∈ R, η, β ∈ (0, ∞), and suppose that h : [0, ∞) → [0, ∞) is continuous, non-decreasing, concave, and C 2 except for finitely many points. Define ψ t := (1 + βG t )h( t ), with t := r t + ηu t .

Then,

e ct ψ t ≤ ψ 0 + t 0 e cs K s ds + M t , t ≥ 0, (4.33) 
where M is a continuous martingale, and In order to make ψ t a contraction under expectation, it remains to choose the coefficients η, β, h so that E[K t ] ≤ 0.

K t = (1 + βG t )h ( t ) η δb t + u t + ηλ -γ r t + (1 + βG t )2h ( t )η 2 σ 2 rc 2 t + 4βησ 2 rc 2 t h ( t ) Q (r t + 2u t ) + cψ t -γβG t h( t ) + βh( t ) Q   -δb t • δX t 0 -2δb t • P t + 4rc 2 t σ 2   . ( 4 
Choice of coefficients Recall λ G in Lemma 4.13. We fix a constant

ε 0 < γλ G 7 Q . ( 4.35) 
Recall that there exists M > 0 such that for all m, m ∈ P

(R n ) b(m, x) -b(m, x ) ≤ ε 0 |x -x | whenever |x -x | ≥ M . (4.36)
Using ε 0 , M above, we choose the coefficient η > 0 such that Remark 4.17. The function h and its similar variations are repeated used in Eberle [START_REF] Eberle | Reflection couplings and contraction rates for diffusions[END_REF], Eberle, Guillin and Zimmer [START_REF] Eberle | Couplings and quantitative contraction rates for Langevin dynamics[END_REF][START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF], Luo and Wang [START_REF] Luo | Exponential convergence in L p -Wasserstein distance for diffusion processes without uniformly dissipative drift[END_REF] to measure the contraction under the reflection coupling. In particular, the functions ϕ, g and h have the following properties:

η < γ ∧ ε 0 L x + λ + 4 Q σ 2 ∧ M √ ε 0 σ , and define θ := 1 η + 8 Q σ 2 , ( 4 
• ϕ is decreasing,

ϕ min := min 0≤s≤2M ϕ(s) = exp - θ η 2 σ 2 M 2 . • g is decreasing, g(0) = 1 and g(s) ≥ g(2M ) = 1 2 for r ∈ [0, 2M ]. • h is non-decreasing, concave, h(0) = 0, h (0) = 1, h (0) = 1, h (2M ) = ϕ(2M )g(2M ) = ϕ min 2 > 0 and h is constant on [2M, ∞) h( ) ≤ , Φ( ) 2 ≤ h( ) ≤ Φ( ), ≤ 2M, and 
θ h ( ) + 2η 2 σ 2 h ( ) ≤ -κ M h( ), ≤ 2M, with κ M := η 2 σ 2 2M 0 Φ(r) ϕ(r) dr . ( 4.38) 
For the later use we further define a constant κ M > 0 such that

κ M ≤ κ M ∧ ϕ min 2 γ -η L x + λ + 4 Q σ 2 . (4.39)
Note that in (4.37) we choose η to be small so that η L x + λ + 4 Q σ 2 < γ. Next introduce the constants

C 1 := 4 Q L x M 2 1 + 2 η + 4 Q σ 2 ,
and choose the coefficient β > 0 such that

β < κ M C 1 ∧ 1. (4.40)
Finally we may find a constant C 0 such that r + u ≤ C 0 ψ and thus W 1 ≤ C 0 W ψ . For the later use, define 

C 2 := 2 Q M 1 +
= ψ t c -γ - 7 Q λ G ε 0 βG t 1 + βG t ≤ ψ t c -γ - 7 Q λ G ε 0 2βλ G M 2 1 + 2βλ G M 2 ≤ 0,
where the second last inequality is due to the choice of ε 0 in (4.35) and the last one is due to c defined in (4.41).

Proof of Theorem 2.11. Let Γ be a coupling of two probability measures m 0 and m 0 on R 2n such that W ψ m 0 , m 0 = ψdΓ. We consider the coupling process (X, V ), (X , V ) introduced above with initial law (X 0 , V 0 ), (X 0 , V 0 ) ∼ Γ. By taking expectation on both sides of (4.33), we obtain for any ξ > 0 and t ≥ 0. Note that E[ψ 0 ] = ψdΓ = W ψ m 0 , m 0 . Therefore W ψ (m t , m t ) ≤ E[ψ t ] ≤ e -ct W ψ m 0 , m 0 + Cc -1 1 -e -ct ξ → e -ct W ψ m 0 , m 0 , as ξ → 0.

Finally note that by the choice of β in (4.40), we have c > 0 according to (4.41) provided that ι is small enough.

  ϕ(A i z + b i ) 2 µ(dy, dz), with the distribution µ of the data z and the label y, by the optimization over the probability measures:inf m∈P(R n ) y -E m [cϕ(Az + b)]2 µ(dy, dz), where m is the law of the r.v. X := (c, A, b).
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 22 Let Assumption 2.1 hold true. If m = argmin µ∈P F(µ), then m admits a density and there exists a constant C ∈ R, such that
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 1 Figure 1: Training errors and GAN samplings
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 10 Proof This proof is largely based on the time-reversal argument in Föllmer [21, Lemma 3.1 and Theorem 3.10], where the author sought a similar estimate for a non-degenerate diffusion. For simplicity of notations, let us assume σ = 1.
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 14 Proposition 4.7. (i) Let Assumption 2.1 hold true, then b(t, x, v) is a continuous function, uniformly Lipschitz in (x, v).

Proposition 4 . 8 .

 48 [Invariance Principle] Let Assumption 2.1 and 2.5 hold true. Then the set w(m 0 ) is nonempty, W 1 -compact and invariant, that is, 1. for any µ ∈ w(m 0 ), we have S(t)[µ] ∈ w(m 0 ) for all t ≥ 0.
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 415 In case b = 0, the contraction result can directly follow from the synchronous coupling, i.e. rc t ≡ 0

. 37 )

 37 where L x is the Lipschitz constant of the function b in x. Now we are ready to introduce the function h(

E

  [e ct ψ t ] ≤ E[ψ 0 ] + t 0 e cs E[K s ]ds ≤ E[ψ 0 ] + Cc -1 (e ct -1)ξ.

  .9) Proof Let us first consider (4.8). As b is of linear growth in (x, v), it is standard to apply Itô formula on |X t | 2p + |V t | 2p , and use BDG inequality and then Grownwall lemma to obtain (4.8). Next, since E |X 0 | 2 + |V 0 | 2 < ∞, it follows by (4.6) and (4.8) that

  Due to Theorem 2.6 and the fact that {F (m t ) + 1 2 E[|V t | 2 ]} t≥0 is bounded from below, the set {H(m t i

k

)} k∈N is uniformly bounded. Therefore the densities (m t i k

  a.s. for a.s. t. By Lemma 4.10, m * t is equivalent to Lebesgue measure, and thus we have

  2 t + sc 2 t ≡ 1, rc(δX t , P t ) = 0, when u t = 0 or r t + ηu t ≥ 2M + ξ, 1, when u t ≥ ξ and r t + ηu t ≤ 2M. With two independent Brownian motions W rc and W sc we consider the following coupling dW t = rc(δX t , P t )dW rc t + sc(δX t , P t )dW sc t , dW t = rc(δX t , P t ) I n -2e p

	The values of the constants η, M ∈ (0, ∞) will be determined later. Define	
	e x t :=	δXt |δXt| , if δX t = 0, 0, if δX t = 0,	and e p t :=	Pt |Pt| , if P t = 0, 0, if P t = 0.	.
			t (e p t ) dW rc t + sc(δX t , P t )dW sc t ,	
	in particular we have dδW t = 2rc(δX t , P t )e p t (e p t ) dW rc t . By Lévy characterization, the process B t := (e p t ) W rc t is a one-dimensional Brownian motion.

  dt, dP t = -δb t + λδX t dt + 2σrc t e p t dB t . As reported in Remark 4.11, the main novelty of our contraction result is to construct a function exponentially decaying along the process (4.28) whereas r + ηu is big enough. In this subsection we are going to construct the auxiliary function according to the different settings. • dδX t = e x t • P t -γr t dt, du t = -δb t • e p t + λe p t • δX t dt + 2σrc t dB t .

	with the matrix									
											(4.28)
	4.4.2 The auxiliary function						
	First, it follows from (4.28) and Itô's formula that					
	dr t = δX t Also we have 1 |δX t |					
	d	  u 2 z t r 2 t t	  = A	  u 2 z t r 2 t t	  dt +	  -2δb t • P t + 4rc 2 -δb t • δX t 0 t σ 2	  dt +	 	2 zt ut 4u t 0	  σrc t dB t	(4.29)

  .34) Proof Since by assumption, h is concave and piecewise C 2 , we can now apply the Itô-Tanaka formula to h( t ). Denote by h and h the left-sided first derivative and the almost everywhere defined second derivative. The generalized second derivative of h is a signed measure µ h such that µ ct ψ t = e ct (1+ βG t )dh( t ) + βh( t )dG t + βd h( ), G t + cψ t dt ≤ e ct K t dt + d M t , with d M t = (1 + βG t )2h ( t )ησrc t dB t + βh( t )Qand the process K defined in(4.34). The assertion follows by taking M t = e ct M t .

	Calculate the quadratic variation		
		 2 zt ut
	d h( ), G t = 2h ( t )ησrc t Q		0
			4u t
			 2 zt ut	
				0	 σrc t dB t
				4u t

h (d ) ≤ h ( )d . We obtain

dh( t ) = h ( t )(dr t + ηdu t ) + 1 2 h ( t )d u t = h ( t )

e x t • P t -γr t -ηδb t • e p t -ηλe p t • δX t dt + 2h ( t )η 2 σ 2 rc 2 t dt + 2h ( t )ησrc t dB t ≤ h ( t ) η|δb t | + u t + ηλ -γ r t dt + 2h ( t )η 2 σ 2 rc 2 t dt + 2h ( t )ησrc t dB t .   σrc t dt ≤ 4ησ 2 rc 2 t h ( t ) Q (r t + 2u t )dt. Finally, again by Itô's formula, we obtain d e

  2 η C 0 . Lemma 4.18. With the choice of the coefficients η, β, h above, we have E[K t ] ≤ Cξ for c:= min κ M -C 1 β -(1 + βC M )η + βh(2M )C 2 ι, γ -7 Q λ G ε 0 2βλ G M 2 1 + 2βλ G M 2 . (4.41) Proof We divide (r, u) ∈ R + × R + into two regions: (i). t = r t + ηu t ≤ 2M : It is due to r t + ηu t ≤ 2M that G t ≤ C G r 2 t + u 2 t ≤ 4M 2 C G 1 + 1 η 2 =: C M .It is due to the Lipschitz assumption (4.27) and the factW 1 ≤ C 0 W ψ that • P t + 4σ 2 rc 2 t   ≤ Q |δb t |r t + 2|δb t |u t + 4σ 2 rc 2 t ≤ Q C 0 ιW ψ (m t , m t ) + L x r t (r t + 2u t ) + 4σ 2 ≤ 2 Q M 1 + 2 η C 0 ιW ψ (m t , m t ) + 4 Q L x M 2 1 + 2 η + 4 Q σ 2 = C 2 ιW ψ (m t , m t ) + C 1 .Together with (4.34) we obtainK t ≤ (1 + βG t )h ( t ) ηιW ψ (m t , m t ) + η(L x + λ) -γ r t + u t + (1 + βG t )2h ( t )η 2 σ 2 rc 2 t + 4β Q ησ 2 rc 2 t h ( t )(r t + 2u t ) + cψ t + βh( t ) C 2 ιW ψ (m t , m t ) + C 1 ≤ (1 + βC M )η + βh(2M )C 2 ιW ψ (m t , m t ) + C 1 βh( t ) + cψ t + (1 + βG t )h ( t ) η L x + λ + 4β Q σ 2 rc 2 βG t u t + (1 + βG t )2h ( t )η 2 σ 2 rc 2Further recall that h satisfies the inequality (4.38) and the constant κ M defined in (4.39). Since h ( ) ≤ 0, h ( ) ≤ 1, h( ) ≤ and rc t = 1 whenever u t ≥ ξ, we obtainI t ≤ (1 + βG t )θηu t h ( t ) + (1 + βG t )2h ( t )η 2 σ 2 rc 2 K t ≤ (1 + βC M )η + βh(2M )C 2 ιW ψ (m t , m t ) + C 1 βh( t ) + cψ t -(1 + βG t )κ M h( t ) + (1 + βG t )κ M r t + (1 + βC M )(κ M + θ)ηξ + (1 + βG t )h ( t ) η L x + λ + 4β Q σ 2 rc 2 t 1 + βG t -γ r t ≤ (1 + βC M )η + βh(2M )C 2 ιW ψ (m t , m t ) + C 1 βh( t ) + cψ t -κ M ψ t + (1 + βG t )h ( t ) κ M h ( t ) + η L x + λ + 4 Q σ 2 -γ r t + (1 + βC M )(κ M + θ)ηξ.Due to the choice of η in (4.37) and κ M in (4.39), the factor of r t above is non-positive, i.e.κ M h ( t ) + η L x + λ + 4 Q σ 2 -γ ≤ 2κ M ϕ min + η L x + λ + 4 Q σ 2 -γ ≤ 0.Therefore, we obtainK t ≤ (1 + βC M )η + βh(2M )C 2 ιW ψ (m t , m t ) + C 1 β + c -κ M ψ t + (1 + βC M )(κ M + θ)ηξ.Since W ψ (m t , m t ) ≤ E[ψ t ] and taking expectation on both sides we obtain that Recall that by the choice of η in (4.37) we have σ 2 ≤ ε 0 M 2 1 ∨ 1 η 2 and ε 0 ≥ L x η. Together with (4.36) we obtain|δb t | ≤ ε 0 r t , rc 2 t σ 2 ≤ ε 0 r 2 t , on {r ≥ M }as well as|δb t | ≤ L x ηu t ≤ ε 0 u t , rc 2 t σ 2 ≤ ε 0 u 2 t , on {u ≥ η -1 (r ∨ M )}.Combining the two estimates above, we get|δb t | ≤ ε 0 (r t ∨ u t ).where for the last inequality we use the coercivity in Lemma 4.13. Also due to r t + ηu t ≥ 2M and η ≤ 1 we haveβG t 1 + βG t ≥ 2βλ G M 2 1 + 2βλ G M 2 .Together with (4.42) and (4.43) we obtain K t ≤ cψ t -γβG t h(2M ) + βh(2M )

	Hence,					
							7 Q ε 0 λ G	G t = cψ t -γ	βG t 1 + βG t	ψ t +	7 Q ε 0 λ G	βG t 1 + βG t	ψ t
			-δb t • δX t				
	Q		0				
	  -2δb t • P t + 4σ 2 rc 2 -δb t • δX t 0 t -2δb t t   . Further we can divide this region into two parts:	(4.42)
	Recall θ defined in (4.37). Since β < 1, we have
					1 η	+	8β Q σ 2 rc 2 t 1 + βG t	≤	1 η	+ 8 Q σ 2 = θ.
	and therefore				
			Q	 	-δb t • δX 0 -2δb t • P t + 4rc 2 t σ 2	  ≤ 7 Q ε 0 (r 2 t + u 2 t ) ≤	7 Q ε 0 λ G	G t ,	(4.43)

t 1 + βG t -γ r t + I t with I t := (1 + βG t )h ( t ) 1 + 8β Q ησ 2 rc 2 t 1 + t ≤ (1 + βG t ) θ t h ( t ) + 2η 2 σ 2 h ( t ) 1 {ut≥ξ} + (1 + βC M )θηξ1 {ut≤ξ} ≤ -(1 + βG t )κ M h( t )1 {ut≥ξ} + (1 + βC M )θηξ ≤ -(1 + βG t )κ M h( t ) + (1 + βG t )κ M h( t )1 {ut≤ξ} + (1 + βC M )θηξ ≤ -(1 + βG t )κ M h( t ) + (1 + βG t )κ M r t + (1 + βC M )(κ M + θ)ηξ. E[K t ] ≤ (1 + βC M )η + βh(2M )C 2 ι + (C 1 β + c -κ M ) E[ψ t ] + (1 + βC M )(κ M + θ)ηξ ≤ (1 + βC M )(κ M + θ)ηξ,

where the last inequality is due to the definition of c in (4.41).

(ii). t = r t + ηu t ≥ 2M : In this region, h( t ) is constant, h ( t ) = h ( t ) = 0. Therefore,

K t = cψ t -γβG t h(2M ) + βh(2M ) Q {(r, u) : ηu + r ≥ 2M } ⊆ {r ≥ M } ∪ {u ≥ η -1 (r ∨ M )}.