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Abstract

We show that soft spheres interacting with a linear ramp potential when overcompressed
beyond the jamming point fall in an amorphous solid phase which is critical, mechan-
ically marginally stable and share many features with the jamming point itself. In the
whole phase, the relevant local minima of the potential energy landscape display an
isostatic contact network of perfectly touching spheres whose statistics is controlled by
an infinite lengthscale. Excitations around such energy minima are non-linear, system
spanning, and characterized by a set of non-trivial critical exponents. We perform nu-
merical simulations to measure their values and show that, while they coincide, within
numerical precision, with the critical exponents appearing at jamming, the nature of
the corresponding excitations is richer. Therefore, linear soft spheres appear as a novel
class of finite dimensional systems that self-organize into new, critical, marginally stable,
states.
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1 Introduction

Since more than twenty years, the ideal jamming points of systems of frictionless spheres have
shaped our thinking of low temperature glasses, suggested principles underlying amorphous
rigidity, and provided mechanisms to rationalize low energy excitations in glasses [1,2]. Topic
feature of packings at jamming is mechanical marginal stability. The number of contacts be-
tween the spheres is isostatic, in d dimensions each sphere has on average 2d contacts, that is
the least one for which the system can sustain pressure [3–6]. As such, mechanical marginal
stability brings about criticality and diverging lengthscales [7]. The jamming point is a critical
point characterized by a set of critical exponents describing both the behavior of bulk physical
quantities, such as pressure, energy and contacts [4,8] as well as the microstructure of amor-
phous packings [9–11]. In particular, a common characterization is provided by local statistics
of contact forces and interparticle distances. Marginal stability implies power law behavior of
the distribution of these quantities at small argument [9,10] and predicts a non trivial relation
between the corresponding exponents [12]. These exponents have been computed exactly
in [13, 14] and have been shown to agree -within numerical precision- with numerical sim-
ulations of hard and soft spheres in various physical dimensions [15]. The universality class
of marginally stable jamming points has been further shown to go beyond finite dimensional
sphere systems and to encompass more generally a large class of continuous constraint sat-
isfaction problems in machine learning and computer science [16–19]. For soft constraints,
jamming points are isolated critical points: in general, typical soft sphere systems (Harmonic
or Hertzian spheres) compressed beyond the jamming point loose most of the salient critical
features of jamming, becoming mechanically stable with a finite correlation length. In this
paper, we show that if we fine tune the soft sphere interaction potential - choosing it as a lin-
ear ramp - we can get a new amorphous solid phase which is mechanically marginally stable
and critical for all densities beyond the jamming point. Furthermore, the emerging marginal
stability is richer that the one appearing at the boundary jamming transition, with additional
system spanning non-linear excitations.

2 Model and main results

We consider a set of N spheres in d dimensions whose centers are d-dimensional vectors de-
noted by {xi}i=1,...,N . We define a gap between two spheres, say i and j, as hi j = ri j−σi j , where
we have denoted by σi j the sum of the radii of the corresponding spheres and by ri j = |xi−x j|
the distance between their centers. In the overcompressed phase, above jamming, spheres
cannot be arranged without creating overlap between them. Therefore one typically defines
a pure power interaction potential vα(hi j) = fc(hi j)α+ where x+ = |x |θ (−x). fc is a constant
that essentially sets the unit of forces. Common choices for the penalty exponent α are α= 2
or α = 5/2, corresponding respectively to Harmonic and Hertzian spheres. If α > 1 the in-
teraction potential is convex and differentiable at ri j = σi j , i.e. when spheres just touch.
As a consequence, given a contact at jamming, an infinitesimal normal force is enough to
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Figure 1: A snapshot of a configuration of linear disks at packing fraction φ = 1. The
contact network is in red while the overlap network is in black. The thickness of the
lines reflects the intensities of forces. While black lines carry all forces equal to one,
red lines, associated to contacts, carry a varying force in the interval [0, fc = 1].

destabilize it and can cause an overlap between the corresponding particles. Therefore, for
α > 1 jamming is a singular point in the phase diagram: as soon as the spheres overlap, the
system stabilizes. This implies that jamming criticality is washed out when we enter in the
overcompressed phase. In this paper, we investigate the potential energy landscape (PEL) of
soft spheres interacting through a linear ramp potential, obtained by setting α = 1, above
the jamming transition point. We show that in this case the jammed phase presents new
and unexpected features: the linear ramp potential makes the overcompressed phase critical
and marginally stable, characterized by a set of non-linear excitations whose nature is richer
than the ones appearing at jamming. The linear ramp potential, which is at the boundary
between convex and non-convex interparticle potentials, presents important qualitative dif-
ferences from the case α > 1. First of all, it is non-differentiable: small forces applied to
contacts do not necessarily destabilize them. To induce an overlap, a total force greater than
fc is necessary. In addition, the modulus of the force generated by an overlap does not depend
on the extent of the overlap itself.

We focus on systems of two and three dimensional polydisperse spheres and produce local
minima by gradient descent minimization. Our main findings are:

• Accessible local minima of the PEL are isostatic. Even if there is a finite fraction of
overlapping spheres making the total energy finite, there is also an isostatic number of
pairs of spheres that just touch. We call interacting spheres couples of spheres that either
are in perfect contact (contacts) hi j = 0, or that overlap (overlaps) hi j < 0.

• Contacts play a crucial role in the stability of the system. Their number is fixed to be
exactly equal to the number of degrees of freedom and its fluctuations are suppressed,
as it happens at jamming [20]. We show that, as at jamming [21], the spatial fluctua-
tions of the local connectivity of the contact network are hyperuniform implying that the
variance of the number of contacts in a volume V grows slower than |V |. Conversely,
the fluctuations of the number of overlaps follow central limit theorem and spatial fluc-
tuations of the overlap network are only uniform.

• If we look at gap variables and we focus on strictly positive and negative gaps, we find
that both distributions have a power law divergence for small argument (in absolute
value). The power law exponents controlling the divergence appear to be the same -
within numerical precision - for both distributions and very close to the one of positive
gaps at jamming.
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• Contacts can be associated with forces in the interval [0, fc]. We measure the force
empirical distribution and show that it displays two singular pseudogaps, close to zero
and close to fc . The pseudogap exponents appear to depend on the packing fraction close
to jamming. However, if we carefully separate the contribution of “bucklers”, namely
spheres that have d+1 interacting spheres [11], from the bulk statistics, the pseudogaps
are universal and characterized by the same exponents in the whole jammed phase,
far from jamming. The values of the critical exponents appear to be the same -within
numerical precision - as the one of small force distribution at jamming.

Isostaticity and critical behavior in the force and gap distributions have been shown to appear
in the unsatisfiable phase of the spherical perceptron optimization problem with linear cost
function, which is a mean field model for linear spheres [22]. The main result of the present
work is that these properties appear to survive in a robust way when we go to finite dimension.
This implies that jammed packings of linear spheres are characterized by diverging isostatic
lengthscales and therefore are critical even far from jamming in the compressed phase. There-
fore they provide a new, richer example of self-organized critical, marginally stable, finite
dimensional systems.

3 Numerical simulations

The linear ramp v1(h) is a singular interparticle potential and therefore, both for the sake of
theoretical comprehension and to perform numerical simulations, it is very useful to smooth
the singularity out and to define a differentiable ε-regularized potential between particles.
From now on we set fc = 11. We can define a regularized interparticle potential as

v1(h;ε) =







0 h> ε
2

1
2ε(h−

ε
2)

2 − ε2 < h< ε
2

|h| h< − ε2
, (1)

which in the ε→ 0 reduces to the linear ramp potential. The potential energy of a system of
N spheres is therefore defined as Hε(x) =

∑

i< j v1(hi j;ε) and we want to study what happens
in the ε → 0 limit. In Eq. (1), the non-differentiable point in the origin of v1(h) has been
regularized by an arch of parabola of curvature 1/ε. Numerically, the regularization enables
us to use gradient based routines. Theoretically, the model splits the degeneracy of forces at
h = 0 in an interval of order ε, i.e. −ε/2 < h < ε/2; it also allows to properly define the
Hessian controlling minima’s stability and to argue in favor of isostaticity.

We consider systems of N up to 4096 disks in dimension d = 2 and N up to 1024 spheres
in dimension d = 3, inside a d−dimensional box of side-length L with periodic boundary
conditions. The particles’ radii R{i=1...N} are random uniformly distributed between the val-
ues 1 − p and 1 + p, with polydispersity p = 0.2. The side-length L of the box is set by the
volume density φ =

∑N
i=1 kdRd

i /Ld , with kd = πd/2/Γ (1+ d/2) where Γ (x) is Euler gamma
function. Starting from a random configuration of particles’ positions, we minimize the energy
of the system Hε(x) =

∑

i< j v1(hi j;ε) with the regularized interparticle interaction potential
v1(hi j;ε) defined in eq. (1). The first minimization is run with ε = 10−2 using FIRE min-
imization algorithm [23]. From the obtained configuration, we reduce ε by a factor 2 and
repeat the minimization using an approximated conjugate-gradient method (we use the rou-
tine L-BFGS [24]). We repeat the procedure halving ε at each step and we stop at ε ∼ 10−8.
Using more accurate minimizers, it is possible to access to lower values of ε. We check that

1Note that fc sets only the overall scale of the maximal force and therefore we do not loose generality in setting
it to one.
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Figure 2: Left Panel. Main plot: the isostaticity index defined as c = C/(Nd − d)
and the fraction of overlaps defined as nO = O/(Nd− d) as a function of the packing
fraction (we find the jamming transition at φJ ' 0.84). Inset: Behavior of energy
and pressure for φ > φJ . Energy, pressure and number of overlaps are increasing
functions continuous at jamming. Data produced with system size N = 512, dimen-
sions d = 2, averaged over ∼ 40 samples for each point. Right Panel. The behavior
of pressure, energy and overlaps close to the unjamming transition. We attempted
some logarithmic fits of the form e ∼ |∆φ|/

p

log(∆φ/2), p ∼ 1/
p

log(∆φ/2) and
nO ∼ |∆φ|νe . The unjamming packing fraction φJ is extracted from the fit of the
energy.

for the final value of ε we have that ε�min
i j
|hi j|, where min

i j
|hi j| is the smallest non-zero gap

of the configurations we are looking for. With this procedure we meet the jamming transition
at packing fraction φ2d

J ' 0.84 and φ3d
J ' 0.64. This procedure provides the set C of the

C = |C| particles pairs µ = 〈i j〉, with i < j, that are in contact (i.e. −ε/2 < hi j < ε/2) and
the set O of the O = |O| particles pairs µ = 〈i j〉 that are overlapping (i.e. that have negative
gaps hi j < −ε/2). Associated to the contact pairs, there are the scalar contact forces fµ = fi j

that form a C−dimensional vector ~f = { fi j}, while overlapping spheres exchange forces of
intensity 1, whose corresponding O−dimensional vector is simply ~1 = [1, ..., 1]. The scalar
contact forces fi j can be computed from the regularized potential of eq. 1 as fi j = |hi j −

ε
2 |/ε,

implying 0< fi j < 1. Introducing the matrices S and T , with dimensions C ×Nd and O×Nd
respectively, defined as Skα

〈i j〉 = (δ jk − δik)nαi j , with 〈i j〉 ∈ C, and T kα
〈i j〉 = (δ jk − δik)nαi j , with

〈i j〉 ∈O, where nαi j is the α-component of the versor ni j = (x j − x i)/|x j −xi|, we can compute
the contact forces fi j also in an algebraic manner using the force-balance condition

ST ~f = −T T ~1. (2)

Notice that the system self-organizes in a way that the forces solving the linear system (2) lie
in the interval (0,1).

In Fig.1, we show an example of a configuration we obtain through the numerical proce-
dure just described. In red and black we draw respectively the contact and overlap networks.
In the following, we present data for d = 2 (number of particles N specified in the captions).
The data we got in d = 3 are qualitatively similar to the d = 2 case and therefore we report
them in the appendix.

3.1 The jammed phase

In the jammed phase, for φ > φJ , particles overlap and therefore the numbers of contacts
C and of overlaps O, the energy E and the pressure p are different from zero. In two and
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Figure 3: Structure factor of the local connectivity of the network of contacts and
overlaps. For small momentum, the structure factor of the contact network decreases
down to zero implying hyperuniformity in the fluctuations of connectivity. The ex-
ponent controlling the behavior of the structure factor appears to be close to ∼ 1.53
which is the same found at jamming [21]. On the contrary, the connectivity of the
overlap network is not hyperuniform. Data produced with system size N = 4096, di-
mensions d = 2, averaged over 44 samples forφ = 0.85, over 50 samples forφ = 1.5
and 48 samples for φ = 2.

in three dimensions, in all the minima we found, once removed the rattlers2, C is equal to
the isostatic value (N ∗ − 1)d, where N ∗ is the number of spheres which are not rattlers.3 On
the other hand, O, E and p are continuous at jamming, having defined the pressure p as
p = V−1

∑

i< j |ri j| fi j/d, where fi j is the force exchanged by the spheres i and j which can
be fc in the case of spheres overlapping or it can be in the interval (0, fc = 1) in the case of
spheres in contact.

This is shown in Fig.2-left where we plot the isostaticity index c = C/[(N ∗ − 1)d], for a
2d system. In the same figure, we plot the overlap fraction nO = O/[(N − 1)d], and, in the
inset, the energy per particle and the pressure. These quantities start from zero at jamming and
monotonically increase as the packing fraction grows. We report in Fig. 2-right the behavior of
energy, pressure and overlaps close to unjamming trying some preliminary fits. Let us note that
the scaling theory developed in [4,8,25] becomes just marginal for the linear ramp potential
and logarithmic behavior has to be expected. In order to establish the precise form of the
scalings close to unjamming one needs to consider proper decompression algorithms that allow
to reduce sample to sample fluctuations close to the transition. This goes beyond the scope of
this paper and will be the subject of a forthcoming work [26]. To characterize the networks
of interaction, we study the fluctuations in the local contact number and overlap number.
Following [21], we look at the local connectivity fluctuations of the networks of interactions
by measuring the structure factors

Sc,o(q) =
1
N

N
∑

i, j=1

〈δciδc je
iq·ri j 〉 , (3)

where ci represents the number of contacts or overlaps of particle i for the contact or overlap
structure factors respectively, δci = ci − 〈c〉 is its local fluctuations and the angular brackets

2Note that rattlers are present close to jamming but their density goes to zero very fast upon entering the
jammed phase.

3In order to reach a minimum of the system, it is required a minimization algorithm with a spatial resolution
of at least ε, being ε the regularization parameter: meeting this requirement becomes more challenging when
increasing the system size and reducing ε.

6

https://scipost.org
https://scipost.org/SciPostPhys.9.1.012


SciPost Phys. 9, 012 (2020)

10−4

10−3

10−2

10−1

1

10−3 10−2 10−1 1

0

1

2

0 0.5 1

fo
rc
es

C
D
F

f/〈f〉, (1− f)/〈1− f〉

all forces f
all forces 1− f
no bucklers f

bucklers f
∼ x1+θJ
∼ x1+0.18

P
D
F

f

10−4

10−3

10−2

10−1

1

10−3 10−2 10−1 1

0

1

2

0 0.5 1

fo
rc
es

C
D
F

f/〈f〉, (1− f)/〈1− f〉

all forces f
all forces 1− f

∼ x1+θJ

P
D
F

f

Figure 4: Contact force distributions. Left panel: the cumulative of the contact force
distribution at φ = 0.85 in 2d, close to the unjamming transition. We plot the cumu-
lative both starting from the edge at f = 0 and at f = 1. While a blind statistics of
forces is controlled by a hybrid power law exponent, once the effects of bucklers are
removed we clearly observe power laws controlled by the mean field exponents, both
close to f = 0+ and f = 1−. In the inset we plot the empirical probability distribution
function. Data produced with system size N = 512, dimensions d = 2, averaged over
30 samples. Right panel: Cumulative distribution of contact forces close to zero and
one at φ = 2 in 2d, far from jamming. We observe that both distributions follow the
mean field exponent. Our statistics is not sufficient to detect any localized excitations
at this packing fraction and therefore in this case we consider directly all forces with-
out separating the contribution of bucklers from the analysis. Data produced with
system size N = 512, dimensions d = 2, averaged over 35 samples.

represent average over different minima. We plot both structure factors in Fig.3 for different
densities in 2d. The behavior at small q reveals a different behavior of fluctuations of contact
and overlap numbers. The structure factor of the contact network decreases to zero at small
argument, while the one of overlaps tends to a positive value. This signals that the fluctuations
in contact number are hyperuniform in space, within a volume V , the square fluctuations of
C scale subextensively in V , while the ones of the overlap number are normal and scale as
V . This difference is a manifestation of the different role that contacts and overlaps play in
the stability of the system. As the system is progressively compressed from the jamming point
to higher densities, the networks self-organize keeping the number of contacts fixed while
increasing the overlaps. As at regular jamming [21], fluctuations of contact numbers away
from isostaticity are suppressed and controlled by an infinite lengthscale. We note that the
structure factor of the contact network shrinks to zero with a power law that is close to what
is observed at jamming [21].

We conclude by noting that while increasing the packing fraction, the fraction of overlaps
displays an inflection point around φ ∼ 1.2. We empirically observe that at the same point
the overlap network seems to undergo to a kind of percolation transition whose nature and
properties are left for future investigations.

3.2 Statistics of gaps

Having established that the system is isostatic, it is natural to turn the attention to the distri-
bution of non-zero gap variables, which at jamming provides an important characterization of
criticality. While at jamming all gaps are positive or zero, here we also have ’negative gaps’,
quantifying the overlaps between particles. Both the distributions of positive and negative
gaps appear to be singular at small argument. In Fig. 5 we plot the cumulative distribution of
both positive and negative gaps for several packing fractions beyond the jamming transition
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ure. We observe that both cumulative distribution appear to be described by the same
power law exponent for small argument. Data produced with system size N = 512,
dimensions d = 2, averaged over 35 samples for densities φ = 0.9 and φ = 2.0 and
over 46 samples for density φ = 1.5.

point. The small gap behavior is controlled in both cases by a power law. If we denote by
g±(h) the positive and negative gap distribution, we have that

g±(h)∼ |h|−γ± (4)

at small argument. The two exponents coincide within the errors, γ+ ≈ γ− and their numerical
value appear to be independent of density and equal to the one of positive gaps at jamming
γ± = γJ ≈ 0.41 . . . [13], as predicted by mean field theory [22].

3.3 Statistics of forces

Local minima contain an isostatic number of contacts to which we can associate contact forces
and study their empirical distribution. Scalar contact forces are naturally defined in the inter-
val [0, fc = 1] and we observe that, as soon as we enter in the jammed phase, their distribution
develops two pseudogaps close to the edges f ∼ 0, 1 (see Fig. 4). We observe that the expo-
nents controlling the two pseudogaps appear to depend smoothly on the density especially
close to jamming and for f ∼ 0+. However, following [11] we perform a statistical analysis in
which we remove bucklers, namely spheres interacting with d + 1 spheres. The result of the
analysis is plotted in Fig. 4 and we show that, independently from the packing fraction, the
force distribution behaves as

p( f )∼
�

f θ− f ∼ 0+

(1− f )θ+ f ∼ 1−
, (5)

with θ+ ≈ θ− ≈ θJ , where θJ ' 0.42 . . . is the critical exponent controlling small forces be-
tween hard spheres at jamming [13]. In Fig. 4, we also plot the cumulative distribution
function of bucklers’ forces close to f ∼ 0. Again we see a power law behavior controlled -
within numerical precision- by the same power law exponents controlling bucklers at jamming
of hard spheres [9,11]. Finally, we note that deep in the jammed phase, localized effects such
as bucklers (but also rattlers) disappear (with the statistics we have access to) and we do not
need to separate them from the statistics of forces to observe a critical power law with mean
field exponent θJ .
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4 Non-linear marginal stability of linear soft spheres

The exact solution of the perceptron optimization problem with a linear cost function [22]
provides a comprehensive mean-field framework that predicts the main features discussed in
this paper, namely isostaticity, identity of exponents θ+ = θ−, γ+ = γ−, their numerical values
and so on. This theory can be adapted straightforwardly to soft linear spheres in infinite
dimension [27]. In the next section we complement the mean field theory with marginal
stability arguments.

4.1 Local stability

The configurations of minima of the PEL at finite energy density contain overlapping particles.
It is easy to understand that there should also be pure contacts. The forces corresponding
to overlapping particles are constant in modulus (equal to fc = 1) and, without contacts,
only very symmetric configurations of particles would be mechanically stable. In fact, more
generically, a number of contacts less than d on a particle would require a highly symmetric
configuration to be stabilized by only overlaps. The minimal number of contacts necessary
to stabilize a single particle is therefore d, with a number of overlaps larger or equal to one
(or with at least another contact). When we go from the jammed phase towards the jamming
point, the number of overlaps vanishes and we recover that at jamming a number of contacts
larger or equal to d+1 is required to block a sphere. Particles with d+1 interactions are prone
to local excitations and are usually called bucklers.

4.2 The regularized Hessian and isostaticity

Local minima of the linear ramp potential are anharmonic due to the singularity in the pairwise
interaction potential. However, one can consider the ε-regularized potential and look at the
Hessian of local minima in this case. This is indeed well defined and reads

Hab
i j =

¨

− 1
ri j

v′1(hi j;ε)(δab−na
i jn

b
i j)−v′′1 (hi j;ε)na

i jn
b
i j i 6= j

−
∑

k 6=iHab
ik i= j

, (6)

with na
i j = (x

a
i − x b

j )/|xi − x j|, a, b = 1, . . . , d. Focusing on i 6= j, we have the first term, often
called prestress, which vanishes at jamming, while we call the second term the elastic term. Be-
cause of the regularization, we have that v′1(h;ε) = (h− ε2)/ε I[h ∈ [−ε/2,ε/2]]−1[h< −ε/2]
and v′′1 (h;ε) = I[h ∈ [−ε/2,ε/2]]/ε, where we have defined I[A] the indicator function which
is equal to one if A is true and zero otherwise. Notice that the Hessian receives contributions
both from overlaps and contacts. Overlaps contribute just to the prestress. Contacts instead
contribute both to the prestress, with a finite term (notice that (h− ε2)/ε is actually the contact
force), and to the elastic part with a term proportional to 1/ε. This implies that for a variation
of the position of the particles such that |δx i| ® ε, the energy stored in the elastic term is of
order ε, and dominates the one stored in the prestress which is of order ε2. This is a crucial
property, which is at the basis of isostaticity and the criticality of non-linear excitations in the
compressed phase.

Despite giving only a relatively small contribution, the contribution of the prestress term
is important. In fact, as usual in repulsive sphere systems, this is a destabilizing term (it
corresponds to a negative definite matrix) that, though small, would imply unstable directions
if the elastic part is not full ranked. We conclude that the number of contacts should be at
least isostatic so that the total matrix is positive definite and the minimum is stable.

The Hessian is therefore dominated by its isostatic random elastic part. Isostatic random
matrices are gapless [4, 17, 28–31] and characterized by an abundance of soft modes, their
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Figure 6: Density of states (DOS) of the elastic part of the Hessian matrix of the
regularized potential, see Eq. (6), for different packing fraction above jamming in
d = 2 and with N = 4096, averaged over 44 samples for φ = 0.85, over 42 samples
for φ = 1.0, over 48 samples for φ = 2.0. Inset: the finite size behavior of the left
tail of the DOS is consistent with having a finite value for D(ω= 0).

spectrum should behave as λ−1/2 at small argument, where λ represents the eigenvalues.
We measure the spectrum of the elastic term matrix, namely the spectrum of limε→0 εHab

i j .
In Fig.6, we plot the corresponding density of states (DOS) with respect to the vibrational
frequency ω=

p
λ. Varying the density from φ = 0.85 to φ = 2.0, our numerical simulations

are compatible with having a constant DOS for ω→ 0. In the appendix we develop a mean
field theory for such behavior supporting this numerical finding.

4.3 Non-linear excitations

Further information can be gained considering a non-linear stability analysis for the local min-
ima of the PEL. The data we presented clearly shows that minima are isostatic configurations
where the distributions of both positive and negative gaps display a power law behavior at
small argument. At the same time the isostatic delta peak of marginally satisfied gaps is ac-
companied by a contact force distribution which has two pseudogaps close to forces equal
to zero or one. The emergence of these power laws controls the non-linear excitations that
dominate the dynamics of the system when perturbing it away from such local minima. One
can understand the nature of those excitations generalizing the lines of reasoning employed
in [9,12] for the jamming point. The simplest excitations are the ones in which isostaticity is
off by one contact. There are here two possibilities, either separating two spheres in contact
and opening a positive gap, or on the contrary pushing two spheres in contact to make them
overlap and create a negative gap. The softest excitations are then the ones corresponding
to either very week contacts in the former case, or to contacts carrying a force close to one
in the latter case. When such contacts are removed, the system would become mechanically
unstable unless a new contact forms in the system and again we have two possibilities, either
a gap closes, or an overlap relaxes to become a contact. Assuming that both processes occur
with finite probability, we have θ+ = θ− and γ+ = γ−. Following [9, 12], one arrives at the
scaling relation γ+ = 1/(2+ θ+) controlling the critical exponents, which is verified by both
our numerics and the mean field theory of [22].
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5 Discussion and Conclusion

In this work we have described the emergence of a new critical phase obtained when linear
spheres are compressed above the jamming point. The criticality of local minima of the PEL
of linear soft spheres is described by a set of power laws controlling the positive and negative
gap distributions as well as contact forces. The critical exponents controlling such distributions
appear to be numerically indistinguishable from the corresponding ones at jamming. Further-
more, the critical behavior is again directly controlled by isostaticity of local minima. This is
an interesting result that opens the way to study jamming criticality in a different and com-
plementary way. Indeed, typically, in order to look for the critical properties of the jamming
transition, one needs to fine-tune the numerical simulations in order to be close to jamming.
Linear soft spheres instead allow us to get to jamming-like critical configurations just by looking
at local energy minima which can be obtained using standard numerical routines to minimize
the energy. In this case, no fine-tuning is needed. The rich physics that we observe in linear
spheres is due to isostaticity which we robustly find with descent dynamics in local minima at
finite N [20]. While the relevance of our work for materials as e.g. soft colloids or granulars is
left for future investigations, the novelty of our results is directly manifested in the emergence
of a new mechanism for marginal stability leading to criticality in a finite dimensional system.

Our work opens a series of perspectives: on one hand, it would be extremely interesting
to characterize the rheology of strained linear spheres [32,33]. A possible way to look for that
would be to perform similar experiments as in Ref. [34–36] and to analyze the statistical prop-
erties of avalanches. On the other hand, it would be interesting to investigate other concave
penalty exponents α < 1, or more complex potentials, to see if different non-linear criticality
may arise. Moreover, by switching on temperature, one may investigate if marginal stability
emerges at a critical point, the Gardner transition [37–39]. Finally, further work is required to
understand the behavior of bulk quantities such as energy and pressure close to unjamming.
Likely, this cannot be obtained from the scaling valid for α > 1 [4, 8, 25, 40], and it may be
important to study the leading corrections to this scaling for α close to one. While our data
hints at such phenomenology, further investigations are needed. A possible way to investigate
this point would be to progressively compress a configuration from jamming. The dynamics
should be dominated by contacts carrying forces close to one becoming overlaps while small
gaps becoming contacts with a net flux of gaps from the positive to the negative side of the
distribution. How to describe such dynamics is left for future work.

Funding information This work was supported by “Investissements d’Avenir" LabExPALM
(ANR-10-LABX-0039-PALM) and by the Simons foundation (grants No. 454941, S. Franz). SF
is a member of the Institut Universitaire de France.

A Properties of energy minima of linear spheres in three dimen-
sions

Here we report the results of numerical simulations of three dimensional linear soft spheres.
We consider N = 1024 spheres with varying packing fraction φ. With the polidispersity we
are using, the jamming point is at φ ' 0.64. We are interested in the properties of the PEL
of linear spheres above this packing fraction. As for d = 2, we find that our minimization
algorithm produces isostatic minima, meaning configurations in which an isostatic number of
spheres are perfectly kissing. The properties of the contact network are the same as the ones
for two dimensional packings. In Fig. 7-left we plot the dependence of the fraction of contacts
with respect to degrees of freedom (computed removing rattlers). In the same plot we also plot
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Figure 8: The behavior of the isostaticity index as a function of the regularizer pa-
rameter ε for a system of N = 2048 spheres in d = 2 at φ = 2, averaged over 29
samples. For ε→ 0 the system sits in an isostatic minimum.

the fraction of overlaps. While we see that the system is isostatic at all packing fraction above
jamming, the density of overlaps increases monotonically. In the inset we report the behavior
of the energy and pressure as a function of φ. In the right panel we plot also the structure
factor of the local connectivity of the overlap and contact network. We show that while the
overlap network obeys central limit theorem, the fluctuations of the number of contacts are
suppressed and the structure factor goes to zero for small momenta.

Therefore both in d = 2 and d = 3 isostaticity is reached when minimizing the energy of
the system. In order to see how this happens numerically, in Fig. 8 we plot the isostaticity
index as a function of the regularization parameter ε (we plot data for d = 2 for simplicity).
We clearly see that as soon as the linear potential limit is reached, the system self organizes to
sit on an isostatic minimum.

Therefore the main conclusion of this analysis is that, as for the jamming transition, the
properties of soft spheres interacting with linear potential do not depend on the dimensionality
of the system (apart from local bucklers/rattlers effects).

Finally in Fig.9 we plot the contact force and gap distribution. Contact forces display two
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pseudogaps close to the edges f = 0, 1 while small gaps are controlled by a power law distri-
bution. The critical exponents controlling these distributions appear to be the same (within
numerical precision) with the ones of two dimensional linear spheres.

B Mean field theory of the density of states of the contact network
matrix

In the main text we have argued that the elastic part of the contact network matrix has a density
of states D(ω) which goes to a positive constant for ω → 0 analogously to what happens at
jamming. In this section we construct the mean field theory for such behavior. We consider the
spherical perceptron optimization problem with linear cost function studied recently in [22],
see also [41–43]. This model is in the same universality class of linear soft spheres. It is an
optimization problem where a set of N variables x i arranged in a vector x = {x1, . . . , xN} lying
on the sphere |x |2 = N are sought to minimize the cost function

H[x] =
αN
∑

µ=1

|hµ|θ (−hµ) , (7)

where the gaps hµ are defined as

hµ =
1
p

N
ξµ · x −σ , (8)

with ξµ = {ξµ1 , . . .ξµN} a set of N dimensional vectors with components extracted from a Nor-
mal distribution and σ a constant control parameter. Local minima of the PEL are isostatic
meaning that there is an isostatic number of gaps hµ = 0 and characterized by critical power
laws in the gap and forces distribution. The Hessian of the non-analytic minima can be defined
by smoothing out the singularity of the linear potential close to hµ = 0 as we have done with
linear soft spheres. Calling ε the smoothing parameter, the Hessian becomes

Hi j =
1
εN

∑

µ:hµ=0

ξ
µ
i ξ
µ
j + ζδi j , (9)
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Figure 10: Density of states of the linear perceptron optimization problem for two
values of the energy at fixed α = 5 (at energy E = 2 averaged over 30 samples with
system size N = 2048, at energy E = 0.005 averaged over 50 samples with system
size N = 1024). The black line is the theoretical prediction given by Eq. (10). In the
Inset we plot the left tail of the DOS for different sizes which shows that the behavior
is compatible with having a positive DOS for ω→ 0.

being ζ a Lagrange multiplier needed to enforce the spherical constraint which plays here the
same role of the prestress in spheres. In the glassy phase, ζ < 0 and therefore for ε→ 0 one
needs to have isostatic minima. Since the system is isostatic, assuming that the patterns are
random and the only ingredient that matters for the statistics of the Hessian is the number
of contacts [17], we get that the spectrum of the Hessian is a given by a Marcenko-Pastur
distribution for the eigenfrequencies ω given by

D(ω) =
1
π

p

4−ω2 . (10)

This result holds in the whole glassy phase regardless of the energy, being the glassy phase
always isostatic. In Fig. 10 we plot the density of states as extracted from numerical simulation
for α = 5 and at two different values of the energy and we compare it with the theoretical
prediction.
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