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I. INTRODUCTION

Emerging industries reveal new challenges especially to digital communication. The correct functioning of production lines relies on reliable communication networks. However, today, most industrial systems face communication problems, such as packet losses and delay. The system safety and reliability becomes doubtful.

This paper focuses on two of the most frequent communication disturbances of real time systems: measurement loss and integrity loss. Packet losses of measurements drastically impact the control and diagnosis of these systems.

The packet loss behaviour model in communication network has been well explained in [START_REF] Jungers | Observability and Controllability Analysis of Linear Systems Subject to Data Losses[END_REF], [START_REF] Jungers | On observability in networked control systems with packet losses[END_REF], [START_REF] Sahebsara | Optimal H∞ filtering in networked control systems with multiple packet dropouts[END_REF] and [START_REF] Xue | Moving horizon state estimation for networked control systems with multiple packet dropouts[END_REF]. The impact of perturbation on performance of system tools is analysed in [START_REF] Schenato | Foundations of Control and Estimation Over Lossy Networks[END_REF], [START_REF] Sinopoli | Kalman Filtering With Intermittent Observations[END_REF], [START_REF] Smith | Estimation with lossy measurements: jump estimators for jump systems[END_REF], [START_REF] Bemporad | Networked Control Systems[END_REF] and [START_REF] Gommans | Compensation-based control for lossy communication networks[END_REF].

Therefore, it is proven that the loss of data in the communication network disturbs the performance and diagnosis of the system.

Given the complexity of network control systems, the perturbation model has to be defined for each communication system structure ( [START_REF] Peng | Communication-Delay-Distribution-Dependent Decentralized Control for Large-Scale Systems With IP-Based Communication Networks[END_REF] and [START_REF]Modelling, Estimation and Control of Networked Complex Systems[END_REF]).

First, the characteristics of time-triggered transmission network are modified (Fig. 1). Sensors are triggered with constant sampling period T S ∈ S = {T S , 2 * T S , ..., k * T S } in N. Communication over the network follows the same period, therefore some data in S will be lost on the network at the sample time.

In this paper, a tool based on a FMO is proposed to estimate the lost data and recover the data integrity. FMO [START_REF] Medvedev | A Continuous Finite-Memory Deadbeat Observer[END_REF] [START_REF] Medvedev | State estimation and fault detection by a bank of continuous finite-memory filters[END_REF] has been adapted to many applications such as fault detection [START_REF] Kratz | A finite memory observer structure for robust residual generation[END_REF], diagnosis [START_REF] Graton | Finite Memory Observers for linear time-varying systems: Theory and diagnosis applications[END_REF] and hybrid system [START_REF] Kajdan | Fault detection of a non linear switching system using finite memory observer[END_REF]. Based on these work, a FMO to predict and estimate packet losses is developped.

This paper is organized in four parts. First, the systems used here are presented and the system behaviour after packet loss is analysed. Secondly, the FMO used for measurement prediction and estimation is introduced. Thirdly, a method for recovering the system integrity using FMO is developped. Section IV provides numerical simulations to illustrate the recovering methods of packets losses and system measurement integrity.

II. FINITE MEMORY OBSERVER

The aim of this work is to demonstrate the ability of the FMO to respectively, estimate and predict correct values with or without data losses. The prediction can be used by the controler to continue working in a proper way or complementary to a subsequent diagnosis. For this reason, the FMO is formulated in a time vector collection form. Analysis of the prediction's accuracy in function of packet loss behaviour is also studied. The effectiveness of using the previous prediction will also be treated.

In the next sections, the temporality of differential equations is used to formulate the FMO in a way concording with packets losses and integrity losses.

A. Dynamic Finite Memory Observer

Given the linear state-space representation system defined by equation (1):

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + v(t) (1) 
where, A, B, C are the state space representation matrices with appropriate dimensions. x ∈ R n is the state vector, u ∈ R m the input vector, y ∈ R p the measurement vector and v ∈ R p the gaussian noise measurement vector with

E(v) = 0 and E(v)E T (v) = R.
State x(t) at a time t can be expressed in function of a previous time state tt 0 , written x(tt 0 ) in (2).

x(t) = e At0 x(t -t 0 ) + t t-t0 e A(t-θ) Bu(θ)dθ (2) 
Extracting x(tt 0 ) from ( 2), and multiplying by e -A(t-t0) gives:

x(t -t 0 ) = e -At0 x(t) - t t-t0 e A(t-t0-θ) Bu(θ)dθ (3) 
The delayed measurement can be expressed in function of the current state by multiplying (3) by C and adding the noise measurement.

y(t -t 0 ) = Ce -At0 x(t) -C t t-t0 e A(t-t0-θ) Bu(θ)dθ + v(t -t 0 ) (4) 
Thus, the previous time measurement y(tt 0 ) is expressed in function of the current state x(t). Let Y L (t) be the time t collection (or window) of data composed of previously available measurements [START_REF] Schenato | Foundations of Control and Estimation Over Lossy Networks[END_REF]. The window's length is size L and steady through time. The window contains the L last data's measurement collected and timestamped at time t.

Let T be the time vector associated to

Y L (t, T ) : T = [t 0 , t 1 , ..., t L-1 ] with t 0 < t 1 < < t L-1 .
Then, the window of available measurements with timestamp T used to estimate or predict a value at a time t is Y L (t, T ):

Y L (t, T ) =      y(t -t 0 ) y(t -t 1 )
. . .

y(t -t L-1 )      (5) 
The equation ( 4) is applied to Y L (t, T ) given the following system of equations [START_REF] Sinopoli | Kalman Filtering With Intermittent Observations[END_REF].

                                     y(t -t 0 ) = Ce -At0 x(t) -C t t-t0 e A(t-t0-θ) Bu(θ)dθ + v(t -t 0 ) y(t -t 1 ) = Ce -At1 x(t) -C t t-t1 e A(t-t1-θ) Bu(θ)dθ + v(t -t 1 ) . . . . . . y(t -t L-1 ) = Ce -At L-1 x(t) + v(t -t L-1 ) -C t t-t L-1 e A(t-t L-1 -θ) Bu(θ)dθ (6) 
The dimensional expression of ( 6) is:

Y L (t, T ) = W L (T )x(t) -Φ L (t, T ) + V L (t, T ) (7) 
with,

W L (T ) =          Ce -At0
Ce -At1 . . .

Ce -At L-1          , V L (t, T ) =          v(t -t 0 ) v(t -t 1 ) . . . v(t -t L-1 )          Φ L (t, T ) =           C t t-t0 e A(t-t0-θ) Bu(θ)dθ C t t-t1 e A(t-t1-θ) Bu(θ)dθ . . . C t t-t L-1 e A(t-t L-1 -θ) Bu(θ)dθ           . Given Z L (t, T ) = Y L (t, T ) + Φ L (t, T ), Z L (t, T ) -V L (t, T ) = W L (T )x(t). ( 8 
)
P L is the covariance matrix of the Gaussian noise component V L (t, T ):

P L = E[V L (t, T )V T L (t, T )] (9) 
with

P L =       R 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 R      
The solution of the equation ( 8), xL (t|T ) is obtained using the least square method [START_REF] Graton | Finite Memory Observers for linear time-varying systems: Theory and diagnosis applications[END_REF]:

xL(t|T ) = (W T L (T )P -1 L WL(T )) -1 WL(T ) T P -1 L ZL(t, T ) (10) 
Choosing

Ω -1 L = (W T L (T )P -1 L W L (T )) -1
simplified the form of [START_REF] Peng | Communication-Delay-Distribution-Dependent Decentralized Control for Large-Scale Systems With IP-Based Communication Networks[END_REF].

The estimation error and its variance are ( [START_REF] Graton | Finite Memory Observers for linear time-varying systems: Theory and diagnosis applications[END_REF], [START_REF] Graton | Finite Memory Observers for linear time-varying systems. Part II: Observer and residual sensitivity[END_REF]):

E(ŷ(t) -y(t)) = 0 var(ŷ(t) -y(t)) = Ω -1 L (11)

III. PROBLEMATIC OF SYSTEM WITH MEASUREMENT PACKET LOSSES

Next, the temporality of differential equations to formulate FMO (Finite Memory Observer) is applied on systems with packet losses.

The model of a network control system subjected to losses of packets presented by [START_REF] Jungers | Observability and Controllability Analysis of Linear Systems Subject to Data Losses[END_REF] is used. This model allows the use of a set number of successive packet losses. Given system subject to network disturbances is defined as:

   ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + v(t) if φ = 1 y(t) = empty if φ = 0 (12) 
where the boolean variable φ = 1 when the packet is received, and φ = 0 when the packet is not received. The variation of φ can be modelled by a Markov chain (Fig. 2) where the probability of the state of the next packet reception state is only determined by the current packet reception state. Using this model, the probability of a certain number of successive packets losses can be computed using the stationary distribution of the Markov chain. Then, this paper studies the behaviour of the values estimated using the observer in the case of packet losses.

This section presents the strategy of FMO dynamic estimation based on previously received data, as well as the dynamic of the observer's matrix computed using measurements.

Table I represents the behaviours of the FMO's structure in a three packet loss scenario example. In the first case, at time t = 2 the FMO window (green area) of size L = 3 is composed of three data received previously (with T = [0, 1, 2] T ). The FMO estimates the system state at t = 2.

In the second case, the measurement at t = 3 is lost so that y(3) is empty and the data window of the observer has to use the "old" measurements with timestamp T = [1, 2, 3] T . In this case, the observer will provide a prediction of the measurement at t = 3 (grey zone). The dynamical structure of the FMO will take into account only the timestamp of the available data as present in the associate table, which means that the measurements contained in the window will not be updated.

Finally, the measurement data corresponding to timestamp (t = 4) is received from the system. The data at t = 3 previously predicted (in the grey area) and considered 

Y L (t, T ) =   y(t) y(t -2) y(t -3)   =   y(4) y(2) y(1)   =   3 3.5 4  
continuously non available will be ignored. The measurement window of the FMO will be updated by adding the new data and deleting the oldest data so that T = [0, 2, 3] T . The numerical structure of the FMO changes in accordance with the numerical values of the measurement and associated timestamp.

The evolution of the T vector packet of the FMO is:

T =   0 1 2   T ⇒   1 2 3   T ⇒   0 2 3   T ⇒   0 1 3   T ⇒   0 1 2   T ... (13) 

IV. PROBLEMATIC OF MEASUREMENT INTEGRITY LOSS

Besides the situation of packet loss where no data is received, the proposed FMO-based strategy can also be applied to ensure diagnostic of system functioning with data received but modified also called integrity loss. After packet loss, integrity loss is one of the biggest causes of the insecurity of network control systems. Today, integrity modification by external attacks is a major security issue (CIA -Confidentiality Integrity Availability, Fig. 3), leading to abnormal functioning of network systems and risk for industrial plants. In this case, the output data y is modified over the communication network. The modification of the measurement is represented by a variable ψ(t) added to the output:

y * (t) = y(t) + ψ(t) (14) 
where ψ(t) = 0 when the received data is correct; otherwise, the received data has been modified by attack on the network. The value and variation of ψ is bound to the attack method [START_REF] Dong | On content modification attacks in bilateral teleoperation systems[END_REF] and [START_REF] Liu | False data injection attacks against state estimation in electric power grids[END_REF]. Given a modification of y at each instant t, after reception of a new measurement y(t) (t = t 0 ), the difference (residual) between y(t) and its FMO estimation ŷ(t)) using the previous data collection Y L (t, T ), T = {t 1 , ..., t L } is computed.

If the residual gets out of the previously set interval, a modification on measurement is detected.

Only data previously checked by the detection tool are used to guarantee the quality of prediction (x(t), ŷ(t)).

V. NUMERICAL SIMULATIONS

In this section, the estimation-prediction accuracy of FMO in different packet loss and integrity loss scenarii is illustrated.

A. System studied

Given the following four tank system ( [START_REF] Johansson | The quadruple-tank process: a multivariable laboratory process with an adjustable zero[END_REF], [START_REF] Labibi | Decentralized robust output feedback control for control affine nonlinear interconnected systems[END_REF], [START_REF] Xiong | Stabilization of Networked Control Systems With a Logic ZOH[END_REF]) (Fig. 5): the system is controlled by a decentralized LQG controller while measurement are communicated through a network. The linear state space representation of the system is given by (1):

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + v(t)
where

A =   -1 12 
0 0 0 0 1 0 -0.05 -0.7   , B =   1 0 0.1   , C = 1 0 0 0 1 0 y(t) = y 1 (t) = Level in tank 1 y 2 (t) = Level in tank 2
x ∈ R 2 is the state vector, u ∈ R the input vector, y ∈ R 2 the measurement vector and v ∈ R 2 the noise measurement vector with var(v) = 0.1. The simulation is built using a continuous time representation and the measurements are discretized at sampling time T s = 0.1s. A window length L = 5 FMO is placed near the controller and receives the system data from the network as does the controller (Fig. 5). First, the evolution of the FMO estimations with different packet loss behaviours is presented. Moreover, the propagation of this event corresponding to Table I is described. 

Losses of measurement

Losses of measurement

Fig. 6: Original measurement and estimation with and without packet loss Fig. 6 shows the evolution of received measurements and their estimations. Packet losses on both measurements are observed at t = 2.9s, t = 3.1s and t = 4.1s. When measurement packets are lost, the FMO tool is able to provide correct estimations and keep the system working correctly and continuously. Moreover, the FMO formulation is able to dynamically adapt its structure to realize correct estimation -prediction (Fig. 7). 

C. Scenario of integrity loss

During the simulation a modification of output integrity occurs from t = 1.1s to t = 1.4s

In this paper the threshold is defined as |ŷ(t|T ) -y(t)| > 3 max(eig(Ω -1 L )) with eig(Ω -1 L ) the eigenvalues of Ω -1 L , the received measurement y(t) is considered modified, then estimated value ŷ(t|T ) replaces the received measurement.

Fig. 8 illustrates an attack on data integrity. Then, the FMO is able to detect measurement modification and compute an estimation of the attacked measurement. The different results presented in this section illustrate the ability of the FMO to predict data loss and modification. Moreover, the estimate error increases when a successive loss of packet happens but remains within an acceptable interval.

VI. CONCLUSIONS AND PERSPECTIVE

In this paper, a new formulation of a finite memory observer based on a finite collection of measurement is proposed to deal with packet loss and data integrity problems on network control systems.

This FMO is able to estimate and predict a system's state using an appropriate sliding window of measurements. A numerical simulation provides a correct estimation-prediction in the case of packet loss and data integrity loss. The simulation results confirm the ability of the FMO to detect the integrity and availability of data.

These two points are key aspects of the risk analysis for network control systems.

This paper confirms the efficiency of a FMO in the case of network system security breach.

Works in progress involve the computational simplification aspects and the use of this observer in real-time applications.
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TABLE I :

 I Dynamical structure of FMO for a specific scenario of packet loss

	Case 1: Time t = 2

Availability

Adversary