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Subpercent agreement between ab initio and experimental collision-induced
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Grudziadzka 5, 87-100 Toruń, Poland
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We present fully ab initio calculations of second-overtone rovibrational line shapes of carbon monoxide
perturbed by argon. The quantum mechanical scattering problem between CO and Ar is solved numerically for
two different ab initio interaction potentials. We use the generalized Hess method to determine spectroscopic
cross sections which describe the effect of collisions on each spectral line. Using these cross sections, we
determine the line-shape parameters that we use to generate the Hartmann-Tran and speed-dependent billiard
ball profiles. We compare the generated line shapes with high-quality experimental line profiles of five lines
measured at five pressures between 0.01 and 1 atm. A subpercent agreement over the entire pressure range
is obtained. Calculations for the P(9) line are used to inspect the effects of the two interaction potentials. The
discrepancies for both the considered interaction potentials and the experiment are explained within the described
theoretical framework. The presented results are the most accurate collisional line-shape calculations for a system
with collision dynamics representative of atmospherically relevant species.
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I. INTRODUCTION

The ability to accurately predict and interpret molecular
spectra is important for many purposes. Studies of the at-
mosphere of Earth [1–3] and other planets [4] depend on
the availability of spectroscopic reference data [5], which are
obtained from laboratory measurements [6] and supplemented
by classical molecular dynamics simulations (CMDSs) [7,8].
The accuracy of molecular interaction potentials can be as-
sessed by comparison with simulated spectral line shapes
[9]. Establishing an accurate link between the thermodynamic
temperature and the Doppler line widths hinges on a proper
interpretation of the full line shape [10]. For molecular hy-
drogen, confronting the experimental transition frequencies
with theoretical predictions [11] allows testing of the limits
of validity of quantum electrodynamics for molecules or
searching for new physics beyond the Standard Model [12].
In all these cases, it is crucial to properly account for the
collisional effects in molecular spectra [13], including the
speed dependence of line broadening and shift [14] and the
influence of collision-induced velocity changes [15].

A fully ab initio method of determining molecular line
shapes is desirable because it allows us to verify our un-
derstanding of the line-shape problem and generate refer-
ence line-shape parameters without time-consuming, expen-
sive, and technically challenging experiments. The speed-
dependent billiard ball profile (SDBBP) [16] is based on a
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numerical solution of a quantum Boltzmann equation and it
uses a physically justified model of collision-induced velocity
changes (VCs), in contrast to commonly used phenomenolog-
ical profiles such as the Hartmann-Tran profile (HTP) [17].
For this reason, the SDBBP has been successful in explaining
the collisional inhomogenous broadening in H2-Ar spectra
[18], determining transition frequencies in D2 with a high
accuracy [19], and modeling Dicke-narrowed spectra of CO-
Ar [20,21].

For a complete description of the line shape, a procedure
for calculating the parameters describing the influence of
collisions on internal and external molecular degrees of free-
dom is additionally needed. We have recently described this
procedure [22,23], limited to the case of an isolated line within
binary collision impact theory [24]. Within these restric-
tions, collisions can change the phase and state of the active
molecule, producing broadening and shift of the line. (In the
following, the change of phase or state is called dephasing for
short.) Collisions can also change the velocity of the molecule,
hindering its free motion responsible for the Doppler width,
and narrow the profile [15]. Pressure broadening is custom-
arily separated into its thermally averaged part and its speed-
dependent part, with the latter narrowing the line profile. In
the case of pressure shift, its speed dependence may broaden
the line and also make it asymmetric. Asymmetry of the line
also occurs because dephasing and velocity-changing effects
cannot be rigorously separated [25]. Quantum-mechanical
calculations of collisional dephasing have been performed for
numerous systems [13,26], including CO-Ar [20,21,27,28].
In contrast, treatments accounting for both dephasing and the
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effects of VCs were mostly limited to the hydrogen molecule
and its isotopologues [19,22,29–31], which are not represen-
tative of systems relevant to atmospheric studies.

In this work, we present fully ab initio collisional line
shapes of CO-Ar rovibrational transitions in the P branch of
the second-overtone band. The collisional line-shape parame-
ters describing both dephasing and velocity-changing effects
were obtained from the solution of the quantum-mechanical
scattering problem for an ab initio potential. We directly
compare the generated line profiles with high-SNR (signal-
to-noise ratio) experimental spectra [32], acquired with a
comb-assisted cavity ringdown spectroscopy system [33–35].
The difference between ab initio and experimental spectra is
subpercent over the whole pressure range—from the strongly
Dicke-narrowed regime to the pressure-broadening regime.
We emphasize that no collisional line-shape parameter was
adjusted to the experiment. This is the first time this level of
agreement was reached for a system with collision dynamics
typical of atmospherically relevant species. Moreover, we find
that using the recently described procedure for approximating
the SDBBP with the HTP [36] results in similarly small
discrepancies, paving the way for ab initio generation of
spectroscopic reference data. We use these results to identify
the source of discrepancies in ab initio line-shape parameters
based on two different potential energy surfaces versus those
derived from experimental line shapes.

The paper is organized as follows: The theoretical frame-
work is described in Sec. II. The results are presented in
Sec. III, which contains the computational details (Sec. III A),
a direct comparison between generated and measured line
shapes (Sec. III B), and a comparison between calculated and
fitted line-shape parameters (Sec. III C). Finally, the article is
concluded in Sec. IV. A comparison between potential energy
surfaces is given in Appendix B.

II. LINE-SHAPE PROBLEM

The formal solution of the line-shape problem is given by
the integral

I (ω) = 1

π
Re

∫
R3

d�v1 ρba(ω, �v1), (1)

where ω is the angular frequency of incident radiation, �v1 is
the absorber speed, and ρba(ω, �v1) is the velocity distribution
of the optical coherence between the initial and final state,
a, b, of the absorber. The rotational (vibrational) numbers
corresponding to a, b states are denoted ja, jb (νa, νb). The full
density matrix, ρ(ω, �v1), includes multiple degenerate states
associated with each rotational state, |ν jm〉, so the ρba(ω, �v1)
distribution is obtained by averaging over all ma, mb states
associated with ja, jb quantum numbers. Assuming no col-
lisional coupling between coherences, i.e., isolated lines, the
averaging is given by [37]

ρba(ω, �v1) = Tr
[
T (q)n†

ba ρ(ω, �v1)
]
, (2)

where Tr is the trace over internal states of the molecule. In the
above equation, the T (q)n

ba spherical tensor operator is a state

multipole given by [37,38]

T (q)n
ba = iq(2q + 1)1/2

∑
mb,ma

(−1) jb−mb

(
jb q ja

−mb n ma

)

× |νb jbmb〉〈νa jama|, (3)

where (:::) is the 3-j symbol, q is the tensor order of the
considered transition, and n is its projection. The ρba(ω, �v1)
distribution can be obtained from the generalized Waldmann-
Snider equation [39,40],

1 = [−i(ω − ω0 − �k · �v1) − Ŝba]ρ̃ba(ω, �v1), (4)

where ρ̃ba(ω, �v1) is the optical coherence distribution with the
Maxwell-Boltzmann distribution factored out, ρba(ω, �v1) =
ρ̃ba(ω, �v1) fMB(�v1), �k · �v1 describes the Doppler shift, and ω0

is the angular frequency of the transition.
In the SDBBP the collision operator Ŝba is assumed to

adopt the form

Ŝba = −�(v1) − i�(v1) + νoptM̂BB, (5)

where �(v1) and �(v1) are the speed-dependent broadening
and shift, νopt is the complex Dicke parameter, and M̂BB

is the normalized billiard ball operator [19]. The real part
of the complex Dicke parameter is smaller [41,42] than the
frequency of VCs associated with mass diffusion, νdiff . This
discrepancy has been partially explained by the dependence
of the specific νopt value on the model of VCs in collisions
[36,43]. The frequency of VCs is additionally reduced by
discounting the collisions that both remove the coherence
between radiative states and change the velocity, since they
cannot affect the line shape. Equation (5) with νopt �= νdiff

effectively mixes dephasing and VCs, despite formally sep-
arating these effects into different terms. The commonly used
phenomenological profiles are obtained by simplifying the
collision operator. The speed-dependent hard-collision profile
(SDHCP) [44] is obtained by replacing the billiard ball op-
erator with the normalized hard-collision collision operator,
M̂BB ≡ M̂HC [19]. The speed-dependent Voigt profile (SDVP)
ignores VCs, Ŝba = −�(v1) − i�(v1), and the Voigt profile
is obtained by replacing the speed-dependent broadening
and shift in the SDVP with their thermally averaged values,
�(v1) ≡ �0 and �(v1) ≡ �0.

The M̂HC operator does not depend on the interaction
potential between the absorber and the perturber. Instead, it
randomly selects the postcollision velocity from the Maxwell-
Boltzmann distribution, fMB(�v1), regardless of the initial ve-
locity. This simple model enables a nearly analytical solution
of Eq. (4) but fails to reproduce line shapes exhibiting a strong
influence of VCs, such as molecular hydrogen transitions
[45]—especially when hydrogen is perturbed by much heav-
ier atoms or molecules. Moreover, using the hard-collision
model to fit experimental spectra results in νopt values that
scale nonlinearly with the pressure, which is unphysical. The
billiard ball (hard-sphere) operator, M̂BB, approximates the
actual interaction potential by a hard-sphere potential. The
diameter of the hard-sphere potential is set by the distance, Rσ ,
between the colliding species corresponding to V0(Rσ ) = 〈E〉,
where V0 is the isotropic part of the potential and 〈E〉 is the
mean collision energy. The M̂BB operator takes into account
the mass ratio of the colliding pair, the initial velocity, and
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the scattering angle. Most importantly, the SDBBP has been
shown to reproduce experimental spectra in which VCs play a
dominant role and to return physically meaningful line-shape
parameters [18]. Recently, it was shown that the SDHCP can
be used to approximate the SDBBP by replacing νopt with
β(χ = νopt/�D, α)νopt [36], where �D is the Doppler half-
width and α = m2/m1 is the perturber-to-absorber mass ratio.
This β-corrected profile is denoted βSDHCP in the following.

The prescription for calculating �0, �0, and νopt is given by
the generalized Hess method (GHM) in terms of two collision
integrals [37],

ωA = Tr
〈
T (q)n†

ba Ŝ
(
ρ (0)T (q)n

ba

)〉
1 = �0 + i�0, (6)

ωR = 2
3 Tr

〈 �W1T (q)n†
ba Ŝ

(
ρ (0) �W1T (q)n

ba

)〉
1

= 2
3 M2 Tr

〈 �WrT (q)n†
ba Ŝ

(
ρ (0) �WrT (q)n

ba

)〉
r
+ M1ωA

= νrad
diff + M1(�0 + i�0), (7)

where Eq. (7) defines νrad
diff . In Eqs. (6) and (7), Mi = mi/(m1 +

m2), 〈. . . 〉1 denotes averaging over the Maxwell-Boltzmann
distribution of the active molecule, 〈. . . 〉r denotes averaging
over the relative motion, Ŝ is the collision operator for the full
density matrix, and ρ (0) is the equilibrium density matrix for
the absorber,

[ρ (0)]ba = δa,b(2 ja + 1)e−Eja /kBT /Zrot, (8)

where kB is the Boltzmann constant, T is the temperature, and
Zrot is the rotational partition function. The reduced velocities,
�W1, �Wr , are given by

�W1 =
(

m1

2kBT

)1/2

�v1 = �Wr + �WCM, (9)

�Wr =
(

μ12

2kBT

)1/2

(�v1 − �v2), (10)

�WCM =
(

1

2(m1 + m2)kBT

)1/2

(m1�v1 + m2�v2), (11)

where μ12 = m1m2/(m1 + m2) and �v2 is the velocity of the
perturber. Ŝ depends only on the relative motion of the
absorber-perturber pair, associated with �Wr [38]. Hence, one
can substitute Eq. (9) into Eq. (7) and integrate out the center-
of-mass motion to split ωR into the velocity-changing part,
νrad

diff , and the dephasing part, M1(�0 + i�0).
In order to calculate the HTP and SDBBP, we require the

complex Dicke parameter, νopt, which is related to the GHM
quantities by

νopt = ωR − ωA = νrad
diff − M2(�0 + i�0). (12)

Equation (12) is formally similar to a commonly adopted
formula for νopt [17,44]:

νopt = νdiff − η(�0 + i�0). (13)

Here, η is the “correlation parameter” that has to be fitted to
the experiment. Interpreting η as the fractional contribution
of dephasing to νopt, the GHM [37,46] shows that it is fixed
for a given pair of absorber-perturber species; see Eq. (12).
Moreover, in the GHM the mass-diffusion contribution to νopt,
νrad

diff , is distinct from νdiff and for CO-Ar it was found to be
significantly larger than νdiff [23].

The collision integrals in Eq. (12) are related to spectro-
scopic cross sections,

ωA = n2〈vr〉
〈
σ

q
λ=0(νa ja → νb jb; E )

〉
r, (14)

νrad
diff = 2

3 n2M2〈vr〉
〈
xσ q

λ=1(νa ja → νb jb; E )
〉
r, (15)

where 〈vr〉 = √
8kBT/πμ12 is the mean relative speed, E =

μ12v
2
r /2 is the initial kinetic energy, x = E/kBT is the reduced

initial kinetic energy, λ is the rank of the velocity tensor
associated with the cross section, and n2 is the concentration
of the perturbers. The line shapes depend on the pressure
through the ideal-gas law relation, n2 = p/kBT . The rules for
evaluating preceding thermal averages of cross sections and
the expressions for these cross sections in terms of S-matrix
elements in total angular momentum representation are given
in Appendix A, Eqs. (A1)–(A3). It is worth pointing out that,
in contrast to νdiff , νrad

diff can be a complex number. This is
because νdiff is calculated for collisions on a single interaction
potential but νrad

diff involves collisions on the potential in the
(ν, j) = (νa, ja) state and in the (νb, jb) state; see Eq. (A1).
Therefore, νopt is a complex quantity both due to this factor
and due to the contribution from �0. The imaginary part of
νopt induces asymmetry in the profile.

The speed-dependent pressure broadening and shift, �(v1)
and �(v1), are obtained by averaging the σ

q
λ=0(νa ja →

νb jb; E ) cross section over the conditional distribution
fMB(vr |v1) of the relative velocity with respect to the absorber
velocity [47,48]:

�(v1) + i�(v1) = n2

∫ ∞

0
dvr vr fMB(vr |v1)

× σ
q
λ=0

(
νa ja → νb jb; E = μ12v

2
r /2

)
.

(16)

In order to fit the experimental line shapes, �(v1) is commonly
approximated with the quadratic speed dependence [49],

�(v1) = �0 + �2

(
v2

1

v2
p

− 3

2

)
, (17)

where vp = √
2kBT/m1 is the most probable speed of the

absorber. In particular, the SDHCP with quadratic speed de-
pendence (qSDHCP) is the HTP [17,50]. We determine �2

from the ab initio dependence by requiring the derivatives of
both the ab initio and the quadratic speed dependence to be
equal at v1 = vp [23]:

�2 = vp

2

d

dv1
�(v1)

∣∣∣∣
v1=vp

. (18)

The same formulas, Eqs. (17) and (18), mutatis mutandis,
apply for �(v1).

III. RESULTS

A. Computational details

In this work we use two fully ab initio Ar-CO potentials:
the Sumiyoshi and Endo [51] potential (henceforth Sumiyoshi
potential) and a new potential calculated by us. The former
was previously used by Ngo and Hartmann [7] for classical
molecular dynamics simulations of CO-Ar 0-3 line shapes
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[7] and by us for calculations of CO-Ar 0-1 line shapes [23].
The potentials are described and compared in more detail in
Appendix B. Both potentials were expanded in the basis of
Legendre polynomials up to 10th order and averaged over
the CO wave function in (v, j) = (0, 0) and (3,0) states. The
difference at the minimum of the well between the Sumiyoshi
potential averaged over the (0,0) state and the (0,14) state is
0.05 cm−1. Given the well depth of 107.1 cm−1, this indi-
cates negligible centrifugal distortion. In order to assess the
accuracy of potentials, we have performed full calculations
of the line-shape parameters and profiles, as described in the
following paragraphs, for the P(9) line for both potentials.
Comparison with the experimental line shapes indicated that
the Sumiyoshi potential provides better agreement, therefore
it was used for all subsequent calculations and to obtain the
results presented in Sec. III.

The S matrices were obtained by numerically solving
the close-coupled equations [52,53] with the log-derivative
propagator [54,55] as implemented in the MOLSCAT code
[56,57]. The close-coupling equations were propagated for
intermolecular distances from 2 to 26 Å or to the farthest
classical turning point, whichever distance was larger. The S
matrices were calculated at kinetic energies up to 1700 cm−1

at 278 points, of which 247 were below 110 cm−1. The denser
grid at lower energies was adopted to accurately probe the
narrow Ar-CO resonances contributing to pressure shift cross
sections. The upper limit of integration of thermal averages,
Eqs. (14) and (15), was set by the 0.9999 quantile of the
x2e−x distribution, Eq. (A3). The maximum v1 value at which
�(v1) and �(v1) were calculated was set by the 0.999 quantile
of the Maxwell-Boltzmann speed distribution, and the upper
limit of the speed-dependent average, Eq. (16), was set by
the 0.995 quantile of the conditional distribution fMB(vr |v1).
Cross sections for energies beyond 1700 cm−1 were obtained
from simple extrapolations with the f (E ) = a/E + b func-
tion, where a, b were fitted parameters. The extrapolated
integrands of Eqs. (14) and (15) were interpolated with cubic
B splines and integrated using analytical formulas.

B. Comparison of ab initio and experimental line profiles

In order to directly verify our calculations, we present in
Fig. 1 a comparison between line profiles of the P(9) line
measured with a comb-assisted cavity ringdown spectrometer
[32] (top row), simulated based on ab initio calculations [rows
(a)–(g)] and fitted to the measurements [row (h)]. Most of the
ab initio calculations were done with the Sumiyoshi potential
[Figs. 1(a)–1(e), 1(g)]. The presented measurement data and
fitted line-shape parameters are the same as in Ref. [32]
and the reader is referred there for a detailed description
of the experimental setup and procedure. At each pressure
the frequency axis was shifted to the position of the line
peak determined from the qSDHCP fit, i.e., by the value
ν0 + �0, where ν0 is the zero-pressure transition frequency.
The plotted frequency span was limited to ±4 full-widths at
half-maximum (FWHM) at each pressure. We selected the
P(9) line due to the high SNR of the measurements of this line,
allowing us to distinguish the influence of different collisional
effects on the line shape. Conversely, we do not show the
lowest experimental pressure line profile, 10 Torr, because

its low SNR would prevent any meaningful analysis of the
line shape. Figures 1(a)–1(h) show the differences between
experimental line profiles and different models, scaled to the
peak of the experimental profile at each pressure. The level
of agreement between the experimental and the simulated
line profiles is quantified with the root-mean-square difference
between them, divided by the peak value of the experimental
profile at each pressure. The calculated values are denoted ε in
Fig. 1. The experimental SNR is equivalent to the 1/ε values
for the qSDHCP fit [Fig. 1(h)] since the fit reproduces the
spectra within the experimental noise. From lowest to highest
pressure the SNR values are 1081, 1196, 1497, 1584. For
the fully ab initio profiles [Figs. 1(a)–1(f)], line intensities,
transition frequencies, and baseline functions (linear slope
and two etalons) were set to the values obtained from the
qSDHCP multispectrum fit of the experimental data [32];
the collisional line-shape parameters, Eq. (5), were set to ab
initio values; and the Doppler width was determined from
the temperature of the sample. The �0-corrected βSDHCP
[Fig. 1(g)] was calculated with the fitted instead of the ab
initio �0, but it is otherwise the same as the βSDHCP
[Fig. 1(d)].

The pressures of 50.02, 99.69, 299.78, and 702.46 Torr
correspond to the �0/�D ratios of 0.43, 0.86, 2.6, and 6.0,
respectively, for the P(9) line in Fig. 1. Given that �D and
�0 approximately add in quadrature [58,59] to produce the
total width, this indicates that Dicke narrowing should be
prominent at the two lowest pressures. At 702.46 Torr the
width of the line is dominated by pressure broadening and
the reduction of the Doppler width by VCs is expected to
have a negligible influence on the overall line width. The
large residuals for the Voigt profile [Fig. 1(a)] demonstrate
the well-established limitations of the profile [60], showing w-
shaped residuals characteristic of Dicke narrowing or speed-
dependent narrowing. The addition of the speed dependence
of pressure broadening and shift to the model reduces the
residuals by more than a factor of 2 [Fig. 1(b); note the scale
change]. The description of the line shape is further improved
by including the effect of VCs in the model, either with the
hard-collision model [Fig. 1(c)] or with the billiard ball model
[Figs. 1(d) and 1(e)].

The SDBBP [Fig. 1(e)] offers a clear improvement over the
SDHCP [Fig. 1(c)]. As expected, the differences between the
profiles fall off with increasing pressure as the Dicke effect
diminishes in importance. In fact, the differences between the
SDBBP and all the other speed-dependent profiles using the
Sumiyoshi potential [Figs. 1(b)–1(d)] are minor at 702.36 Torr
and all these profiles are broader than the experimental line.
Their line widths cannot be reduced by collisional narrowing
because at this pressure and a �0/�D ratio of 6.0 the influence
of VCs on the line shape is minimal. This point is simply
demonstrated by calculating, for example, the SDHCP with
νopt equal to 10 times the ab initio νopt. In this case the
profile at 702.36 Torr is as broad as it was before but at
50.02 Torr the line is too narrow with ε ≈ 8%. This is another
way of saying that we have reached the pressure-broadening
regime, in which any reasonable description of VCs in the
collision operator would produce a similar width. The ab initio
lines are too broad because the calculated �0 is larger than
the experimental one. This conclusion is confirmed by the
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(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

FIG. 1. Experimental line shapes of the P(9) line (top panel) and relative differences (residuals) between the measured and ab initio
line-shape profiles (a)–(g) and the fitted profile (h). In each case the plotted range is the ±4 × FWHM region around the experimental line
peak. Rows (a)–(e) show ab initio line-shape profiles of increasing sophistication; see Sec. II for an explanation of the acronyms. Row (e) is
the most sophisticated and physically justified model evaluated for fully ab initio parameters. Row (f) is the βSDHCP, the same as row (d), but
with the line-shape parameters based on our potential. Row (g) is the βSDHCP, the same as row (d), but with the �0 values from the qSDHCP
fit [32]. Finally, row (h) shows the qSDHCP with all the parameters obtained from a multispectrum fit to the experiment. The ε values for each
residual are the relative root-mean-square errors expressed as percentages, which were calculated in the ±FWHM range marked in row (a),
50 Torr, by the gray rectangle.

significantly lower ε values at 299.78 and 702.36 Torr for
βSDHCP [Fig. 1(g)] evaluated with the fitted �0.

The remaining residuals in Fig. 1(g) at all but the lowest
pressure are strongly asymmetric. Within the binary colli-
sion impact approximation [61], asymmetric residuals can
be caused by an error in the thermally averaged (�0) or

speed-dependent (�2) shift or by mixing of dephasing and
VCs (Im νopt). As we show further in Sec. III C, the latter two
factors are too weak to produce the asymmetry in Fig. 1(g),
so we conclude that the asymmetry is caused by an error in
the ab initio �0. Interestingly, at 50.02 Torr the shape of the
residuals [Fig. 1(e)] indicates that the ab initio profile is too
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TABLE I. Ab initio and fitted line-shape parameters. Experimental parameters were determined from multispectrum qSDHCP fits to
comb-assisted cavity ringdown spectroscopy measurements [32]. Ab initio parameters were calculated following the procedure described in
Sec. II and Ref. [23] and were based on the Sumiyoshi potential [51] except the “(HC)” parameters for the P(9) line, which were based on our
potential. Differences between experimental and theoretical values are given as percentages and the temperature is given in kelvins. All other
values are given in 10−3 cm−1/atm. The lowercase quantities (γ0, δ0, γ2, δ2) are pressure-independent counterparts of uppercase line-shape
parameters, i.e., γ0 ≡ �0/p, etc., and ν̃opt ≡ νopt/p.

Line T (K) γ0 δ0 γ2 δ2 Re ν̃opt Im ν̃opt

P(2) 295.6 Experiment 65.76(29) −4.976(26) 7.07(15) − 4.7(4) −
Theory 66.00 −4.85 8.51 −0.67 8.63 −0.28

Difference −0.4 2.6 −20.4 − −85.1 −
P(4) 295.7 Experiment 58.07(25) −7.302(33) 7.95(9) − 4.39(25) 1.81(12)

Theory 57.95 −7.10 8.41 −0.07 10.15 0.80
Difference 0.2 2.8 −5.8 − −131.3 55.9

P(6) 296.1 Experiment 51.95(21) −8.406(35) 7.13(6) − 3.80(17) 1.32(8)
Theory 52.06 −8.35 7.00 −0.37 10.32 1.09

Difference −0.2 0.7 1.8 − −171.4 17.6

P(9) 295.7 Experiment 47.52(21) −8.81(4) 5.46(10) − 5.30(20) 0.95(7)
Theory 47.87 −8.71 5.60 −0.55 9.73 0.90

Difference −0.7 1.1 −2.4 − −83.7 5.2
Theory (HC) 47.47 −9.27 5.71 −0.65 9.65 0.90

Difference (HC) 0.1 −5.3 −4.4 − −82.2 6.0

P(14) 295.7 Experiment 45.66(21) −8.97(4) 6.80(9) − 2.97(22) −
Theory 45.04 −8.93 4.89 −0.45 9.82 0.74

Difference 1.3 0.4 28.1 − −230.4 −

narrow, in addition to being shifted by the �0 error, similarly
to the case of the uncorrected SDHCP [Fig. 1(c)]. We saw
the same effect in the fundamental band of CO-Ar, where the
νopt retrieved from an SDBBP fit to the P(2) line was smaller
[20] than the value predicted by the GHM [23]. There are
several viable explanations for this effect. It is possible that the
SDBBP approximation of the actual interaction potential with
a hard-sphere potential overestimates the narrowing effect of
VCs. Wcisło and Ciuryło [62] investigated this problem by
comparing line shapes produced by hard-sphere scattering
and by scattering on r−q-type potentials. They showed that
the latter actually produces narrower instead of broader line
shapes, but it is not clear whether an r−q-type potential in
fact describes the effect of VCs more realistically. One could
also attempt to improve the line-shape model by including
the speed dependence of νopt, but in our previous work we
have found that doing so also produces narrower line shapes
[23]. As another option, the value of νopt obtained from
the GHM could be too large. In fact, in his original paper
[46] Hess considered a higher-order correction to νopt related
to the viscosity, which, at least for H2-H2 interaction, was
estimated to reduce the value of νopt. We return to this problem
in Sec. III C where we compare fitted and ab initio νopt

values.
In Fig. 1(f), we show the residuals of the βSDHCP eval-

uated with line-shape parameters based on our potential. The
strongly asymmetric residuals over the whole pressure range
are caused by a significant error in pressure shift, which also
occurs for the rest of the lines considered in this article (see
Appendix B). Interestingly, the ε value for this potential at
702.36 Torr is lower than for the Sumiyoshi one. This is
because our �0 is more accurate than that of Sumiyoshi, which
is not apparent under other conditions where the �0 error

dominates. The foregoing analysis underlines the importance
of employing an accurate interaction potential in ab initio
line-shape modeling.

The βSDHCP residuals [Fig. 1(d)] show the first ex-
perimental verification of the β correction generalized to
molecules other than H2, confirming its utility on actual data.
These results confirm the viability of generating the full set
of HTP parameters in a fully ab initio manner [23] and show
the β correction to be a crucial component of the proposed
procedure.

C. Comparison of ab initio and fitted line-shape parameters

Table I reports the calculated line-shape parameters and
compares them with the experimentally fitted ones. The
theoretical pressure-independent parameters—γ0, δ0, γ2, δ2,
and ν̃opt, in units of cm−1/atm—were obtained by multi-
plying Eqs. (14), (15), and (16) by the conversion factor,
(n0/n2)(T0/T )(2πc)−1, where n0 is the Loschmidt constant,
T0 = 273.15 K, and c is the speed of light in vacuum. The
uncertainties of the experimental values are the total combined
uncertainties from [32]. As the error of the ab initio γ0 and δ0,
we simply take their difference from experimental values. In
principle, disagreement between the ab initio and the fitted γ0

and δ0 does not imply that the ab initio values are inaccurate
[18], but we have already established in Sec. III B that no
other factor can account for the residuals we observe at high
pressure. Overall, the ab initio γ0 values have subpercent
errors, with the exception of the P(14) line, and δ0 values are
accurate up to a few percent. This level of accuracy compares
favorably with requantized CMDS calculations of γ0 in the
same band and based on the same potential. In that case, γ0

values for P(1) and P(17) lines were found to differ from
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experimental values by 13.8% and 4.6%, respectively [7]. We
estimate the absolute errors of our calculated γ2 and δ2 to be of
the same order as the errors of γ0 and δ0, respectively, namely,
at the level of a few 10−4 cm−1/atm.

Table I shows a large difference between ab initio-based
and fitted values of γ2 and Re ν̃opt. Considering the excellent
agreement between ab initio and experimental line shapes in
Fig. 1, these differences cannot be wholly attributed to an
error in our calculations or in our procedure. There are several
additional factors to consider: first, both speed-dependent
broadening and VCs narrow the line shapes, which makes the
parameters associated with these effects strongly negatively
correlated in the fit; second, the quadratic approximation,
Eqs. (17) and (18), models the actual speed dependence of
γ (v1) with limited accuracy; third, the β correction decreases
the value of Re ν̃opt and causes it to scale nonlinearly with
pressure, but linear scaling was assumed in [32]. Considering
these model errors, it is expected for the differences between
ab initio-based and fit parameters to surpass the nominal
fit uncertainties. Nevertheless, it is desirable to identify the
reason for these discrepancies, to quantify the different contri-
butions, and to determine whether retroactively applying the β

correction will allow us to perform a meaningful comparison.
We estimate the uncertainty of ab initio ν̃opt by assuming

the error of νrad
diff/p to be the same as that of γ0 + iδ0 and equal

to the difference between the experimental and the ab initio
γ0 + iδ0. From the standard rule of uncertainty propagation
for uncorrelated variables, this results in

u(Re ν̃opt ) = u(γ0)
√(

1 + M2
2

)
, (19)

and analogously for Im ν̃opt. Figure 2 shows the comparison
between ab initio and fitted values of the complex Dicke
parameter ν̃opt, Eq. (12). For comparison with the experiment,
the ab initio values and the SDBBP fit value were scaled
by the β correction. This phenomenological correction factor
was determined only for real ν̃opt and we do not apply it
to the imaginary part of our ν̃opt. The thick vertical blue
lines capped with error bars in Fig. 2(a) represent the range
of values adopted by β(χ, α) Re ν̃opt in the range of 10–
700 Torr, and analogously for the open red rectangle, which
was obtained from an SDBBP fit [20]. This pressure range
corresponds to β(χ, α) values between 0.73 and 0.89. The
fitted qSDHCP values (green crosses) are the same as in
[32] and were obtained from multispectrum fits with the
uncorrected qSDHCP. The comparison can still be affected
by the errors of quadratic approximation, and to refine it we
estimate the deviation of the actual speed dependence from
the quadratic speed dependence. We do so by integrating the
relative absolute-value difference between the ab initio and
the quadratic γ (v1) weighted by fMB(v1),

εγ2 = 1

γ0

∫ ∞

0
dv1 fMB(v1)

∣∣∣∣∣γ (v1) − γ0 − γ2

(
v2

1

v2
p

− 3

2

)∣∣∣∣∣,
(20)

where γ2 was determined from the ab initio cross sections
according to Eq. (18). The εγ2 values for different lines are
listed in Table II. The clearest picture emerges for the P(9)
line, for which γ (v1) is well approximated by the quadratic
speed dependence and the value retrieved from the qSDHCP

FIG. 2. Real part (a) and imaginary part (b) of the complex Dicke
parameter ν̃opt , Eq. (12). Values are plotted as a function of the initial
rotational state of the transition P( ja). Thick blue lines capped with
error bars (a) mark the range of values adopted by the β-corrected
[36] ab initio Re ν̃opt in the experimental pressure range, 10–700 Torr.
Analogously, the open red rectangle represents the β-corrected
Re ν̃opt from [20]. Blue diamonds (b) show the ab initio Im ν̃opt

values, and green crosses with error bars (a), (b) represent the values
retrieved from fitting the qSDHCP to the experimental data.

fit closely matches the ab initio–derived one (see Table I).
Therefore, the difference between (β-corrected) ν̃opt’s for P(9)
in Fig. 2 confirms the excessive narrowing shown in Fig. 1(d)
and quantifies it in terms of the ν̃opt parameter.

Continuing with the remaining lines, we clearly see the
influence of the negative correlation between γ2 and Re ν̃opt

for P(2) and P(14). For the P(2) line, γ2 was underesti-
mated and the fitted Re ν̃opt agrees better with the ab initio
Re β(χ, α)ν̃opt. The accuracy of the β correction was es-
tablished in Sec. III B, therefore we can also conclude that
the difference between Re β(χ, α)ν̃opt from the SDBBP fit
(red rectangle) and Re ν̃opt from the qSDHCP fit is mostly
caused by the incorrect speed dependence of broadening. For
the P(14) line, the fit overestimated γ2 (see Table I), which
agrees with the correspondingly lower value of Re ν̃opt. The
γ2 values for P(4) and P(6) are encumbered by similar ap-
proximation errors as the P(2) line but the fitted values match
the predicted ones closely. If the parameter correlation and the
error of quadratic approximation were sufficient to explain the
observed differences between the ab initio Re β(χ, α)ν̃opt and
the fitted Re ν̃opt, we would expect the fitted Re ν̃opt for P(2)
to be larger than the ab initio one, the value for P(14) to be

TABLE II. Estimated errors of the quadratic approximation,
Eq. (20), for CO-Ar second-overtone P( ja) lines.

Line

P(2) P(4) P(6) P(9) P(14)
εγ2 0.027 0.025 0.013 0.006 0.004
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lower, and the values for the remaining lines to be scattered
around the predicted ones. Clearly, this is not the case and
this analysis shows that excessive narrowing occurs for all
the considered lines. Moreover, it demonstrates that the β

correction augmented with ab initio line-shape parameters can
be used for retroactive data correction.

It is important to realize that the large difference between
ab initio and experimental Re ν̃opt values is not caused by an
error in the interaction potential or in scattering calculations.
The primary difficulty in obtaining ab initio Re ν̃opt values,
which allow us to accurately model experimental lines with
the SDHCP or the SDBBP, lies in the strong model depen-
dence of this parameter. This is illustrated by the β correction,
which for CO-Ar approximates the SDBPP with the SDHCP
by scaling down Re ν̃opt to as little as 73% of its original
value. This problem can be bypassed by numerically solving
Eq. (4) with an exact collision operator [63], but this way is
computationally expensive and would provide little physical
insight.

The differences between fitted and ab initio Im ν̃opt val-
ues [Fig. 2(b)] reach at most 10−3 cm−1/atm and can be
attributed to several factors. Foremost, the asymmetry of
the peak in the considered lines is weak. For all the lines
|δ2| < 10−3 cm−1/atm, | Im ν̃opt| < 2 × 10−3 cm−1/atm, and
the estimated calculation uncertainty of a few 10−4 cm−1/atm
represents a large relative uncertainty. Experimentally, for the
P(2) and P(14) lines the asymmetry was below the noise
level and for the remaining lines ignoring the asymmetry
changed the ε values at the 10−5 level. Moreover, ab initio
calculations predict nonzero δ2 values for all the lines, yet the
qSDCHP fit was incapable of retrieving both δ2 and Im ν̃opt

at our noise level due to parameter correlation and likely
due to imperfect modeling of �(v1) with the quadratic speed
dependence, Eq. (18). Additionally, unwanted etaloning in the
setup could have spuriously affected the asymmetry of the
peak and shifted the value of Im ν̃opt. For these reasons, we
do not consider the apparent disagreement between the ab
initio and the experimental Im ν̃opt to be physically relevant.
Some of these issues could be mitigated by fixing δ2 or Im ν̃opt

to the ab initio value and repeating the multispectrum fit
to retrieve the value of the other parameter. However, this
does not address the weakness of the asymmetry relative to
the noise level and to residual etalons, which would make
any conclusions based on such a fit uncertain. It would be
desirable to confront experimental speed-dependent and cor-
relation asymmetry with ab initio predictions, but preferably
based on less noisy spectra and in a system in which these
effects are more prominent.

The results of the calculations presented in the article
are available in the Supplemental Material [64], including
the spectroscopic cross sections σ 1

λ=0, σ 1
λ=1, the line-shape

parameters γ0, δ0, γ2, δ2, ν̃opt in the 10–800 K temperature
range, and our Ar-CO potential energy surface.

IV. CONCLUSIONS

We achieved a subpercent agreement in a direct com-
parison between ab initio and experimental line shapes of
CO-Ar, without adjusting any of the line-shape parameters
to the experiment (see Sec. III B). These results are the most

accurate ab initio calculations of collisional line shapes for
an atmospherically relevant species. They set down a new
benchmark for comparisons between theoretical and exper-
imental molecular line shapes. The remaining discrepancies
were predominantly caused by the limited accuracy of the
calculated γ0 and δ0, which was attributed to the interaction
potential. Nevertheless, four of the five reported γ0 values are
accurate to better than a percent and the δ0 values are accurate
within a few percent (see Sec. III C). The β correction to the
hard-collision profiles allowed us to faithfully reproduce the
SDBBP in a fraction of the time required to calculate the latter
and validate the procedure for generating HTP line-shape
parameters proposed in [23].

The analysis of the line-shape residuals in Sec. III B has
shown that our procedure overestimates the Dicke narrowing
for the P(9) line. This observation was extended to all the other
considered lines by comparing the fitted and calculated line-
shape parameters in Sec. III C. We have considered several
possible explanations for this effect, but providing a definite
answer will require further investigations. The presented anal-
ysis also demonstrates that the β correction facilitates a phys-
ically meaningful interpretation of fitted qSDHCP parameters
and their comparison with SDBBP and ab initio line-shape
parameters.

A new potential energy surface for Ar-CO interaction was
calculated and compared to the Sumiyoshi surface [51] (see
Appendix B). The differences in pressure-broadening param-
eters based on the two potentials were found to be caused
by different total inelastic cross sections. For the shifts, the
differences in vibrational dependence of the potentials were
identified as the reason for the discrepancies.
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APPENDIX A: CROSS SECTIONS
AND THERMAL AVERAGING

The cross section for velocity change of an optical co-
herence for an absorption line νa ja → νb jb is given by
[25,37,66,67]

σ
q
λ=1(νa ja → νb jb; E )

= π

k2

∑
Ja, Jb

la, l ′a, lb, l ′b

[Ja][Jb]
√

[la][l ′
a][lb][l ′

b]

×
(

la lb λ

0 0 0

)(
l ′
a l ′

b λ

0 0 0

)⎡
⎣ jb jb la l ′

a
ja lb ja l ′

b
q Ja Jb λ

⎤
⎦

× il ′a−la−l ′b+lb
(
δlal ′aδlbl ′b − SJb

νb jbl ′b,νb jblb
S∗Ja

νa jal ′a,νa jala

)
, (A1)

where k2 = 2μ12E/h̄2, [x] = (2x + 1), {:::} is the 6-j symbol,

[
.
.
.
.
.
.
.
.
.
.
.
.] is the 12-j symbol of the second kind [68], λ is the rank of

the velocity tensor associated with the cross section, Ja, Jb are
the total angular momenta, and la, l ′

a, lb, l ′
b are the orbital angu-

lar momenta. The primed indices correspond to postcollision
quantities, and unprimed to precollision quantities.

The pressure-broadening and shift cross section for an
absorption line νa ja → νb jb is given by

σ
q
λ=0(νa ja → νb jb; E )

= π

k2

∑
Ja,Jb,l,l ′

[Ja][Jb](−1)l−l ′

×
{

ja q jb
Jb l Ja

}{
ja q jb
Jb l ′ Ja

}

× (
δll ′ − SJb

νb jbl ′,νb jblS
∗Ja
νa jal ′,νa jal

)
. (A2)

The cross-section thermal averages, Eqs. (14) and (15), of
the form 〈 f (x, x′)σ (. . . , E )〉r , are calculated according to

〈 f (x, x′)σ (. . . ; E )〉r =
∫ ∞

0
dx xe−x f (x, x′)σ (. . . ; E ), (A3)

where x = E/kBT and x′ = E ′/kBT .

APPENDIX B: COMPARISON OF POTENTIALS

The geometry of the Ar-CO system was characterized by
three variables: the C-O bond length rCO, the distance R from
the argon atom to the center of mass of the CO molecule,
and the angle θ between the CO molecular axis and the line
connecting the argon atom with the center of mass of CO.
θ = 0 corresponds to the Ar-OC orientation, and θ = 180◦ to
the Ar–CO geometry.

The intermolecular interaction potential energy surface
(IPES) was defined as the difference between the total energy
of the system and the sum of the monomers’ energies. The
interaction energies corrected for the basis-set superposition
error using the counterpoise (CP) method [69] were evaluated
with the CCSD(T) (coupled-cluster with single-, double-,
and perturbative triple-excitation model) code [70] using the
MOLPRO program 2012.1 version [71].

In the calculations we employed Dunning’s augmented
standard aug-cc-pVXZ (X = T, Q, 5, 6) basis sets [72,73]

(denoted aXZ). These bases were extended with a set of
3s3p2d2 f 1g1h midbond functions, denoted 332211, with ex-
ponents of 0.9, 0.3, and 0.1 for the s and p functions, 0.6 and
0.2 for the d and f functions, and 0.3 for the g and h functions.
The midbond functions were placed in the middle of the van
der Waals bond. The CO interatomic distance we kept fixed to
the experimental 1.128 323 Å value [74].

In order to avoid overlapping of midbond functions with
the atomic basis functions of CO in collinear geometries,
the midbonds were placed between the Ar atom and the
CO molecule using elliptic coordinates. Hence, in T-shaped
geometries the midbond point lay at a distance of R/2 between
the Ar atom and the center of mass of CO, while in collinear
geometries it lay halfway between the Ar atom and the C or
O atom. The distance between the midbond functions and the
center of mass of CO (denoted X) is defined as

rmidbond = b√
1 − (e cos θ )2

, (B1)

where

e =
√

1 − b2

a2
, (B2)

a and b are the semimajor and semiminor axes of the ellipse,
respectively,

a = 1

2

(
R + rCX + rOX

2

)
, (B3)

b = R

2
, (B4)

rCX and rOX are the distances between the center of mass of the
CO molecule and the carbon and oxygen atoms, respectively,
and, obviously, rCX + rOX = rCO.

We estimated the correlation part of the total interaction
energy in the complete basis set (CBS) limit employing the
formula proposed by Halkier et al. [75] for the correlation-
consistent Dunning’s basis-set series,

ECBS
XY = E corr

X X 3 − E corr
Y Y 3

X 3 − Y 3
, (B5)

where X, Y are cardinal numbers of the basis sets, and
E corr

X , E corr
Y are the calculated correlation parts of the inter-

action energies.
The estimated total interaction energies (including the

uncorrelated Hartree-Fock contribution) in the aTZ/aQZ and
aQZ/a5Z basis-set pairs are close to each other and for R =
3.7 Å the values are −103.54 and −103.10 cm−1, respec-
tively. This means that the result obtained with the a5Z basis
set is still underestimated by almost 5 cm−1.

Since the authors of Ref. [51] used the CCSD(T)-
F12b/a5Z calculated interaction energies (no CP correction)
as the starting point for constructing their semiempirical
potential, in our analysis we also consider a basis-set con-
vergence of the CCSD(T)-F12b approximation. The explic-
itly correlated CCSD(T)-F12 method [76–79] is becoming
quite popular, mainly because contributions to the calculated
molecular correlation energies coming from single and double
excitations are well converged with relatively small orbital
bases. However, it seems that in the case of weak inter-
molecular interactions the errors introduced by the a/b/*
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TABLE III. Basis-set study for T-shaped geometries of the Ar-CO complex with rCO = 1.128 323 Å. The calculated interaction energies
are given in cm−1; distances, in Å. mb, 332211 midbonds; CBS, complete-basis-set extrapolation. See text for more details.

CCSD(T) CCSD(T)-F12ba

R aTZ aQZ a5Z aTZ+mb aQZ + mb a5Z + mb a6Z + mb CBS(aTZ/aQZ) CBS(aQZ/a5Z) aTZ aQZ a5Z Fitb

2.9 818.22 737.51 709.36 716.52 702.82 694.16 689.97 687.43 689.74 680.58 683.83 680.10 658.76
3.1 277.18 226.65 208.52 206.43 201.26 197.00 194.86 192.76 195.57 184.01 189.38 187.54 178.76
3.3 39.10 7.82 −4.12 −10.05 −10.76 −12.74 −13.77 −15.23 −12.96 −24.29 −18.80 −19.62 −22.31
3.5 −54.09 −73.30 −81.33 −88.07 −86.83 −87.66 −88.13 −88.96 −87.59 −97.97 −92.86 −92.99 −93.17
3.6 −72.89 −87.93 −94.56 −101.15 −99.45 −99.96 −100.25 −100.78 −99.89 −109.63 −104.82 −104.72 −104.35

3.7 −81.27 −93.05 −98.54 −104.81 −102.85 −103.14 −103.30 −103.54 −103.10 −112.12 −107.69 −107.42 −106.77

3.8 −83.00 −92.26 −96.81 −102.64 −100.58 −100.72 −100.79 −100.76 −100.74 −108.99 −104.96 −104.59 −103.83
3.9 −80.67 −87.97 −91.74 −97.07 −95.03 −95.06 −95.08 −94.82 −95.13 −102.61 −99.00 −98.54 −97.79
4.1 −70.14 −74.75 −77.35 −81.54 −79.79 −79.72 −79.68 −79.15 −79.88 −85.89 −83.11 −82.50 −81.96
4.3 −57.50 −60.48 −62.27 −65.41 −64.05 −63.96 −63.91 −63.34 −64.15 −68.95 −66.88 −66.17 −65.87
4.7 −36.08 −37.44 −38.28 −40.02 −39.19 −39.11 −39.08 −38.79 −39.27 −42.50 −41.31 −40.54 −40.58
5.1 −22.22 −22.92 −23.32 −24.26 −23.77 −23.73 −23.71 −23.60 −23.83 −26.27 −25.31 −24.70 −24.86
5.6 −12.42 −12.76 −12.93 −13.32 −13.12 −13.10 −13.09 −13.03 −13.16 −15.09 −14.11 −13.78 −13.94
6.3 −5.93 −6.06 −6.12 −6.22 −6.18 −6.17 −6.17 −6.15 −6.19 −7.59 −6.72 −6.61 −6.72
7.0 −3.08 −3.13 −3.15 −3.17 −3.17 −3.17 −3.17 −3.17 −3.17 −4.04 −3.45 −3.47 −3.53

aNo CP correction.
bTaken from Ref. [51].

approximations in CCSD-F12 and by a nonexplicitly corre-
lated treatment of perturbative triples (with or without scaling)
can become crucial at this level of accuracy [80]. It was
also shown that CCSD(T)-F12 methods tend to perform more
poorly for larger basis sets.

It is evident from Table III that the interaction energies
calculated with the CCSD(T)-F12b method are overestimated
in comparison to the estimated CBS limit. They converge
very rapidly with the size of the basis set; however, even
with the a5Z basis set they are still too large (in absolute
value). In Table III we have also added the interaction energies
calculated with the fit published in Ref. [51], obtained using
their CCSD(T)-F12b/a5Z results. They are slightly different
from the a5Z ones and in the vicinity of the lowest-interaction
energy geometry the differences are smaller than 1 cm−1. In
the short- and long-range distances the curve obtained from
the fit lies below the a5Z one, while in the middle range of
3.6–4.3 Å the former curve runs above the latter.

Calculations of the total potential energy surface (taking
into account stretching of the CO bond) require a compromise
between the desired accuracy and the available computational
resources. In the following we used the combination of the
frozen-core CCSD(T) method and the aug-cc-pV5Z basis set
with the 332211 midbond basis set.

To accurately reproduce features of the Ar-CO IPES we
decided to carry out calculations of the intermolecular in-
teraction energy for 35 × 13 × 8 = 3640 geometries of the
system. The intermolecular distance R was varied in the
range between 1.7 and 20 Å (35 points in total) covering
some part of the repulsive wall, the entire van der Waals
well, and long-range (interaction energy slightly above −5 ×
10−3 cm−1) regions. The values of the θ angle correspond
to the abscissas of the 13-point Gauss-Lobatto quadrature.
The rCO intramonomer distance was set to [1.72a0, 1.86a0,
2.00a0, 2.139 92a0, 2.28a0, 2.42a0, 2.56a0, 2.70a0]. In order
to obtain the values of the IPES for R above 20 Å, we fit

the calculated points for R = 14.5, 17.0, and 20.0 Å to the
following asymptotic function:

Vas(R, r, θ ) = C(0)
6 (r)

R6
P0(cos θ ) + C(2)

6 (r)

R6
P2(cos θ )

+ C(1)
7 (r)

R7
P1(cos θ ) + C(0)

8 (r)

R8
P0(cos θ )

+ C(2)
8 (r)

R8
P2(cos θ ),

(B6)

where Pl (x) are the Legendre polynomials and

C(l )
n (r) = C(l,0)

n + C(l,1)
n r + C(l,2)

n r2. (B7)

The C(l,p)
n coefficients are listed in Table IV.

The most apparent difference between our and Sumiyoshi’s
potential is the difference in their well depths. To illus-

TABLE IV. C (l,p)
n coefficients for asymptotic expansion of our

IPES, Eqs. (B6) and (B7), for r and R expressed in Å and Vas(R, r, θ )
expressed in cm−1.

C (0,0)
6 −2.8457 × 105

C (0,1)
6 1.1592 × 105

C (0,2)
6 −1.4895 × 105

C (2,0)
6 −1.2449 × 105

C (2,1)
6 2.8162 × 105

C (2,2)
6 −1.7265 × 105

C (1,0)
7 2.3698 × 106

C (1,1)
7 −3.0459 × 106

C (1,2)
7 1.2726 × 106

C (0,0)
8 −3.5077 × 106

C (2,0)
8 −3.8155 × 106
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FIG. 3. Our (solid lines) and Sumiyoshi’s (dashed lines) potential
energy curves for the C-O bond length rCO = 1.132 40 Å and T-
shaped (squares) or Ar-OC (triangles) alignment of C-O and Ar.
Symbols are shown only on solid lines for clarity.

trate this, we plot the two potentials for rCO = 1.132 40 Å
(2.139 92a0) and two alignments of CO and Ar: T-shaped
(squares) and Ar-OC (triangles) (see Fig. 3). In the T-
shaped (Ar-OC) configuration the difference in well depths is
3.709 cm−1 (3.081 cm−1) and the minimum of our potential
is displaced from that of Sumiyoshi by 0.0119 Å (0.0083 Å).
There are also notable differences in the short-range part of the
potentials, where we expect ours to be more accurate. Figure 4
shows the short-range part of the Legendre expansion of both
potentials, averaged over the CO ground rovibrational state.
The short-range part has little effect on the presented line-
shape calculations, since our collision energies are limited to
1700 cm−1.

Figure 5 shows the energy dependence of the pressure-
broadening and shift cross sections, Eq. (A2), for the P(9)
line for both potentials. For CO-Ar dipole transitions, pres-
sure broadening is predominantly caused by state-changing
collisions [81] and the real part of Eq. (A2) can be well
approximated by the average total inelastic state-to-state cross

FIG. 4. Comparison between our and Sumiyoshi’s rovibra-
tionally averaged Legendre expansions at a small CO-Ar separation.
Our potential is represented by solid lines; Sumiyoshi’s, by dashed
lines. Numbers by the lines label the Legendre orders. The vertical
solid black line marks R = 3.2 Å, which is the lower R limit of
Sumiyoshi’s ab initio points.

FIG. 5. Spectroscopic cross sections, Eq. (A2), and average total
inelastic state-to-state cross sections, Eq. (B8), for the P(9) line from
scattering on both potentials. (a) The broadening cross section (blue)
and the inelastic cross section (green); (b) the absolute value of the
shift cross section (red); (c) the difference between the values for our
potential and that of Sumiyoshi.

section in both radiative levels,

σin(νa ja → νb jb; E ) =1

2

⎡
⎣ ∑

j′a �= ja

σ (νa ja → νa j′a; E )

+
∑
j′b �= jb

σ (νb jb → νb j′b; E )

⎤
⎦,

(B8)

FIG. 6. Differences between Legendre expansion coefficients,
Vν,l , in the lower (ν = 0) and upper (ν = 3) vibrational states for
both potentials.
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TABLE V. Comparison between pressure-broadening and shift
cross sections, Eq. (A2), for Sumiyoshi’s (S) and our (HC) potential
at E = 262 cm−1. Values for individual potentials are in Å2; the
differences (S − HC) are given as percentages of Sumiyoshi values.

Potential P(2) P(4) P(6) P(9) P(14)

S 83.817 72.599 62.287 56.440 53.238
Re σ 1

λ=0 HC 82.439 71.220 61.371 56.119 53.049
S − HC 1.6 1.9 1.5 0.6 0.4

S 5.987 8.240 11.002 11.321 11.360
Im σ 1

λ=0 HC 6.650 9.081 11.761 12.049 12.034
S − HC −11.1 −10.2 −6.9 −6.4 −5.9

which is also shown in Fig. 5. Clearly, the difference between
broadening cross sections is almost wholly explained by the
difference in inelastic cross sections [see Fig. 5(c)]. The
shift of a line is determined by elastic collisions only and
Sumiyoshi’s total elastic collision cross section is the larger
of the two potentials, yet the shift is larger for our potential.
The more relevant quantity to discuss when comparing line
shifts is the difference between the potential energy curves
averaged over the upper and the lower vibrational radiative
states [27]. In Fig. 6 we present such a comparison for
the three lowest Legendre expansion coefficients for both
potentials. Our potential consistently shows larger differences,
which explains why it produces a larger line shift despite
lower elastic collision rate.

In order to confirm that the same trend of larger broadening
and smaller shift with the Sumiyoshi potential occurs for other

lines, we calculated spectroscopic cross sections, Eq. (A2), for
all the other lines at a single kinetic energy, E = 262 cm−1.
This energy was selected because it is the most probable
energy of fMB(E ) at T = 296 K, therefore the cross sections
at this energy can be considered representative of the whole
curve. Importantly, this collision energy is also higher than
the potential well depth of around 107.1 cm−1, so the cross
sections do not probe the Ar-CO resonances that could bias the
comparison. This ensures that if Re σ

q
λ=0(. . . , E = 262 cm−1)

is larger for one potential relative to the other, then it is safe to
assume that the same relation will hold after thermal averag-
ing for �0, and analogously for | Im σ

q
λ=0(. . . )| and |�0|. For

the P(9) line, Table V shows that the differences between the
Re σ

q
λ=0 and the Im σ

q
λ=0 potentials at E = 262 cm−1 closely

match the differences for �0 and �0 in Table I. Assuming that
the comparison is quantitatively accurate also for other lines,
we note that the broadening parameters differ the most for
the P(4) line but the agreement between potentials improves
for large j. This is consistent with the general trend of low- j
states being more sensitive to the potential well shape [82–86].
For line shifts, the absolute difference between cross sections
stays around 0.7 Å2, which improves the relative agreement
with increasing j due to the increasing overall value of the
shift. We note that a similar weak j dependence of the absolute
difference and of the decreasing relative difference is also
present in the comparison of experimental and theoretical δ0

values in Table I. This indicates that the vibrational depen-
dence of the potential is an important factor also in explaining
the limited accuracy of Sumiyoshi’s ab initio δ0 relative to the
experimental value.
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