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Abstract

This paper introduces a nonparametric scan method for functional data indexed in
space. The scan statistic that we introduce is derived from the Wilcoxon-Mann-Whitney
test statistic defined for infinite dimensional data. It is completely nonparametric as it
does not assume any distribution concerning the functional marks. This scan test seems
to be powerful against any clustering alternative. We apply this method to a data set for
extracting features in Spanish province population growth.
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1 Introduction
Cluster detection has become a fruitful area of statistics that has particulary expanded in recent
decades. It is used to identify aggregations of events in time and/or space. There are several
cluster detection methods used since the work of Naus (1963) and they are applied in a wide
variety of research subjects such as spatial epidemiology (see, Hjalmars et al. (1996)). We
can also notice that they can be used to identify low and high rate spatial clusters of the new
Coronavirus identified in January 2020 in China. In the field of public health, it has become
an important part of the agenda of public health authorities. It allows them for example to
determine the causal factors of temporal or spatial cancer clusters (see, Ramis et al. (2013)).
It is also applied in quality control to determine the clusters of defective products.
One of the most popular cluster detection technique is the scan statistic which was firstly in-
troduced by Naus (1963). It was defined as the maximum number of events observed within a
variable window, known as the scanning window, as it moves over the studied region with a con-
tinuous manner. These scan statistics are used to decide whether exceptional or not observing

∗Corresponding author: zaineb.smida@umontpellier.fr

1



a cluster of events. Specifically, they are random variables used as test statistics to check the
membership to a given distribution of observations, against an alternative hypothesis favouring
the existence of cluster within the observation domain.
During the last decades, since the work of Kulldorff and Nagarwalla (1995) and Kulldorff
(1997), numerous researchers are committed to develop scan statistics. The principle idea in
the article of Kulldorff (1997) lies in the fact of scanning the studied area with circular shaped
windows and select the most likely cluster as the one maximizing the statistic of a likelihood
ratio test. He used either Bernoulli or Poisson model, and tested the clusters’ statistical sig-
nificance via a Monte-Carlo procedure. These innovations gave birth to several works in which
researchers adapted the spatial scan statistics to other models, such as exponential (see, Huang
et al. (2007)), normal (see, Kulldorff et al. (2009)), etc. These likelihood-based methods were
adapted for random variables indexed in time and/or space.
In the multivariate case, Kulldorff et al. (2007) proposed an extension of the scan statistics in
the spatial and spatio-temporal framework which is a combination of the univariate scan statis-
tics but does not take into account the correlation structure of the observed variables. This
problem was recently tackled by Shen and Jiang (2014) and Cucala et al. (2017). However, in
these latter, the scan statistics based on the likelihood ratio are computed when the data follow
a Gaussian model. A natural question arises: how can we detect a spatial cluster when the data
are not Gaussian? In order to overcome this problem, researchers consider the nonparametric
procedures which are applicable in many cases where the data are not drawn from a population
with a specific distribution.
In the last few years, Jung and Cho (2015) and Cucala (2016) proposed separately a spatial
scan statistic that does not need to assume hypotheses on the shape of the distribution. In their
works, they introduced a scan statistic in the univariate setting which is based on the Wilcoxon-
Mann-Whitney test. This test is one of the most popular distribution-free rank tests and it is
applied to verify that two datasets come from identical populations using only the ranks of the
observations. Very recently, Cucala et al. (2019) proposed a nonparametric scan statistic in
the multivariate setting using the multivariate extension of the Wilcoxon-Mann-Whitney test
introduced by Oja and Randles (2004).
Currently, the development of the sensoring and computing tools allows us to work with huge
datasets. Hence, we have more and more access to data of functional type coming from various
fields of applications like environmetrics, biometrics, medecine and econometrics (for more de-
tails see, Ramsay and Silverman (2005)). These types of data are not real random variables or
vectors but they are a collection of random curves (elements) where each sample is considered
as a function.
The statistical progress in Functional data analysis (FDA) deals with several kind of interesting
datasets like spatial functional data and spatial-temporal data (see, Ferraty (2011)). In this
paper, we focus only on the case of functional data presenting spatial dependence which are
defined using process {Xs, s ∈ D ⊂ Rd}, where s is a generic data location in the d-dimensional
Euclidean space (we consider usually d equal to 2), D is a subset of Rd which is fixed and Xs are
functional random curves (elements) valued in a functional space. The main difficulty of such
data is the case of the infinite dimension of the space where data belong (like the Banach and
the Hilbert spaces). Then, appropriate statistical tools are necessary to handle these type of
data, for example to decide whether two samples of curves are issued from the same distribution.

2



In this context, Horvàth et al. (2013) proposed two test statistics using functional data for test-
ing the equality of mean functions. Among these two parametric tests, one is the same as the
Hotelling T 2 test in finite dimensional space. In the nonparametric setting, Chakraborty and
Chaudhuri (2015) proposed an extension of the Wilcoxon-Mann-Whitney test which is based
on functional ranks.
In the present work, we develop a nonparametric scan statistic for spatial functional data and
more precisely for processes valued in infinite dimensional Banach space and particularly in
Hilbert one.
The rest of this paper is organized as follows. In section 2, we explain how the use of the
Wilcoxon-Mann-Whitney statistic proposed by Chakraborty and Chaudhuri (2015) can give
birth to a nonparametric spatial scan statistic for functional data. Then, to evaluate its statis-
tical significance, we introduce a test procedure based on permutations. In section 3, we apply
the spatial scan statistic to simulated datasets firstly to see its performance. Then, we apply
it to a real dataset (demographic evolution over time in Spanish provinces) in order to analyse
the Spanish population structures.

2 Nonparametric spatial scan statistic for functional data

2.1 Statistic construction

Consider X a random element in a separable Banach space χ and let χ∗ be the dual of χ which
is the Banach space of real valued continuous linear functions on χ. We denote by ‖.‖χ a norm
on χ. Let X1, . . . , Xn be observations of X measured in n different spatial locations s1, . . . , sn
included in D ⊂ R2. Following the terminology of point process theory, D is the observation
domain and Xi is the mark associated to location si, for all i = 1, . . . , n.
Our goal is to detect a cluster of unusual marks, i.e. a spatial zone Z ⊂ D in which the
marks are abnormally higher or abnormally lower than elsewhere. In order to do that, we
will consider the scan statistic which is usually defined to be the maximum of a concentration
index observed in a collection of potential clusters using a variable window (see, Nagarwalla
(1996)). Concerning the potential clusters, two main possibilities have been proposed in the
literature. In the first one, the windows have known geometric shapes: rectangular (Loader
(1991), Chen and Glaz (2009)), circular (Kulldorff and Nagarwalla (1995), Kulldorff (1997)),
elliptic (Kulldorff (2006)) or any other shape. In the second one, the windows have irregular
shapes and the procedure to identify the windows is based only on distances between the spatial
locations (see for example, Demattei et al. (2007), Assunção et al. (2006) and Duczmal and
Assunção (2004)).
In this work, without loss of generality, we consider the circular clusters introduced by Kulldorff
(1997). Hence, the set of potential clusters S is defined as follows:

S = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n},

where Di,j is the disc centred on si and passing through sj. We remark that since i might be
equal to j, the number of potential clusters is n2.
Most of the spatial scan statistics which have been designed for univariate or multivariate
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marks are derived from a likelihood ratio, following the initial work by Kulldorff (1997). The
determination of this likelihood ratio is based on a null hypothesis H0 (absence of a cluster)
against an alternative one H1 (presence of a cluster). For example, in the article of Cucala et
al. (2017), all the multivariate marks are supposed to be normally-distributed and independent.
Hence, the null hypothesis considers that all the marks have equal mean vectors and covariance
matrices while the alternative one considers equal covariance matrices and different means inside
and outside the cluster. In the multivariate case, we remark that the likelihood ratio used in the
scan statistic proposed by Cucala et al. (2017) is equivalent to the two-sample T 2 test statistic
defined by Hotelling (1931). The proof can be found in the book of Anderson (2003) (page
171). However, as stated by Cucala (2017), the use of likelihood ratios is not the best method
to compare all the potential clusters. Consequently, we decided to consider the nonparametric
procedures.
In the univariate case, one of the most known nonparametric procedure for testing whether
two samples follow the same distribution is the rank sum test proposed by Wilcoxon (1945).
Another version of this test is due to Mann and Whitney (1947). These two tests are equivalent
and lead to the same test named Wilcoxon-Mann-Whitney (see, Hàjek et al. (1999)).
Recently, Chakraborty and Chaudhuri (2015) proposed an extension of the Wilcoxon-Mann-
Whitney test in the functional case. To construct this test, they defined the functional ranks
associated to the marks X1, . . . , Xn in χ. This latter depends on the spatial sign function. To
define this function, they assumed that the space χ is smooth, i.e., ‖.‖χ is Gâteaux differentiable
at each x 6= 0, x ∈ χ with Gâteaux derivative called SGNx ∈ χ∗. Consequently, the sign function
is defined as follows: ∀h ∈ χ

SGNx(h) =

{
limt→0

‖x+th‖χ−‖x‖χ
t

if x 6= 0

0 if x = 0
.

In the multivariate case, when χ = Rp, p ∈ N, this sign function value is just a direction (a
point on the unit p sphere) (see, Oja and Randles (2004)).
Using this sign function, the functional rank of x ∈ χ is thus defined as Sx = E(SGN{x−X})
with respect to the distribution of the random element X ∈ χ.

Now, we suppose that X1, . . . , Xn are independent observations of X (this is a classical
assumption in scan statistics). Let Z ∈ S be any potential cluster of size nZ , where nZ =∑n

i=1 1(si ∈ Z) and Zc its complement of size nZc = n − nZ . Assume that the marks in Z
and Zc respectively follow probability measures P and Q on a smooth Banach space χ. We
suppose that P and Q differ by a shift ∆ ∈ χ in the location. For testing the hypothesis
H0 : ∆ = 0 (equality of distributions) against H1 : ∆ 6= 0, a Wilcoxon-Mann-Whitney test
statistic extension in such space is defined by Chakraborty and Chaudhuri (2015) as:

TWMW =
1

nZnZc

∑
{i:si∈Z}

∑
{j:sj∈Zc}

SGN{Xj−Xi}.

Assuming that the dual χ∗ is a separable and type 2 Banach space (see, Araujo and Giné
(1980)), Chakraborty and Chaudhuri (2015) proved the following convergence theorem :
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under H0, if nZ/n→ γ ∈ [0, 1] as nZ , nZc →∞, then

(nZnZc/n)1/2(TWMW) converges weakly to G(0,Γ), (1)

where G(m,C) is the distribution of a Gaussian random element in χ with mean m ∈ χ and
covariance C.
Since the covariance function Γ does not depend on nZ and nZc , we can use

U(Z) := (nZnZc/n)1/2TWMW

as a concentration index to compare potential clusters having different population sizes. Thus,
the scan statistic can be defined as the maximum of the concentration index on the set of
potential clusters S previously defined. The nonparametric functional scan statistic (NPFSS)
is

ΛNPFSS = max
Z∈S

U(Z)

and the potential cluster detected, for which Λ NPFSS is obtained, is

Ĉ = arg max
Z∈S

U(Z).

It is named the most likely cluster.

We remark that, in the particular case when the space χ is assumed to be an Hilbert space,
the sign function is equal to SGNx = x

‖x‖χ . Then, the Wilcoxon-Mann-Whitney test statistic
can be rewrited as

TWMW =
1

nZnZc

∑
{i:si∈Z}

∑
{j:sj∈Zc}

Xj −Xi

‖Xj −Xi‖χ
.

Since the Hilbert space χ is a type 2 Banach space, and assuming that it is a separable space,
the convergence result in (1) still holds and the concentration index becomes

U(Z) =
1

(nZnZcn)1/2

∑
{i:si∈Z}

∑
{j:sj∈Zc}

Xj −Xi

‖Xj −Xi‖χ
.

2.2 Computing the scan statistic and its significance

The computation of the scan statistic ΛNPFSS involves the computation of the concentration
index U(Z) for every potential cluster Z ∈ S. However, this index U(Z) is issued from a sum of
nZ × nZc terms so that a naive computation can be very time-consuming. In order to optimize
the computation process, we decided to calculate the indices U(Z) in a very specific order.
Here is an example: let Z and Z ′ be any potential clusters such that Z ′ = Z ∪ sk. Then, the
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concentration index for Z ′ can be obtained from

(nZ′nZ′cn)1/2U(Z ′) =
∑

{i:si∈Z′}

∑
{j:sj∈Z′c}

Xj −Xi

‖Xj −Xi‖χ

=
∑
{i:si∈Z}

∑
{j:sj∈Zc}

Xj −Xi

‖Xj −Xi‖χ

+
∑

{j:sj∈Zc}

Xj −Xk

‖Xj −Xk‖χ
−

∑
{i:si∈Z}

Xk −Xi

‖Xk −Xi‖χ

= (nZnZcn)1/2U(Z)

+
∑

{j:sj∈Zc}

Xj −Xk

‖Xj −Xk‖χ
−

∑
{i:si∈Z}

Xk −Xi

‖Xk −Xi‖χ
.

This set-up requires to iterate over only n elements instead of (nZ − 1) × (n − nZ + 1) and
dramatically decreases the computational cost.

After computing the scan statistic ΛNPFSS and the most likely cluster Ĉ, it is necessary
to evaluate its significance. However, the distribution, under H0, of a variable window scan
statistic has no analytical form. To overcome this problem, Dwass (1957) proposed a test
procedure based on Monte-Carlo simulations allowing to give an approximation of the null
distribution. This method was subsequently extended by Bernard (1963) and Hope (1968). It
relies in comparing the observed scan statistic to the scan statistics obtained using simulated
datasets. The only way to obtain these datasets is by running a method called random labelling
(see, Cucala (2014)): a simulated dataset is obtained by randomly associating the marks Xi

to the spatial locations si. Based on T random permutations, let Λ
(1)
NPFSS, . . . ,Λ

(T )
NPFSS be the

observations of the scan statistics associated to the simulated datasets. Then, as stated by
Dwass (1957), the pvalue of the scan statistic ΛNPFSS, observed in the initial sample, is given by

pvalue =

1 +
T∑
i=1

1{Λ(i)
NPFSS>ΛNPFSS}

T + 1
.

The most likely cluster Ĉ is said to be significant if pvalue is less than the type I error α.

3 Applications

3.1 Simulation study

In this section, we decided to run a simulation study to evaluate the performance of the func-
tional scan statistic ΛNPFSS proposed in the previous section. Then, we compared it with the
univariate spatial scan statistic introduced by Cucala (2016) and denoted by ΛNPUSS. In order
to do that, we replaced curves by their mean values.
Artificial datasets were generated by using the geographic locations of the 94 french adminis-
trative areas named as "départements". Each location associated to each "département" was
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defined as its administrative center. The true cluster, denoted by C, is a set of 8 "départements"
in the Parisian area. We set χ = L2[0, 1] and in each location i = 1, . . . , 94 we consider the
functional marks associated as follows

Xi(t) =
∞∑
k=1

Zkek(t) + ∆(t)1{si∈C},

where for all k > 1, ek(t) =
√

2sin(t/σk) is an orthonormal basis of χ, σk = ((k − 0.5)π)−1

and Zk’s are independent random variables which correspond to the projection of X on the
Karhunen-Loève basis (see, Karhunen (1947), Lévy and Loève (1948)). These marks are
observed at 101 equispaced points in [0, 1]. We have considered two different cases, namely,
Zk/σk having a N (0, 1) distribution (the standard brownian motion) and a t distribution with
5 degrees of freedom.
The probability measures of the marks inside and outside the cluster C differ by a shift ∆. Two
types of shifts ∆ are considered namely, ∆1(t) = ct and ∆2(t) = ct(1− t), c > 0 for all t ∈ [0, 1].
The parameter c is called the cluster intensity.
For each distribution and for different values of the cluster intensity, we generated 100 simulated
datasets to see the performance of the proposed scan statistic ΛNPFSS and the univariate one
ΛNPUSS. To do that, we computed three distinct criteria: the power to detect a significant
cluster, the true positive (TP) rate (also called the sensitivity) and the false positive (FP) rate
(also called the specificity). These three criteria were calculated as follows

- The power of the test was defined as the proportion of datasets exhibiting a significant
cluster with a type I error equal to 0.05 and based on T = 99 permuted samples.

- The TP rate, denoted by %TP, was defined as the mean proportion of the true positive
(TP) "départements" over all simulated datasets. It was calculated as the number of
"départements" included both in the significant cluster Ĉ and in the true cluster C divided
by the number of "departements" included in C.

- The calculation of the FP rate, denoted by %FP, is similar to the TP one. It was defined
as the average proportion of the false negative (FP) "départements" i.e, the number of
"départements" included in the most significant cluster Ĉ but not in the true cluster C
divided by the number of "départements" not included in C.

The following Table 1 and Table 2 gives the results obtained in this simulation study.
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Normal distribution Student distribution
c ΛNPFSS ΛNPUSS c ΛNPFSS ΛNPUSS
0.0 Power 0.060 0.060 0.0 Power 0.040 0.040

%TP 0.500 0.500 %TP 0.750 0.750
%FP 0.475 0.508 %FP 0.512 0.689

0.5 Power 0.110 0.110 1.0 Power 0.170 0.150
%TP 0.580 0.580 %TP 0.743 0.725
%FP 0.325 0.328 %FP 0.276 0.300

1.0 Power 0.210 0.180 1.25 Power 0.210 0.170
%TP 0.810 0.799 %TP 0.798 0.787
%FP 0.259 0.307 %FP 0.172 0.202

1.25 Power 0.250 0.220 1.75 Power 0.450 0.330
%TP 0.815 0.801 %TP 0.914 0.909
%FP 0.209 0.211 %FP 0.113 0.160

1.5 Power 0.360 0.330 2.0 Power 0.580 0.440
%TP 0.889 0.871 %TP 0.940 0.920
%FP 0.125 0.193 %FP 0.110 0.115

1.75 Power 0.620 0.530 2.5 Power 0.780 0.700
%TP 0.923 0.910 %TP 0.955 0.954
%FP 0.094 0.115 %FP 0.078 0.097

2.0 Power 0.800 0.720 3.0 Power 0.920 0.880
%TP 0.975 0.951 %TP 0.977 0.964
%FP 0.072 0.078 %FP 0.047 0.065

2.5 Power 0.960 0.900 3.5 Power 0.980 0.970
%TP 0.969 0.957 %TP 0.983 0.979
%FP 0.052 0.077 %FP 0.024 0.041

3.0 Power 1.000 0.980 4.0 Power 1.000 0.980
%TP 0.995 0.989 %TP 0.996 0.990
%FP 0.021 0.051 %FP 0.021 0.032

Table 1: Simulation study–Power, %TP and %FP results of the functional scan statistic ΛNPFSS

and the univariate one ΛNPUSS when ∆1(t) = ct using two distributions : Normal and Student.
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Normal distribution Student distribution
c ΛNPFSS ΛNPUSS c ΛNPFSS ΛNPUSS
0.5 Power 0.080 0.070 4.0 Power 0.200 0.190

%TP 0.609 0.553 %TP 0.863 0.816
%FP 0.467 0.518 %FP 0.219 0.229

2.5 Power 0.100 0.070 4.5 Power 0.240 0.240
%TP 0.788 0.696 %TP 0.859 0.839
%FP 0.285 0.334 %FP 0.172 0.195

3.5 Power 0.210 0.150 5.0 Power 0.410 0.360
%TP 0.821 0.792 %TP 0.854 0.799
%FP 0.187 0.191 %FP 0.168 0.187

4.0 Power 0.310 0.230 5.5 Power 0.480 0.410
%TP 0.891 0.859 %TP 0.935 0.912
%FP 0.171 0.198 %FP 0.098 0.134

4.5 Power 0.410 0.270 6.0 Power 0.510 0.450
%TP 0.909 0.870 %TP 0.912 0.900
%FP 0.112 0.134 %FP 0.094 0.115

5.0 Power 0.600 0.480 6.5 Power 0.620 0.600
%TP 0.931 0.917 %TP 0.952 0.944
%FP 0.084 0.129 %FP 0.065 0.095

5.5 Power 0.650 0.540 7.0 Power 0.730 0.640
%TP 0.963 0.962 %TP 0.969 0.947
%FP 0.054 0.095 %FP 0.059 0.068

6.0 Power 0.840 0.680 7.5 Power 0.860 0.650
%TP 0.973 0.965 %TP 0.980 0.960
%FP 0.048 0.095 %FP 0.029 0.052

6.5 Power 0.870 0.700 8.0 Power 0.860 0.750
%TP 0.955 0.941 %TP 0.985 0.983
%FP 0.056 0.123 %FP 0.029 0.046

7.0 Power 0.950 0.820 8.5 Power 0.940 0.840
%TP 0.991 0.980 %TP 0.992 0.985
%FP 0.035 0.063 %FP 0.026 0.049

7.5 Power 0.990 0.910 9.5 Power 0.990 0.920
%TP 0.996 0.989 %TP 0.990 0.982
%FP 0.028 0.054 %FP 0.021 0.045

Table 2: Simulation study–Power, %TP and %FP results of the functional scan statistic ΛNPFSS

and the univariate one ΛNPUSS when ∆2(t) = ct(1 − t) using two distributions : Normal and
Student.

9



As expected, the performance of this scan statistic is better with high cluster intensity c
and we can remark that the power of ΛNPFSS is higher than ΛNPUSS in the different cases : this
sounds logical as the first one relies on the whole information of the curves and the second one
only on their mean values. It should be noted that, when c increases:

- The power of the proposed scan statistic in the different cases increases. However, using
the Student distribution, the power of the model increases more slowly than the other
case. This difference can be explained by the fact that the Student distribution is more
heavy-tailed than the Gaussian one.

- The true positive rate %TP in the different cases increases: the detected cluster contains
almost all the true "départements" (8) of the true cluster when c is large.

- The false positive rate %FP in the different cases decreases: a few number of false "dé-
partements" are assigned to the detected cluster when c is large.

3.2 Application to real data

Here, we numerically illustrate how our scan statistic model can be applied to real data. In
particular, we considered data for extracting features in Spanish province population growth
presented in the study of Cronie et al. (2019).
In order to study the structure of population, we considered one of the most important pop-
ulation characteristics which is the demographic evolution. This latter can change over time
because of some factors like birth and death rates, immigration rate or economical situations.
To derive demographical evolution of the Spanish province population, we have used statistical
informations provided by the Spanish Institute of Statistics (www.ine.es). We have taken the
boundary and centre coordinate data of the 47 provinces of Spain (see Figure 1) from the R
package raster (see, Hijmans (2019)). For geographical reasons, we decided to exclude from
the study Baleares and Canarias islands as well as the Spanish autonomous cities (Mellila and
Ceuta) which are located on the Northwest coast of Africa and sharing a border with Morocco.
To each point (centre) i, for i = 1, . . . , 47, we have associated the functional mark Xi, i.e. the
demographic evolution of the Spanish population for 22 distinct years starting from 1998 to
2019 which changes over time (see Figure 2). The demographic evolution was defined as the
number of the total population in each province over the years 1998 to 2019, divided by the
number of the total population in each province in 1998.
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Figure 1: The 47 Spanish provinces and
their geometrical centres.

Figure 2: Demographic evolution in 47
provinces for the years 1998 to 2019

Our objective here is to detect a spatial area where the demographic evolution would be
significantly higher or lower. In order to identify such a cluster, we computed the functional
scan statistic on this dataset: ΛNPFSS = 2.72025. Based on T = 999 permutations, this value is
highly significant (pvalue = 0.001) and the most likely cluster Ĉ is plotted in Figure 3.
This cluster includes 13 locations in the west of Spain (Asturias, Galicia, Extremadura and
the west of Castilla y León) in which the marks are significantly lower than in the rest of the
geographical area studied. In the west part of Castilla y León, the most likely cluster includes
the región leonesa and the west of the Castilla la Vieja (Ávila, Palencia and Valladolid).
We can see the demographic evolution curves associated to the most likely cluster in the Figure 4.

Figure 3: The most likely cluster detected by the functional scan statistic.
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Figure 4: The demographic evolution curves (from 1998 to 2019) in each province are presented.
Curves in red correspond to provinces inside the cluster, curves in black correspond to provinces
outside the cluster.

We can see that this cluster includes the provinces which have the lowest demographic evo-
lution compared to the other provinces of Spain. This can be explained by the increase in
mortality rate and the decrease in birth rate in these regions.
Between the years 2006 and 2018, according to the National Spanish Statistics Institute, the 4
autonomous communities detected in the cluster are the territories which have the lowest birth
rates (per 1000 inhabitants) compared to all the other autonomous communities in Spain. In
particular, the last 2 provinces with the lowest birth rate (per 1000 inhabitants) are Ourense
(6.12 in 2006 and 4.82 in 2018) and Zamora (6.08 in 2006 and 5.13 in 2018). Also, the mortality
rate (per 1000 inhabitants) increases in the provinces belonging to the detected cluster (this
information is provided by the National Spanish Statistics Institute (INE)) and in particular
Zamora has the highest mortality rate (12.46 in 2006 and 15.75 in 2018). Specially, these argu-
ments can illustrate the fact that Zamora has the lowest evolution demographic (see Figure 5)
and is close to becoming a demographic desert.
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Figure 5: The demographic evolution curves (from 1998 to 2019) in each province are presented.
Curves in red correspond to provinces inside the cluster, curves in black correspond to provinces
outside the cluster and curve in green correspond to Zamora which is inside the cluster too.

Moreover, this demographic decrease can be explained by the emigration in the last years of
the youngest population abroad and to other regions of Spain like Cataluña and Madrid where
the average hourly wage is higher and the unemployment rate is lower than the autonomous
cities detected by the nonparametric scan statistic(for more details, see the website of (INE)).

4 Discussion
Nowadays and with the development of modern technology, scientists often observe functional
data instead of univariate and multivariate ones. As a consequence, there is a need for testing
procedures adapted to these infinite dimensional data.
In this work, we have proposed a nonparametric spatial scan statistic using the Wilcoxon-
Mann-Whitney two-sample test for functional data (see, Chakraborty and Chaudhuri (2015)).
This scan statistic allows as to detect clusters using functional data indexed by space without
assuming anything about their distribution.
To do that, we decided to construct a nonparametric spatial scan statistic in the functional
case, similar to the one proposed by Cucala (2016) in the univariate case and the other one
introduced by Cucala et al. (2019) in the multivariate case. First, we proposed a nonparametric
scan statistic for functional data (ΛNPFSS) in Banach space then its equivalent in a particular
case which is Hilbert space. Second, we defined how we can compute its significance using a
Monte-Carlo procedure which provides an approximation to the null distribution. Then, we
used simulation (artificial dataset) and real applications to see the performance of this ΛNPFSS.
In the simulation study, we can see that the ΛNPFSS has a high power when the cluster intensity
is large. It should be noted also that for the Student distribution, the power of the ΛNPFSS
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increases more slowly then the Gaussian distribution but it remains also high for a large cluster
intensity.
We remark that, when the functional marks associated to the spatial locations are time series,
another possibility would be considering spatio-temporal cluster detection such as Kulldorff
et al. (2005). Our approach is completely different since each functional mark is taken as a
whole and cannot be splitted: the goal is to highlight the functional marks exhibiting a different
behaviour on the entire observation domain.
In this work we only focus on the nonparametric procedure for detecting the most likely cluster
using a spatial scan statistic. A perspective would be to develop a functional extension of the
multivariate Gaussian scan statistic introduced by Cucala et al. (2017). Another functional
spatial scan statistic could be proposed using any other two-sample test statistic for functional
data (see, Cuevas et al. (2004), Zhang and Chen (2007), Zhang et al. (2010), Horvàth et al.
(2013), etc.) as long as its asymptotic distribution is known.
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