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Elliptic dimers on minimal graphs and genus 1 Harnack

curves

Cédric Boutillier*, David Cimasoni�, Béatrice de Tilière�

July 29, 2020

Abstract

This paper provides a comprehensive study of the dimer model on infinite min-
imal graphs with Fock’s elliptic weights [Foc15]. Specific instances of such models
were studied in [BdTR17, BdTR18, dT17]; we now handle the general genus 1 case,
thus proving a non-trivial extension of the genus 0 results of [Ken02, KO06] on isora-
dial critical models. We give an explicit local expression for a two-parameter family
of inverses of the Kasteleyn operator with no periodicity assumption on the under-
lying graph. When the minimal graph satisfies a natural condition, we construct a
family of dimer Gibbs measures from these inverses, and describe the phase diagram
of the model by deriving asymptotics of correlations in each phase. In the Z2-periodic
case, this gives an alternative description of the full set of ergodic Gibbs measures
constructed in [KOS06]. We also establish a correspondence between elliptic dimer
models on periodic minimal graphs and Harnack curves of genus 1. Finally, we show
that a bipartite dimer model is invariant under the shrinking/expanding of 2-valent
vertices and spider moves if and only if the associated Kasteleyn coefficients are
antisymmetric and satisfy Fay’s trisecant identity.

1 Introduction

This paper gives a full description of the bipartite dimer model on infinite, minimal
graphs, with Fock’s elliptic weights [Foc15]. In many instances, this finishes the study
initiated in [BdTR17] and [BdTR18] of models of statistical mechanics related to dimers
on infinite isoradial graphs with local elliptic weights. Indeed, the massive Laplacian
operator on a planar graph G of [BdTR17] is related to the massive Dirac operator [dT17],
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which corresponds to an elliptic dimer model on the bipartite double graph GD, while
the Z-invariant Ising model on G of [BdTR18] is studied through an elliptic dimer model
on the bipartite graph GQ (see Section 8.2). The papers [BdTR17, BdTR18] solve two
specific instances of elliptic bipartite dimer models; we now solve the general case.

Let us be more precise. Let G be an infinite minimal graph [Thu17, GK13], meaning
that it is planar, bipartite, and that its oriented train-tracks do not self intersect and
do not form parallel bigons. As proved in [BCdT19], a graph is minimal if and only
if it admits a minimal immersion, a concept generalising that of isoradial embedding
[Ken02, KS05]. Moreover, the space of such immersions can be described as an explicit
subset of the space of half-angles maps associated to oriented train-tracks of G, see
Section 2.1 below. Minimal graphs with such half-angle maps give the correct framework
to study these models, see [BCdT19, Section 4.3]. We consider Fock’s elliptic Kasteleyn
operator [Foc15] K(t) whose non-zero coefficients correspond to edges of G; for an edge

wb of G, the coefficient K
(t)
w,b is explicitly given by

K
(t)
w,b =

θ(β − α)

θ(t+ η(b)− β)θ(t+ η(b)− α)
,

where θ(z) = θ1(z; q) = θ1(z|τ) is Jacobi’s first theta function, q = eiπτ , τ is pure
imaginary and t ∈ R + π

2 τ ; α, β are the half-angles assigned to the two train-tracks
crossing the edge wb, see Figure 4; η is Fock’s discrete Abel map, see Sections 2.3
and 3.1.

Fock [Foc15] actually introduces such an adjacency operator for all Z2-periodic bipartite
graphs, for all parameters τ and t, and for theta functions of arbitrary genus; in the
present paper, we restrict ourselves to the genus 1 case, hence the name Fock’s ellip-
tic operator, and drop the periodicity assumption (apart from the specifically dedicated
Section 5). Fock does not address the question of this operator being Kasteleyn, i.e., cor-
responding to a dimer model with positive edge weights. Our first result, Proposition 12,
proves that this is indeed the case when the graph is minimal, when the half-angles are
chosen so as to define a minimal immersion of G, and when the parameters τ, t are tuned
as above.

We now fix the parameter t ∈ R + π
2 τ and omit it from the notation. One of our main

results is an explicit local expression for a two parameter family of inverses (Au0)u0∈D
of the elliptic Kasteleyn operator K, where D := (R/πZ + [0, π2 τ ]) \ {αT ; T ∈ T} is
pictured in Figure 1, see also Figure 7, and (αT )T∈T are the half-angles assigned to the
train-tracks of G. This result, which has remarkable probabilistic consequences, can be
stated as follows, see also Definition 22, Lemma 24 and Theorem 26.

Theorem 1. For every u0 ∈ D, the operator Au0 whose coefficients are given, for every
black vertex b and every white vertex w, by

Au0b,w =
iθ′(0)

2π

∫
C
u0
b,w

gb,w(u)du,
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Figure 1: The domain D as a shaded area of the torus T(q) := C/Λ, where Λ is the lattice
generated by π and πτ . The different cases corresponding to the possible locations of
the parameter u0.

is an inverse of the elliptic Kasteleyn operator K. The function g is defined in Section 3.2,
and the contour of integration Cu0b,w in Section 4.1, see also Figure 8.

Remark 2.

1. Locality of Au0b,w stems from that of the function g which is defined as a product of
terms associated to edges of a path from b to w in the associated quad-graph G�.
A key fact used in proving this theorem is that the functions gb, · (u) and g · ,w(u)
are in the kernel of the operator K [Foc15], see also Proposition 16; this results
from Fay’s trisecant identity, known as Weierstrass identity in the genus 1 case,
see Corollaries 8 and 9.

2. This theorem has the same flavour as the results of [Ken02, BdT11] in the genus 0
case, and as those of [BdTR17, BdTR18] in the genus 1 case. It can be understood
as the genus 1 pendent (with an additional remarkable feature specified in the
next point of this remark) of the dimer results of [Ken02], while [BdTR17] is the
genus 1 version of the Laplacian results of [Ken02], and [BdTR18] handles a specific
elliptic dimer model arising from the Ising model. Going from genus 0 to genus 1
is a highly non-trivial step; indeed there is no straightforward way to identify the
dimer weights and the function g in the kernel of the Kasteleyn operator. It is much
easier to recover the genus 0 results from the genus 1 ones by taking an appropriate
limit for the elliptic parameter τ ; this is the subject of Section 8.1. It is also not
immediate how to recover the specific elliptic dimer models of [BdTR18, dT17]
from this more general elliptic dimer model; this is explained in Section 8.2.

3. Another remarkable feature of Theorem 1 is that it provides a local expression
for a two-parameter family of inverses while in the references [Ken02, BdT11,
BdTR17, BdTR18], a single inverse was considered. This allows us to prove a
local formula for a two-parameter family of Gibbs measures, and not only for
the maximal entropy Gibbs measure as was the case in the other references, see
Theorem 4 below.

4. The explicit expression of Theorem 1 is very useful to perform asymptotic ex-
pansions of Au0b,w when the graph distance between b and w gets large; this is the
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subject of Propositions 45 and 48 of Section 6.2. There are three different regimes
depending on the position of the parameter u0 in D, pictured as Cases 1, 2, 3 in
Figure 1. In Case 1 (resp. Case 2), one has exponential decay (resp. linear decay
up to gauge transformation) of Au0b,w, while in Case 3, the state of edges is deter-
ministic. These results allow us to derive the phase diagram of the corresponding
dimer model, see Theorem 4 below.

5. The local function g of Theorem 1, in the kernel of the Kasteleyn operator, gives
an explicit realization of a t-immersion of the dual graph G∗ [KLRR18, CLR20],
as described in Section 3.3.

We now assume that the minimal graph G is Z2-periodic. A notable fact is that period-
icity of the graph and of half-angles associated to train-tracks are not enough to ensure
periodicity of the elliptic Kasteleyn operator K. In Proposition 29, we prove a necessary
and sufficient condition for that to be the case; intuitively it amounts to picking one
of the integer points of the geometric Newton polygon, see [GK13] and Section 5.1 for
definitions.

To a Z2-periodic bipartite dimer model is naturally associated a spectral curve C, and its
amoeba A, see Section 5.3 for definitions. Our first result on this subject is Proposition 31
proving an explicit birational parameterization of the spectral curve C by the torus T(q)
using the function g of Theorem 1: we describe how the domain of definition of the
function g, i.e., the torus T(q), is mapped to the spectral curve C, thus establishing that
it is a Harnack curve of geometric genus 1. As a byproduct we know how the domain D of
Figure 1 is mapped to the amoeba A; this plays an important role in understanding the
phase diagram of the dimer model, also in the non-periodic case, see Point 3 of Remark 5
below. Our main result on this topic is that the converse also holds, see Theorem 32 for
a precise statement.

Theorem 3. Every genus 1 Harnack curve with a marked point on the oval is the spectral
curve of an explicit dimer model on a minimal graph G with Fock’s elliptic Kasteleyn
operator, for a unique parameter t ∈ R/πZ+ π

2 τ , and a half-angle map defining a minimal
immersion of G.

Let us describe the context of this theorem. By [KOS06, KO06, GK13] we know that
bipartite dimer models are in correspondence with Harnack curves. This correspondence
is made explicit in [KO06] in the case of generic genus 0 Harnack curves and dimer models
on isoradial graphs with Kenyon’s critical weights [Ken02]. A result of the same flavor is
obtained in [BdTR17] where an explicit correspondence is established between genus 1
Harnack curves with central symmetry and rooted spanning forests with well chosen
elliptic weights. Also on this topic, Fock [Foc15] assigns an explicit “dimer model” to
every algebraic curve; his construction is very general but does not focus on curves being
Harnack and “dimer models” having positive weights. Theorem 3 is thus the pendent
of [KO06] in the genus 1 case with general (possibly non triangular) Newton polygons;
it extends the result of [BdTR17] by removing the symmetry assumption on the curve.
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Our proof uses [GK13], see also [Gul08], for reconstructing a minimal graph from the
Newton polygon of the spectral curve.

In [She05], the author proves that Z2-periodic bipartite dimer models have a two-
parameter family of ergodic Gibbs measures, then [KOS06] provide an explicit expression
for these measures using Fourier transforms and magnetic field coordinates. They also
identify the phase diagram as the amoeba A of the spectral curve C. In this article,
we reverse this point of view by considering a priori a compact Riemann surface (the
torus T(q)) which, together with appropriate half-angle maps, induce dimer models
on minimally immersed graphs. For any such dimer model, we then construct a two-
parameter family of Gibbs measures (Pu0)u0∈D from the inverses (Au0)u0∈D, indexed by
the domain D, which plays the role of the phase diagram. What is noteworthy is that,
assuming Condition (∗) below, this also holds for non-periodic graphs even though the
spectral curve and the amoeba do not exist. Here is our main statement, which is a com-
bination of Theorem 34, Corollary 35 and Theorem 42. It holds for any minimal graph G
satisfying the following assumption, which is trivially true for Z2-periodic graphs and is
believed to hold for all minimal graphs:

(∗) Every finite, simply connected subgraph G0 of the minimal graph G can be embedded
in a periodic minimal graph G′ so that parallel train-tracks in G0 remain parallel in G′.

Theorem 4. Consider the dimer model with Fock’s elliptic weights on an infinite, min-
imal graph G satisfying Condition (∗). Then, for every u0 ∈ D, the operator Au0 of The-
orem 1 defines a Gibbs measure Pu0 on dimer configurations of G, whose expression on
cylinder sets is explicitly given by, for every subset of distinct edges {e1 = w1b1, . . . , ek =
wkbk} of G,

Pu0(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k

(
Au0bi,wj

)
. (1)

The set D gives the phase diagram of the model: when u0 is on the top boundary of
D, the dimer model is gaseous; when u0 is in the interior of the set D, the model is
liquid; when u0 is a point corresponding to one of the connected components of the lower
boundary of D, the model is solid.

When G is Z2-periodic, this gives an alternative description of the full set of ergodic
Gibbs measures [KOS06].

Remark 5.

1. One of the main features of these Gibbs measures Pu0 is their locality property,
inherited from Au0 : the correlations between edges e1, . . . , ek only depend on the
geometry of the graph in a ball containing those edges. This locality is a key ingre-
dient to extend the proof of Theorem 4 from periodic to general graphs satisfying
Condition (∗), by a now standard argument [dT07a, BdT11, BdTR17].
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2. When G is Z2-periodic, the correspondence between the set of ergodic Gibbs mea-
sures from [KOS06] and the family (Pu0)u0∈D is proved by showing that the Fourier
transform expressions of the inverses [CKP01, KOS06] as double integrals coincide
with the inverses of Theorem 1. The fundamental step is the explicit evaluation
of one of the integrals via residues, and a change of variable in the remaining inte-
gral which uses the explicit parameterization of the spectral curve C together with
the key Lemma 37 establishing that the combination of the denominator in the
integrand and of the Jacobian is in fact trivial. Note that the locality property of
these ergodic Gibbs measures in the periodic case was not known before, except
when the spectral curve had genus 0 [Ken02, KO06].

3. As shown in [KOS06], ergodic Gibbs measures for Z2-periodic graphs can alter-
natively be parameterized by their slope, i.e., by their expected horizontal and
vertical height change. In Theorem 38, we prove an explicit expression for the
slope of the Gibbs measure Pu0 involving the explicit parameterization of the spec-
tral curve C and appropriate contours of integration. This is a refined version of
Theorem 5.6. of [KOS06], where the slope was only identified up to a sign and
modulo π.

4. Note also that such an explicit formula lends itself well to explicit computations
using the residue theorem. As an example, single-edge probabilities are computed
in the three different phases in Proposition 43.

From the point of view of statistical mechanics, local formulas for probabilities are
expected to exist for models that are invariant under elementary transformations of the
graph G. For example, in the case of the Ising model, the latter are the well known
star-triangle transformations; in the case of the dimer model, they are the spider move
and the shrinking/expanding of a 2-valent vertex [Kup98, Thu17, Pos06, GK13]. In
Proposition 50 and Theorem 53 of Section 7, we prove that invariance under these two
moves is equivalent to the Kasteleyn coefficients being antisymmetric (as functions of
the train-track half-angles) and satisfying Fay’s identity in the form of Corollary 9. As
a consequence, we recover that this holds for the elliptic dimer model considered in this
paper, a fact already known to Fock [Foc15].

As a final remark to this introduction, let us mention our forthcoming paper [BCdT20],
where we handle Fock’s adjacency operator and its consequences for the dimer model
in the case of arbitrary positive genus. It will in particular take care of the additional
difficulties related to more involved algebraic and complex geometry.

Outline of the paper

• In Section 2, we recall concepts and results needed for our work: train-tracks,
half-angle maps, minimal graphs, minimal immersions [BCdT19], basics on the
dimer model, Fock’s definition of the discrete Abel map [Foc15] and Jacobi theta
functions.

6



• In Section 3, we define Fock’s elliptic adjacency operators K(t) [Foc15] and deter-
mine under which conditions it is Kasteleyn. We introduce a family of functions
in the kernel of K(t) and study the relative positions of their poles and zeros.
Then, building on ideas of [KLRR18] we show that these functions define explicit
immersions of the dual graph.

• In Section 4, we fix t ∈ R+π
2 τ and introduce a family of local operators (A(t),u0)u0∈D,

parameterized by a subset D of the cylinder R/πZ + [0, π2 τ ]. We then state and
prove Theorem 1.

• Section 5 deals with the case of Z2-periodic minimal graphs. We determine for
which half-angle maps the corresponding elliptic Kasteleyn operator itself is Z2-
periodic. We use the functions of Section 3.2 to give an explicit parameterization
of the spectral curve of the model. We then state and prove Theorem 3 and the
periodic version of Theorem 4. Finally, we derive an explicit expression for slopes
of the Gibbs measures.

• In Section 6, we drop the periodicity assumption on the minimal graph. We then
prove Theorem 4 defining a two parameter family of Gibbs measures with three
phases as in the periodic case. We compute single-edge probabilities and asymp-
totics of the inverse operators (A(t),u0)u0∈D in these three phases.

• In Section 7 we show that invariance of the dimer model under some natural el-
ementary transformations on bipartite graphs, is equivalent to the corresponding
Kasteleyn coefficients being antisymmetric and satisfying Fay’s identity; in partic-
ular this holds for the dimer model with Fock’s elliptic weights.

• Finally, in Section 8, we present relations between the present work and previously
studied models. We first show how Kenyon’s critical dimer models [Ken02] can be
obtained as rational limits of our elliptic models. Then, we explain how the models
of [BdTR18] and of [dT17] are special cases of the constructions of this paper.
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2 Generalities

The aim of this first section is to introduce well-known concepts and results needed for
the rest of the paper. Section 2.1 deals with train-tracks associated to planar graphs,
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minimal graphs, and a special class of half-angle maps associated with train-tracks of
minimal graphs. In Section 2.2 , we briefly explain the basics of the dimer model on
bipartite planar graphs. Finally, in Section 2.3, we recall the definition of Fock’s discrete
Abel map, and the definition and main features of Jacobi theta functions.

2.1 Train-tracks, minimal graphs and monotone angle maps

Consider a locally finite graph G = (V,E) embedded in the plane so that its faces are
bounded topological discs, and denote by G∗ = (V∗,E∗) the dual embedded graph. The
associated quad-graph G� is obtained from the vertex set V t V∗ by joining a primal
vertex v ∈ V and a dual vertex f ∈ V∗ each time v lies on the boundary of the face
corresponding to f. This quad-graph embeds in the plane with faces consisting of (possi-
bly degenerate) quadrilaterals, whose diagonals are pairs of dual edges of G and G∗ (see
Figure 2).

A train-track of G [Ken02, KS05] is a maximal chain of adjacent quadrilaterals of G� such
that when it enters a quadrilateral, it exits through the opposite edge. A train-track can
also be thought of as a path in (G�)∗ crossing opposite edges of the quadrilaterals, and
we often make this slight abuse of terminology. Note that by construction, the graphs G
and G∗ have the same set of train-tracks.

We now assume that G is bipartite, i.e., that its vertex set can be partitioned into two
sets V = BtW of black and white vertices such that no edge of E connects two vertices
of the same color. In such a case, paths corresponding to train-tracks can be consistently
oriented with, say, black vertices on the right and white vertices on the left of the path,
as illustrated in Figure 2. We let T denote the set of consistently oriented train-tracks
of the bipartite graph G.

For the definition of our model (see Section 3.1 below), we need to assign a half-
angle αT ∈ R/πZ to each oriented train-track T of T. Many of our results hold for
arbitrary half-angle maps α : T → R/πZ defined on arbitrary bipartite planar graphs.
However, several results only hold for a specific class of such graphs, and for a restricted
space of angle maps. We now define these classes of graphs and maps.

Following [Thu17, GK13], we say that a bipartite, planar graph G is minimal if oriented
train-tracks of T do not self-intersect and if there are no parallel bigons, i.e., no pairs of
paths intersecting twice and joining these two intersection points in the same direction;
we refer to Figure 2 for an example with such forbidden train-track configurations. Note
that this implies that G has neither multiple edges, nor loops, nor degree 1 vertices. In
particular, a minimal graph is a simple graph.

More details on the next part of this section can be found in the paper [BCdT19]. The
restriction on the half-angle maps can be motivated geometrically as follows. Given a
bipartite, planar graph G, a map α : T → R/πZ defines an immersion of G� in R2 by
realizing every directed edge of G� crossed by an oriented train-track T from left to
right as the unit vector e2iαT . In this way, each face of G� is mapped to a rhombus
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T5

T4

T6

T1

T3

T2

Figure 2: A finite portion of a bipartite graph G, with black edges and black/white
vertices. The associated dual graph G∗ has vertices marked with grey diamonds, while
the associated quad-graph G� is represented with grey edges. The corresponding train-
tracks form two self-intersections (T2 and T6) and two parallel bigons (one between T1

and T6, the other between T2 and T5). In particular, G is not a minimal graph.

of unit edge length, with a rhombus angle in [0, 2π) naturally defined from the value
of α on the two train-tracks crossing this face. Pasting these rhombi together using
the combinatorial information of G and adding up the corresponding rhombus angles,
we obtain angles at the vertices of G� that are, in general, arbitrary integer multiples
of 2π. Following [BCdT19], we say that α defines a minimal immersion of G if the
rhombus angles never vanish and add up to 2π around each vertex of G�. This notion
is a natural generalization of the isoradial embeddings of Kenyon and Schlenker [KS05],
where rhombi with rhombus angle in (π, 2π) are folded along their dual edge.

A map α : T → R/πZ defines a minimal immersion if it respects some natural cyclic
order on T, whose definition we now recall, see also [BCdT19, Section 2.3]. Let us
assume that G is a minimal graph. We say that two oriented train-tracks are parallel
(resp. anti-parallel) if they are disjoint and there exists a topological disc that they
cross in the same direction (resp. in opposite directions). Consider a triple of oriented
train-tracks (T1, T2, T3) of G, pairwise non-parallel. If two of these train-tracks intersect
infinitely often, then they do so in opposite directions: replace this pair of train-tracks
by anti-parallel disjoint oriented curves. We are now left with three bi-infinite oriented
planar curves that intersect a finite number of times. Consider a compact disk B outside
of which they do not meet, and order (T1, T2, T3) cyclically according to the outgoing
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points of the corresponding oriented curves in the circle ∂B. A choice was made when
replacing anti-parallel train-tracks by disjoint curves, but the resulting (partial) cyclic
order on T is easily seen not to depend on this choice. Note that when G is Z2-periodic,
this cyclic order is the same as the natural cyclic order defined via the homology classes
of the projections of the train-tracks onto G/Z2, see Section 5.

Following [BCdT19], we denote by XG the set of half-angle maps α : T → R/πZ that
are monotone with respect to the cyclic orders on T and R/πZ, and that map pairs
of intersecting or anti-parallel train-tracks to distinct angles. One of the main results
of [BCdT19] can now be stated as follows: a planar bipartite graph G admits a minimal
immersion if and only if G is minimal; in such a case, the space of minimal immersions
contains XG, and coincides with it in the Z2-periodic case.

2.2 The dimer model

We here recall basic facts and definitions on the dimer model. More details can be found
for example in [Ken04] and references therein.

In the whole of this section, G is a planar, bipartite graph, finite or infinite. A dimer
configuration of G, also known as a perfect matching, is a collection M of edges of G such
that every vertex is incident to exactly one edge of M; we denote by M(G) the set of
dimer configurations of the graph G and assume that this set is non-empty.

Suppose that edges are assigned a positive weight function ν = (νe)e∈E. When the graph
is finite, the dimer Boltzmann measure P on M(G) is defined by:

P(M) =
ν(M)

Z(G, ν)
,

where ν(M) =
∏

e∈M νe is the weight of the dimer configuration M, and Z(G, ν) =∑
M∈M(G) ν(M) is the dimer partition function.

When the graph G is infinite, the notion of Boltzmann measure is replaced by that
of Gibbs measure. By definition, a Gibbs measure P needs to satisfy the DLR condi-
tions [Dob68, LIR69]: if one fixes a dimer configuration in an annular region of the
graph G, dimer configurations inside and outside of the annulus are independent; more-
over the probability of any dimer configuration in the connected region inside the annulus
is proportional to the product of its edge weights.

Following [KOS06], two dimer models given by two positive weight functions ν and ν ′

on G are said to be gauge equivalent if there exists a positive function σ on V such that, for
each edge wb ∈ E, we have ν ′wb = σw νwb σb. Suppose now that the graph G is finite, then
two gauge equivalent dimer models are easily seen to yield the same Boltzmann measure.
Therefore, many of the edge weight parameters are non-essential as far as the associated
Boltzmann measure is concerned. For a bipartite, planar, weighted graph (G, ν), a family
of associated essential parameters is given as follows. The face weight Wf of a degree 2n
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face f is defined to be

Wf :=
n∏
j=1

νwjbj
νwjbj+1

, (2)

where w1, b1,w2, . . . ,wn, bn are the vertices on the boundary of f oriented counterclock-
wise with cyclic notation for indices, see Figure 3. When G is planar, which is assumed
to be the case here, two dimer models on G are gauge equivalent if and only if the cor-
responding edge weights define equal face weights for all bounded faces. Moreover, the
associated Boltzmann measure can be described using these face weights. This requires
the concept of height function, that we now recall.

Let us fix a reference dimer configuration M1, and take an arbitrary M ∈M(G). Consider-
ing M and M1 as consistently oriented from white to black vertices, their difference M−M1

is an oriented cycle in G. Since this graph is embedded in the plane, this oriented cycle
bounds a collection of faces. In other words, we have M−M1 = ∂(

∑
f∈F hM(f)f) for some

function hM : F → Z, uniquely defined up to a global additive constant. This is called
the height function of M (with respect to M1). As one easily checks, we then have

P(M) =
W (hM)

Z(G,W )
,

where W (hM) =
∏

f∈FW
hM(f)
f and Z(G,W ) =

∑
M∈M(G)W (hM). In a nutshell, fixing

a reference dimer configuration allows to reformulate the Boltzmann measure on M(G)
with (many non-essential) parameters (νe)e∈E as a measure on the associated height
functions with (only essential) parameters (Wf)f∈F.

One of the key tools for studying the dimer model is the Kasteleyn matrix [Kas61,
TF61, Per69]. Suppose that edges are oriented so that around every bounded face of
the graph G, there are an odd number of edges oriented clockwise. Define K to be the
corresponding oriented, weighted, adjacency matrix: rows of K are indexed by white
vertices, columns by black ones, non-zero coefficients correspond to edges of G, and
when w ∼ b, Kw,b = ±νwb, where the sign is +, resp. −, if the edge is oriented from w
to b, resp. from b to w. When the graph G is finite, the partition function of the dimer
model is equal to | det K| [Kas67, TF61]. Kenyon [Ken97] derives an explicit expression
for the dimer Boltzmann measure P in terms of K, establishing that the dimer model is
a determinantal process.

This was extended by Kuperberg [Kup98] as follows. Consider a weighted adjacency
matrix of G with possibly complex coefficients, i.e., a matrix K as above with Kw,b =
ωwbνwb, this time allowing for ωwb to be any modulus 1 complex number (as opposed to
only ±1 above). Let us assume that for any bounded face f of G, the phase ω satisfies
the following Kasteleyn condition:

n∏
j=1

ωwjbj

ωwjbj+1

= (−1)n+1 ,

11



assuming the notation of Figure 3. Then, the dimer partition function and Boltzmann
measure can be computed from K and its inverse. When this is the case, K is said to be
Kasteleyn; we also refer to K as a Kasteleyn matrix for the dimer model on (G, ν).

The situation in the case of finite graphs embedded in the torus is different; the key facts
are recalled when needed, that is at the beginning of Section 5.5.

A Kasteleyn matrix K can be seen as a linear operator from the complex valued functions
on black vertices to those on white vertices of G, via the equality (Kf)w =

∑
b Kw,bfb

for f ∈ CB. Therefore, we will refer to K as a Kasteleyn matrix or operator, and similarly
for weighted adjacency matrices/operators.

w1

w2

b1

b2

wn

bn

β2

β1

α1

αn

f ′n

fn f1

f ′1f

α2

βn

Figure 3: Vertices and train-track half-angles around an arbitrary face.

2.3 Discrete Abel map and Jacobi theta functions

In order to define Fock’s elliptic adjacency operator in the next section, we need two
preliminary definitions: the discrete Abel map, and elliptic theta functions.

Discrete Abel map. Following Fock [Foc15], we iteratively construct a function η,
denoted by d in [Foc15], which assigns to every vertex of the quad-graph G� a linear
combination of train-track half-angles (αT )T∈T with integer coefficients.

The map η is constructed as follows. Choose a vertex v0 of G� and set (arbitrarily)
η(v0) = 0. Then along an edge of the quad-graph G� crossed by a train-track T , the value
of η increases, resp. decreased by αT , if T goes from right to left, resp. from left to right,
when traversing the edge. One easily checks that this gives a well defined map on the
vertices of G�. This formal Z-linear combination of half-angles can be understood as an
element of R/πZ by evaluating the combination modulo π. An example of computation
around a face of G� is given in Figure 4 below.
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w b

f

f ′

β α

Figure 4: A face of G� has four vertices corresponding to a white vertex w, a black
vertex b and two faces f and f ′ of the minimal graph, and is at the intersection of two
train-tracks. The train-tracks are oriented in such a way that they turn counterclockwise
around w and clockwise around b. We have η(b) = η(f) + α = η(f ′) + β = η(w) + α+ β.

Jacobi theta functions and Weierstrass/Fay’s identity. Classically, there are four
theta functions, denoted either by θi,j with i, j = 0, 1, or by θ` with ` ∈ {1, . . . , 4}, whose
definition may slightly vary depending on the sources. Among these four, only one is
an odd function. This function, θ1 in the second notation, is the function we mainly
use here, and we simply denote it by θ when there is no ambiguity. Let us recall its
definition. Let τ be a complex number with positive imaginary part and let q = eiπτ .
The (first) Jacobi theta function θ is the entire holomorphic function defined by the
following series:

θ(z) = θ1(z; q) = θ1(z|τ) = 2
∞∑
n=0

(−1)nq(n+ 1
2

)2 sin[(2n+ 1)z]. (3)

The function θ is antisymmetric and 2π-periodic:

∀ z ∈ C, θ(z + π) = θ(−z) = −θ(z),

and also satisfies the quasiperiodic relation

∀ z ∈ C, θ(z + πτ) = (−qe2iz)−1θ(z). (4)

Remark 6. The zeros of θ in C form a two-dimensional lattice Λ, generated by π and
πτ , and we let T(q) := C/Λ denote the torus obtained from Λ. The function θ is an
elementary brick to build Λ-periodic, meromorphic functions, i.e., Λ-elliptic functions.
For example, the ratio θ(z−a1)θ(z−a2)

θ(z−b1)θ(z−b2) is an elliptic function with two simple zeros (at a1

and a2) and two simple poles (at b1 and b2) on T(q) as soon as a1, a2, b1 and b2 are
distinct, and satisfy a1 + a2 ≡ b1 + b2 mod π; and every Λ-elliptic function with two
zeros and two poles is of that form (see e.g. [Bax82, Theorem 15(c)]).

A crucial role is played by the following functional identity satisfied by the theta function:

13



Proposition 7 (Fay’s trisecant identity/Weierstrass identity). For all (s, u) ∈ C2, for
all (a, b, c) ∈ C3,

θ(b− a)

θ(s− a)θ(s− b)
θ(u+ s− a− b)
θ(u− a)θ(u− b)

+
θ(c− b)

θ(s− b)θ(s− c)
θ(u+ s− b− c)
θ(u− b)θ(u− c)

+
θ(a− c)

θ(s− c)θ(s− a)

θ(u+ s− c− a)

θ(u− c)θ(u− a)
= 0. (5)

This identity, which can be derived from the Weierstrass identity [Wei82], see e.g. [Law89,
Ch. 1, ex. 4], can be seen as the genus 1 case of the more general Fay identity [Fay73]
satisfied by the Riemann theta functions and the associated prime forms on Riemann
surfaces. Fay’s identity is a cornerstone of the work of Fock [Foc15] on the inverse spectral
problem for Goncharov-Kenyon integrable systems. We refer the reader to [Geo19] for an
analogous of Fock’s results for spectral curves of Laplacians on minimal periodic planar
graphs in connection with Fay’s quadrisecant identity.

Translating a, b, c by elements of Λ leaves Equation (5) invariant. Translating s or u
gives a global multiplicative factor which does not change the fact that the sum is zero.
Therefore, the parameters in this identity can really been interpreted as elements of the
torus T(q).

By letting c tend to u in Fay’s trisecant identity, we immediately obtain the following
telescopic identity which only depends on a, b, u and s, giving the version we mostly use:

Corollary 8. For all (s, u) ∈ C2, for all (a, b) ∈ C2,

θ(u− s)θ(b− a)

θ(s− a)θ(s− b)
· θ(u+ s− a− b)
θ(u− a)θ(u− b)

= F (s)(u; b)− F (s)(u; a) (6)

where

F (s)(u; a) =
1

θ′(0)

(
θ′

θ
(s− a)− θ′

θ
(u− a)

)
.

Note also that multiplying Equation (5) by θ(t−a)θ(t−b)θ(t−c)θ(u−a)θ(u−b)θ(u−c)
and writing t := u + s and d := s, we immediately obtain the following elegant version
of Fay’s identity [Foc15]:

Corollary 9. For all (a, b, c, d) ∈ C4,

Ft(a, b)Ft(c, d) + Ft(a, c)Ft(d, b) + Ft(a, d)Ft(b, c) = 0 , (7)

where Ft(a, b) := θ(a− b)θ(a+ b− t).

3 Family of elliptic Kasteleyn operators

Let G be an infinite planar, bipartite graph. In Section 3.1, we introduce Fock’s one-
parameter family of adjacency operators [Foc15] in the genus 1 case, denoted by (K(t))t∈C,

14



which depend on a half-angle map α : T → R/πZ and on a modular parameter τ . In
Proposition 12, we use the results of [BCdT19] to prove that if G is minimal, if α belongs
to XG (recall Section 2.1), if the parameter τ is pure imaginary and t lies in R+ π

2 τ , then

the operator K(t) is actually a Kasteleyn operator (recall Section 2.2). In Section 3.2,
coming back to the general setting of an arbitrary graph G, half-angle map α and complex
parameter t, we introduce a family of functions in the kernel of K(t). In Section 3.3, we
show how these functions define explicit immersions of the dual graph G∗, in the spirit of
the recent paper [KLRR18]. Finally, in Section 3.4, we assume once again the hypotheses
of Proposition 12 and study the relative positions of the poles and the zeros of these
functions, a fact used in Section 4.1.

3.1 Kasteleyn elliptic operators

Let G be an infinite, planar, bipartite graph, and let us fix a half-angle map α : T → R/πZ
and a modular parameter τ . Recall that, by Section 2.3, this allows to define the discrete
Abel map η and the Jacobi theta function θ.

Definition 10. Fock’s elliptic adjacency operator K(t) is the complex weighted, adja-
cency operator of the graph G, whose non-zero coefficients are given as follows: for every
edge wb of G crossed by train-tracks with half-angles α and β as in Figure 4, we have

K
(t)
w,b =

θ(β − α)

θ(t+ η(b)− β)θ(t+ η(b)− α)
. (8)

Several remarks are in order.

Remark 11.

1. This operator is the genus 1 case of a more general operator introduced by Fock [Foc15]
on periodic minimal graphs involving Riemann theta functions of positive genus
and their associated prime forms.

2. By the equality θ(z + π) = −θ(z), the coefficient K
(t)
w,b is unchanged when adding

a multiple of π to α, β or η(b). Hence, the operator K(t) only depends on the
half-angle map T → R/πZ, as it should.

3. By definition of η, we have η(b) = η(w) + α + β, and the denominator can be
rewritten differently depending on whether we wish to focus on the black vertex b,
the white vertex w or the neighboring faces f or f ′:

θ(t+η(b)−β)θ(t+η(b)−α) = θ(t+η(w)+α)θ(t+η(w)+β) = θ(t+η(f))θ(t+η(f ′)).

We now show that, under some hypotheses on these parameters, the operator K(t) is
Kasteleyn. As a consequence, the Boltzmann measure on dimer configurations of a
finite connected subgraph of G can be constructed as a determinantal processes via K(t),
as stated in Section 2.2.
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Recall that XG denotes the space of half-angle maps α : T → R/πZ that are monotone
with respect to the cyclic orders on T and R/πZ, and that map pairs of intersecting or
anti-parallel train-tracks to distinct half-angles.

Proposition 12. Let G be a minimal graph, α belong to XG, τ be pure imaginary and t
lie in R + π

2 τ . Then, Fock’s elliptic adjacency operator K(t) is Kasteleyn.

Proof. Let us compute the argument of the complex number K
(t)
w,b up to gauge equivalence

(recall Section 2.2). To do so, first observe that the theta functions θ = θ1 and θ4 are
related by

θ1(u+
πτ

2
) = iq−1/4e−iuθ4(u) (9)

for all u ∈ C (see e.g. [Law89, (1.3.6)]), with θ4(u) = θ4(u|τ) strictly positive for u real
and τ pure imaginary. Since t = t′ + πτ

2 with t′ ∈ R, we obtain

K
(t)
w,b =

−q1/2 e2i(t′+η(b))

θ4(t′ + η(b)− β)θ4(t′ + η(b)− α)
θ(β − α)e−i(α+β) .

Note that in the fraction above, the numerator can be discarded up to gauge equivalence,
i.e., cancels out when computing the face weight, while the denominator is strictly

positive. Therefore, up to gauge equivalence, the argument of K
(t)
w,b is simply given by

the argument of θ(β − α)e−i(α+β). Since θ(u) is positive for u ∈ (0, π) and negative
for u ∈ (π, 2π), one easily checks that this argument is equal to π

2 + arg(e2iβ − e2iα).

Since G is minimal and α belongs toXG, Theorem 23 of [BCdT19] can be applied, and the
angle map α defines a minimal immersion of G (recall Section 2.1). Now, by [BCdT19,
Theorem 31], Kenyon’s argument for critical weights on isoradial graphs [Ken02] extends
to the minimal setting, and we deduce that the phases above satisfy the Kasteleyn
condition.

Remark 13. Let us briefly discuss the hypotheses of this proposition.

1. As explained in detail in Section 5, when G is Z2-periodic and α is chosen such
that K(t) is a periodic Kasteleyn operator, the associated spectral curve is a Har-
nack curve [KO06, KOS06], of geometric genus 1, parameterized by the torus T(q).
By maximality of Harnack curves, the real locus of this spectral curve has two
connected components, and hence, so should the real locus of T(q). This happens
if and only if T(q) is a rectangular torus, i.e., if τ is pure imaginary. Therefore, at
least in the Z2-periodic case, the proposition above does not hold unless τ is pure
imaginary.

2. By the proof above, if τ is pure imaginary and t lies in R+ π
2 τ , then the argument

of K
(t)
w,b is given by arg(e2iβ − e2iα) up to gauge equivalence. Furthermore, if G is

minimal and α belongs to XG, then this argument satisfies Kasteleyn’s condition.
Actually [BCdT19, Theorem 31] proves that if G is non-minimal, then there is
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no half-angle map such that π
2 + arg(e2iβ − e2iα) satisfies Kasteleyn’s condition.

Therefore, minimal graphs form the largest class of bipartite planar graphs where
the above argument can be applied.

3.2 Functions in the kernel of the elliptic Kasteleyn operator

Inspired by [Foc15], we introduce a complex valued function g(t) defined on pairs of
vertices of the quad-graph G� and depending on a complex parameter u, which is in
the kernel of the operator K(t). This definition extends to the elliptic case that of
the function f of [Ken02]. Note that in the critical case of [Ken02], there is no extra
parameter t.

When both vertices are equal to a vertex x of G�, set g
(t)
x,x(u) ≡ 1. Next, let us define g(t)

for pairs of adjacent vertices v, f of G�, where v (resp. f) is a vertex of G (resp. G∗); let α
be the half-angle of the train-track crossing the edge vf. Then, depending on whether v
is a white vertex w or a black vertex b of G, we set:

g
(t)
f,w(u) = (g

(t)
w,f(u))−1 =

θ(u+ t+ η(w))

θ(u− α)
,

g
(t)
b,f(u) = (g

(t)
f,b(u))−1 =

θ(u− t− η(b))

θ(u− α)
.

Now let x, y be any two vertices of the quad-graph G�, and consider a path x = x1, . . . , xn =
y of G� from x to y. Then, as in the critical case of [Ken02], g(t) is taken to be the product
of the contributions along edges of the path:

g
(t)
x,y(u) =

n−1∏
i=1

g
(t)
xi,xi+1(u).

Lemma 14. For every pair of vertices x, y of G, the function g
(t)
x,y is well-defined, i.e.,

independent of the choice of path in G� joining x and y.

Proof. It suffices to check that g(t) is well defined around a rhombus w, f ′, b, f of the
quad-graph; let α, β be the half-angles of the train-tracks defining the rhombus, see

Figure 4. Then, by definition, the product g
(t)
f′,w g

(t)
w,f g

(t)
f,b g

(t)
b,f′ is equal to:

θ(u+ t+ η(w))

θ(u− α)

θ(u− β)

θ(u+ t+ η(w))

θ(u− α)

θ(u− t− η(b))

θ(u− t− η(b))

θ(u− β)
= 1.

Remark 15. In the particular case of a black vertex b and a white vertex w along an edge
of the graph G, using the notation of Figure 4 and the fact that η(w) = η(b) − α − β,
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we have

g
(t)
b,w(u) =

θ(u+ t+ η(w))θ(u− t− η(b))

θ(u− α)θ(u− β)

=
θ(u+ t+ η(b)− α− β)θ(u− t− η(b))

θ(u− α)θ(u− β)

=
θ(u+ t+ η(w))θ(u− t− η(w)− α− β)

θ(u− α)θ(u− β)
,

which is a Λ-elliptic function, by Remark 6. Being a product of Λ-elliptic functions,

g
(t)
x,y(u) is itself Λ-elliptic whenever x and y are both vertices of G. In this case, we

consider the parameter u as living on the torus T(q) := C/Λ. However, this property

is not true in general when x or y is a dual vertex of G∗. Note that g
(t)
b,w(u) is also well

defined when the half-angles α, β of train-tracks separating b and w are considered in

R/πZ, and that the same holds for g
(t)
x,y(u) when both vertices x, y belong to G.

The next proposition states that for any given u, the rows and columns of the ma-
trix g(t)(u), restricted to white and black vertices respectively, are in the kernel of K(t).
Although with a different vocabulary, this result is actually contained in Theorem 1
of [Foc15], hence the attribution. We provide a proof since it is not immediate how to
translate Fock’s algebraic geometry point of view into ours.

Proposition 16 ([Foc15]). Let u ∈ C, and let x be a vertex of the quad-graph G�, then:

1. g
(t)
x, · (u), seen as a row vector indexed by white vertices of G, is in the left kernel

of K(t); equivalently, for every black vertex b of G, we have
∑

w g
(t)
x,w(u) K

(t)
w,b = 0.

2. g
(t)
· ,x(u), seen as a column vector indexed by black vertices of G, is in the right kernel

of K(t); equivalently, for every white vertex w of G, we have
∑

b K
(t)
w,b g

(t)
b,x(u) = 0.

Proof. Let us prove the first identity. Using the product form of g(t), we write g
(t)
x,w(u) =

g
(t)
x,b(u)g

(t)
b,w(u) and factor out g

(t)
x,b(u), so that we can assume without loss of generality

that x = b.

Let α, β be the parameters of the train-tracks crossing the edge wb, see Figure 4. Then
using the definition of the elliptic Kasteleyn operator (8) and Remark 15, we have

g
(t)
b,w(u) K

(t)
w,b = θ(u− t− η(b))

θ(u+ t+ η(b)− α− β)

θ(u− α)θ(u− β)

θ(β − α)

θ(t+ η(b)− α)θ(t+ η(b)− β)
.

Now using Corollary 8, with s = t+ η(b), a = α, b = β, we obtain

g
(t)
b,w(u)K

(t)
w,b = F (t+η(b))(u;β)− F (t+η(b))(u;α).

As a consequence, for b fixed, the right-hand side is the generic term of a telescopic sum,
which gives zero when summing over the white neighbors of b.
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The proof of the second identity follows the same lines, and it is enough to check the

case where x = w. With the same notation as above, rewriting the expression of K
(t)
w,b

using η(w) = η(b)− α− β, we obtain:

K
(t)
w,b g

(t)
b,w(u) =

θ(β − α)

θ(t+ η(w) + α)θ(t+ η(w) + β)

θ(u− t− η(w)− α− β)

θ(u− α)θ(u− β)
θ(u+ t+ η(w)).

Applying Corollary 8 again with s = −t − η(w) implies that, for w fixed, this is the
generic term of a telescopic sum which gives zero when summing over the black neighbors
of w.

Remark 17. From the function g(t), it is possible to construct more functions in the
kernel of K(t). For example, fix a black vertex b and let Φ be a generalized function
(e.g. a measure, or a linear combination of evaluations of derivatives) on C with, for

definiteness, compact support avoiding poles of g
(t)
b,w(u), for any white vertex w. Then

the action 〈Φ, g(t)
b,w〉 of Φ on each of the entries of the vector

(
g

(t)
b,w(u)

)
w∈W is a row vector

in the left kernel of K(t) by linearity:

〈Φ, g(t)〉 · K(t) = 〈Φ, g(t) · K(t)〉 = 〈Φ, 0〉 = 0.

We wonder if all functions in the kernel of K(t) are of this form.

3.3 Graph immersions and circle patterns

In the recent paper [KLRR18], the authors introduce circle pattern embeddings of a
bipartite, planar graph G endowed with a dimer model associated to a weight function ν.
Speaking in dual terms, the same object is considered in [CLR20], where it is referred to
as t-embeddings of the dual graph G∗. Note that the “t” in the name t-embedding has
nothing to do with our parameter t. In the finite case, the outer face has restrictions
on its degree, and in the infinite case, the graph is assumed to be Z2-periodic and the
associated dimer model is supposed to be in the liquid phase. The t-embedding is defined
using functions in the kernel of the corresponding Kasteleyn operator K when they exist.
More precisely, if F , resp. G is in the right, resp. left, kernel of K, then ωwb := GwKw,bFb

defines a divergence free flow ω, so that it can be written as an increment

Ψ(f)−Ψ(f ′) = ωw,b

where ff ′ is the dual edge of wb, see Figure 4. The t-embedding of G∗ is the mapping Ψ,
defined up to an additive constant by the relation above.

Proposition 16 gives explicit functions in the kernel of Fock’s elliptic adjacency opera-

tor K(t), and thus by taking F (t) = g
(t)
·,x (u) and G(t) = g

(t)
x,· (u) for some fixed vertex x of

G�, one defines a family (Ψ
(t)
u )t∈C,u∈T(q) of t-immersions of the graph G∗ indexed by t ∈ C

and u ∈ T(q). Note the term immersion emphasizing that this does not define an embed-
ding of the dual graph G∗ when the Kasteleyn condition is not satisfied. (In [KLRR18],
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the term realization is used for such graph drawings when edges can cross transversally.)

However, when K is Kasteleyn, it is known that Ψ
(t)
u defines a local embedding; and if

furthermore G and K are periodic, it is a global convex embedding [KLRR18, Theorem
8].

Using Corollary 8 as in the proof of Proposition 16 gives an explicit expression for the

increments of the map Ψ
(t)
u :

Ψ(t)
u (f)−Ψ(t)

u (f ′) = θ′(0)g
(t)
b,w(u)K

(t)
w,b = θ′(0)

[
F (t+η(b))(u;β)− F (t+η(b))(u;α)

]
= θ′(0)

[
F (−t−η(w))(u;β)− F (−t−η(w))(u;α)

]
.

(10)

We refer to Figure 5 (left) for an example of such a t-immersion which is actually a local
embedding of G∗.

The t-immersion Ψ
(t)
u of G∗ can be extended into an immersion of G� as follows. Fix an

arbitrary function Ξ: V → R2. Let v and f be neighboring vertices in G� corresponding
respectively to a vertex and a face of G, and separated by a train-track with half-angle

α. Depending on whether v is a black vertex b or a white vertex w, the increment of Ψ
(t)
u

between v and f is given by the following formulas:

Ψ(t)
u (b)−Ψ(t)

u (f) = Ξ(b) +
θ′

θ
(t+ η(f))− θ′

θ
(u− α),

Ψ(t)
u (w)−Ψ(t)

u (f) = Ξ(w) +
θ′

θ
(t+ η(f)) +

θ′

θ
(u− α).

Lemma 18. Up to an arbitrary additive constant, the mapping Ψ
(t)
u is well-defined on

the vertices of G�, and extends the definition of Ψ
(t)
u on G∗ given by Equation (10).

Proof. The fact that Ψ
(t)
u is well defined on G� is an immediate consequence of the fact

that the four increments around a quadrangular face of G� sum to 0. Now, let f and f ′

be neighbors in G∗ and b be the black vertex on the face of G� shared by f and f ′. Using
the notation of Figure 4 and the equalities η(b) = η(f ′) + β = η(f) + α, we obtain:

Ψ(t)
u (f)−Ψ(t)

u (f ′) =
(

Ψ(t)
u (b)−Ψ(t)

u (f ′)
)
−
(

Ψ(t)
u (b)−Ψ(t)

u (f)
)

=
(

Ξ(b) +
θ′

θ
(t+ η(f ′))− θ′

θ
(u− β)

)
−
(

Ξ(b) +
θ′

θ
(t+ η(f))− θ′

θ
(u− α)

)
= θ′(0)

[
F (t+η(b))(u;β)− F (t+η(b))(u;α)

]
,

which indeed coincides with (10).

We refer to Figure 5 (right) for an example of such a t-immersion of G (actually an
embedding).
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Figure 5: Left: piece of the quasiperiodic local t-embedding of the dual of Z2 defined

by Ψ
(πτ/2)
u . The half-angles assigned to the four train-tracks around every white vertex

are α = 0, β = π
6 ' 0.52, γ = e

2 ' 1.36 and δ = 2.5, while we have q = eiπτ = 1
10 and

u = 0.62 + 0.70i. Although Z2 is periodic as a graph, the fact that the half-angles are
pairwise incommensurable implies that η is not periodic, but only quasiperiodic. Right:

corresponding (periodic) immersion of Z2 given by the extension of Ψ
(πτ/2)
u obtained by

choosing Ξ(b) = 0 for all black vertices b and Ξ(w) = 2i for all white vertices w. This
particular immersion is an embedding, a fact which does not hold in general.

Whereas changing Ξ does not have an influence on the immersion of G∗, it obviously has
consequences on the immersion of G. For example, adding a constant to Ξ(v) translates
the image of v without moving the rest.

Once the image by Ψ
(t)
u (or Ξ) of a single vertex of G is fixed, there is a unique way to

extend Ψ
(t)
u to a circle pattern, where white and black vertices around a face f are sent

to points on a circle centered at Ψ
(t)
u (f), as can be seen from [CLR20] and the so-called

origami map. However, we do not require this property here.

If the difference between Ξ1 and Ξ2 is bounded, then the two induced immersions of G
are quasi-isometric. A trivial choice for Ξ is the constant 0. Another bounded interesting
choice is

Ξ(b) =
θ′

θ
(u− t− η(b)), Ξ(w) =

θ′

θ
(u+ t+ η(w)), (11)

which satisfies

Ψ(t)
u (b)−Ψ(t)

u (w) =
d

du
log g

(t)
b,w(u)

for any pair (b,w) of black and white vertices. It follows in particular that for any
bounded choice of Ξ, the following estimate is true as soon as the graph distance between
b and w is large:

Ψ(t)
u (b)−Ψ(t)

u (w) =
d

du
log gb,w(u) +O(1). (12)

In Section 8.1, we give another choice of bounded Ξ, well suited for the connection to
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the isoradial case [Ken02].

3.4 Poles and zeros of g
(t)
x,y

In this section we consider two vertices x, y of G� and study the poles and zeros of

u 7→ g
(t)
x,y(u) on the real circle C0 := R/πZ. More specifically, in Lemma 19 we prove that

they are well separated. This property is used to define angular sectors for the purpose
of Section 4.1.

Consider a minimal path Π from x to y in the quad-graph G�, that is an edge-path of
minimal length, directed from x to y. Zeros and poles of gx,y on C0 arise from terms of
the form θ(u−α)±1 in the product definition of gx,y. More precisely, zeros (resp. poles)
(αT ) are half-angles of train-tracks (T ) crossing Π from left to right (resp. from right to
left). This property implies the following result.

Lemma 19. Suppose that the graph G is minimal and that the half-angle map α belongs
to XG. Then, there exists a partition of C0 into two intervals, such that one contains no

poles of g
(t)
x,y, and the other no zeros.

Proof. We assume that g
(t)
x,y has at least two poles and two zeros in C0, otherwise, the

statement is trivial. It is sufficient to show that if S0 and S1 (resp. T0 and T1) are

distinct train-tracks crossing Π and contributing to zeros (resp. poles) of g
(t)
x,y, then we

cannot have the cyclic order αT0 < αS0 < αT1 < αS1 on C0. Indeed, consider a large
ball B of the graph containing Π and on which one can read the cyclic order of all the
train-tracks crossing Π. The parts of S0 and S1 from their intersection with Π to their
exit points from B, together with the segment of Π between the intersections with S0

and S1 delimit a bipartite partition of the ball B. Shade all parts with the same parity
as the part near the segment of Π just after the intersection with S0 and S1, and call
the union of parts R. This “generalized ribbon” R, the light blue region depicted in
Figure 6, can be either a topological rectangle if S0 and S1 do not intersect after Π,
two inverted topological triangles if they cross once, or have a more complicated shape
if they cross several times forming antiparallel bigons. Then, by minimality, one can

see that any train-track T contributing to a pole of g
(t)
x,y cannot exit that ball through

the shaded sector of ∂B delimited by the ribbon R, otherwise, this would create either
a parallel bigon, or a self-intersection, see Figure 6. Since α belongs to XG, the cyclic
order of the angles is the same as that of the train-tracks, implying that one cannot have
poles simultaneously inside both connected components of C0 \ {αS0 , αS1}.

Let us now restrict to the case where x is a black vertex b of G and y is a white one

w. When computing the product for g
(t)
b,w, all the terms of the form θ(u + t + η(w′))

and θ(u − t − η(b′)) cancel out except the two terms θ(u − t − η(b))θ(u + t + η(w)) in

the numerator. As a consequence, all the poles of g
(t)
b,w are on C0 and, from the above,
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Π

Figure 6: Some of the (im)possible attempts for a train-track coding for a pole (in red)
to exit in the forbidden sector delimited by the ribbon (light blue) bounded by two
train-tracks coding for zeros (blue), resulting in the creation of a parallel bigon (left,
middle) or a self-intersection (right), indicated by the regions shaded in gray.

correspond to half-angles of train-tracks crossing a minimal path Π joining b to w, from
right to left.

The following definition is used in Section 4.1 for defining the contours of integration of
our explicit local expressions for inverse Kasteleyn operators.

Definition 20. If g
(t)
b,w has at least one zero and one pole on C0, we define the angular

sector (or simply sector) associated to g
(t)
b,w, denoted by sb,w, to be the part of the

partition of C0 containing the poles. If g
(t)
b,w has no zeros on C0 (which happens when b

and w are neighbors), then the sector sb,w is defined to be the geometric arc from α to
β in the positive direction, with the convention of Figure 4.

Remark 21. In previous works [BdT11, BdTR17], we had a similar result for isoradially
embedded graphs, where all the rhombus angles are in (0, π2 ), using a convexification
algorithm [dT07a]. Equivalently, this is described in [KS05, Lemma 3.5]. The resulting
sectors were shorter than half of C0. Here, because of the possible presence of folded
rhombi with angles greater than π

2 , the length of this sector may be larger than half of
C0.

4 Inverses of the Kasteleyn operator

We place ourselves in the context where Fock’s elliptic adjacency operator is Kasteleyn,
i.e., we suppose that τ ∈ iR∗+, that the fixed parameter t belongs to R + π

2 τ and that
the graph G is minimal with half-angle map α ∈ XG.

In this section, we introduce a family of operators (A(t),u0)u0∈D acting as inverses of the
Kasteleyn operator K(t), parameterized by a subset D of the cylinder R/πZ + [0, π2 τ ].
This is one of the main results of this paper. These inverses have the remarkable property

of being local, meaning that the coefficient A
(t),u0
b,w is computed using the information of

a path in the quad-graph G� from b to w.
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The general idea of the argument for defining a local formula for an inverse follows [Ken02]:
find functions in the kernel of K(t) depending on a complex parameter, i.e., the functions
g(t) introduced in Section 3.2 in the elliptic setting of this paper; then define coefficients
of the inverse as contour integrals of these functions, with appropriately defined paths
of integration. On top of handling the elliptic setting, the novelty of this paper is to in-
troduce an additional parameter u0 ∈ D, leading to three different asymptotic behaviors
for the inverses, morally corresponding to the three phases of the dimer model: liquid,
gaseous, and solid. The three cases are determined by the position of u0 in D.

In Section 4.1, we define the domain D for the parameter u0, and the paths of integration.
Relying on this, in Section 4.2 we introduce the family of inverses (A(t),u0)u0∈D. Finally,
in Section 4.3, we give the explicit form of the function Hu0 involved in an alternative
expression of A(t),u0 .

From now on, we omit the superscript (t) in the notation of K(t),A(t) and g(t).

4.1 Domain D and paths of integration

Let b,w be a black and a white vertex of G respectively. Recall that the function gb,w of
Section 3.2 is defined on the torus T(q) = C/Λ, and also recall the angular sector sb,w of
Definition 20. Since the parameter τ is pure imaginary, the real locus of the torus T(q)
has two connected components, C0 = R/πZ and C1 = (R + π

2 τ)/πZ.

We define the domain D of the parameter u0 indexing the family of inverses (Au0)u0∈D
as follows. Consider the set of angles {αT ; T ∈ T} assigned to the train-tracks of G�,
then the domain D is, see also Figure 7,

D =
(
R/πZ +

[
0,
π

2
τ
])
\ {αT ; T ∈ T}.

Case 1

Case 2

Case 3

D

C0

C1

Figure 7: The domain D as a shaded area of the torus T(q) and the different cases
corresponding to the possible locations of the parameter u0. The horizontal contours C0

and C1 winding around the torus are the two connected components of the real locus
of T(q).

We now introduce paths/contours of integration for Au0b,w, denoted by Cu0b,w. We distin-
guish three cases depending on the position of u0 in D. Note that in order to keep
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notation as light as possible, we do not add indices specifying the cases, hoping that this
creates no confusion.

Case 1: u0 is on the top boundary C1 = R/πZ + π
2 τ of the domain D. Then, see also

Figure 8 (left), Cu0b,w is a simple contour in T(q) winding around the torus once from
bottom to top, such that its intersection with C0 avoids the angular sector sb,w.

Case 2: u0 belongs to the interior of D. Then, see also Figure 8 (center), Cu0b,w is a
simple path in T(q) connecting ū0 to u0, crossing C0 once but not C1, and avoiding the
sector sb,w.

Case 3: u0 belongs to the lower boundary of D, i.e., it is a point corresponding to one
of the connected components of C0 \ {αT ; T ∈ T}. Then, see also Figure 8 (right), Cu0b,w
is a simple, homologically trivial contour in T(q), oriented counterclockwise, crossing C0

twice: once in the complement of the angular sector sb,w, from bottom to top, and once
in the open interval of C0 \ {αT ; T ∈ T} containing the point u0, from top to bottom.
Note that this contour may well not contain all poles of the integrand gb,w.

In each of the three cases, we consider a meromorphic function Hu0 on T(q) \ Cu0b,w with
a discontinuity jump of +1 when crossing Cu0b,w from right to left, and a collection of
homologically trivial contours γu0b,w surrounding all the poles of gb,w and of Hu0 coun-
terclockwise. In Cases 1 and 2, the collection γu0b,w consists of a single contour, while in
Case 3, it consists of two contours; see Figure 8. We refer to Section 4.3 for explicit
candidates for Hu0 .

Cu0
b,w

γu0
b,w

u0

Cu0
b,w

γu0
b,w

u0

ū0

Cu0
b,w

γu0
b,w

u0

Figure 8: The contours/paths Cu0b,w and γu0b,w in: Case 1 (left), Case 2 (center), Case 3
(right). The angular sector sb,w ⊂ C0 containing the poles of gb,w is represented in light
green. The pole of the function Hu0 defined in Lemma 24 is represented by a white
square on C1.

4.2 Family of inverses

We now define the family of operators (Au0)u0∈D in two equivalent ways and then, in
Theorem 26, prove that they are indeed inverses of the Kasteleyn operator K.

Definition 22. For every u0 in D, we define the linear operator Au0 mapping functions
on white vertices (with finite support for definiteness) to functions on black vertices by
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its entries: for every pair (b,w) of black and white vertices of G, let

Au0b,w =
iθ′(0)

2π

∫
C
u0
b,w

gb,w(u)du, (13)

where the path of integration Cu0b,w is defined in Section 4.1 – recall that there are three
different definitions depending on whether u0 is on the top boundary of the domain D,
a point in the interior, or a point in a connected component of the lower boundary of D.

Remark 23.

1. The operator Au0 is local in the sense that its coefficient Au0b,w is computed using the
function gb,w which only depends on a path from b to w in the quad-graph G� and
actually does not depend on the choice of path; Au0b,w only uses local information
of the graph G� while one would a priori expect it to use the combinatorics of the
whole of the graph G�.

2. The integrand gb,w is meromorphic on the torus T(q), so continuously deforming
the contour of integration Cu0b,w (while keeping the extremities fixed in Case 2)
without crossing any poles does not change the value of the integral. In particular,
in Case 1, all the values of u0 on the top boundary of the cylinder D give the
same operator. Similarly, in Case 3, all the values of u0 in the same connected
component of C0\{αT ; T ∈ T} yield the same operator. We can thus identify in D
all the points on the top boundary, and points in each of the connected component
of C0 \ {αT ; T ∈ T}.

The following lemma gives an alternative, useful way of expressing the coefficients of Au0 .

Lemma 24. For every u0 in D and every pair (b,w) of black and white vertices of G,
the coefficient Au0b,w of (13) can be expressed as:

Au0b,w =
iθ′(0)

2π

∮
γ
u0
b,w

gb,w(u)Hu0(u)du , (14)

where the function Hu0 and the contour γu0b,w are described at the end of Section 4.1.

Remark 25. The explicit definition of the function Hu0 is postponed to Section 4.3.
Indeed, at this point, only its qualitative behavior is needed. The explicit form of Hu0

is used when computing edge-probabilities for the corresponding Gibbs measures, see
Section 6.1.

Proof of Lemma 24. In each of the three cases, the family of contours γu0b,w is homologous,
inside the complement of the poles of gb,wH

u0 in T(q) \ Cu0b,w, to the family of contours
given by the (clockwise oriented) boundary of a small bicollar neighborhood of Cu0b,w.
The contribution of the integrand on both sides of Cu0b,w are on different sides of the cut
for Hu0 and thus differ by −1. Recombining these two contributions as a single integral
along Cu0b,w yields Equation (13).
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We now state the main theorem of this section.

Theorem 26. For every u0 in D, Au0 is an inverse of the Kasteleyn operator K.

Proof. We need to check that we have
∑

b Kw,bAu0b,w′ = δw,w′ for every pair of white
vertices w,w′, and

∑
w Au0b′,wKw,b = δb,b′ for any pair of black vertices b, b′. We only

give the proof of the second identity, the other being proved in a similar way. The
idea of the argument follows [Ken02], see also [BdT11, BdTR17]. If b 6= b′, we use
the main definition (13) of the coefficients of Au0 . Using the separation of zeros and
poles on C0 for all the functions gb′,w, established in Lemma 19, we notice that the
intersection of the complements of the angular sectors (sb′,w)w∼b is non-empty, as it
contains a small neighborhood of the zero corresponding to the last step arriving to b
in a minimal path in G� from b to b′. It is therefore possible to continuously deform all
the contours (Cu0b′,w)w∼b into a common contour Cu0 . By Proposition 16 and Remark 17,
we then have: ∑

w:w∼b
Au0b′,wKw,b =

iθ′(0)

2π

∫
Cu0

∑
w:w∼b

gb′,w(u)Kw,b︸ ︷︷ ︸
=0

du = 0.

If b = b′, the points of intersection of the paths/contours Cu0b,w with the real locus C0 of
the torus wind around C0 as w runs through the neighbors of b. We cannot apply Propo-
sition 16 anymore, but can resort to explicit residue computations using the alternative
expression (14) for the coefficients of Au0 . We need to compute:

iθ′(0)

2π

∑
w:w∼b

Kw,b

∮
γ
u0
b,w

gb,w(u)Hu0(u)du.

By the residue theorem, each of these integrals is equal to the sum of the residues at
the poles of gb,w(u)Hu0(u) inside the contour. The poles are of two kinds: first, the
possible pole(s) of Hu0 , which do not depend on b, w, yielding the evaluation of gb,w (or
its derivatives in case of higher order poles) at some value of u, which are in the kernel of
K and thus will contribute zero when summing over w. Second, the poles at α, β of gb,w,
see Remark 15, where α, β are the parameters of the train-tracks crossing the edge wb.
An explicit evaluation gives

Resα gb,w(u)Hu0(u) =
θ(α− t− η(b))θ(α+ t+ η(w))

θ′(0)θ(α− β)
Hu0(α),

Resβ gb,w(u)Hu0(u) =
θ(β − t− η(b))θ(β + t+ η(w))

θ′(0)θ(β − α)
Hu0(β).

Using the fact that η(w) + α = η(b) − β = η(f ′) and η(w) + β = η(b) − α = η(f), and
recalling the definition of Kw,b, we obtain that for every edge wb of G,

(Resα gb,w(u)Hu0(u) + Resβ gb,w(u)Hu0(u))Kw,b =
1

θ′(0)
(Hu0(α)−Hu0(β)).
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w1

w2

e2iα1
e2iαd

e2iα2

e2iu0

u0

α1αd α2

Figure 9: Proof of Case 3: the coefficient Ab,wd is non-zero if and only if the rhombus
corresponding to the edge bwd in the minimal immersion of G given by α contains the
vector e2iu0 .

When summing over white vertices incident to the vertex b of degree d, surrounded by
train-tracks with half-angles α1 = α, α2, . . . , αd, αd+1 = α + π, the increments of Hu0

sum to Hu0(α1)−Hu0(αd+1) = Hu0(α)−Hu0(α+ π) = −1 by construction. Therefore,
we get: ∑

w:w∼b
Au0b,wKw,b = 2iπ

iθ′(0)

2π

Hu0(α)−Hu0(α+ π)

θ′(0)
= 1.

Remark 27. Let us note that in Case 3, we can work directly with residues on the
expression (13) since Cu0b,w in this case is a trivial contour. Indeed, label by α1, . . . , αd
the half-angles of the train-tracks surrounding the vertex b so that α1 is the first half-
angle on the right of u0 and αd is the last angle on the left; denote by bwj the edge with
train-track angles αj , αj+1. We refer to Figure 9 for a representation of the neighborhood
of b in the minimal immersion [BCdT19] of G defined by the map α. Then by definition,
for every j 6= d, the contour Cu0b,wj either contains both poles of gb,wj or none of them.

In both cases this gives Au0b,wj = 0. When j = d, the contour Cu0b,wd contains the pole α1

of gb,wd but not αd; therefore

Ab,wd = −2iπ
iθ′(0)

2π

θ(t+ η(w) + α1)θ(t+ η(w) + αd)

θ(α1 − αd)θ′(0)
=
θ(t+ η(b)− αd)θ(t+ η(b)− α1)

θ(α1 − αd)
,

and we conclude in particular that∑
w:w∼b

Ab,wKw,b = Ab,wdKwd,b = 1,

providing an alternative proof in Case 3. We refer to Section 6 for a probabilistic
interpretation of this computation.

Remark 28. Although the computations above rely in an essential way on the graph
being minimal and the half-angle map belonging to XG, they do not use the fact that τ
is pure imaginary and that the endpoints of Cb,w are conjugate of each other. Hence,
this recipe to construct inverses of K is slightly more general than what is described here,
and two such inverses differ by a function of the form described in Remark 17. However,
for probabilistic aspects described in the sequel, we restrict ourselves to this setting.
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4.3 Definition of the function Hu0

Recall that Hu0 is a meromorphic function on T(q)\Cu0b,w with a discontinuity jump of +1
when crossing Cu0b,w from right to left. We now give expressions of functions satisfying
this property, depending on the location of u0. Adding any Λ-elliptic function to these
expressions gives new candidates for Hu0 with different poles and residues, but this has
no effect on the resulting value of Au0 .

In Cases 1 and 2, the function Hu0 for given b and w should be thought of as a par-
ticular determination (depending on b and w) of a multivalued meromorphic function
on a cover of the complex plane, which is a periodic analogue of the complex log-
arithm [Ken02]. In particular, this multivalued meromorphic function, still denoted
by Hu0 , satisfies Hu0(α + π) −Hu0(α) = +1 since the contour Cu0b,w intersects C0 only
once positively in these cases.

Case 1. The function Hu0 has a period +1 when winding horizontally around the torus.
It has been explicitly constructed with a slightly different normalization in [BdTR17],
and is given by:

Hu0(u) :=
K ′

π
Z̃(u) +

u

π
, (15)

where Z̃(u) = Z(2K
π u|k) = π

2K
θ′4(u)
θ4(u) , Z is the Jacobi zeta function, see for exam-

ple [Law89, (3.6.1)]; k is related to q by the relation k =
θ22(0|q)
θ23(0|q) , K = π

2 θ
2
3(0), and

iK ′ = τK. The function Hu0 has a single pole at π
2 τ on the torus T(q). The function Z̃

has no horizontal period, but it has a vertical period, see [Law89, (3.6.22)]:

Z̃(u+ πτ) = Z(2K
π u+ 2Kτ) = Z(2K

π u+ 2iK ′) = −i πK + Z̃(u),

implying that Hu0(u+ π) = Hu0(u) + 1 and Hu0(u+ πτ) = Hu0(u).

Note that Hu0(u) = H(4K
π u|k), where the function H is defined in [BdTR17, Equation

(9)]. The above properties are proved in more detail in [BdTR17, Lemma 45], see
also [BdTR18, Appendix A.2].

Case 2. The function Hu0 has a period +1 when winding horizontally around the torus
at a height between ū0 and u0. It is given by the following explicit expression:

Hu0(u) :=
1

2πi
log

θ(u− u0)

θ(u− ū0)
− iK

π2
(u0 − ū0)Z̃(u), (16)

and has a single pole at π
2 τ on T(q).

Indeed, the function log θ(u−u0)
θ(u−ū0) has the correct horizontal period since the function θ(u−u0)

θ(u−ū0)
has a zero at u0 and a pole at ū0. It has vertical period:

log
θ(u+ πτ − u0)

θ(u+ πτ − ū0)
= 2i(u0 − ū0) + log

θ(u− u0)

θ(u− ū0)
,
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using that θ(u+πτ) = (−qe2iu)−1θ(u). Then, as Z̃ has no horizontal period and vertical
period −i πK , the two vertical periods cancel out and the horizontal period between levels
ū0 and u0 remains.

Case 3. The function Hu0 can be chosen to be constant equal to 1 inside Cu0b,w, and 0
outside. Note that for this particular choice of Hu0 , one sees immediately that contri-
butions of pieces of γu0b,w outside of Cu0b,w is zero, and that the part of γu0b,w which is inside
can be deformed to become very close to Cu0b,w. Therefore, the expressions (13) and (14)
in this case are trivially identical.

Let us conclude this section with one last remark. The short proof of Theorem 26 given
in the previous section, as in the original work of Kenyon [Ken02], does not explain
where this integral formula for Au0 comes from. The connection to the usual expression
obtained by Fourier transform in the periodic case is explained in Section 5.5.

5 The periodic case

This section deals with the special case where the bipartite planar graph G is Z2-periodic.
We start in Section 5.1 by explaining the additional features of train-tracks and half-angle
maps in the periodic case. In Section 5.2, we determine for which half-angle maps the
corresponding elliptic Kasteleyn operator K(t) is Z2-periodic. In Section 5.3, we recall
standard tools used in the study of the periodic bipartite dimer model, in particular

the spectral curve. In Section 5.4, we use the functions g
(t)
x,y defined in Section 3.2

to give an explicit parameterization of the spectral curve for the periodic dimer model
corresponding to the operator K(t). Finally, we describe the set of ergodic Gibbs measures
of this model in Section 5.5, and give an explicit expression for the corresponding slopes
in Section 5.6.

Throughout this section, we fix the parameter t in R + π
2 τ and once again omit the

superscript (t) in the notation of K(t),A(t) and g(t).

5.1 Train-tracks and monotone angle maps in the periodic case

In the whole of this section, we assume that the bipartite planar graph G is Z2-periodic,
i.e., that Z2 acts freely on colored vertices, edges and faces by translation. A basis of Z2

has been chosen, allowing to identify a horizontal direction (along the first vector (1, 0)
of the basis) and a vertical direction (along the second vector (0, 1)). The action of Z2 is
denoted additively: for example, if x is a vertex and (m,n) belongs to Z2, then x+(m,n)
is the copy of x obtained by translating it m times along the horizontal direction and n
times along the vertical one.

The graph G has a natural toroidal exhaustion (Gn)n≥1, where Gn := G/nZ2. The
graph G1 is a bipartite graph on the torus known as the fundamental domain. We use
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similar notation for the toroidal exhaustions of the dual graph G∗, of the quad-graph G�,
and of the train-tracks T.

Fix a face f of G and draw two simple dual paths in the plane, denoted by γx and γy,
joining f to f + (1, 0) and f + (0, 1) respectively, intersecting only at f. They project onto
the torus to two simple closed loops on G∗1, also denoted by γx and γy, winding around
the torus and intersecting only at f. Their homology classes [γx] and [γy] form a basis
of the first homology group of the torus H1(T;Z) and allow its identification with Z2.

Every train-track T ∈ T projects to an oriented closed curve on the torus. Therefore, the
corresponding homology class [T ] ∈ H1(T,Z) can be written as [T ] = hT [γx] + vT [γy],
with hT and vT coprime integers. This allows to define a partial cyclic order on T by
using the natural cyclic order of coprime elements of Z2 around the origin. As one
easily checks, this coincides with the partial cyclic order on T defined in Section 2.1. By
construction, this cyclic order induces a cyclic order on T1 = T/Z2. Note also that two
oriented train-tracks T, T ′ ∈ T are parallel (resp. anti-parallel) as defined in Section 2.1
if and only if [T ] = [T ′] (resp. [T ] = −[T ′]).

Recall that XG denotes the set of maps α : T → R/πZ that are monotone with respect to
the cyclic orders on T and R/πZ, and that map pairs of intersecting or anti-parallel train-
tracks to distinct half-angles. We shall denote by Xper

G the set of Z2-periodic elements
of XG, i.e.,

Xper
G = {α ∈ XG |αT+(m,n) = αT for all T ∈ T and (m,n) ∈ Z2} .

Since disjoint curves on the torus have either identical or opposite homology classes, this
space can be described more concretely as

Xper
G = {α : T1 → R/πZ |α is monotone and αT 6= αT ′ for [T ] 6= [T ′]} .

By the results of [BCdT19], if G is minimal, then any α ∈ Xper
G defines a Z2-periodic

minimal immersion of G (see Section 2.1 for definition), and every such immersion is
obtained in this way.

Recall that since G is bipartite, the train-tracks in T are consistently oriented, clockwise
around black vertices and counterclockwise around white ones. Therefore, the sum of
all oriented closed curves T ∈ T1 bounds a 2-chain in the torus. In particular, its
homology class vanishes, so we have

∑
T∈T1 [T ] = 0. As a consequence, the collection

of vectors ([T ])T∈T1 in Z2, ordered cyclically, and drawn so that the initial point of
a vector [T ] is the end point of the previous vector, defines a convex polygon (up to
translations). Note that since its coordinates are coprime integers, the vector [T ] only
meets Z2 at its end points. This polygon is referred to as the geometric Newton polygon
of G [GK13] and denoted by N(G). The space Xper

G can now be described combinatorially
as the set of order-preserving maps from oriented boundary edges of N(G) to R/πZ
mapping distinct vectors to distinct angles.

In [GK13, Theorem 2.5], see also [Gul08, Pos06], Goncharov and Kenyon build on earlier
work of Thurston [Thu17] (the article appeared in 2017, but the original preprint dates
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back to 2004) to show that for any convex envelop N of a finite set of points in Z2, there
exists a minimal Z2-periodic graph G such that N(G) = N . Moreover, if G and G′ are
two minimal graphs such that N(G) = N(G′), then they are related by elementary local
moves called spider moves and shrinking/expanding 2-valent vertices, see Figure 13. We
study the effect of these moves on the operator K in Section 7.

5.2 Periodicity of the Kasteleyn operator

From now on, we assume that the graph G is minimal (and Z2-periodic). We further
suppose that G is non-degenerate, in the sense that its geometric Newton polygon N(G)
has positive area. The aim of this section is to understand for which half-angle maps α ∈
Xper

G the corresponding elliptic Kasteleyn operator K defined in Equation (8) is periodic.

Note that the periodicity of G and of α is not sufficient to ensure the periodicity of
the operator K. Indeed, this operator makes use of the R/πZ-valued discrete Abel
map η defined in Section 2.3 which might have horizontal and vertical periods. More
precisely, and using the notation of Section 5.1, we have that for every vertex x of G�

and (m,n) ∈ Z2, the equality

η(x + (m,n)) = η(x) +m
∑
T∈T1

αT vT − n
∑
T∈T1

αThT (17)

holds in R/πZ.

Motivated by this observation, consider the map

ϕ : Xper
G −→ R2

defined as follows. Let us enumerate by T1, . . . , Tr the elements of T1 respecting the cyclic
order, and let P1, . . . , Pr denote the integer points on the boundary of N(G) numbered so
that Pj+1−Pj = [Tj ] (where Pr+1 stands for P1). Given a half-angle map α ∈ Xper

G , let

us write αj := αTj and denote by ˜αj − αj−1 the unique lift in [0, π) of αj−αj−1 ∈ R/πZ
(where α0 stands for αr). For α ∈ Xper

G , set

ϕ(α) =
r∑
j=1

˜αj − αj−1

π
· Pj ∈ R2 . (18)

Recall that the geometric Newton polygon is defined up to translation of an element
of Z2. When defining ϕ above, we are fixing the integer boundary points P1, . . . , Pr of
N(G), thus an anchoring. The following proposition nevertheless holds for all choices of
anchoring, and answers the problem raised at the beginning of the section.

Proposition 29. The image of the map ϕ : Xper
G → R2 is equal to the interior of the

geometric Newton polygon N(G) of G. Moreover, a periodic half-angle map α ∈ Xper
G

induces a periodic elliptic Kasteleyn operator K if and only if ϕ(α) lies in Z2.
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Proof. Let us fix α ∈ Xper
G and consider its image by ϕ. First observe that since α is

monotone, we have
∑r

j=1
˜αj − αj−1 = π. Therefore, ϕ(α) is a convex combination of

the vertices P1, . . . , Pr, and hence an element of the convex hull N(G) of these vertices.

To analyse ϕ(Xper
G ) more precisely, let us write X

per
G for the set of monotone half-

angle maps α : T1 → R/πZ (X
per
G is the set Xper

G without the condition that train-
tracks with different homology classes need to have distinct half-angles), and denote
by ∆ = {β = (βj)j ∈ [0, 1]r |

∑r
j=1 βj = 1} the standard simplex of dimension r − 1.

Observe that ϕ can be described as the restriction to Xper
G of the composition

X
per
G

δ−→ ∆
p−→ N(G) ,

with δ(α) = (
˜αj−αj−1

π )j and p(β) =
∑

j βjPj . This composition p ◦ δ : X
per
G → N(G) is

clearly surjective, but we now need to understand how the condition αT 6= αT ′ for [T ] 6=
[T ′] defining the space Xper

G ⊂ Xper
G affects the image of p ◦ δ inside N(G).

Since p is an affine surjective map, any point in the interior of N(G) is the image under p
of an element of the interior of ∆, i.e., an element β ∈ ∆ with no vanishing coordinate.
Therefore, we have

δ−1(p−1(intN(G))) ⊂ δ−1(int ∆) = {α ∈ Xper
G |α injective} ⊂ Xper

G ,

thus checking the inclusion of the interior of N(G) into ϕ(Xper
G ).

To prove the opposite inclusion, consider an arbitrary element x of N(G)\ intN(G), and
let us write F for the biggest face of N(G) containing x in its interior. (Concretely, F = x
if x is a vertex of N(G), and F is the boundary edge of N(G) containing x otherwise.)
By definition, we have p−1(x) = {β ∈ ∆ |

∑
j βjPj = x}. Fix a reference frame for R2

with origin at x and first coordinate axis orthogonal to F . Then, the first coordinate of
the equation

∑
j βjPj = x leads to βj = 0 for all j such that Pj does not belong to F .

Since N(G) has positive area, we have βj = 0 for some vertex Pj of N(G). Such an
element of ∆ can only be realized as δ(α) with αj = αj−1. Since Pj is a vertex of N(G),
we have [Tj ] 6= [Tj−1], so α does not belong to Xper

G . This shows the inclusion of ϕ(Xper
G )

into the interior of N(G), and thus the equality of these two sets.

Finally, by π-(anti)periodicity of the theta function θ, the operator K is periodic if and
only if the R/πZ-valued discrete Abel map η is. By Equation (17), this is the case if
and only if ∑

T∈T1

αT [T ] =
∑
T∈T1

αT
(
hT
vT

)
= ( 0

0 ) ∈ (R/πZ)2 .

Fixing arbitrary lifts α̃j ∈ R of αj ∈ R/πZ, this is equivalent to requiring that the
following element of R2 belongs to Z2:

1

π

r∑
j=1

α̃j [Tj ] =
1

π

r∑
j=1

α̃j(Pj+1 − Pj) = −
r∑
j=1

α̃j − α̃j−1

π
Pj =

r∑
j=1

njPj − ϕ(α) , (19)
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with nj =
˜αj−αj−1

π − α̃j−α̃j−1

π . Since nj is an integer and Pj an element of Z2 for all j,
this is equivalent to requiring that ϕ(α) belongs to Z2. This concludes the proof.

In the remainder of this section, we suppose that the minimal graph G is endowed
with α ∈ Xper

G so that the corresponding elliptic Kasteleyn operator K is periodic, i.e.,
so that ϕ(α) is an interior lattice point of N(G).

Remark 30.

1. Some minimal periodic graphs have a too small geometric Newton polygon to
admit such an integer point ϕ(α) in their interior. This is the case for the square
and hexagonal lattices with their smallest fundamental domain composed of one
vertex of each color. For these graphs, the rest of the discussion in this section is
void.

2. In Section 5.6 we use the following version of Equation (19). Fix a lift (α̃j) of the
half-angles (αj) in R/πZ such that, α̃1 ≤ α̃2 ≤ · · · ≤ α̃r < α̃1 + π, and consider

the element − 1
π

∑
T∈T1 α̃T

(
hT
vT

)
. Then it is equal to the difference of ϕ(α) with P1,

as in this case, all nj ’s are equal to 0 except n1 which is equal to 1.

5.3 Characteristic polynomial, spectral curve, amoeba

We now recall some key tools used in studying the dimer model on a Z2-periodic, planar,
bipartite graph G with periodic weights, see for example [KOS06]. For (z, w) ∈ (C∗)2, a
function f is said to be (z, w)-quasiperiodic, if

∀x ∈ V, ∀ (m,n) ∈ Z2, f(x + (m,n)) = zmwnf(x).

We let CV
(z,w) denote the space of (z, w)-quasiperiodic functions. Such functions are

completely determined by their value in V1. By a slight abuse of notation, we will
identify a (z, w)-quasiperiodic function with its restriction to V1, where this identification
depends on the choice of γx and γy. With this convention in mind, a natural basis for
CV

(z,w) is given by (δx(z, w))x∈V1 . Similarly, we let CB
(z,w) and CW

(z,w) be the set of (z, w)-
quasiperiodic functions defined on black vertices, and on white vertices respectively.

The periodic operator K maps the vector space CB
(z,w) into CW

(z,w) and we let K(z, w)
be the matrix of the restriction of K to these spaces written in their natural respective
bases. Alternatively, the matrix K(z, w) is the matrix of the Kasteleyn operator of the
fundamental domain G1 where edge weights are multiplied by w−1 or w, resp. z or z−1

each time the corresponding edge oriented from the white to the black vertex crosses the
curve γx, resp. γy, left-to-right or right-to-left. The characteristic polynomial P (z, w) is
the determinant of the matrix K(z, w). The Newton polygon of P , denoted by N(P ) is
the convex hull of lattice points (i, j) such that ziwj arises as a non-zero monomial in
P . By [GK13, Theorem 3.12], N(P ) is a lattice translate of N(G).
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γx

γy

P1

P2

ϕ(α)

P3

− log |w|

log |z|

Figure 10: Left: the hexagonal lattice with a shaded fundamental domain as an example
of periodic minimal graph G, with the trace of the three train-tracks of G1 (green,
blue, red) of respective homology classes (−1, 3), (−1,−2) and (2,−1). Middle: the
corresponding Newton polygon, whose boundary vectors are given by the homology
classes of the train-tracks. Right: amoeba of the associated spectral curve when the half-
angles are chosen to be −π

5 , 0, 2π
5 respectively, so that the point ϕ(α) is the topmost

inner point of N(G). Because of our convention, the asymptotes of the tentacles are
parallel (instead of normal classically) to the corresponding sides of N(G).

The spectral curve C is the zero locus of the characteristic polynomial:

C = {(z, w) ∈ (C∗)2 : P (z, w) = 0}.

In other words, it corresponds to the values of z and w for which we can find a non-zero
(z, w)-quasiperiodic function f on black vertices such that Kf = 0.

The amoeba A of the curve C is the image of C through the map (z, w) 7→ (− log |w|, log |z|),
see Figure 10 for an example. Note that the present definition of the amoeba differs from
that of [GKZ94, KOS06] by a rotation by 90 degrees. This is handy when describing the
phase diagram, see Section 5.5. By [KO06, KOS06], we know that the spectral curve
C is a Harnack curve, which is equivalent to saying that the map from the curve to its
amoeba is at most 2-to-1 [Mik00]. (To be precise, such curves are referred to as simple
Harnack curves in real algebraic geometry.) The real locus of the curve C consists of the
set of points that are invariant under complex conjugation:

{(z, w) ∈ C : (z, w) = (z̄, w̄)} = {(x, y) ∈ (R∗)2 : P (x, y) = 0}

deprived from its isolated singularities, which are the only singularities a Harnack curve
can admit.

Note that the matrix K(z, w) and the characteristic polynomial P (z, w) both depend on
the particular gauge choice for the edge weights and on the explicit choices of γx and γy.
Also, the Newton polygon N(P ) undergoes a translation when these curves are deformed,
i.e., modified within fixed homology classes. On the other hand, the spectral curve (and
its associated amoeba) only depend on the face weights of the periodic dimer model
(with fixed homology classes for γx and γy). Replacing this positive basis of H1(T;Z)
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by another one amounts to transforming the amoeba by the linear action of the element
of SL2(Z) corresponding to this base change.

5.4 Explicit parameterization of the spectral curve

Throughout this section, we assume that the Z2-periodic minimal graph G is endowed
with a half-angle map α ∈ Xper

G such that the Kasteleyn operator K is periodic. This
ensures that the function g satisfies the equality

gx+(m,n),y+(m,n)(u) = gx,y(u), (20)

for all u ∈ C, vertices x, y ∈ V and integers m,n ∈ Z.

Fix a complex number u, and a base vertex x0 ∈ V. Because of its product structure,
the function x 7→ gx,x0(u) is (z, w)-quasiperiodic, with (z, w) = (z(u), w(u)) given by

z(u) = gx0+(1,0),x0(u), w(u) = gx0+(0,1),x0(u).

These quantities are easily seen not to depend on the choice of x0. Note also that,
since Kg·,x0(u) vanishes by Proposition 16, the complex pair (z(u), w(u)) belongs to the
spectral curve C for all u, a fact already noted in [Foc15].

The quantities z(u) and w(u) can be expressed explicitly in terms of the half-angles and
homology classes of train-tracks of G1, as follows. Using its definition, compute z(u) =
gx0+(1,0),x0(u) as a product of local contributions along an edge path of G�1 winding once
horizontally from right to left. Terms of the form θ(u + t + η(w)) or θ(u − t − η(b))
coming from contributions of edges arriving to or leaving from white vertices w or black
vertices b along this path cancel out, leaving only a factor of the form

θ(u+ t+ η(x0))

θ(u+ t+ η(x0 + (1, 0)))
=

θ(u+ t+ η(x0))

θ(u+ t+ η(x0) +
∑

T αT vT )
= (−1)

1
π

∑
T αT vT ,

where we have used Equation (17), the fact that
∑

T∈T1 vTαT ≡ 0 mod π, and assumed
without loss of generality that x0 is a white vertex. The remaining factors θ(u − α)
can be grouped together according to the train-tracks in T1 they are associated to. For
a train-track T ∈ T1, the exponent of θ(u − αT ) is the algebraic number of times a
copy of T crosses the path, which is, with our convention, exactly minus the vertical
component of its homology class [T ]. One can reason similarly for w(u), giving the
following expressions:

z(u) = (−1)
1
π

∑
T αT vT

∏
T∈T1

θ(u− αT )−vT , w(u) = (−1)
1
π

∑
T αThT

∏
T∈T1

θ(u− αT )hT . (21)

By Remark 15, the functions z(u) and w(u) are meromorphic functions of u on T(q) and
they are well defined when the half-angle map α takes values in R/πZ. Moreover, since
the αT ’s are real, they commute with complex conjugation:

∀ u ∈ T(q), z(ū) = z(u) and w(ū) = w(u).
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Define the following map ψ:

ψ : T(q)→ C

u 7→ ψ(u) = (z(u), w(u)).

Then we have the following result, which is illustrated in Figure 11.

Proposition 31. The map ψ is an explicit birational parameterization of the spectral
curve C, implying that this Harnack curve has geometric genus 1. Moreover, the real
locus of C is the image under ψ of the set R/πZ×{0, π2 τ}, and the connected component
with ordinate π

2 τ is bounded ( i.e., an oval) while the other one is not.

Proof. The map ψ is meromorphic so it parameterizes (an open set of) an irreducible
component of C. But since C is Harnack [KOS06], it is in particular irreducible. There-
fore, it is a birational parameterization of the whole spectral curve. The geometric genus
of C is thus the same as T(q), i.e., equal to 1. Commutation of ψ with complex conju-
gation implies that ψ maps the real components C0 and C1 of T(q) to those of C. Since
z(u) and w(u) have zeros and poles on C0 = R/πZ, this real component of T(q) is the
one corresponding to the unbounded component of the real locus of C.

−π
2
τ

π
2
τ

D ψ
C0

C1

T(q) C
A

Figure 11: The parameterization ψ : T(q)→ C of the spectral curve, followed by projec-
tion C→ A onto the amoeba.

In the framework of the correspondence between algebraic curves with marked points
and minimal dimer models modulo gauge transformations studied by Goncharov and
Kenyon [GK13], the converse question has been answered by Fock [Foc15] for arbitrary
smooth, complex algebraic curves without hypothesis on positivity: given a smooth
curve C, he uses Riemann theta functions to construct a dimer model whose spectral
curve is C. We can now give a modified version of his proof in the situation where the
algebraic curve has geometric genus 1 and is Harnack.

Theorem 32. Let C be a Harnack curve in (C∗)2 having geometric genus 1. Up to a
scale change (z, w) 7→ (λz, µw), with λ, µ ∈ R∗, which in particular brings the origin
inside the hole of the amoeba of the rescaled curve, there exists a Z2-periodic minimal
graph G and a half-angle map α ∈ Xper

G such that, for every t in R + π
2 τ , Fock’s elliptic
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Kasteleyn operator is periodic, and such that the spectral curve of the corresponding
dimer model is C. This family of Kasteleyn operators, indexed by t ∈ R/πZ + π

2 τ , is in
bijection with the bounded real component of C.

Proof. The curve C has geometric genus 1, with two real components, otherwise stated
it is maximal. As a consequence, there exists a birational map ψ from a rectangular
torus to C. Up to a global scaling, we can assume that this torus is one of the tori T(q),
for some value of q ∈ (0, 1), thus fixing the parameter of the theta function. Let T(q) 3
u 7→ ψ(u) = (z(u), w(u)) ∈ C be such a map. The projections on the first and second
coordinates are elliptic functions on T(q). They thus have the form:

z(u) = λ

r∏
j=1

θ(u− αj)−bj , w(u) = µ

r∏
j=1

θ(u− αj)aj ,

where, for all j ∈ {1, . . . , r}, aj , bj are coprime integers, and αj belongs to R/πZ. Since
the curve C is Harnack, it is real algebraic, implying that λ, µ ∈ R∗. After a possible
scaling, we can assume that λ and µ are equal to ±1. The fact that both projections
are elliptic implies that they are periodic functions on the torus T(q). Quasiperiodicity
of the function θ, see Equation (4), thus implies that (αj), (aj), (bj) satisfy the relations

r∑
j=1

aj = 0,
r∑
j=1

bj = 0

r∑
j=1

αjaj = 0 mod π,
r∑
j=1

αjbj = 0 mod π.

By [GK13, Theorem 2.5] (see also [Gul08]), the first two equalities allow to construct a
bipartite minimal graph G1 ⊂ T with train-tracks T1, . . . , Tr satisfying [Tj ] = (aj , bj) ∈
H1(T;Z) for all j. Let (z0, w0) be a marked point on the bounded real component
of C. It corresponds to a unique value t ∈ C1 such that z0 = z(t) and w0 = w(t).
By Equation (17), the last two equalities displayed above ensure that Fock’s elliptic
adjacency operator K corresponding to G1, (αj) and t is indeed periodic.

Since C is a Harnack curve, the cyclic order of the tentacles of the amoeba (which
is related to the cyclic order of the homology classes of the train-tracks, forming the
boundary of the Newton polygon) coincides with the cyclic order of the half-angles αT ∈
R/πZ. By Proposition 12, this implies that Fock’s elliptic adjacency operator K is
Kasteleyn. By the construction above, the curve C exactly consists of the points (z, w)
of (C2)∗ where the kernel of K(z, w) is non-trivial. It is therefore the spectral curve.

Remark 33.

1. The construction of G1 from the curve C is not unique. However, if G′1 is an-
other minimal graph on the torus satisfying the same constraints, then G1 and
G′1 are related by a sequence of spider moves and shrinking/expanding of 2-valent
vertices [GK13, Theorem 2.5].
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2. A consequence of [GK13, Theorem 7.3] combined with Theorem 32 is the follow-
ing: every periodic Kasteleyn operator on G giving the same spectral curve C is
gauge-equivalent to Fock’s elliptic Kasteleyn operators for some t ∈ R/πZ + π

2 τ .
Furthermore, by a result announced by Goncharov and Kenyon as a refinement
of [GK13, Theorem 7.3], this t is unique.

3. Consider two genus 1 Harnack curves with the same Newton polygon N . If the
two ovals correspond to the same point P ∈ Z2 in the interior of N , then the dimer
model provides continuous families of genus 1 Harnack curves interpolating be-
tween these two given curves. For example, one can first continuously deform the
half-angle maps within the connected space ϕ−1(P ) ⊂ Xper

G (recall Section 5.2),
and then the parameter τ . One the other hand, if the two ovals correspond to
different interior points of N , then such a continuous deformation cannot be per-
formed within the realm of elliptic curves. One first needs to shrink the oval of one
curve into an isolated singular double point, so that the curve becomes rational,
then take another singular point and transform it into an oval. In the dimer pic-
ture, this first step corresponds to taking a limit as |τ | tends to infinity, so that the
weights become trigonometric (see Section 8.1). At that particular point, there is
no constraint imposed for the periodicity of weights, and there is more freedom to
continuously deform the corresponding spectral curves.

5.5 Gibbs measures

The main result of this section proves explicit expressions, in our setting, for the two
parameter family of ergodic Gibbs measures of [KOS06], which have the remarkable
property of only depending on the local geometry of the graph. Before stating our
results we recall required facts from [KOS06].

Classification of ergodic Gibbs measures [KOS06]. Consider a Z2-periodic, bi-
partite graph G (not necessarily minimal) with periodic weights. Gibbs measures on
dimer configurations of G which are invariant and ergodic under the action of Z2 are
characterized by their slope (s, t) [She05], which is (up to a fixed arbitrary additive con-
stant), the expected algebraic number of dimers crossing γx and γy. Its precise definition
is recalled in Section 5.6.

These measures are constructed explicitly in [KOS06] as limits of (unconditioned) Boltz-
mann measures on Gn with magnetically modified weights. The magnetic field B =
(Bx, By) appearing in the weight modification is the Legendre dual of the slope (s, t).
It is used to parameterize the set of possible ergodic Gibbs measures, whose phase dia-
gram in the plane (Bx, By) is given by the amoeba A of the characteristic polynomial P .
More precisely, the Boltzmann measure PBn on Gn with magnetic field B is obtained by
multiplying the weight of an edge each time it crosses a copy of γx, resp. γy, by e±Bx ,
resp. e±By , if the edge has a white vertex on the left of γx, resp. γy. Note that the
convention differs from that used in defining K(z, w) with weights w∓1, z±1, by what can

39



be understood as the action of the intersection form. Note also that the corresponding
Kasteleyn matrix has the same face weights (recall definition (2)) for all values of B,
i.e., the corresponding dimer models are gauge equivalent, but the Boltzmann measures
on the torus differ, thus exhibiting a different behavior than in the case of finite graphs
embedded in the plane. One way of seeing this is that closed 1-forms on the torus are
not necessarily exact, see e.g. [KOS06, Section 2.3]. Then in [KOS06, Theorem 4.3], see
also [CKP01], the authors prove that for every value of B, taking the weak limit of the
Boltzmann measures PBn gives an ergodic Gibbs measure PB, such that the probability
of occurrence of a subset of k distinct edges {e1 = w1b1, . . . , ek = wkbk} is explicitly
given by

PB(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k

(
ABbi,wj

)
, (22)

where AB is defined as follows: if w and b are in the same fundamental domain and (m,n)
belongs to Z2, then

ABb+(m,n),w =

∫∫
TB

K(z, w)−1b,wz
mwn

dw

2iπw

dz

2iπz
=

∫∫
TB

Q(z, w)b,w
P (z, w)

zmwn
dw

2iπw

dz

2iπz
, (23)

where Q(z, w) is the adjugate matrix of K(z, w), P (z, w) is the characteristic polynomial,
and TB = {(z, w) ∈ (C2)∗ ; |z| = eBy , |w| = e−Bx}.

Local expressions for ergodic Gibbs measures in the elliptic minimal case.
We consider the case where the graph G is minimal, where Fock’s elliptic adjacency
operator K is Kasteleyn, and where the half-angle map α ∈ Xper

G is such that K is
periodic. Recall from Section 4.2 that we have a parameter u0 ∈ D indexing a family of
inverses (Au0)u0∈D of the elliptic Kasteleyn operator K. We prove that the set of ergodic
Gibbs measures are explicitly written using the operators (Au0)u0∈D, and that {u0 ∈ D}
gives an alternative parameterization of the set of ergodic Gibbs measures.

Theorem 34. For any B = (Bx, By) in R2, there exists a value of the parameter u0 ∈ D
such that AB = Au0. When B is inside the amoeba A (resp. in the bounded, resp. in an
unbounded connected component of its complement), u0 is in the interior (resp. on the
top boundary, resp. in an interval of the bottom boundary) of the domain D.

This theorem combined with the phase diagram of [KOS06, Theorem 4.1] yields the
following immediate corollary.

Corollary 35. Consider the dimer model on a Z2-periodic, bipartite, minimal graph G,
with a periodic elliptic Kasteleyn operator K. Then, the set of ergodic Gibbs measures
is the set of measures (Pu0)u0∈D whose expression on cylinder sets is explicitly given by,
for every u0 ∈ D and every subset of distinct edges {e1 = w1b1, . . . , ek = wkbk} of G,

Pu0(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k

(
Au0bi,wj

)
, (24)
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where Au0 is the inverse operator of Definition 22.

The domain D gives an alternative phase diagram of the model: when u0 is on the top
boundary of D, the dimer model is gaseous; when u0 is in the interior of the set D, the
model is liquid; when u0 is a point corresponding to one of the connected components of
the lower boundary of D, the model is solid.

Remark 36.

1. The Gibbs measures (Pu0)u0∈D are local, a property inherited from that of the
inverse operators (Au0)u0∈D, see Point 1 of Remark 23. For example, this means
that the probability of occurrence of a subset of edges can be computed using only
the geometry of paths in G� joining vertices of these edges, and that it is actually
independent of the choice of paths. This remarkable property cannot be seen from
the Fourier type expression (23). As an illustration, single-edge probabilities are
computed in Section 6.1.

2. Such type of expressions were already know in the trigonometric case [Ken02],
corresponding to genus 0 Harnack curves (see Section 8.1), and in two specific
genus 1 cases [BdTR18, dT17] (see Section 8.2). However, let us emphasize that
these papers only considered the maximal entropy Gibbs measure, corresponding
to the weak limit of the toroidal Boltzmann measures with (0, 0) magnetic field,
and did not handle the two parameter family of ergodic Gibbs measures.

3. Such local expressions give the right framework to obtain Gibbs measures in the
case of (possibly) non-periodic graphs, see Section 6.1. Although periodicity is
lost, meaning that there is no associated amoeba A, the phase diagram can still
be described by the domain D. Such expressions are also very handy to derive
asymptotics, see Section 6.2.

Proof of Theorem 34. One way of proving equality between AB and Au0 is to use a
uniqueness argument for the inverse with given asymptotic growth based on Fourier
analysis as in [BdT10]. Instead we here choose to do an explicit computation in the spirit
of [BdTR17, Section 5.5.1] because there are surprising and interesting simplifications
which deserve to be made explicit. Note that there are additional difficulties due to the
following facts: we integrate over tori TB of different sizes; in Lemma 37, we explicitly
compute the Jacobian of a change of variable from the spectral curve to T(q) instead
of the abstract argument of [BdTR17], which required a combinatorial control of the
Newton polygon, gave the result only up to an unknown multiplicative constant, and
did not generalize to higher genus.

Consider b ∈ B1, w ∈ W1, (m,n) ∈ Z2, and the coefficient ABb+(m,n),w of (23). Up to a

change of basis ([γx], [γy]) of H1(T;Z), and possibly deforming γx and γy around vertices,
we can assume without loss of generality that n ≥ 1 and that the lowest degree in z
(resp. in w) of monomials in P is 0. Recall however that such a base change has the
effect of transforming the amoeba by a linear transformation in SL2(Z). This has to be
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kept in mind when defining the path of integration Cu0 below. Indeed, it might seem
that Cu0 does not depend on b + (m,n),w as it should according to the definition of
ABb+(m,n),w. It actually does, since transforming the amoeba as above has the effect of
moving the path of integration.

For a fixed z such that |z| = eBy , let us compute the integral over w by residues. Let us
denote by {wj(z)}dBj=1 the zeros of P (z, ·) in the disk of radius e−Bx , which are simple

for almost all z on the circle of radius eBy . Then, by the residue theorem,∫
|w|=e−Bx

Q(z, w)b,w
P (z, w)

wn−1 dw

2iπ
=

dB∑
j=1

Q(z, wj(z))b,w
∂wP (z, wj(z))

wj(z)
n−1,

where ∂w denotes the partial derivative with respect to the second variable. Indeed, the
possibility of a pole of the integrand at w = 0 is excluded by the assumptions on γx
and γy.

To compute the remaining integral over z, we perform the change of variable from z to
u ∈ T(q). The set on which we integrate is

dB⋃
j=1

{(z, wj(z)) ∈ C : |z| = eBy , |wj(z)| ≤ e−Bx}.

In order to identify the preimage of this set under ψ, it is useful to first look at its
projection onto the amoeba A, then to lift it to the curve C and to take its preimage
by ψ. On the amoeba A, we are looking at its intersection with the half-line at ordinate
By, extending to the right of Bx. This intersection consists of a finite number (possibly
zero) of intervals. All these intervals have their two extremities on the (compactified)
boundary of the amoeba, except maybe one, denoted by I. This happens when B is in
the interior of the amoeba, and B is the extremity of I not on the boundary. Using the
property that the map from the spectral curve to its amoeba is 2-to-1 on the interior of
the amoeba, and that the boundary of the amoeba is the image of the real locus of the
spectral curve, the union of intervals can be lifted to the spectral curve as a collection
of paths: intervals joining two points of the unbounded component of the amoeba are
lifted to trivial loops surrounding points at infinity of the spectral curve. To complete
the picture, we distinguish three cases depending on the position of B with respect to
the amoeba:

Case 1: gaseous phase. B is in the closure of the bounded connected component of
the complement of the amoeba. Then one of the intervals connects the two components
of the boundary of the amoeba, which lifts in C to a non-trivial loop winding “vertically”.

Case 2: liquid phase. B is in the interior of the amoeba. The interval I lifts in C

to a curve joining (zB, wB) to its complex conjugate (zB, wB), where |zB| = eBy and
|wB| = e−Bx .

Case 3: solid phases. B is in the closure of one of the unbounded connected com-
ponents of the complement of the amoeba, and the (possibly empty) corresponding
collection of paths in C consists of trivial loops surrounding points at infinity.
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In the three cases, the collection of paths on the spectral curves are lifted back on T(q)
by ψ, and can be deformed to one single path Cu0 , which depends on b + (m,n) and w,
as described in Section 4.1, with u0 in C1, in the interior of D, or in C0, for Cases 1, 2,
3 respectively.

Performing the change of variable from z = z(u) on the collection of paths on the spectral
curve C to u ∈ Cu0 , we can therefore write

ABb+(m,n),w =
1

2πi

∫
Cu0

Q(z(u), w(u))b,w
z(u)w(u)∂wP (z(u), w(u))

z(u)mw(u)nz′(u)du,

where u0 is such that |z(u0)| = |zB| = eBy and |w(u0)| = |wB| = e−Bx .

We now need the following lemma, whose proof is deferred until the end of this one.

Lemma 37. There exists a meromorphic function f on T(q) such that:

1. ∀u ∈ T(q), ∀ b ∈ B1, ∀w ∈W1, Q(z(u), w(u))b,w = f(u)gb,w(u),

2. ∀u ∈ T(q),
f(u)

z(u)w(u)∂wP (z(u), w(u))
z′(u) = −θ′(0).

Using Lemma 37, we obtain:

ABb+(m,n),w =
−θ′(0)

2πi

∫
Cu0

z(u)mw(u)ngb,w(u)du

=
iθ′(0)

2π

∫
Cu0

gb+(m,n),w(u)du = Au0b+(m,n),w,

where in the second equality, we used the fact that g·,w(u) is (z(u), w(u))-quasiperiodic.
Let us emphasize that connected components of the complement of A correspond bijec-
tively to connected components of C1∪C0 \{αT ; T ∈ T} on T(q), and coefficients of AB

(resp. Au0) do not change when B (resp. u0) varies while staying in the same connected
component, due to the nature of path integration of meromorphic functions.

We now prove Lemma 37.

Proof of Lemma 37. The existence of a meromorphic function f on T(q) satisfying Point 1
follows from a straightforward adaptation of Lemmas 29 and 30 of [BdTR17], and is
based on the fact that on the spectral curve, the adjugate matrix Q(z, w) is of rank (at
most) 1. To prove Point 2, we now perform a direct computation, thus using a differ-
ent argument than the one of [BdTR17]: indeed, the proof of [BdTR17] uses general
facts about holomorphic differential forms on genus 1 surfaces which do not transfer to
our setting in a straightforward way, and which give the result up to a multiplicative
constant only.
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Let us first show the following:

f(u) =
∂wP (z(u), w(u))∑

w,b ∂wK(z(u), w(u))w,bgb,w(u)
, (25)

where w and b run through all black and white vertices of the fundamental domain G1,
respectively. Starting from the relation satisfied by the adjugate matrix:

Q(z, w)K(z, w) = P (z, w) Id,

and differentiating with respect to w, one can show, as in the proof of [KOS06, Theo-
rem 4.5] (see also [Bou07, Lemma 1] for more details), that

tr (Q(z, w)∂wK(z, w)) = ∂wP (z, w)

for (z, w) on the spectral curve. Evaluating this for (z(u), w(u)) and replacingQ(z(u), w(u))
by its expression obtained in Point 1 yields:

f(u)
∑
b,w

gb,w(u)∂wK(z(u), w(u))w,b = ∂wP (z(u), w(u)) ,

thus showing (25). In order to establish Point 2, we are thus left with proving that:

θ′(0)w(u)
∑
w,b

∂wK(z(u), w(u))w,bgb,w(u) = −z
′

z
(u). (26)

Let us start from the left-hand side of(26) and consider a pair (w, b) such that w and b
are not connected in G1 by an edge crossing γx. Then ∂w(K(z(u), w(u))w,b is zero and the
pair does not contribute to the sum. If on the contrary there is an edge wb crossing γx.
Then,

w(u)∂wK(z(u), w(u))w,bgb,w(u) =

{
Kw,bgb,w(u) if wb has a black vertex on the left

−Kw,bgb,w(u) if wb has a white vertex on the left.

(27)
Now, using the telescopic version of Fay’s identity (6) as in the proof of Proposition 16
and the notation of Figure 4, we obtain:

θ′(0)Kw,bgb,w(u) = θ′(0)[F (t+η(b))(u;β)− F (t+η(b))(u;α)]

=
(θ′
θ

(t+ η(b)− β)− θ′

θ
(u− β)

)
−
(θ′
θ

(t+ η(b)− α)− θ′

θ
(u− α)

)
=
(θ′
θ

(t+ η(f))− θ′

θ
(t+ η(f ′))

)
+
(θ′
θ

(u− α)− θ′

θ
(u− β)

)
,

When summing these contributions over edges crossing the path γx with a minus sign
for edges having a white vertex on the left of γx, the terms θ′

θ (t+ η(f)) and θ′

θ (t+ η(f ′))
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cancel out in a telescopic way, and we therefore obtain:

θ′(0)w(u)
∑
w,b

∂wK(z(u), w(u))w,bgb,w(u) =
( ∑

wb∩γx 6=∅
b left of γx

−
∑

wb∩γx 6=∅
w left of γx

)(θ′
θ

(u− α)− θ′

θ
(u− β)

)

= − d

du
log
( ∏

wb∩γx 6=∅
b left of γx

θ(u− β)

θ(u− α)

∏
wb∩γx 6=∅
w left of γx

θ(u− α)

θ(u− β)

)
.

We then notice that if w is on the left of γx, as illustrated on Figure 12, the train-track
with half-angle β crosses γx from bottom to top, whereas the train-track with half-angle
α crosses it in the other direction. We now group the factors θ(u− ·) according to their
corresponding train-track in T1. For a fixed T ∈ T1, the factor θ(u − αT ) will thus
appear in the product with an exponent equal to −vT . Comparing with Equation (21),
we obtain that the product on the right-hand side is z(u), up to a factor ±1 which plays
no role when differentiating, thus ending the proof of Point 2.

γx

w

b

Tα

Tβ

Figure 12: Intersection of the two train-tracks corresponding to an edge and γx when
the white vertex is on the left of γx.

5.6 Slope of the Gibbs measures Pu0

Defining the height function of a dimer configuration M requires to fix a reference dimer
configuration M1. A natural choice is to fix u1 ∈ C0 \ {αT ; T ∈ T} and consider M1 to
be the dimer configuration on which the solid Gibbs measure Pu1 is concentrated. Note
also that by construction of N(G), the intervals of C0 \ {αT ; T ∈ T} are in bijection
with integer points of ∂N(G). Let us denote by P1 the one corresponding to the interval
containing u1.

Let f and f ′ be two faces of G, and γ a dual path connecting f ′ and f. Then the height
difference (relative to M1) between these two faces in a dimer configuration M is

h(f)− h(f ′) =
∑

e∩γ 6=∅

±
(
I{e∈M} − I{e∈M1}

)
(28)

where the sign ± is + (resp. −) when the white end of e is on the left (resp. right) of γ.

45



The slope (su0 , tu0) of the Gibbs measure Pu0 is the expected horizontal and vertical
height change [KOS06]. The main result of this section is an explicit expression for the
slope of the ergodic Gibbs measures Pu0 . The content is essentially that of Theorem 5.6.
of [KOS06] with the additional feature that, using the explicit parameterization of the
spectral curve, we are able to identify the explicit value of the slope, not only up to a
sign and modulo π.

Define Cu0u1 to be a contour on T(q) from ū0 to u0, crossing C0 once at u1, with a positive
derivative for the imaginary part of u at this point. When u0 is not on C0, this contour
can be chosen in such a way that the imaginary part of u is increasing (and winds once
around the circle), while the real part does not wind around the circle. When u0 is
on C0, then the contour Cu0u1 can be chosen to be a homotopically trivial simple closed
curve crossing C0 at u1 and u0, oriented so that the connected component of T(q) \ Cu0u1
to its left (resp. right) contains the oriented segment of C0 from u0 to u1 (resp. from u1

to u0).

Theorem 38. The slope of the Gibbs measure Pu0 is equal to:

su0 = − 1

2πi

∫
C
u0
u1

d

du
(log z(u))du, tu0 = − 1

2πi

∫
C
u0
u1

d

du
(logw(u))du,

where the path Cu0u1 is defined above.

Proof. The quantity su0 is the expectation under Pu0 of (28) with γ = γx. By Corol-
lary 35, the expectation under Pu0 of the term in (28) corresponding to an edge e = wb
is given by:

Eu0 [I{e∈M} − I{e∈M1}] = Pu0(e)− I{e∈M1} = Pu0(e)− Pu1(e) =

iθ′(0)

2π

∫
C
u0
b,w

Kwbgbw(u)du− iθ′(0)

2π

∫
C
u1
b,w

Kwbgbw(u)du =
iθ′(0)

2π

∫
C
u0
u1

Kwbgbw(u)du.

Summing over the edges crossing γx, and using relations (26) and (27), we get∑
wb∩γx

±θ′(0)Kwbgbw(u) = −z
′

z
(u) = − d

du
log z(u) ,

establishing the first identity. The proof of the second is almost identical.

The polygon of allowed slopes, after a rotation of −90 degrees and a translation, can
be identified with N(G) by [KOS06], see also [Pas16]. From the computation in the
proof of Theorem 38, or simply from Equation (28), one observes that the slope of the
measure Pu1 is trivially 0 with our choice of reference configuration. Therefore, the
exact translation is obtained by anchoring N(G) in such a way that P1 is at the origin.
This also follows from Corollary 39 below which computes the slope for any solid Gibbs
measure.
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Corollary 39 (Solid phases). Suppose that u0 belongs to one of the connected compo-
nents of C0 \ {αT ; T ∈ T1}. Then,

(su0 , tu0) =
∑

T∈T1 :u0<αT<u1

(
vT ,−hT

)
.

In particular, the points (−tu0 , su0) for u0 in the connected components of C0\{αT ; T ∈
T1} are the integer boundary vertices of the polygon N(G).

Proof. When u0 belongs to C0\{αT ; T ∈ T1}, the oriented path of integration Cu0u1 is the
boundary of a domain of the torus T(q) containing the arc of C0 from u0 to u1. Therefore
the result is a direct consequence of the residue theorem, noticing that u 7→ θ(u−α) has
a simple zero at u = α, so that the potentially nonzero residues of z′

z (u) (resp. w′

w (u))
are at αT for T ∈ T1, with value −vT (resp. hT ).

Corollary 40 (Gaseous phase). Suppose that u0 belongs to C1. Then,

(tu0 ,−su0) = − 1

π

(∑
T∈T1

hT α̃T ,
∑
T∈T1

vT α̃T

)
= ϕ(α),

where the lifts (α̃T ) of (αT ) are in an interval of length (smaller than) π obtained by cut-
ting C0 at u1. In the second equality, ϕ(α) is given by Equation (18) with the geometric
Newton polygon N(G) anchored so that P1 is at the origin.

Proof. Let us prove the first equality for the horizontal slope. The point u0 being on
the real connected component C1, the contour Cu0u1 winds once vertically in the positive
direction on the torus and passes through u1 ∈ C0. The quasiperiodic property of the
theta function implies that for any α ∈ C0,∫

C
u0
u1

θ′

θ
(u− α)du = c+ 2iα̃,

where ec = −q−2e−2i<u0 is independent of α, and the determination α̃ of α lives in an
interval of size π obtained by cutting C0 at u1. As a consequence, integrating z′

z (u) gives
the following expression for the horizontal slope:

su0 =
1

2πi

∑
T∈T1

vT

∫
C
u0
u1

θ′

θ
(u− αT ) du =

1

π

∑
T∈T1

vT α̃T ,

where we have also used the fact that
∑

T∈T1 vT = 0. The argument for the vertical
slope is similar.

By the second point of Remark 30, (tu0 ,−su0) is equal to ϕ(α) minus P1, which gives
the second equality and concludes the proof.
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6 Beyond the periodic case

In this section we consider the general case where the graph G has bounded faces, is
minimal, but not necessarily periodic. We let α ∈ XG be a half-angle map as defined in
Section 2.1; the domain D is that of Section 4.1. Again, we place ourselves in the context
where Fock’s elliptic adjacency operator is Kasteleyn, meaning that we suppose that τ
lies in iR+, and that the parameter t belongs to R + π

2 τ . We omit the superscript (t)
from the notation.

In Section 6.1, using the construction of the operators (Au0)u0∈D of Section 4.2, we
define a two parameter family of Gibbs measures (Pu0)u0∈D, and see that the three
phases occurring in the periodic situation arise here too, depending on the position of
u0 in D. The domain D in this context plays the role of the amoeba in the periodic
case, and describes the phase diagram of the model. As an illustration of the locality
property of the Gibbs measures, we explicitly compute single-edge probabilities in the
gaseous, liquid and solid phases. In Section 6.2, we compute asymptotics of the inverse
operators (Au0)u0∈D, depending on the position of u0.

6.1 Construction of Gibbs measures

In order to state our result for Gibbs measures, we need the following technical assump-
tion:

(∗) Every finite, simply connected subgraph G0 of the minimal graph G can be embedded
in a periodic minimal graph G′ so that parallel train-tracks in G0 remain parallel in G′.

Remark 41. By [dT07a, Proposition 4.1] this condition is true for isoradial embeddings,
if we do not impose bipartitedness. The proof consists in enlarging the finite, simply
connected subgraph of the diamond graph to a finite rhombus graph that can tile the
plane in a periodic fashion. This proof does not extend trivially when we require bi-
partitedness and relax constraints on the train-tracks (to go from isoradial graphs to
minimal ones). We nevertheless believe this condition to hold for all minimal graphs.

Theorem 42. Assume hypothesis (∗) and consider the dimer model on G with Fock’s
elliptic weights, and corresponding Kasteleyn operator K. Then for every u0 ∈ D,
the operator Au0 defines a Gibbs measure Pu0 on dimer configurations of G, whose
expression on cylinder sets is explicitly given by, for every subset of distinct edges
{e1 = w1b1, . . . , ek = wkbk} of G,

Pu0(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k
(Au0bi,wj ).

The set D gives the phase diagram of the model: when u0 is on the top boundary of D,
the dimer model is gaseous; when u0 is in the interior of the set D, the model is liquid;
when u0 lies on the lower boundary of D, the model is solid.
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Proof. The argument is similar to that of [dT07a], see also [BdT11, BdTR18]. The idea
is to use the determinantal structure to show that the expressions on the right-hand side
of the equality displayed above form a compatible family of marginals for a measure,
and to conclude with Kolmogorov’s extension theorem. A technical but crucial point
is to show that these expressions are indeed probabilities. This can be checked using
hypothesis (∗) and locality of Au0 , as follows. Locality implies that the formula on the
cylinder set {e1, . . . , ek} only depends on some finite simply connected subgraph G0 of G
containing these edges, and on the associated half-angles. Using (∗), we can change
the graph outside of G0 to obtain a periodic minimal graph G′. By Corollary 35, the
formula for cylinder sets coincides with that obtained as the weak limit of the Boltzmann
measures on the toroidal exhaustion of the periodic minimal graph G′. We can then use
this to show that it indeed defines a probability measure, following the argument outlined
above (see [dT07a, Section 4.4] for details).

Note however that the present setting brings an additional subtlety. Indeed, we need
to take the arbitrary half-angle map α ∈ XG, consider its restriction α0 to the train-
tracks of G0, and be able to extend it to a map α′ ∈ Xper

G′ such that the associated
elliptic Kasteleyn operator is periodic. This issue can be solved as follows. First note
that by minimality of G, the fact that α belongs to XG implies that its restriction α0

belongs to XG0 . Since G′ is minimal and parallel train-tracks of G0 remain parallel in G′,
one can check that α0 extends to an element α′ of XG′ . This element does not belong
to Xper

G′ a priori, but it is (nZ)2-periodic for n big enough. Therefore, one can enlarge the
fundamental domain of G′ by a factor n2 (an operation under which the set XG′ is easily
seen to behave well), and obtain an element α′ lying in Xper

G′ . Finally, the associated
Kasteleyn operator K is not periodic a priori. However, enlarging the fundamental
domain of G′ once again (by a factor 2) produces additional free parameters for α′ to
ensure that ϕ(α′) is an integer point. By Proposition 29, this implies that K is periodic.

The fact that the set D gives the phase diagram of the model relies on the forthcoming
asymptotic computations of Section 6.2.

Single-edge probabilities. As an illustration of the locality property of the Gibbs
measures, we explicitly compute the probability of occurrence of a single edge e = wb
in a dimer configuration of the graph G. Recall that α, β denote the half-angles of the
train-tracks of the edge wb, see Figure 4. Recall also the definition of Jabobi’s zeta

function Z̃(u) = Z(2K
π u) = π

2K
θ′4(u)
θ4(u) of Section 4.3, see also [Law89, 3.6.1], and the

constants K = π
2 θ

2
3(0) and K ′ = −iτK. In order to state our result, let us introduce the

notation tb := t− π
2 τ + η(b) = <(t+ η(b)).

Proposition 43. Consider an edge wb of G with train-track half-angles α, β. Then, the
probability that this edge occurs in a dimer configuration of G chosen with respect to the
Gibbs measure Pu0 is explicitly given by the following.
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1. Gaseous phase: if u0 belongs to the component C1 of the domain D, then

Pu0(wb) =
β − α
π

+
K ′

π
[Z̃(β − tb)− Z̃(α− tb)] = Hu0(β − tb)−Hu0(α− tb),

where Hu0 is given by (15).

2. Liquid phase: if u0 belongs to the interior of D, then

Pu0(wb) =
1

2πi
log

θ(β − u0)θ(α− ū0)

θ(β − ū0)θ(α− u0)
− iK

π2
(u0 − ū0)[Z̃(β − tb)− Z̃(α− tb)].

3. Solid phases: if u0 belongs to the component C0 \ {αT ; T ∈ T} of D, then

Pu0(wb) = I{α<u0<β on C0}.

Moreover, around every black vertex b, there is exactly one edge wb incident to b
such that Pu0(wb) = 1, so that the dimer model is deterministic.

Proof. By Theorem 42, we have Pu0(wb) = Kw,bA
u0
b,w. The proof in the solid phases

is a direct consequence of Remark 27. In the liquid and gaseous phases, part of the
computations we need are already dealt with in the proof of Theorem 26 when showing
that

∑
b Kw,bAu0b,w = 1. Since we were summing over black vertices incident to w, we did

not need to handle the residue of Hu0 at π
2 τ because these contributions were cancelling;

we need to consider this residue now. Returning to the proof, we immediately obtain

Pu0(wb) = Hu0(β)−Hu0(α)− θ′(0)Kw,bgb,w(π2 τ)Resπ
2
τH

u0(u). (29)

Using Corollary 8 as in the proof of Proposition 16, we have

θ′(0)Kw,bgb,w(π2 τ) = θ′(0)[F (t+η(b))(π2 τ ;β)− F (t+η(b))(π2 τ ;α)]. (30)

Using Equation (9) to express F (s)(u; a) using the function θ4, we obtain

θ′(0)F (s)(u; a) =
θ′4(s− π

2 τ − a)

θ4(s− π
2 τ − a)

−
θ′4(u− π

2 τ − a)

θ4(u− π
2 τ − a)

= 2K
π [Z̃(s− π

2 τ − a)− Z̃(u− π
2 τ − a)],

where in the last line we used the definition of Jacobi’s zeta function. Plugging this
into (29) and (30), using the notation tb = t + η(b) − π

2 τ and the fact that Z̃ is odd,
yields

Pu0(wb) = Hu0(β)−Hu0(α)− 2K
π Resπ

2
τH

u0(u)[Z̃(tb − β) + Z̃(β)− Z̃(tb − α)− Z̃(α)].

From [BdTR17, Lemma 45], we know that the residue of the function Z̃ at the pole π
2 τ is

equal to π
2K . Returning to the explicit definition of the function Hu0 in the gaseous and

liquid phases, see Equations (15) and (16), we deduce that the residue of the functionHu0

at the pole π
2 τ is equal to K′

2K = τ
2i in the gaseous phase, and to u0−ū0

2iπ in the liquid phase.
Using again the explicit form of the functions Hu0 gives that in both cases, the terms
involving Z̃(β), Z̃(α) cancel out in the above equation. Using once more that Z̃ is odd
proves the result.
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6.2 Asymptotics

As in the periodic case, the measures constructed in Theorem 42 have different behaviors
depending on the position of u0 in the domain D. We now compute precise asymptotics
for Au0b,w as the distance between b and w gets large, depending on the position of u0

in D. As a consequence, we obtain that the phase diagram described in Corollary 35 in
terms of u0 is still valid in the non-periodic case.

The universal behaviors we now describe require some regularity for the map α. The
following technical condition is therefore assumed to hold in this section:

(♦) There exists δ > 0 such that for every infinite minimal path Π, the distance between
the sets {αT ; T crosses Π from left to right} and {αT ′ ; T ′ crosses Π from right to left}
is larger than δ.

It is meant to forbid minimal paths with too many steps resembling “back-and-forth
movements” in the corresponding minimal immersion.

Remark 44.

1. Condition (♦) can be equivalently reformulated in terms of the zeros and poles of
the functions g as follows: for every sequence of vertices (xn) and (yn) of G� such
that the graph distance between xn and yn goes to infinity with n, the distance
between the zeros and poles of gxn,yn stays bounded from below by this δ > 0. This
condition prevents accumulation of zeros and poles of the functions g appearing in
the definition of Au0 .

2. Condition (♦) is automatically satisfied in the quasicrystalline setting, where only
a finite number of values for the half-angles αT are allowed. In particular it holds
in the periodic case. Note that Condition (♦) is strictly stronger than forcing the
half-angles of the rhombi in the corresponding minimal immersion to be in [δ, π−δ],
unless all train-tracks with distinct half-angles intersect.

We thus assume that G satisfies Condition (♦), and investigate the behavior of Au0b,w
when b and w are far apart in the three cases.

Case 1: gaseous phase. Let u0 be on the component C1 of D. The integration
contour Cu0b,w is then a closed loop. As noted in the proof of Theorem 34, moving u0

in C1 corresponds to a continuous deformation of the initial contour, avoiding all poles
of the integrand, implying that the integral Au0b,w does not change.

Let b and w be a black and white vertex of G respectively. Denote by N = dist�(b,w)
the graph distance between b and w in G�, which we assume to be large. Consider the

51



functions

Gb,w(v) = θ4(v + t+ η(w))θ4(v − t− η(b)),

Fb,w(v) =
1

N
log

gb,w(v + πτ
2 )

Gb,w(v)
=

∑
T train-tracks

separating b and w

εT
N

log θ4(v − αT ),

where εT is equal to −1 (resp. +1) if T crosses a minimal path from b to w from
left to right (resp. right to left). Note that all the exponential factors appearing when
expressing gbw(v + πτ

2 ) in terms of θ4 (see Relation (9)) cancel out, thus explaining the
second equality of Fb,w. Therefore, we have the equality

Gb,w(v)eNFb,w(v) = gb,w(v +
πτ

2
).

The function Fb,w is not an elliptic function, but it is meromorphic on the cylinder T(q)\
C1. Furthermore, it is real on C0.

Condition (♦) implies that:

1. the global minimum of Fb,w on C1 is bounded from above by a strictly negative
constant, uniformly in b and w;

2. at the point v0 where it is reached, the second derivative is bounded from below
by a positive constant, uniformly in b and w.

This analytic control on F allows to obtain the following:

Proposition 45 (Gaseous phase). When u0 belongs to the component C1 of D, and
when the distance N between b and w is large, the following asymptotics for Au0b,w hold:

Au0b,w = − θ′(0)√
2πNF ′′b,w(v0)

Gb,w(v0)eNFb,w(v0)(1 + o(1))

= − θ′(0)√
2πNF ′′b,w(v0)

gb,w(v0 +
πτ

2
)(1 + o(1)).

Proof. The proof is very similar to the asymptotics of the Green function of the Z-
invariant massive Laplacian [BdTR17], and is based on the steepest descent method.
First, continuously deform the contour Cu0b,w so that it crosses C1 vertically at v0 + πτ

2 ,
and so that log |gb,w| is smaller on the rest of Cu0b,w than on a neighborhood of v0 + πτ

2 ;
the existence of such a deformation is guaranteed by the maximum principle for the
harmonic function log |gb,w|, and the existence of zeros of gb,w in the interval of C0 where
the integration contour is allowed to pass. Therefore, the integral along the contour Cu0b,w
in a ball B of radius N−r with 1

3 < r < 1
2 centered at v0 + πτ

2 can be approximated by
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a Gaussian integral: writing u = v0 + πτ
2 + is, with s in a small interval I around 0, we

have ∫
C
u0
b,w∩B

gb,w(u)du =

∫
I
(Gb,w(v0) + o(1))eN(Fb,w(v0)− s

2

2
F ′′b,w(v0)+O(s3))i ds

= i

√
2π

NF ′′b,w(v0)
Gb,w(v0)(1 + o(1))eNFb,w(v0).

The integral over the rest of Cu0b,w is negligible when compared to the contribution above.

Multiplying the quantity above by iθ′(0)
2π yields the result.

Remark 46. Here are a few remarks about this statement:

1. As q tends to 0 (i.e., as =τ goes to ∞) while qN goes to ∞, we have

NFb,w(v) = −2q
∑
T

εT
(
cos(v − αT ) +O(q4)

)
= 2q〈e2iv, ~bw〉+O(q4N) ,

where ~bw = −
∑

T εT e
2iαT is the vector from b to w in the minimal immersion of

G defined by α, and 〈·, ·〉 is the usual Euclidean scalar product in R2. The unit
vector e2iv0 associated to the location v0 of the minimum of Fb,w gets closer and

closer to the direction of − ~bw. Hence, in this regime, the exponential decay rate
becomes isotropic.

2. By the first consequence of Condition (♦) described above, the coefficients of this
inverse tend exponentially fast to 0 as N goes to infinity. This allows to apply the
operator Au0 not only to functions with finite support, as indicated in Definition 22,
but to any bounded function (or with subexponential growth).

The last point in the remark above is the key for the following analogue of a maximum
principle for the Kasteleyn operator K:

Proposition 47. The only function of subexponential growth in the right (resp. left)
kernel of K is the function identically equal to 0. As a consequence, Au0 is the only
inverse of K with bounded coefficients (or even with subexponential growth in module).

Proof. Let f be a function of subexponential growth in the right kernel of K. Then we
can write

0 = Au00 = Au0(Kf) = (Au0K)f = f ,

as all the sums involved are absolutely convergent. The proof for the left kernel is similar.
The last point follows by considering the functions f given by the columns of Au0 − B,
where B is an inverse of K with subexponentially growing coefficients.
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Case 2: liquid phase. Let u0 be an interior point of D. Recall from Section 3.3 the
definition of the t-immersion Ψu0 of the dual graph G∗, extended to G� with a bounded
function Ξ. Condition(∗) on G implies by [KLRR18, Theorem 8] that Ψu0 defines a
convex embedding of G∗. Moreover, Condition (♦) implies that the inner and outer
diameter of the faces of G∗ in this embedding are bounded away from 0 and infinity. As
a consequence, the distances measured in the graph G� or in the t-immersion Ψu0 are
quasi-isometric.

Define the unit complex number ζ = ζb,w = exp(iη(b) + iη(w) + 2i<t). We now have all
the ingredients to express the asymptotics of Au0b,w when b and w are far apart.

Proposition 48 (Liquid phase). When u0 belongs to the interior of the domain D,
and when the distance N between the black vertex b and the white vertex w is large, the
following asymptotics for Au0b,w holds:

Au0b,w = −θ
′(0)

π
=
(

gb,w(u0)

Ψu0(b)−Ψu0(w)
ζ

)
ζ̄ +O

(
|gb,w(u0)|
N3/2

)
.

This form of asymptotics is very similar to the one found for the inverse Kasteleyn
operator in [KOS06] in the liquid phase for general periodic, bipartite planar graphs,
and in [Ken02] for the critical dimer model on isoradial graphs. The numerator in the
imaginary part has an oscillating phase, and a modulus growing like |gb,w(u0)| which can
be absorbed via gauge transformations. The module of the denominator grows linearly
with the graph distance N between b and w.

Proof. The proof is close in spirit to that of [Ken02]. Recall that sb,w is the interval
of C0 = R/πZ given by Lemma 19 containing all the poles of gb,w. Its complement con-
tains at least one zero, as b and w are supposed far enough, in particular not neighbors.

We claim that the contour Cu0b,w connecting ū0 to u0 across C0 \ sb,w can be deformed
continuously into a contour obtained by concatenating the following three paths:

� a first path from ū0 to ū1 for some u1 such that |u1 − u0| = O(N−1/2), along
which |gb,w(u)| decreases at exponential speed in N ;

� a second path from ū1 to u1, crossing C0, along which |gb,w(u)| < |gb,w(u1)|;

� a third path from u1 to u0 such that |gb,w(u)| increases (also at exponential speed).

The existence of the third path in D is guaranteed by the maximum principle applied to
the bounded harmonic function u 7→ log |gb,w(u)| on compact sets of the interior of D,
and by the fact that gb,w is the product of order N terms which can be controlled by
constants independent of N near ū0 (resp. u0). Then, the first path can be chosen as
the complex conjugate of the third one. Finally, to justify the existence of the second
path, one can use the fact that gb,w has at least one zero in the interval C0 \ sbw, so
that log |gb,w(u)| can be taken sufficiently negative in a neighborhood of the intersection
between the integration contour and C0.
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Following the same steps as in [Ken02], we now estimate the contributions of these three
pieces to the integral, denoted respectively by I1, I2 and I3. The integral I3 from u1 to
u0 along the third path can be estimated by writing locally gb,w(u) = exp(h(u)) near
u0. The derivative h′ does not vanish in a neighborhood of u0 and is the sum of O(N)
terms which are controlled, so that h′(u) � N , h′′(u) = O(N), uniformly along this
path. Integrating by parts, we obtain

iθ′(0)

2π

∫ u0

u1

gb,w(u)du =
iθ′(0)

2π

∫ u0

u1

h′(u) exp(h(u))
du

h′(u)
=

iθ′(0)

2π

exp(h(u))

h′(u)

∣∣∣∣u0
u1

+

∫ u0

u1

exp(h(u))
h′′(u)

h′(u)2
du.

In the rightmost integral, the integrand is bounded by
C|gb,w(u0)|N

N2 for some constant

C > 0, so the integral is O(|gb,w(u0)| |u1−u0|N ). The evaluation of the integrated term
at u0 gives the main contribution and the evaluation at u1 is negligible as gb,w(u1) is
exponentially small when compared to gb,w(u0), yielding:

I3 =
iθ′(0)

2π

exp(h(u0))

h′(u0)
+O

(
1

N3/2

)
=
iθ′(0)

2π

gb,w(u0)

g′b,w(u0)/gb,w(u0)
+O

(
1

N3/2

)
.

Using the product form of gb,w(u0), and recalling the definition and Property (12) of Ψu0

from Section 3.3 with a bounded Ξ, one has

I3 =
iθ′(0)

2π

gb,w(u0)

Ψu0(b)−Ψu0(w)

(
1 +O

(
1

N1/2

))
.

The contribution I1 from ū0 to ū1 is computed in the same way:

I1 = − iθ
′(0)

2π

gb,w(ū0)

Ψū0(b)−Ψū0(w)

(
1 +O

(
1

N1/2

))
.

By the choice of our contours, the integral from ū1 to u1 along the second piece is
negligible when compared to I1 and I3.

All the factors θ(u − α) with real α appearing in gb,w satisfy θ(ū0 − α) = θ(u0 − α).
They are all of this form, except two of them (corresponding to the first and last step
of the path from b to w). We then have that

Ψū0(b)−Ψū0(w) =
g′b,w(ū0)

gb,w(ū0)
+O(1) =

(
g′b,w(u0)

gb,w(u0)

)
+O(1) = Ψu0(b)−Ψu0(w) +O(1).

However, because of these two factors with non-real parameters involving t, and the
fact that θ is only quasiperiodic in the vertical direction, it is not generally true that
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gb,w(ū0) = gb,w(u0). More precisely, using the fact that the imaginary part of t is π|τ |
2 ,

and thus t̄ = t− πτ , we have

θ(u0 + t+ η(b)) = θ(u0 + t+ η(b)) = θ(ū0 + t+ η(b)− πτ)

= −q−1e2i(ū0+t+η(b))θ(ū0 + t+ η(b))

= −e2i(ū0+<(t)+η(b))θ(ū0 + t+ η(b))

and similarly

θ(u0 − t− η(w)) = −q−1e−2i(ū0−t−η(w))θ(ū0 − t− η(w))

= −e2i(−ū0+<(t)+η(w))θ(ū0 − t− η(w)) ,

so that

gb,w(u0)

gb,w(ū0)
=
θ(u0 + t+ η(b)) · θ(u0 − t− η(w))

θ(ū0 + t+ η(b)) · θ(ū0 − t− η(w))
= exp(2i(η(w) + η(b) + 2i<(t)) =: ζ2 .

This gives the following expression for the asymptotics:

Au0b,w =
iθ′(0)

2π

((
gb,w(u0)

Ψu0(b)−Ψu0(w)

)
−
(

gb,w(u0)

Ψu0(b)−Ψu0(w)

)
ζ−2

)
+O

(
1

N3/2

)
.

One obtains the final expression of Proposition 48 by noticing that |ζ| = 1 and factoring
out ζ̄.

Using now standard arguments [Ken01, dT07b, KOS06, Rus18], one readily obtains the
following result for the fluctuations of the height function.

Corollary 49. If Ψ is used to draw the graph on the plane, then the centered height
function converges weakly in distribution to 1/

√
π times the Gaussian Free Field, with

standard covariance structure given by the full plane Green function.

Case 3: solid phases. According to the single-edge probability computation for solid
phases in Proposition 43, one sees that the state of every edge is deterministic: each edge
is either a dimer almost surely, or vacant almost surely. In particular, the corresponding
Gibbs measure is concentrated on a single configuration.

7 Invariance under elementary transformations

Dimer configurations behave in a controlled way with respect to a couple of elementary
transformations of bipartite graphs. They were first considered by Kuperberg, and later
by Propp (see e.g. [Pro03]), who coined the term urban renewal. In the present work,
we focus on the equivalent set of moves considered by Goncharov-Kenyon in [GK13] (see
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also [Thu17, Pos06]), and called shrinking/expanding of a 2-valent vertex and spider
move. They are illustrated in Figure 13.

The aim of this section is to study which dimer models are invariant under these el-
ementary transformations. We will show that this invariance is equivalent, in some
precise sense, to the corresponding Kasteleyn coefficients (considered as functions of the
train-track half-angles) being antisymmetric and satisfying Fay’s identity in the form
of Corollary 9. As a consequence, we obtain that the dimer model with weights given
by (8) is invariant under these moves, a fact already obtained in another form by Fock
(see [Foc15, Proposition 1]).

Figure 13: Shrinking/expanding of a 2-valent (white) vertex, and spider move (with
black boundary vertices).

Throughout this section, G denotes a finite bipartite graph without degree 1 vertices,
embedded in the plane. (The case of graphs embedded in arbitrary surfaces can be
treated in an analogous way.) Recall that the dimer partition function can be expressed
using face weights, as described in Section 2.2. Recall also that the associated Kasteleyn
matrix defines an operator K : CB → CW, where B and W denote the set of black and
white vertices of G, respectively. Note that, unlike in the previous sections, the symbol K
now denotes an arbitrary Kasteleyn operator, not necessarily Fock’s elliptic operator.

The following result is fairly straightforward, and was already observed (at least par-
tially) in [KLRR18, p.8]. We include the proof for completeness.

Proposition 50. The following conditions are equivalent:

1. The partition function, expressed with face weights, is invariant under shrink-
ing/expanding of 2-valent vertices.

2. Given any white (resp. black) 2-valent vertex w (resp. b) with adjacent vertices b1, b2

(resp. w1,w2), we have the equalities Kw,b1 + Kw,b2 = Kw1,b + Kw2,b = 0.

In such a case, the kernel of K : CB → CW is invariant under shrinking/expanding of 2-
valent vertices, up to canonical isomorphism.

Proof. Let us consider a bipartite graph G with a 2-valent white vertex w and corre-
sponding Kasteleyn coefficients Kw,b1 and Kw,b2 , and let G′ be the graph obtained by
shrinking w. The weights of all the faces of G and G′ coincide, apart from the two faces
adjacent to w; taking into account the Kasteleyn phase, these two face weights get mul-

tiplied by −Kw,b1
Kw,b2

and −Kw,b2
Kw,b1

, respectively. Therefore, the partition function is invariant
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if and only if the equation Kw,b1 + Kw,b2 = 0 holds. The case of a 2-valent black vertex
is treated in an analogous way, and the equivalence of Conditions 1 and 2 is checked.

Let us now consider a 2-valent white vertex, with notations as above, and assume
that Kw,b1 +Kw,b2 = 0. The operators K : CB → CW and K′ : CB′ → CW′ for G and G′ are
not defined on the same space, but CB′ naturally embeds in CB as the set of g : B→ C
such that g(b1) = g(b2). By assumption, the operator K satisfies Kw,b1 = −Kw,b1 6= 0,
so the white vertex w contributes to the kernel of K via the equation g(b1) = g(b2). As
a consequence, the kernel of K is included in the subspace CB′ ⊂ CB, and since there is
no corresponding white vertex in G′, it coincides with the kernel of K′.

Let us finally assume that G′ is obtained from G by shrinking a black vertex b, with
adjacent white vertices w1,w2 ∈ W merging into a single vertex w′ ∈ W′, and let us
assume the equality Kw1,b + Kw2,b = 0. The vertices w1,w2 induce two equations of the
form

∑
i∈I kig(bi) = −kg(b) and

∑
i∈J kig(bi) = kg(b), with k := Kw1,b = −Kw2,b 6=

0. The space of solutions to these equations is canonically isomorphic to the space of
solutions to the single equation

∑
i∈I∪J kig(bi) = 0, which is induced by the vertex w′ ∈

W′. This implies that the kernels of K and K′ are canonically isomorphic.

Corollary 51. The partition function and the kernel of K are invariant under shrink-
ing/expanding of 2-valent vertices in the following cases:

1. Kenyon’s critical weights Kcrit
w,b = e2iβ − e2iα;

2. The weights defined by (8) for any value of the parameters α, τ and t.

Proof. We only need to check that these weights satisfy Condition 2 in Proposition 50.
Let us consider the case of a 2-valent white vertex w, with adjacent faces f1, f2 in G
and corresponding faces f ′1, f

′
2 in G′. Finally, let us write α, β for the relevant train-

track parameters, as illustrated below. By definition, the Kasteleyn operator has coeffi-

G

β

α

G′

α
β

f2

f1

f ′2

f ′1

cients Kw,b1 = e2iβ − e2iα, Kw,b2 = e2iα − e2iβ = −Kw,b1 in the first case, and

K
(t)
w,b1

=
θ(α− β)

θ(t+ η(f1))θ(t+ η(f2))
, K

(t)
w,b2

=
θ(β − α)

θ(t+ η(f1))θ(t+ η(f2))
= −K

(t)
w,b1

in the second, so Condition 2 is satisfied. The case of a 2-valent black vertex is checked
in the same way.
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bw
αβ

γ

f1

f2
f3

Now that the invariance of the model under this first move is estab-
lished, we turn to the spider move.

First note that any bipartite graph without degree 1 vertices can
be transformed into a graph with only trivalent white vertices us-
ing reduction of 2-valent white vertices and expansion of 2-valent
black vertices. For such graphs, Fock’s elliptic weights take a particularly nice form, as
explained now.

Lemma 52. Assume that a white vertex w ∈ W is trivalent, with adjacent train-track
parameters α, β, γ as illustrated above. Then the weights defined by (8) are gauge equiv-
alent to the weights

K̃
(t)
w,b = Fs(β, α) := θ(β − α)θ(s− α− β) ,

where s = t + η(w) + α + β + γ. Furthermore, this parameter s = s(w) is constant on
the four white vertices appearing in any spider move with black boundary vertices.

Proof. Let w ∈W be any trivalent white vertex, with adjacent faces f1, f2, f3. Multiplying
the weights adjacent to w by θ(t + η(f1))θ(t + η(f2))θ(t + η(f3)), and using the second

point of Remark 11, we obtain the gauge equivalent weights K̃
(t)
w,b = θ(β−α)θ(t+ η(f3)),

where f3 denotes the face adjacent to w but not to b. The definition of η yields the
equality η(f3) = η(w) + γ, which implies the first statement. Let us now consider a
spider move with black boundary vertices, as illustrated in Figure 14. If w1,w2,w

′
1,w

′
2

denote the four white vertices involved in this move, then by definition of η, we have the
equalities

η(w1) + a+ b+ d = η(w2) + a+ b+ c = η(w′1) + a+ c+ d = η(w′2) + b+ c+ d .

This implies that s = s(w) is constant on these four vertices.

The bottom line of this discussion is the following: for the study of the invariance of
Fock’s elliptic weights, as well as Kenyon’s critical weights, under spider moves (say,
with black boundary vertices), it can be assumed that the Kasteleyn coefficients are of

the form K
(t)
w,b = Ft(β, α) = −Ft(α, β), with t = t(w) constant on the four white vertices

appearing in any such spider move. Obviously, the study of invariance under spider
moves with white boundary vertices can be performed in the same way by exchanging
the roles of the colors and making all black vertices trivalent.

We are now ready to state and prove the main result of this section.

Theorem 53. Consider a dimer model on a bipartite, planar graph G, with Kasteleyn
coefficients as described above. The following conditions are equivalent:

1. The partition function, expressed with face weights and seen as a function of the
train-track parameters, is invariant under spider moves with black boundary ver-
tices.
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Figure 14: Faces, vertices and train-tracks involved in a spider move.

2. For all a, b, c, d, we have the equality

Ft(a, b)Ft(c, d) + Ft(a, c)Ft(d, b) + Ft(a, d)Ft(b, c) = 0 . (31)

In such a case, the kernel of K(t) : CB → CW is invariant under spider moves with black
boundary vertices.

Proof. Let us assume that the bipartite graphs G and G′ are related by a spider move with
black boundary vertices. We denote by f, f1, f2, f3, f4 the five faces of G involved in this
local transformation, and by f ′, f ′1, f

′
2, f
′
3, f
′
4 the corresponding faces in G′, as illustrated

in Figure 14. Finally, let us write a, b, c, d for the relevant train-track parameters, also
illustrated in this same figure. By [GK13, Theorem 4.7], the graphs G and G′ have
identical partition functions if and only if the weights W := Wf , W

′ := Wf′ , Wi := Wfi

and W ′i := Wf′i
satisfy the equalities

W ′ = W−1, W ′i = Wi(1 +W ) (i = 1, 3) and W ′j = Wj(1 +W−1)−1 (j = 2, 4) .

Hence, we are left with the analysis of these identities. (The conventions of [GK13] lead
to face weights inverse to ours, hence the exchange of black and white vertices in our
Figure 14 compared to Figure 21 of [GK13].) Computing the face weights of f and f ′

taking into account the Kasteleyn phase, we obtain

W = −Ft(b, c)Ft(a, d)

Ft(a, c)Ft(b, d)
and W ′ = −Ft(c, a)Ft(d, b)

Ft(c, b)Ft(d, a)
.

Therefore, the equality W ′ = W−1 follows from the assumption that Ft is antisymmetric.
We now turn to the identity W ′1 = W1(1+W ). A direct computation of the face weights
of f1 and f ′1 yields

W1 = −X Ft(d, b)

Ft(a, b)
and W ′1 = −X Ft(d, c)

Ft(a, c)

for some X. Using the equations displayed above, the identity W ′1 = W1(1 +W ) gives

Ft(d, c)

Ft(a, c)
=
Ft(d, b)

Ft(a, b)

(
1− Ft(b, c)Ft(a, d)

Ft(a, c)Ft(b, d)

)
,
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which, using the antisymmetry of Ft, is immediately seen to be equivalent to Equa-
tion (31). The equality W ′3 = W3(1 +W ) gives the same equations, only exchanging the
roles of a and b, and of c and d. Since Equation (31) is invariant by these permutations,
it is also equivalent to this second equality. As for the equality W ′2 = W2(1 + W−1)−1,
it can be restated as W2 = W ′2(1 +W ′). This is nothing but the already analysed equa-
tion W ′3 = W3(1 + W ) applied to a π/2-rotation of both graphs, which exchanges the
roles of G and G′. The last equality, namely W ′4 = W4(1 + W−1)−1, can be treated in
the same way. This concludes the proof of the equivalence of Conditions 1 and 2.

Let us now assume that G and G′ are related by a spider move with black boundary
vertices, as illustrated in Figure 14. We will assume the notation of this figure. The set
of black vertices for G and G′ are identical, and we will directly show that the kernels
of K(t) and K′(t) coincide in CB = CB′ . For both graphs, we have two white vertices
defining two equations that only involve the value of g ∈ CB on b1, . . . , b4, thus defining
a 4× 2-matrix. In the case of G, it is given by

M =

(
Ft(b, d) Ft(a, b) Ft(d, a) 0
Ft(c, d) 0 Ft(a, c) Ft(b, a)

)
and in the case of G′, by

M ′ =

(
Ft(c, d) Ft(a, c) 0 Ft(d, a)

0 Ft(c, b) Ft(d, c) Ft(b, d)

)
.

Now, consider the two vectors

g1 =


Ft(c, a)
Ft(c, d)
Ft(c, b)

0

 and g2 =


0

Ft(a, d)
Ft(a, b)
Ft(a, c)

 .

Equation (31) easily implies that g1 and g2 lie in the kernel of both M and M ′. Since g1

and g2 are linearly independent and the matrices M and M ′ have rank 2, we conclude
that the kernels of M and M ′ coincide (with the span of g1 and g2). Since each of the
other white vertices define the same equation for G and G′, this directly implies that the
kernels of K(t) and K′(t) coincide.

By direct computation in case 1 and Fay’s identity in the form of Corollary 9 in case 2,
we immediately obtain the following result, originally due to Kenyon [Ken02] (case 1)
and Fock [Foc15] (case 2):

Corollary 54. The partition function and the kernel of K are invariant under spider
moves (with black boundary vertices in the case of K) in the following cases:

1. Kenyon’s critical weights Kcrit
w,b = e2iβ − e2iα;

2. The weights defined by (8) for any value of the parameters α, τ and t.
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Remark 55. We conclude this section with three final comments.

1. As explicited in Corollaries 51 and 54, the results of this section imply that any
“dimer model” defined by Fock’s elliptic weights (8) is spider invariant. More
generally, these results actually imply that this holds for Fock’s weights [Foc15]
defined via any odd Riemann theta function, whatever the genus of the curve. This
was already observed by Fock in another form, see [Foc15, Proposition 1], and will
be used in our forthcoming article [BCdT20].

2. With Theorem 53 in hand, it is natural to ask for other classes of weights satisfying
Equation (31), and hence giving rise to spider invariant models. In particular,
one might wonder if there are other classes of weights which, as Kenyon’s critical
ones, are local, in the sense that the corresponding Kasteleyn coefficients Kw,b only
depend on α, β (and on no additional parameter t). Also, we can further ask
these coefficients to be rotationally invariant, i.e., to satisfy Kw,b(α + s, β + s) =
Kw,b(α, β) for all s. Finally, it is natural to ask for the corresponding edge weights
to be positive. Such a search is bound to fail. Indeed, it can be shown that
any rotationally invariant local Kasteleyn coefficients satisfying Equation (31) and
inducing positive edge weights are gauge equivalent to Kenyon’s critical weights.

3. Even relaxing the rotational invariance condition does not help much. It can be
proved that for any Z2-periodic minimal graph, and any local Kasteleyn coefficients
satisfying Equation (31) and inducing positive edge weights, the corresponding
spectral curve is an irreducible rational curve. Therefore, if one wishes to break
free from the rational curves, and this is one of the aims of the present article, then
the corresponding edge weights can not be local.

8 Connection to known results

We now present relations between our work and other dimer models on isoradial graphs
that have already been handled in the literature. In Section 8.1 we show how Kenyon’s
critical dimer models [Ken02] can be obtained as rational limits of our elliptic setting.
Then, in Section 8.2, we explain how two special classes of bipartite isoradial graphs with
local elliptic weights, namely the graph GQ [BdTR18] and the double graph GD [dT17]
can be viewed as special cases of the constructions of this paper.

8.1 Degeneration to the rational case

When q goes to zero, or equivalently when |τ | goes to ∞, the torus T(q) becomes a
cylinder, which is mapped to the Riemann sphere via u 7→ λ = e2iu. In this regime, we
have θ(u) = 2 sin(u)q1/4(1 +O(q)). Since the parameter t belongs to R+ π

2 τ , the entries

of the Kasteleyn operator K = K(t) become

Kw,b = iq3/4e2i(η(w)+<t)
(
e2iβ − e2iα

)
(1 +O(q)) .
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Up to a gauge equivalence, this is nothing but Kenyon’s formula

Kcrit
w,b = e2iβ − e2iα = iei(α+β)2 sin(β − α) (32)

for critical weights on isoradial graphs [Ken02].

The author then gives local functions fb(λ) in the kernel of Kcrit, which we denote by
fb,w(λ) to be consistent with our conventions. These functions can also be recovered from
rescaled limits of our functions g = g(t). Indeed, when q → 0, for b and w neighbors in
G as in Figure 4, one has:

gb,w(u) = −q−1e−2i(η(w)+<(t)) e2iu(1 +O(q))

(e2iu − e2iα)(e2iu − e2iβ)
.

The denominator is exactly what appears when computing the functions fb,w(λ), the
prefactor plays no role, and the e2iu in the numerator is absorbed in the Jacobian when
performing the change of variables from u to λ in Equation (33) below.

Using the functions fb,w(λ), Kenyon then obtains a local expression for one inverse of the
Kasteleyn operator [Ken02, Theorem 4.2], which in the Z2-periodic case, corresponds to
(0, 0) magnetic field. It is given by

(Kcrit)−1
b,w =

1

4iπ2

∮
fb,w(λ) log(λ)dλ, (33)

where the integral is computed along a contour surrounding poles of the integrand and
avoiding a ray from 0 to ∞. We now explain how, using (33), one obtains a local
formula for a two-parameter family of inverses while staying in the realm of genus 0,
thus recovering the limit of our elliptic operators Au0 as q → 0. The main idea is
to consider gauge equivalent dimer models corresponding to Möbius transformations of
half-angles assigned to train-tracks. This idea takes its source in [KO06, Section 5.3]
which handles the connection between generic rational Harnack curves with triangular
Newton polygons and dimers on the hexagonal lattice with critical isoradial weights.

Fix ζ ∈ C, |ζ| < 1, and consider the Möbius transformation U(λ) = λ−ζ
1−ζ̄λ , preserving the

unit circle. From U construct modified half-angles (α̃T )T∈T by setting, for every train-
track T of T, e2iα̃T = U−1(e2iαT ). Then, an explicit computation yields that non-zero
coefficients of the modified Kasteleyn operator K̃crit are given by

K̃crit
w,b = e2iβ̃ − e2iα̃ = (e2iβ − e2iα)

1− |ζ|2

(e2iβ ζ̄ + 1)(e2iαζ̄ + 1)
=

1− |ζ|2

ζ̄2
fb,w(−ζ̄−1)Kcrit

w,b, (34)

implying that Kcrit and K̃crit are gauge equivalent.

Now observe that the function f̃b,w(λ), defined as the function fb,w(λ) with modified
half-angles (α̃T )T∈T, satisfies the relation:

f̃b,w(λ) =
ζ̄2

fb,w(−ζ̄−1)(1− ζ̄λ)2
fb,w(U(λ)).
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As a consequence, performing the change of variable µ = U(λ) in Kenyon’s formula (33)

for the inverse (K̃crit)−1
b,w of K̃crit gives:

(K̃crit)−1b,w =
1

4iπ2

∮
f̃b,w(λ) log(λ)dλ =

1

4iπ2

ζ̄2

(1− |ζ|2)fb,w(−ζ̄−1)

∮
fb,w(µ) log

( µ+ ζ

1 + ζ̄µ

)
dµ,

where the second contour of integration avoids a ray from U−1(0) = ζ to U−1(∞) = ζ̄−1.
Finally, using the gauge equivalence relation (34), we have that for every ζ ∈ C, |ζ| < 1,

1

4iπ2

∮
fb,w(µ) log

( µ+ ζ

1 + ζ̄µ

)
dµ =: Acrit,ζ

b,w

defines an inverse of the operator Kcrit with fixed half-angles (αT )T∈T. In the periodic
case, the complex number ζ can be thought of as parameterizing the “northern hemi-
sphere” of the spectral curve, or its amoeba, and as such, plays the role of the magnetic
field.

When performing the additional change of variable e2iu = µ, the complex plane (deprived
from 0) becomes an infinite cylinder, and ζ and ζ̄−1 are sent to some ū0 and u0. The
operator Acrit,ζ exactly corresponds to the limit of our formula (14) for Au0 when the
torus T(q) degenerates to a cylinder as q → 0. Taking the limit in Formula (13) instead
gives the alternative expression for (Kcrit)−1 used in the proof of [Ken02, Theorem 4.3]
by integrating fb,w along a ray.

This critical limit is also interesting from the point of view of the immersion of the graph
G� in the plane. Indeed, a minimal immersion of G, where all the faces of G� are drawn

as rhombi [BCdT19], can be obtained as the limit of the immersion Ψu0 = Ψ
(t)
u0 described

in Section 3.3, when both τ and u0 go to i∞. Indeed, as q → 0 and the imaginary part
of u0 goes to infinity, we have

θ′

θ
(t+η(f)) = −i+O(q),

θ′

θ
(u0−α) = − cot(u0−α)+O(q) = −i(1+2e2iu0e−2iα)+o(e2iu0).

As a consequence, if we choose Ξ in such way that lim Ξ(b) = 0 for every black vertex b
and lim Ξ(w) = 2i for every white vertex w, we have

Ψu0(b)−Ψu0(f) ∼ −i2e2iu0e−2iα, Ψu0(w)−Ψu0(f) ∼ −i2e2iu0e−2iα.

Therefore, the edges of G� corresponding to a train-track associated with a half-angle α
are drawn as unit vectors e2iα, up to a global similarity with a stretch factor 2e−2=u0

tending to 0.

8.2 Connection to known elliptic dimer models

In the literature there are two instances of elliptic dimer models where a local formula is
proved for an inverse Kasteleyn operator: the dimer model on a bipartite graph arising
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from a Z-invariant Ising model on an isoradial graph [BdTR18], and the dimer model
arising from the Z-Dirac operator introduced in [dT17]. It is however not immediate
to see that these models are specific cases of those of this paper; we now explain these
connections. Note that since the massive Laplacian operator of [BdTR17] is related to
the Z-Dirac operator (see [dT17, Theorem 1]), it can also be related to the present work.

Consider an infinite, planar graph G, not necessarily bipartite. From G one constructs
two bipartite decorated graphs: the double graph GD, see for example [Ken02] and the
graph GQ, see for example [WL75]. The double GD is obtained by taking the diagonals
of the quad-graph G� and adding a white vertex at the crossing of the diagonals. It is
bipartite and has two kinds of black vertices corresponding to vertices of G and vertices
of G∗. The associated quad-graph (GD)� is obtained by dividing the quadrangular faces
of G� into four, see Figure 16. The graph GQ is the dual graph of the superimposition
of the quad-graph G� and of the double graph GD. It has three kinds of faces containing
in their interior either a vertex of G, a vertex of G∗, or a white vertex of GD; the latter
are quadrangles whose pair of parallel edges correspond to primal and dual edges of G.
The quad-graph (GQ)� is that of GD with an additional quadrangular face for each edge
of G�, which should be thought of as “flat”, see Figure 15 and the discussion below.

Each train-track of G induces two train-tracks that are anti-parallel in GD and make anti-
parallel bigons in GQ, see Figures 16 and 15. Therefore, if G is an isoradial graph, i.e., if
its train-tracks do not self-intersect and two train-tracks never intersect more than once,
then the associated bipartite graphs GD and GQ are isoradial and minimal, respectively.
Moreover, an isoradial embedding of G naturally induces an isoradial embedding of GD

and a minimal immersion of GQ, as follows. As proved by Kenyon-Schlenker [KS05], an
isoradial embedding is given by some half-angle map α on the oriented train-tracks of G,
such that the half-angles associated to any given oriented train-track and to the same
train-track with the opposite orientation differ by π

2 . One can then simply define the
induced half-angle maps αD and αQ by associating to each oriented train-track of GD

and GQ the half-angle of the unique oriented train-track of G it is parallel to. This
is illustrated in Figures 16 and 15. If α defines an isoradial embedding of G, then so
does αD for GD (in particular, it belongs to XGD), while αQ belongs to XGQ and therefore
defines a minimal immersion of the minimal graph GQ. In this minimal immersion, the
rhombi corresponding to the edges of G� are degenerate, or “flat”: this is the reason why
it is not an isoradial embedding.

Connection to the dimer model on the graph GQ arising from the Ising model
Consider a half-angle map αQ ∈ XGQ as above. Following Section 2.3, let us compute
the discrete Abel map on vertices of the quad-graph (GQ)�, taking as reference point a
vertex v0 of G; note that v0 is indeed a vertex of (GQ)�, at it should (recall Section 2.3).
Then, using the notation of Figure 15, and recalling that η is defined as an element of
R/πZ, we have the following equalities modulo π

∀ v ∈ V, η(v) = 0, ∀ f ∈ V∗, η(f) = π
2 , η(b1) = β + π

2 , η(b2) = β, η(b3) = α .
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Figure 15: Left: an edge of G with its two adjacent train-tracks. Right: the corresponding
pieces of GQ (black lines and white/black vertices), of the quad-graph (GQ)� (grey lines
and vertices), and of the four adjacent train-tracks (red and blue lines).

In other words, for every black vertex b of GQ, η(b) is given by the half-angle of the train-
track crossing the edge vb of (GQ)�, where v is the vertex of G adjacent to b in (GQ)�.

Returning to Section 3.1, the weight function ν(t) of the corresponding elliptic opera-
tor K(t) is:

ν
(t)
wx =


∣∣∣ θ(β−α)
θ(t+π

2
−(β−α))θ(t+π

2
)

∣∣∣ if x = b1∣∣∣ θ(α+π
2
−β)

θ(t)θ(t+π
2

+(β−α))

∣∣∣ if x = b2∣∣∣ θ(π
2

)

θ(t)θ(t−π
2

)

∣∣∣ if x = b3.

We now turn to the weight function νQ of the dimer model on GQ arising from the Ising
model, see for example [BdTR18], which is independent of t. We refer to [Law89, Chap 2]
for the definition of Jacobi’s elliptic (trigonometric) functions. We here use the functions
sn and cn which are the elliptic analogues of the trigonometric functions sin and cos.
Let us recall the following relations between the parameters of Jacobi’s elliptic and theta

functions: k =
θ22(0|q)
θ23(0|q) , k

′ =
θ24(0|q)
θ23(0|q) , K = π

2 θ
2
3(0), iK ′ = τK; we simply denote sn(v|k) as

sn(v) and similarly for cn. Using the notation of Figure 15, the weight function νQ is
given by

νQ
wx =


sn(2K

π (β − α)) if x = b1

cn(2K
π (β − α)) if x = b2

1 if x = b3.

Then, we have:

Proposition 56. Suppose that t = π
2 + π

2 τ , then the elliptic dimer models on the bipartite

graph GQ with weight function ν(π
2

+π
2
τ) and νQ are gauge equivalent.

Proof. Let us explicitly compute ν(π
2

+π
2
τ). Using the following identities, see [Law89,
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1.3.6-13.9] and [Law89, 2.1.1-2.1.3],

|θ(u+ π
2 )| = |θ2(u)|, |θ(u+ π

2 τ)| = q−
1
4 |θ4(u)|, |θ(u+ π

2 + π
2 τ)| = q−

1
4 |θ3(u)|,

sn(2K
π u) = θ3(0)

θ2(0)
θ(u)
θ4(u) , cn(2K

π u) = θ4(0)
θ2(0)

θ2(u)
θ4(u) ,

we obtain that ν(π
2

+π
2
τ) = q

1
2

θ2(0)
θ4(0)θ3(0)ν

Q. This immediately shows that the two weight
functions are gauge equivalent.

Remark 57. By explicitly computing the function g
(π
2

+π
2
τ)

b,w (u) in the case of GQ, we
recover the local expression for the inverse Kasteleyn operator [BdTR18, Theorem 37].

v
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β + π
2

α+ π
2

v

f

w

α

α+ π
2

β

β + π
2

Figure 16: Left: an edge of G with its two adjacent train-tracks. Right: the corresponding
pieces of GD (black lines and white/black vertices), of the quad-graph (GD)� (grey lines),
and of the four adjacent train-tracks (red and blue lines).

Connection to the Z-Dirac operator [dT17] on the double graph GD. Consider
a half-angle map αD ∈ XGD as above. We compute the discrete Abel map η on the quad-
graph (GD)�, choose once again a vertex v0 of G as reference point. Using the notation
of Figure 16, we have the following equalities mod π, where WD denotes the set of white
vertices of GD:

∀ v ∈ V, η(v) = 0, ∀ f ∈ V∗, η(f) =
π

2
, ∀w ∈WD, η(w) = −(α+ β) .

The weight function ν(t) of the corresponding elliptic operator K(t) is:

ν
(t)
wx =


∣∣∣ θ(β−α)
θ(t−β)θ(t−α)

∣∣∣ if x = v ∈ V∣∣∣ θ(α+π
2
−β)

θ(t−α)θ(t−β+π
2

)

∣∣∣ if x = f ∈ V∗.

We now turn to the Z-Dirac operator of [dT17]. We here use the function sc and dn
which are the elliptic analogues of the trigonometric functions tan and 1, see [Law89,
Chap 2]. Using the notation of Figure 16 for the half-angles, setting u = 2K

π 2s in [dT17,
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Example 14], s ∈ R, the weight function νD,(s) corresponding to the Z-Dirac operator on
GD is:

νD,(s)
wx =

{
[sc(2K

π (β − α)) dn(2K
π (s− α)) dn(2K

π (s− β))]
1
2 if x = v ∈ V

k′[sc(2K
π (α+ π

2 − β))[nd(2K
π (s− β)) nd(2K

π (s− (α+ π
2 ))]

1
2 if x = f ∈ V∗.

Then we have:

Proposition 58. Suppose that t ∈ R + π
2 τ . Then, the elliptic dimer models on the

double graph GD with weight functions ν(t) and νD,(t−π2 τ) are gauge equivalent.

Proof. The proof amounts to showing that the alternate product of the weight functions
ν(t) and νD,(t−π2 τ) are equal for all faces of GD. Faces of GD are quadrangles consisting
of two black vertices corresponding to a primal and a dual vertex of G, and two white
vertices. The proof is a rather straightforward explicit computation, so that we do not
write out the details; the key identities used are

sc
(

2K
π u
)

= (k′)−
1
2

θ(u)

θ(u+ π
2 )
, [Law89, 2.1.1–2.1.7]

sc(u+ iK ′) = i nd(u), [Law89, 2.2.17–2.2.19].

Remark 59. Note that it is not immediate to see that the local expression for the in-
verse massive Dirac operator obtained in [dT17, Corollary 27] and the local expression
stemming from Theorem 26 of this paper are indeed the same. This can be done using
identities relating Jacobi’s elliptic and theta functions.
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