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Temporal framing of a finite memory observer for network control
systems applied to measurement losses and integrity recovery

Julien Thuillier, David Delouche, Jacques Fantini and Frédéric Kratz

Abstract— This paper focuses on a tool to estimate lost data
on network control systems. The tool is also able to detect loss of
data integrity and estimate the correct value. A new formulation
of the Finite Memory Observer using a finite collection of
measurements and input is proposed to achieve these goals.

First, the realisation of this tool is based on a Markov
chain used to implement an event triggering mechanism applied
to models of lost network measurement packets. The Finite
Memory Observer (FMO) is based on a continuous time system
model which corresponds better to time management in further
works. The new formulation, dealing with loss of measurement
packets, uses timestamping of data received to adjust the
data estimation-predictions generated. The propagation of data
loss in the observer’s window and its effect on the estimate
is presented. Finally, on a simple packet loss scenario, the
accuracy of this prediction-estimation observer is presented.

Secondly, the FMO is used to detect modification of data.
Given the packet strategy, when a data modification is de-
tected, the associated measurement will be not used for its
estimation/prediction.

I. INTRODUCTION

Emerging industries reveal new challenges especially to
digital communication. The correct functioning of production
lines relies on reliable communication networks. However,
today, most industrial systems face communication problems,
such as packet losses and delay. The system safety and
reliability becomes doubtful.

This paper focuses on two of the most frequent communi-
cation disturbances of real time systems: measurement loss
and integrity loss. Packet losses of measurements drastically
impact the control and diagnosis of these systems.

The packet loss behaviour model in communication net-
work has been well explained in [1], [2], [3] and [4]. The
impact of perturbation on performance of system tools is
analysed in [5], [6], [7], [8] and [9].

Therefore, it is proven that the loss of data in the commu-
nication network disturbs the performance and diagnosis of
the system.

Given the complexity of network control systems, the
perturbation model has to be defined for each communication
system structure ([10] and [11]).

First, the characteristics of time-triggered transmission
network are modified (Fig. 1).
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Fig. 1: Even trigger transmission scheme

Sensors are triggered with constant sampling period TS ∈
S = {TS , 2 ∗ TS , ..., k ∗ TS} in N. Communication over the
network follows the same period, therefore some data in S
will be lost on the network at the sample time.

In this paper, a tool based on a FMO is proposed to
estimate the lost data and recover the data integrity. FMO
[12][13] has been adapted to many applications such as fault
detection [14], diagnosis [15] and hybrid system [16]. Based
on these work, a FMO to predict and estimate packet losses
is developped.

This paper is organized in four parts. First, the systems
used here are presented and the system behaviour after packet
loss is analysed. Secondly, the FMO used for measurement
prediction and estimation is introduced. Thirdly, a method for
recovering the system integrity using FMO is developped.
Section IV provides numerical simulations to illustrate the
recovering methods of packets losses and system measure-
ment integrity.

II. FINITE MEMORY OBSERVER

The aim of this work is to demonstrate the ability of the
FMO to respectively, estimate and predict correct values
with or without data losses. The prediction can be used
by the controler to continue working in a proper way or
complementary to a subsequent diagnosis. For this reason,
the FMO is formulated in a time vector collection form.
Analysis of the prediction’s accuracy in function of packet
loss behaviour is also studied. The effectiveness of using the
previous prediction will also be treated.

In the next sections, the temporality of differential equa-
tions is used to formulate the FMO in a way concording with
packets losses and integrity losses.



A. Dynamic Finite Memory Observer

Given the linear state-space representation system defined
by equation (1):{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) + v(t)

(1)

where, A, B, C are the state space representation matrices
with appropriate dimensions. x ∈ Rn is the state vector,
u ∈ Rm the input vector, y ∈ Rp the measurement vector
and v ∈ Rp the gaussian noise measurement vector with
E(v) = 0 and E(v)ET (v) = R.

State x(t) at a time t can be expressed in function of a
previous time state t− t0, written x(t− t0) in (2).

x(t) = eAt0x(t− t0) +

∫ t

t−t0
eA(t−θ)Bu(θ)dθ (2)

Extracting x(t− t0) from (2), and multiplying by e−A(t−t0)

gives:

x(t− t0) = e−At0x(t)−
∫ t

t−t0
eA(t−t0−θ)Bu(θ)dθ (3)

The delayed measurement can be expressed in function of
the current state by multiplying (3) by C and adding the
noise measurement.

y(t− t0) = Ce−At0x(t)

− C
∫ t

t−t0
eA(t−t0−θ)Bu(θ)dθ + v(t− t0)

(4)

Thus, the previous time measurement y(t− t0) is expressed
in function of the current state x(t). Let YL(t) be the time
t collection (or window) of data composed of previously
available measurements (5). The window’s length is size L
and steady through time. The window contains the L last
data’s measurement collected and timestamped at time t.
Let T be the time vector associated to YL(t, T ) : T =
[t0, t1, ..., tL−1] with t0 < t1 < ... < tL−1.

Then, the window of available measurements with times-
tamp T used to estimate or predict a value at a time t is
YL(t, T ):

YL(t, T ) =


y(t− t0)
y(t− t1)

...
y(t− tL−1)

 (5)

The equation (4) is applied to YL(t, T ) given the following
system of equations (6).



y(t− t0) = Ce−At0x(t)− C
∫ t

t−t0
eA(t−t0−θ)Bu(θ)dθ

+ v(t− t0)

y(t− t1) = Ce−At1x(t)− C
∫ t

t−t1
eA(t−t1−θ)Bu(θ)dθ

+ v(t− t1)
...

...
y(t− tL−1) = Ce−AtL−1x(t) + v(t− tL−1)

− C
∫ t

t−tL−1

eA(t−tL−1−θ)Bu(θ)dθ

(6)
The dimensional expression of (6) is:

YL(t, T ) = WL(T )x(t)− ΦL(t, T ) + VL(t, T ) (7)

with,

WL(T ) =



Ce−At0

Ce−At1

...

Ce−AtL−1


, VL(t, T ) =



v(t− t0)

v(t− t1)
...

v(t− tL−1)



ΦL(t, T ) =



C
∫ t
t−t0 e

A(t−t0−θ)Bu(θ)dθ

C
∫ t
t−t1 e

A(t−t1−θ)Bu(θ)dθ
...

C
∫ t
t−tL−1

eA(t−tL−1−θ)Bu(θ)dθ


.

Given ZL(t, T ) = YL(t, T ) + ΦL(t, T ),

ZL(t, T )− VL(t, T ) = WL(T )x(t). (8)

PL is the covariance matrix of the Gaussian noise component
VL(t, T ):

PL = E[VL(t, T )V TL (t, T )] (9)

with

PL =


R 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 R


The solution of the equation (8), x̂L(t|T ) is obtained using

the least square method [15]:

x̂L(t|T ) = (WT
L (T )P−1

L WL(T ))
−1WL(T )

TP−1
L ZL(t, T ) (10)

Choosing Ω−1
L = (WT

L (T )P−1
L WL(T ))−1 simplified the

form of (10).
The estimation error and its variance are ([15],[17]):

E(ŷ(t)− y(t)) = 0 var(ŷ(t)− y(t)) = Ω−1
L (11)



III. PROBLEMATIC OF SYSTEM WITH
MEASUREMENT PACKET LOSSES

Next, the temporality of differential equations to formulate
FMO (Finite Memory Observer) is applied on systems with
packet losses.

The model of a network control system subjected to losses
of packets presented by [1] is used. This model allows the
use of a set number of successive packet losses. Given system
subject to network disturbances is defined as: ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + v(t) if φ = 1
y(t) = empty if φ = 0

(12)

where the boolean variable φ = 1 when the packet is
received, and φ = 0 when the packet is not received. The
variation of φ can be modelled by a Markov chain (Fig.
2) where the probability of the state of the next packet
reception state is only determined by the current packet
reception state. Using this model, the probability of a certain
number of successive packets losses can be computed using
the stationary distribution of the Markov chain.

Packet receive
(φ = 1 )

Packet lost
(φ = 0 )

Prr

Prl

Pll

Plr

Fig. 2: Behaviour of measurement packet loss

Then, this paper studies the behaviour of the values
estimated using the observer in the case of packet losses.

This section presents the strategy of FMO dynamic es-
timation based on previously received data, as well as the
dynamic of the observer’s matrix computed using measure-
ments.

Table I represents the behaviours of the FMO’s structure
in a three packet loss scenario example. In the first case, at
time t = 2 the FMO window (green area) of size L = 3
is composed of three data received previously (with T =
[0, 1, 2]T ). The FMO estimates the system state at t = 2.

In the second case, the measurement at t = 3 is lost so that
y(3) is empty and the data window of the observer has to
use the ”old” measurements with timestamp T = [1, 2, 3]T .
In this case, the observer will provide a prediction of the
measurement at t = 3 (grey zone). The dynamical structure
of the FMO will take into account only the timestamp of
the available data as present in the associate table, which
means that the measurements contained in the window will
not be updated.

Finally, the measurement data corresponding to timestamp
(t = 4) is received from the system. The data at t =
3 previously predicted (in the grey area) and considered

TABLE I: Dynamical structure of FMO for a specific sce-
nario of packet loss

Case 1: Time t = 2

0 2 4 6 8 10

3

3.5

4

4.5

time

da
ta

va
lu

e

received data
lost data

observer’s window

YL(t, T ) =

 y(t)
y(t− 1)
y(t− 2)

 =

y(2)
y(1)
y(0)

 =

3.5
4
4



Case 2: Time t = 3

0 2 4 6 8 10

3

3.5

4

4.5

time

da
ta

va
lu

e
received data

lost data
observer’s window

y(3) = empty

YL(t, T ) =

y(t− 1)
y(t− 2)
y(t− 3)

 =

y(2)
y(1)
y(0)

 =

3.5
4
4


Case 3: Time t = 4

0 2 4 6 8 10

3

3.5

4

4.5

time

da
ta

va
lu

e

received data
lost data

observer’s window

y(3) = empty, y(4) = 3

YL(t, T ) =

 y(t)
y(t− 2)
y(t− 3)

 =

y(4)
y(2)
y(1)

 =

 3
3.5
4



continuously non available will be ignored. The measurement
window of the FMO will be updated by adding the new



data and deleting the oldest data so that T = [0, 2, 3]T .
The numerical structure of the FMO changes in accordance
with the numerical values of the measurement and associated
timestamp.

The evolution of the T vector packet of the FMO is:

T =

0
1
2

T

⇒

1
2
3

T

⇒

0
2
3

T

⇒

0
1
3

T

⇒

0
1
2

T

... (13)

IV. PROBLEMATIC OF MEASUREMENT
INTEGRITY LOSS

Besides the situation of packet loss where no data is
received, the proposed FMO-based strategy can also be
applied to ensure diagnostic of system functioning with
data received but modified also called integrity loss. After
packet loss, integrity loss is one of the biggest causes of
the insecurity of network control systems. Today, integrity
modification by external attacks is a major security issue
(CIA - Confidentiality Integrity Availability, Fig. 3), leading
to abnormal functioning of network systems and risk for
industrial plants.
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Fig. 3: Cyberattacks on a communication network [18]

Data integrity loss can cause serious consequences ([19],
[20] [21]).

In this case, the output data y is modified over the com-
munication network. The modification of the measurement
is represented by a variable ψ(t) added to the output:

y∗(t) = y(t) + ψ(t) (14)

where ψ(t) = 0 when the received data is correct; otherwise,
the received data has been modified by attack on the network.
The value and variation of ψ is bound to the attack method
[22] and [23].

Given a modification of y at each instant t, after reception
of a new measurement y(t) (t = t0), the difference (residual)
between y(t) and its FMO estimation ŷ(t)) using the previ-
ous data collection YL(t, T ), T = {t1, ..., tL} is computed.

If the residual gets out of the previously set interval, a
modification on measurement is detected.

Only data previously checked by the detection tool are
used to guarantee the quality of prediction (x̂(t), ŷ(t)).

V. NUMERICAL SIMULATIONS

In this section, the estimation-prediction accuracy of FMO
in different packet loss and integrity loss scenarii is illus-
trated.

A. System studied

Given the following four tank system ([24], [25], [26])
(Fig. 5): the system is controlled by a decentralized LQG
controller while measurement are communicated through a
network.

Tank 3 Tank 4

Tank 1 Tank 2
y2y1

Pump 2Pump 1

u2u1

Fig. 4: Quadruple tank system

The linear state space representation of the system is given
by (1): {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) + v(t)

where

A =

−1
12 0 0
0 0 1
0 −0.05 −0.7

 , B =

 1
0

0.1

 ,

C =

(
1 0 0
0 1 0

)

y(t) =

{
y1(t) = Level in tank 1
y2(t) = Level in tank 2

x ∈ R2 is the state vector, u ∈ R the input vector, y ∈ R2

the measurement vector and v ∈ R2 the noise measurement
vector with var(v) = 0.1. The simulation is built using a
continuous time representation and the measurements are
discretized at sampling time Ts = 0.1s.

A window length L = 5 FMO is placed near the controller
and receives the system data from the network as does the
controller (Fig. 5).
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Fig. 5: Locations of FMO and controller around the quadru-
ple tank system

B. Scenario of packet loss

First, the evolution of the FMO estimations with different
packet loss behaviours is presented. Moreover, the propaga-
tion of this event corresponding to Table I is described.
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Fig. 6: Original measurement and estimation with and with-
out packet loss

Fig. 6 shows the evolution of received measurements and
their estimations. Packet losses on both measurements are
observed at t = 2.9s, t = 3.1s and t = 4.1s. When
measurement packets are lost, the FMO tool is able to
provide correct estimations and keep the system working
correctly and continuously. Moreover, the FMO formulation
is able to dynamically adapt its structure to realize correct
estimation - prediction (Fig. 7).
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Fig. 7: Estimation error

C. Scenario of integrity loss

During the simulation a modification of output integrity
occurs from t = 1.1s to t = 1.4s

In this paper the threshold is defined as |ŷ(t|T )− y(t)| >
3
√

max(eig(Ω−1
L )) with eig(Ω−1

L ) the eigenvalues of Ω−1
L ,

the received measurement y(t) is considered modified, then
estimated value ŷ(t|T ) replaces the received measurement.

Fig. 8 illustrates an attack on data integrity. Then, the FMO
is able to detect measurement modification and compute an
estimation of the attacked measurement.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

O
u

tp
u

t 
y

1

Estimate (ŷ1)
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Fig. 8: Estimation error with and without packet loss

The different results presented in this section illustrate the
ability of the FMO to predict data loss and modification.
Moreover, the estimate error increases when a successive loss
of packet happens but remains within an acceptable interval.



VI. CONCLUSIONS AND PERSPECTIVE

In this paper, a new formulation of a finite memory
observer based on a finite collection of measurement is
proposed to deal with packet loss and data integrity problems
on network control systems.

This FMO is able to estimate and predict a system’s state
using an appropriate sliding window of measurements. A nu-
merical simulation provides a correct estimation-prediction
in the case of packet loss and data integrity loss. The
simulation results confirm the ability of the FMO to detect
the integrity and availability of data.

These two points are key aspects of the risk analysis for
network control systems.

This paper confirms the efficiency of a FMO in the case
of network system security breach.

Works in progress involve the computational simplification
aspects and the use of this observer in real-time applications.

REFERENCES

[1] Jungers, R. M., Kundu, A., and Heemels, W. P. M. H. Observability
and Controllability Analysis of Linear Systems Subject to Data Losses.
IEEE Transactions on Automatic Control, 2018, 63(10), 3361–3376.

[2] Jungers, R. M., Kundu, A., and Heemels, W. P. M. H. On observability
in networked control systems with packet losses. In 53rd Annual
Allerton Conference on Communication, Control, and Computing
(Allerton), 2015, (pp. 238–243).

[3] Sahebsara, M., Chen, T., and Shah, S. L. Optimal H∞ filtering in
networked control systems with multiple packet dropouts. Systems and
control letters, 2008, 57(9), 696-702.

[4] Xue, B., Li, S., and Zhu, Q. Moving horizon state estimation for
networked control systems with multiple packet dropouts. IEEE Trans-
actions on Automatic Control, 2012, 57(9), 2360-2366.

[5] Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., and Sastry,
S. S. Foundations of Control and Estimation Over Lossy Networks.
Proceedings of the IEEE, 2007, 95(1), 163–187.

[6] Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.
I., and Sastry, S. S. Kalman Filtering With Intermittent Observations.
IEEE Transactions on Automatic Control, 2004, 49(9).

[7] Smith, S. C., and Seiler, P. Estimation with lossy measurements: jump
estimators for jump systems. IEEE Transactions on Automatic Control,
2003, 48(12), 2163–2171.

[8] Bemporad, A., Heemels, M., and Johansson, M. Networked Control
Systems (Vol. 406), 2010. London: Springer London.

[9] Gommans, T. M. P., Heemels, W. P. M. H., Bauer, N. W., and Wouw,
N. van de. Compensation-based control for lossy communication
networks. International Journal of Control, 2013, 86(10), 1880–1897.

[10] Peng, C., Han, Q.-L., Yue, D. Communication-Delay-Distribution-
Dependent Decentralized Control for Large-Scale Systems With IP-
Based Communication Networks. IEEE Transactions on Control Sys-
tems Technology, 2013, 21(3), 820–830.

[11] Chiuso, A., Fortuna, L., Frasca, M., Rizzo, A., Schenato, L., Zampieri,
S. (Eds.). (2009). Modelling, Estimation and Control of Networked
Complex Systems. Berlin, Heidelberg: Springer Berlin Heidelberg.

[12] Medvedev, A. V., and Toivonen, H. T. A Continuous Finite-Memory
Deadbeat Observer. In American Control Conference, 1992, pp
1800–1804.

[13] Medvedev, A. State estimation and fault detection by a bank of
continuous finite-memory filters. International Journal of Control,
1998, 69(4), pp 499–517.

[14] Kratz, F., Bousghiri, S., and Mourot, G. A finite memory observer
structure for robust residual generation. In Proceedings of 32nd IEEE
Conference on Decision and Control, 1997, pp 1247–1249.

[15] Graton, G., Kratz, F., Fantini, J. Finite Memory Observers for linear
time-varying systems: Theory and diagnosis applications. Journal of
the Franklin Institute, 2014, 351(2), 785–810.

[16] Kajdan, R., Graton, G., Aubry, D., and Kratz, F. Fault detection of
a non linear switching system using finite memory observer. IFAC
Proceedings Volumes, 2006, 39(13), 992–997.

[17] Graton, G., Fantini, J., Kratz, F. Finite Memory Observers for linear
time-varying systems. Part II: Observer and residual sensitivity. Journal
of the Franklin Institute, 2014, 351(5), 2860–2889.

[18] A, Texeira., KC, Sou., H, Sandberg., KH, Johansson. Secure Control
Systems: A Quantitative Risk Management Approach. IEEE Control
Systems, 2015, 35(1), 24–45.

[19] Pan, K., Teixeira, A. M. H., Cvetkovic, M., Palensky, P. Combined data
integrity and availability attacks on state estimation in cyber-physical
power grids. In 2016 IEEE International Conference on Smart Grid
Communications (SmartGridComm), 2016, 271–277. IEEE.

[20] Kim, T. T., Poor, H. V. Strategic Protection Against Data Injection
Attacks on Power Grids. IEEE Transactions on Smart Grid, 2011,
2(2), 326–333.

[21] Mo, Y., Sinopoli, B. Integrity attacks on cyber-physical systems. In
Proceedings of the 1st international conference on High Confidence
Networked Systems - HiCoNS ’12, 2012, 47. New York, New York,
USA: ACM Press.

[22] Yimeng Dong, Gupta, N., Chopra, N. On content modification attacks
in bilateral teleoperation systems. In 2016 American Control Confer-
ence (ACC), 2016, 316–321. IEEE.

[23] Liu, Y., Ning, P., Reiter, M. K. False data injection attacks against state
estimation in electric power grids. ACM Transactions on Information
and System Security, 2011, 14(1), 1–33.

[24] Johansson, K. H. The quadruple-tank process: a multivariable labora-
tory process with an adjustable zero. IEEE Transactions on Control
Systems Technology, 200, 8(3), 456–465.

[25] Labibi, B., Marquez, H. J., Chen, T. Decentralized robust output
feedback control for control affine nonlinear interconnected systems.
Journal of Process Control, 2009, 19(5), 865–878.

[26] Xiong, J., Lam, J. Stabilization of Networked Control Systems With
a Logic ZOH. IEEE Transactions on Automatic Control, 2009, 54(2),
358–363.


