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A small water-soluble phosphorus-containing dendrimer was engineered for the complexation of gold(I) and for its reduction under
mild conditions. Gold nanoparticles were obtained as colloidal suspensions simply and only when the powdered form of this
dendrimer was dissolved in water, as shown by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy
(EDX) analyses. The dendrimers acted simultaneously as mild reducers and as nanoreactors, favoring the self-assembly of gold
atoms and promoting the growth and stabilization of isolated gold nanoparticles. Thus, an unprecedented method for the synthesis

of colloidal suspensions of water-soluble gold nanoparticles was proposed in this work.

Introduction

Research on nanoparticles (NPs) in general, and gold nanoparti-
cles in particular, results in the generation of thousands of
publications every year, including reviews [1,2]. Different ap-
plications for gold nanoparticles have been proposed, for exam-
ple, in catalysis [3,4] and in biology [5] — especially for bio-
imaging and cancer therapy [6,7]. In most cases, the synthesis
of gold nanoparticles is carried out by the reaction between
HAuCly and a reducing agent (in particular NaBHy) in the pres-

ence of a suitable compound to simultaneously prevent the

aggregation of the nanoparticles and to stabilize them [8,9].
AuClI(tht) (tht = tetrahydrothiophene) has also been shown to be
an interesting precursor of gold nanoparticles, but only in a few

cases [10].

Among the stabilizing agents, dendrimers [11-17] have long
emerged as a powerful stabilizer not only for nanoparticles in
general [18,19] but also specifically for gold nanoparticles [20-

22]. Indeed, due to the well-defined three-dimensional structure
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of dendrimers they are suitable templates for the synthesis of
nanoparticles in the presence of a reducing agent [23] and
prevent nanoparticle aggregation and oxidation [24]. Different
types of dendrimers have been used for the stabilization of
nanoparticles, in particular poly(amidoamine) (PAMAM) [25]
and poly(propylene imine) (PPI) [26]. Phosphorus-containing
dendrimers [27-29] have also been used to stabilize different
nanoparticles made from palladium [30], platinum [31], rutheni-
um (in the presence of a reducer) [32], titanium oxo-clusters
[33,34] and even from crystals of Auss gold clusters [35,36]. In
most cases, the oxidation state of the metal precursor was either
zero (P2, PO, Au®) or four (TiWOQ clusters) and no change in
the oxidation state happened in the nanoparticle metal precur-
sor, except in the case when a reducer was used for the Ru

nanoparticle synthesis.

Commercially available gold nanoparticles are sold as colloidal
suspensions that are generally dissolved either in water or in
buffer. As an alternative to this commonly used method, it
would be convenient to have a stable solid precursor, which
could almost instantly produce gold NPs on demand when dis-
solved in water. The suitable precursor should ideally be a
single component with the following prerequisites: i) be able to
complex gold(I); ii) be a mild reductant; iii) induce the solu-
bility in water; and iv) stabilize the nanoparticles once they are
formed. In this context, specifically designed dendrimers could

meet all these requirements.

Among all the dendrimers that have been synthesized, those in-
corporating P=N-P=S linkages are of particular interest in the
field of nanoparticle synthesis due to the reactivity of this
linkage [37-39] and due to its ability to complex metals, espe-
cially gold(I), with the sulfur atom [40,41]. A recent theoretical
work demonstrated that the highest occupied molecular orbital
of a small dendrimer containing the P=N—P=S linkage is locat-
ed in this linkage with a noticeable electronic delocalization
[42]. Thus, the presence of P=N-P=S linkages in the precursor
is desirable. The precursor should induce the persistent colloidal
stability of the nanoparticles in water. It has been already shown
that the Girard’s T reagent (acethydrazide trimethylammonium
chloride), used as a terminal function in dendrimers, can induce
dendrimer solubility in water, allowing the colloidal stability of
nanolatex covered by such a function and also the formation of
structured hydrogels [43,44]. Hydrazine is a well-known reduc-
tant, which has been used for the seeded growth of gold NPs
[45]. Some derivatives of hydrazine, such as the phenylhydra-
zine, are also used as a reductant [46]; however, to the best of
our knowledge, there is no report on the use of Girard’s
reagents as a reductant. It is known that when in water the
hydrazones and acylhydrazones are in equilibrium with their

hydrolyzed forms (aldehyde and hydrazine), a property which is
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particularly useful for the building of combinatorial libraries
[47,48]. However, this reaction can be largely shifted toward
the hydrazone form. The Girard’s reagent linked to the
dendrimer might act as a water-solubilizing function, as struc-
turing agent in water media, and eventually as a reductant if re-
leased (at least in part) when in solution. In addition, it is impor-
tant to mention that the compound should be obtained after a
minimum number of steps. Thus, it should be small while
having a branched structure for a better stabilization of the gold

nanoparticles, as it will be shown in this paper.

Results

Synthesis and characterization of dendrimers
The potential reducing ability of the Girard’s T reagent toward
AuCl(tht) was verified in water prior to the synthesis and func-
tionalization of the dendrimers. A reaction was rapidly ob-
served at room temperature showing that this reagent is indeed
able to reduce gold. However, the final solution was black and,
therefore, there is no nanoparticle, as shown by UV—-vis spec-
troscopy. Thus, the results suggest that the Girard’s T reagent is
a stronger reductant than the amino acids such as r-histidine,
which have been used to synthesize gold nanoparticles at a
higher temperature (80 °C) [49], or cysteine [50]. The com-
pound 1 was the dendrimer chosen for the functionalization
with the Girard’s T reagent. The synthesis was performed via
the Staudinger reaction between 1,6-bis(diphenylphos-
phino)hexane and a phosphorus azide functionalized by two
aldehydes, as previously published [37]. The ability of com-
pound 1 P=N-P=S linkages to complex gold and to react with
AuCl(tht), yielding compound 2, was demonstrated by a broad-
ening and dramatic signal shift corresponding to the P=S group
in the 3!P nuclear magnetic resonance (NMR) spectra (Figure 1
and Table 1). Indeed, this signal shifted from 52.1 ppm in 1 to
33.7 ppm in 2 (A3 = —18.4 ppm). The attempts to generate the
gold nanoparticles from compound 2 were carried out by adding
water. This compound was not very soluble in water and no
change in the solution color was observed. Therefore, it was
concluded that no reaction occurred and the gold nanoparticles

were not generated.

The second step in the precursor synthesis was the condensa-
tion reaction between the aldehydes of compound 1 with the
Girard’s T reagent, yielding compound 3 as a white powder.
The 3'P NMR spectra of compound 3 were different depending
on the solvent used. When D,0O was used as the solvent, only
the expected set of doublets was observed (21.3 (P=N) ppm and
50.6 (P=S) ppm, Jpp = 29 Hz, Figure S5, Supporting Informa-
tion File 1). However, when DMSO was the solvent used,
several sets of doublets were observed within the same region
(Supporting Information File 1, Figure S6) presumably due to

the presence of both the Z and E-isomers of the hydrazones
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Figure 1: Synthesis of the small phosphorus dendrimers and their complexation with gold toward the synthesis and stabilization of gold nanoparticles

in water.

Table 1: Comparison of the 3'P {TH} NMR data for all the generated compounds.

Compounds 0 P=N (ppm)
12 20.8
22 23.2
3b 21.3
4¢ 23.8

ajin CDCl3; Pin D2O; in MeOH (with a capillary of CgDg).

[51]. These isomers were also detected in the '"H NMR spectra
as two signals corresponding to the CH=N groups (8.13 ppm
and 8.42 ppm) when DMSO was used as the solvent. The reac-
tion completion was confirmed by the disappearance of the
signal corresponding to the aldehydes in the 'H and '3C NMR
spectra. The presence of isomers resulting from the
CH=N-NHC(O)CH;NMej linkage was confirmed in the
13C NMR spectra by the presence of two signals for each car-
bon atom present in this linkage. The complexation of the
dendritic compound 3 with AuCl(tht), yielding compound 4 as a
white powder, was carried out following the same procedure
used to obtain compound 2 from compound 1. Compound 4 was
characterized in the 3!P NMR spectra as a broad signal at
33.2 ppm (P=S—Au, A3 = —-17.4 ppm) and a doublet at 23.8 ppm
(P=N, A8 = +3 ppm) (Table 1). Modifications of the 3!P NMR
chemical shifts are frequently connected with modifications in
the (crystallographic) cone angles. It has been shown, in partic-
ular, that a decrease in the cone angle of the phosphine com-
plexes induces a shielding of the 31p NMR signal [52]. A de-
crease in the cone angle of the substituents around the P=S bond
in the P=N-P=S linkages [53] upon complexation with gold
[54] can be associated with the observed shielding of the
31p NMR chemical signal. In addition, it has been shown that

& P=S (ppm) 2Jpp (Hz)
52.1 35
33.7 27
50.6 29
33.2 (br) 20

the 2/pp coupling constant values decrease when the electron-
withdrawing power of the substituents decreases [55]. The
density functional theory (DFT) calculations on free and
Au-complexed P=N-P=S linkages have shown that a charge is
transferred from the gold atom to the sulfur atom and thus the
electron-withdrawing power of the sulfur towards phosphorus
decreases [42]. This is consistent with the decrease observed for
the 2/pp coupling constant upon complexation (Table 1).

Synthesis of gold nanoparticles and UV—-vis

characterization

The dissolution of compound 4 in organic solvents such as
methanol or DMSO yielded colorless solutions. On the other
hand, when the white powdered form of compound 4 was dis-
solved in water it instantaneously led to a deep red colloidal
suspension, as shown in Figure 2. The red color was a strong
indicator of the presence of gold nanoparticles since this color
corresponds to the surface plasmon resonance wavelength. This
is a well-known phenomenon observed in gold nanoparticles
[56]. Considering that the gold nanoparticles are spherical, the
maximum intensity of the visible spectrum at 545 nm should
correspond to a mean size of ~50 nm for the gold nanoparticles
[57,58]. The shoulder detected at ~630 nm corresponds to the
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longitudinal surface plasmon resonance, and it is characteristic
of the presence of non-spherical gold NPs, in particular rod-like
or triangular NPs [59,60]. The presence of this shoulder shifted
the absorption maximum toward the red wavelength region,
suggesting that the approximate diameter of the gold nanoparti-
cles should be smaller than 50 nm.

0.52
0.50
048
0.46
0.4
042
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24
400 450 500 550 600 650 700 750 800
Wavelength (nm)

Absorbance (a.u.)

Figure 2: The visible spectrum of the colloidal suspension of Au NPs
in water (inset on the right) obtained from compound 4.

Characterization of gold nanoparticles by
transmission electron microscopy

To confirm the spontaneous formation of the gold NPs, trans-
mission electron microscopy (TEM) images were obtained from
a drop of a colloidal suspension of compound 4 in water
(Figure 3). Figure 3A displays images of the NPs with diame-
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ters ranging from 20 to 50 nm (mean value is 28 nm,
Figure 3F). It can be seen from Figure 3B that these nanoparti-
cles have a variety of slightly different shapes. Figure 3C
provides a detailed view of a triangular nanoparticle in which
the layers of the gold atoms in the nanocrystals can be seen.
Figure 3D displays a pentagonal nanoparticle which is consti-
tuted by five associated triangles. Figure 3E shows a hexagonal
nanoparticle with a shape similar to a spherical desert rose
crystal also constituted by associated triangles. An enlargement
of Figure 3C is given in Figure S1 (Supporting Information
File 1), from which an Au—-Au distance of =2.96 A can be
measured. This distance is shorter than what has been seen for
the gold NPs and fibers stabilized by amines (Aul, ca. 3.25 A)
[10], but slightly longer than in the case of gold particles in
silica glass and gold foil (2.84 A) [61] or in bulk gold
(2.88427 A) [10].

The dependence between the gold nanoparticle shape and the
conditions in which they were generated is the subject of a few
studies [62-64]. According to these studies none of the nanopar-
ticles were obtained as a resulted of fast nucleation, which in
turn should lead to spherical and uniform nanoparticles with a
2-5 nm diameter range. On the contrary, the shapes that were
observed here were obtained through a controlled two-step
process named “seed-mediated growth”. The first step of this
process is the generation of very small spherical nanoparticles
that serve as seeds when the conditions are modified by adding
more gold and another reductant [64]. For this work a single

f) Analysis of the size of the gold
nanoparticles from the TEM image a)
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Figure 3: (a—e) TEM images of the gold nanoparticles obtained from the dendrimer compound 4 at different magnifications. (f) Analysis of the size dis-
tribution of the gold NPs from the TEM image (a). Scale bars: 100 nm (a), 20 nm (b), 2 nm (c and €) and 5 nm (d).
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component was used to obtain the shape-controlled nanoparti-
cles (triangles and associated triangles) in an unprecedented

way.

Characterization of gold nanoparticles by

energy-dispersive X-ray spectroscopy

In order to determine the presence and location of the different
elements energy-dispersive X-ray spectroscopy (EDX) analysis
was also performed in parallel with TEM. All the characteristic
X-ray lines expected from the gold L and M series were ob-
served when focusing on the gold nanoparticles (Figure 4A).
The signals obtained from the background (close to the nano-
particles) showed phosphorus and sulfur atoms both coming
from the dendrimers but no gold was detected (Figure 4B). This
result shows that the gold from compound 4 has been entirely
used for the generation of the gold NPs which were stabilized at
their surface by the dendrimers, through their P=S groups.

Discussion

The first step that dictates the process of generating the gold
nanoparticles is the equilibrium of hydrazone/hydrazine.
Indeed, the generation of the gold NPs from compound 4 occurs
only in water which is known to slowly hydrolyze hydrazones.
It is important to highlight that no nanoparticle was generated in
water from compound 2 which does not contain hydrazone link-
ages. The hydrazone/hydrazine equilibrium was also seen when
compound 3 was placed into DMSO-containing water, leading
to the reappearance of a small signal corresponding to the alde-
hydes in the 'H NMR spectrum (Figure S9, Supporting Infor-
mation File 1). The released Girard's T reagent should act as a
reducing agent, as was shown in a preliminary experiment. In

this work, in the case in which compound 4 was used, only a

M series

L series

Beilstein J. Nanotechnol. 2020, 11, 1110-1118.

small amount the of Girard’s T reagent was present in the
colloidal suspension. The reduction mechanism of Au(I) to
Au(0) leading to the gold nanoparticles was not well under-
stood until a theoretical work was published in 2015 [65]. In
this work, it was demonstrated that the first step required for the
nonradical formation of an Au—Au bond was the presence of
hydrogen followed by the insertion of a third gold atom to form
a triangle by self-assembly. The release of only a small quanti-
ty of the Girard’s T reagent was sufficient to induce the first nu-
cleation steps. The cleavage of all the hydrazone linkages would
generate dendrimers 1 or 2 that are insoluble in water; however,
no precipitate was observed. The intact dendrimer 4, on the
other hand, acted as a nanoreactor in water favoring the gold
atoms to self-assemble, promoting growth and stabilization of
the NPs in particular through the sulfur atoms present on the
dendrimers. The dendrimer also ensures the solubility of the
nanoparticles in water, forming colloidal suspensions. Each
dendrimer can act as a bridge at the surface of the gold NPs, in-
creasing their stabilization due to the presence of two P=S
groups. The absence of gold outside the nanoparticles, accord-
ing to the EDX results for the background, indicated that the
gold nanoparticles were obtained in a quantitative yield. The
conditions for clustering the gold NPs were recently studied
[66] and it was shown that heating the gold NPs at a very high
temperature (800 °C) yielded NPs with a pentagonal symmetry
[67]. In this work a very similar structure was obtained, as
shown in Figure 3D; however, due to the presence of the
dendrimers the NPs were obtained here at room temperature.
Even though a better control of the polydispersity is desirable,
other gold nanoparticles of relatively high dispersity have
been recently used for drug delivery in three different cell lines
[68].

Figure 4: EDX spectra (a) for the gold nanoparticles and (b) for the background. The copper comes from the grid used during the experiments.
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Conclusion

In conclusion, we have shown for the first time that a single
compound based on an engineered small dendrimer was able
to produce shape-controlled gold nanoparticles (triangles and
other triangle-associated shapes), simply by adding water,
at room temperature. This precursor (dendrimer 4) is a very
stable white powder that can be safely stored for months (even
years) at room temperature on a shelf in a closed flask and
does not require any specific reagents to generate the gold nano-
particles, such as a reducing agent, heating or the presence of
gold.

This is a novel concept as it only requires the addition of water
for the synthesis of the nanoparticles. This is a safer and an en-
vironmentally viable alternative to all the previous work related
to the synthesis of gold nanoparticles in aqueous colloidal
suspensions. The synthesis process shown here is based on the
use of an original small dendrimer which acts simultaneously as
a mild reducing agent and as a nanoreactor for the self-assembly
of gold atoms, stabilizing the gold nanoparticles and inducing
their water solubility forming colloidal suspensions. It must be
emphasized that currently there is no other example of a compa-
rable process in the literature.

Possible extensions of this work should consider using larger
(but more expensive) dendrimers and polymers to synthesize
NPs with different shapes/sizes and degrees of polydispersity.
In addition, other metals should also be considered as alterna-
tives to synthesize NPs.

Experimental
General synthesis and characterization

procedures

Girard’s T reagent was used as purchased from Sigma-Aldrich
(St. Louis, MO, USA). AuCl(tht) was synthesized according to
a published procedure [69]. Compound 1 was synthesized as
previously reported [37]. All reactions were carried out under
an argon atmosphere using the standard Schlenk techniques. All
the solvents were distilled (pentane over phosphorus pentoxide,
and CH,Cl, over CaH,). 'H, 13C, and 3!P NMR spectra were
recorded with Bruker ARX 250, AV300 or DPX 300 spectrom-
eters (Wissembourg, France). The references for the NMR
chemical shifts are 85% H3POy4 for 31p NMR, SiMey for 'H and
13C NMR. The numbering used for the NMR assignments is
depicted in Figure 5.

Synthesis and characterization of dendrimer
complex 2

107 mg (9.79 x 1072 mmol) of 1 and 73.31 mg (0.229 mmol;
2.3 equiv) of AuCl(tht) (in dry CH,Cl,) were solubilized in a

Beilstein J. Nanotechnol. 2020, 11, 1110-1118.
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Figure 5: Numbering used for the NMR assignment.

10 mL round-bottom flask under argon atmosphere at room
temperature. The solution was stirred for 1 h and evaporated
until dry. Then the product was rinsed with CH,Cl,/pentane
(1:5) and filtered. Next, the crude product was evaporated until
dryness in order to obtain 152.5 mg (quantitative yield) of the
complex 2 as a white foam. 3!'P {'H} NMR (101 MHz, CDCl5)
23.2 (d, ZJpp = 27 Hz, P=N), 33.7 (d, 2Jpp = 27 Hz, P=S);
'H NMR (250 MHz, CDCl5) 1.44 (br s, 8H, CH,), 2.83 (m, 4H,
(CHp)Y), 7.33 (d, 3Jyp = 8 Hz, 8H, CopH), 7.53 (m, 8H, C’,H),
7.63 (m, 12H, C’3H, C’4H), 7.87 (d, 3Jyy = 8 Hz, 8H, C3H),
9.98 (s, 4H, CHO); 13C {!H} NMR (75 MHz, CDCl3) 21.4 (d,
3Jcp = 3.7 Hz, (CHp)3), 26.9 (d, Jep = 65.1 Hz, (CHp)), 29.8
(d, ZJcp = 15.9 Hz, (CH,)?), 122.0 (d, 3Jcp = 5.3 Hz, Cpp),
126.8 (br d, LJcp = 110 Hz, C')), 129.3 (d, 3Jcp = 13 Hz, C'3),
131.5 (d, 2Jcp = 8 Hz, C'), 131.6 (s, Cg3), 133.4 (s, C'y), 133.7
(s, Coq), 155.1 (br s, Cpy), 190.7 (s, CHO).

Synthesis and characterization of dendrimer
3

1.0 g (9.15 mmol) of 1 was solubilized in 50 mL of CHClj in a
100 mL round-bottom flask. A solution containing 616.5 mg
(3.68 mmol; 4.02 equiv) of Girard’s T reagent in 25 mL of
MeOH was added dropwise to the aldehyde solution. The mix-
ture was stirred overnight at room temperature under an argon
atmosphere. The solvent was then evaporated and the crude
product was washed twice with 25 mL of CHCl;. 1.548 g
(quantitative yield) of 3 were obtained as a white powder.
31p {IH} NMR (121 MHz, D,0) 21.3 (d, 2/pp = 29 Hz, P=N),
50.6 (d, ZJpp = 29 Hz, P=S); 'H NMR (300 MHz, DMSO-dj)
1.28 (br m, 8H, CH,), 2.80 (m, 4H, (CH,)!), 3.24-3.38 (m,
36H, CH3-N"), 4.24 and 4.82 (2s, 8H, CH,-N"1), 7.23 (d, 3/yn =
8 Hz, 8H, Cy;H), 7.51 (m, 8H, C’,H), 7.59-7.75 (m, 20H,
Co3H, C’3H, C’4H), 8.13 and 8.42 (2s, 4H, CH=N), 12.18 and
13.12 (2s, 4H, NH); 13C {!H} NMR (75 MHz, DMSO-d;) 21.4
(br, (CHy)%), 25.6 (d, Uep = 65.0 Hz, (CHp)Y), 29.7 (d, 2/ cp =
16.2 Hz, (CH,)?), 53.7 and 53.9 (2s, CH3-N"), 62.7 and 63.8
(2s, CH,N), 122.1 (br s, Cgy), 129.3 (m, C'y), 129.4 (d, 3Jcp =
12 Hz, C'3), 130.2 (s, Cg3), 131.4 (d, ZJcp: = 10.9 Hz, C'y),
133.0 (br s, C'4, Cpsq), 145.1 and 148.4 (2s, C=N), 153.7 (m,
Cop1), 160.3 and 165.8 (2s, C=0).
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Synthesis and characterization of dendrimer

complex 4

163 mg of 3 and 71.1 mg (2.3 equiv) of AuCl(tht) in 5 mL of
MeOH were added to a 10 mL round-bottom flask and solubi-
lized under an argon atmosphere at room temperature. The solu-
tion was stirred for 1 h and then evaporated before being rinsed
with CH,Cly/pentane (1:5) and filtered. Complex 4 was ob-

tained as a white powder (quantitative yield).

31p {IH} NMR (121 MHz, MeOH/C¢Dg) 23.8 (d, 2Jpp = 20 Hz,
P=N), 33.2 (d, ZJpp = 20 Hz, P=S); 'H NMR (250 MHz,
DMSO-dg) 1.30 (br m, 8H, CH,), 2.81 (m, 4H, (CH)"),
3.25-3.46 (m, 36H, CH3-N*), 4.37 and 4.80 (2s, 8H, CH,-N™),
7.24 (d, 3Jyyg = 8 Hz, 8H, CyrH), 7.54 (m, 8H, C’,H),
7.60-7.75 (m, 20H, Co3H, C’3H, C’4H), 8.10 and 8.34 (2s, 4H,
CH=N), 12.10 and 12.80 (2s, 4H, NH); 13C {IH} NMR
(75 MHz, DMSO-dg) 21.4 (br, (CH»)?), 25.7 (d, YJcp =
65.0 Hz, (CHy)Y), 29.7 (d, Zcpr = 16.2 Hz, (CH,)?), 53.7 and
53.9 (25, CH3-N*), 62.7 and 63.7 (2s, CH,N), 122.0 (br s, Cgp),
128.9 (IIl, C']), 129.4 (d, SJCP' =12 HZ, C'3), 130.2 (S, C03),
131.4 (d, ZJcp = 10.9 Hz, C'»), 133.0 (br s, C'4, Coa), 145.1 and
148.3 (2s, C=N), 153.7 (m, Cy;), 160.3 and 165.8 (2s, C=0).

Synthesis and characterization of gold

nanoparticles

0.5 mL of water was added to 30 mg of the powdered
dendrimer complex 4. The dissolution occurred promptly
yielding a colloidal suspension that instantaneously became
deep red. The gold nanoparticles were characterized using a
PerkinElmer Lambda 35 UV-vis spectrometer (Waltham, MA,
USA). TEM and EDX analyses were carried out on a MET
JEOL JEM 2100F — EDS (TEMSCAN, Toulouse) device.

Supporting Information

The supporting information contains an HRTEM image of
a gold nanoparticle showing the gold atomic planes, 3'P,
'H and '3C NMR spectra of the compounds 2 and 3,

TH NMR spectra of a slightly hydrolyzed compound 3 and
31p, 1H and 13C NMR spectra of compound 4.

Supporting Information File 1

Additional HRTEM images and NMR data.
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