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Abstract

Dynamic models are simplified representations of some real-world
entities that change over time. They are essential analytical tools with
significant applications, e.g., in environmental and social sciences. The
outputs produced by dynamic models are typically time and/or space
dependent. Due to physical constraints, their parameters cannot be
considered as independent from each others. Also, they can be sig-
nificantly sensitive to variations of input parameters. A global sen-
sitivity analysis (GSA) consists in modeling input parameters by a
probability distribution which propagates through the model to the
outputs. Then, input parameters are ordered according to their con-
tribution on the model outputs by computing sensitivity measures.
In this paper, we extend Shapley effects, a sensitivity measure well
suited for dependent input parameters, to the framework of dynamic
models. We also propose an algorithm to estimate the so-called aggre-
gated Shapley effects and to construct bootstrap confidence intervals
for the estimation of scalar and aggregated Shapley effects. We mea-
sure the performances of the estimation procedure and the accuracy
of the probability of coverage of the bootstrap confidence intervals on
toy models. Finally, our procedure is applied to perform a GSA of an
avalanche flow dynamic model, for which the input/output sample is
obtained from an acceptance-rejection algorithm. More precisely, we
analyze the sensitivity in two different settings: (i) little knowledge on
the input parameter probability distribution, and (ii) well-calibrated
input parameter distribution. Probative linkages between local slope
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and sensitivity indices demonstrate the usefulness of our approach for
practical problems.

1 Introduction

Dynamic models are simplified representations of some real-world entity that
change over time, in equations or computer code. These models are useful
for the analysis of real-world phenomena, e.g., in environmental or social sci-
ences Irwin and Wang [2017]. For a better understanding of a phenomenon
or for forecasting purposes, it might be important to identify which input
parameters entering in the formulation of such dynamic models are influ-
ential on the outputs of interest. Determining these influential parameters
is one aim of global sensitivity analysis (GSA). A global sensitivity analy-
sis (GSA) consists in modeling unknown input parameters by a probability
distribution which propagates through the model to the outputs. Then, in-
put parameters are ordered according to their contribution on the model
outputs by computing sensitivity measures. In the literature, there exists
different global sensitivity measures, e.g., variance based measures such as
Sobol’ indices Sobol’ [1993], Owen [2014], density based measures Borgonovo
[2007], Borgonovo et al. [2016], Veiga [2015], entropy measures Auder and
B. [2008], etc. A review of global sensitivity measures can be found in, e.g.,
Borgonovo and Plischke [2016] or Iooss and Lemâıtre [2015].

Due to modeling constraints inherent to many applications, model input
parameters might be dependent. It happens indeed that input parame-
ters are interrelated by physical constraints, as for example in Radaideh
et al. [2019] modeling the response of a nuclear reactor. In López-Benito
and Bolado-Lav́ın [2017], the input parameters of a natural gas transmis-
sion model are sampled from an acceptance-rejection algorithm thus cannot
be considered as independent (see also Kucherenko et al. [2017]). A par-
ticularity of dynamic models considered in this paper is that the output
they produce are typically time and/or space dependent (see e.g., Alexan-
derian et al. [2020], Lamboni et al. [2011]). More specifically, the application
that motivated our study is an avalanche flow dynamic model (Naaim et al.
[2004]) which produces three outputs: the functional flow velocity and depth
and the scalar runout distance, and depends on some poorly known inputs
Eckert et al. [2008b]. This model is employed for elaborating land-use maps
or for designing defense structures Naaim et al. [2010], Favier et al. [2014a].
Understanding the influence of input parameters on the model outputs is
important for a better comprehension of avalanche phenomenon and for
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determining the most influential parameter on which effort should be con-
centrated. Within a long-term forecasting context (see Section 6), avalanche
samples are obtained from an acceptation-rejection algorithm thus (i) input
parameters are dependent, (ii) input parameters are not necessarily confined
in a rectangular region and (iii) input parameters have unknown probability
distribution. For these reasons, we develop a GSA which can handle com-
plex input parameter probability distributions and functional outputs (or
multivariate outputs if we discretize functional ones).

Although the independence assumption on input parameters is unre-
alistic in many applications, it is traditionally required to interpret or to
compute sensitivity measures. In other words, if input parameters are de-
pendent, some sensitivity measures are difficult to interpret. E.g., if input
parameters are dependent, the functional ANOVA decomposition used for
the interpretation of Sobol’ indices is not unique and Sobol’ indices can ac-
tually sum to greater than one. Some authors have proposed strategies to
estimate variance based sensitivity measures if input parameters are depen-
dent (cite, e.g., Xu and Gertner [2008], Li et al. [2010], Chastaing et al.
[2012], Mara and Tarantola [2012], Kucherenko et al. [2012], Mara et al.
[2015], Zhang et al. [2015], Xu [2013], Hart and Gremaud [2018]). However,
these papers do not provide an univocal way of partitioning the influence
of input parameters on the output. In Jacques et al. [2006], grouped Sobol’
indices are introduced. Grouped Sobol’ indices can be defined if the input
parameters can be splitted in independent groups of dependent parameters,
then a Sobol’ index is attributed to each group, but not to each input pa-
rameter. Other authors have proposed alternative sensitivity measures such
as moment independent sensitivity measures (see, e.g., Borgonovo [2007]) or
have adapted existing procedures to the framework of dependent input pa-
rameters (see, e.g., the screening procedure presented in Ge and Menendez
[2017]). A more complete review of this literature can be found in Iooss and
Prieur [2019].

The Shapley effects are a variance based sensitivity measure proposed
by Owen [2014], which is meaningful in the framework of dependent input
parameters Owen and Prieur [2017]. This measure is based on the Shapley
value which is a cooperative game theory concept. Briefly speaking, Shapley
value ensures a fair distribution of a gain among team players according
to their individual contributions. As a sensitivity measure, Owen [2014]
adapted the Shapley value into the Shapley effects by considering model
input parameters as players and the gain function as the output variance.
The main advantage of such an approach is that it is possible to attribute a
non negative sensitivity index to each parameter, and the sum of the indices
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is equal to one Broto et al. [2020], Iooss and Prieur [2019].
Regarding the estimation of the Shapley effects, Song et al. [2016], Broto

et al. [2020] and Plischke et al. [2020] proposed estimation algorithms. Song
et al. [2016] proposed two estimators for Shapley effects. Benoumechiara,
Nazih and Elie-Dit-Cosaque, Kevin [2019] proposed bootstrap confidence
intervals for Song et al. [2016] estimators. Plischke et al. [2020] proposed
an estimation algorithm based on the Möbious inverse to reduce estimation
computational cost. In fact, it is well known that Shapley effects estimation
is costly. In the algorithm proposed in Song et al. [2016], it is assumed
that it is possible to sample from the distribution of a subset of the input
parameters conditionally to the complementary set of input parameters. In
Broto et al. [2020], the authors proposed given data estimators based on
nearest-neighbor, which can be computed from an i.i.d. sample of input
parameters, which is in general more convenient for real applications. It is
worth to mention that given data estimators of Sobol’ indices have also been
proposed in the literature: we can cite the EASI spectral method of Plischke
[2010], Plischke et al. [2013] which relies on the notion of class-conditional
densities, the nonparametric estimation methods of Da Veiga and Gamboa
[2013] or Soĺıs [2019], the fully Bayesian given data procedure proposed by
Antoniano-Villalobos et al. [2019], and more recently in Gamboa et al. [2020]
estimators based on rank statistics. But even if Sobol’ indices estimation
is available when input parameters are dependent, their interpretation is
still difficult. Shapley effects have been studied in other works, e.g., Iooss
and Prieur [2019] analyzed the effect of linear correlation between Gaussian
inputs on the Shapley effects. Shapley effects have been also used in real ap-
plication e.g., in a nuclear application where inputs are correlated Radaideh
et al. [2019], and in the multi-physic coupling modeling of a rod ejection
accident in a pressurized water reaction Delipei [2019]. Finally, Rabitti and
Borgonovo [2019] extended Shapley effects to also provide information about
input interactions.

In this work, we extend Shapley effects to multivariate or functional out-
puts in the framework of dependent input parameters. When outputs are
multivariate or functional, it is possible to compute a sensitivity Shapley
effect for each component of the output. However this approach leads to re-
sults that are difficult to interpret Alexanderian et al. [2020] or particularly
redundant if we consider the case of discretized functional outputs Lamboni
et al. [2009]. Lamboni et al. [2009] and Gamboa et al. [2013] extended Sobol’
indices to multivariate or functional outputs. Alexanderian et al. [2020] ex-
tended Sobol’ indices to time-dependent outputs. Following these papers,
we introduce and study the properties of what we call aggregated Shapley
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effects. If the output dimension is high (as it is the case, e.g., when consid-
ering the discretization of a functional output), a dimension reduction can
be applied as a preliminary step to estimate efficiently aggregated Shapley
effects. We use the Karhunen-Love (KL) expansion as in Lamboni et al.
[2009], Alexanderian et al. [2020]. More precisely to perform KL expansion,
we use the functional principal component analysis proposed by Yao et al.
[2005]. The extension of Shapley effects to multivariate outputs has been
early studied in Delipei [2019], but here we analyze more deeply its defi-
nition, properties and estimation. We also provide a bootstrap algorithm
to estimate confidence intervals for scalar and aggregated Shapley effects
motivated by Benoumechiara, Nazih and Elie-Dit-Cosaque, Kevin [2019].
Eventually, we perform the GSA of our avalanche flow dynamic model in
two different settings: (i) little knowledge on the input parameter probabil-
ity distribution, and (ii) well-calibrated input parameter distribution (Eckert
et al. [2010]).

The paper is organized as follows. In Section 2, aggregated Shapley
effects and their main properties are described. In Section 3, we propose
an estimator for aggregated Shapley effects in a given data framework by
extending the Monte-Carlo nearest-neighbor estimator of scalar Shapley ef-
fects introduced in Broto et al. [2020]. At the end of the section, we describe
the functional principal components analysis algorithm to perform model di-
mension reduction proposed by Yao et al. [2005]. In Section 4, we propose
a bootstrap algorithm to construct confidence intervals of the scalar and
aggregated Shapley effect estimations based on Benoumechiara, Nazih and
Elie-Dit-Cosaque, Kevin [2019]. In Section 5, we test our estimation pro-
cedure on two toy models: a multivariate linear Gaussian model and the
mass-spring model. Finally in Section 6, our GSA procedure is applied to
our avalanche dynamic model. We discuss our conclusions and perspectives
in Section 7.

2 Aggregated Shapley effects

Shapley effects are sensitivity measures to quantify input importance pro-
posed by Owen [2014]. These measures are particularly useful when inputs
are dependent. Shapley effects are based in the concept of Shapley value,
introduced in the framework of game theory Shapley [1953], which consists
into dividing a game gain among a group of players in an equitable way. As
sensitivity measures, Shapley effects consider model inputs as players and
output variance as game function. Shapley effects can be naturally extended
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to multivariate output models by following the ideas presented in Gamboa
et al. [2013] and Lamboni et al. [2009] to generalize Sobol’ indices to multi-
variate output models (see also Alexanderian et al. [2020] for time-dependent
models). We call these new sensitivity measures aggregated Shapley effects.

2.1 Definition

Let us define Y = (Y1, . . . , Yj , . . . , Yp) = f(X) the p multivariate output
of a model f that depends on d random inputs X = (X1, . . . , Xd). The
inputs are defined on some probability space (Ω,F ,PX) and f ∈ L2(PX).
For any u ⊆ {1, . . . , d}, let us define −u = {1, . . . , d} \ u its complement.
We set Xu = (Xi)i∈u. Note that the inputs are not necessary independent.
In the framework of our application to avalanche modeling, the model pro-
duces outputs of the form Y = (Y1 = f(s1,X), . . . , Yp = f(sp,X)), with
s1, . . . , sp ∈ R the p discretization points along the avalanche corridor.

In this section we recall the definition and main properties of the Shap-
ley value, on which the definition of Shapley effects is based. Given a set of
d players in a coalitional game and a charateristic function val : 2d → R,
val(∅) = 0, the Shapley value (φ1, . . . , φd) is the only distribution of the
total gains val({1, . . . , d}) to the players satisfying the desirable properties
listed below:

1. (Efficiency)
∑d

i=1 φi = val({1, . . . , d}).

2. (Symmetry) If val(u∪{i}) = val(u∪{`}) for all u ⊆ {1, . . . , d}−{i, j},
then φi = φ`.

3. (Dummy) If val(u ∪ {i}) = val(u) for all u ⊆ {1, . . . , d}, then φi = 0.

4. (Additivity) If val and val’ have Shapley values φ and φ′ respectively,
then the game with characteristic function val+val’ has Shapley value
φi + φ′i for i ∈ {1, . . . , d}.

It is proved in Shapley [1953] that according to the Shapley value, the
amount that player i gets given a coalitional game (val, d) is:

φi =
1

d

∑
u⊆−{i}

(
d− 1

|u|

)−1
(val(u ∪ {i})− val(u)) ∀i ∈ {1, . . . , d}. (1)

The Shapley value also satisfies the linearity property:
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5. (Linearity) Let λ ∈ R, if λval and val have Shapley values φ′ and φ,
then φ′i = λφi for all i ∈ {1, . . . , d}.

The linearity property is used to prove some of the nice properties of
aggregated Shapley effects (see Propositions 1 and 2 further).

The Shapley effects are defined by considering the characteristic function
of the game as:

valj(u) =
Var (E(Yj |Xu))

Var(Yj)
, u ⊆ {1, . . . , d} (2)

in Equation (1). Thus, the scalar Shapley effect of input i in output j is
defined as:

Shji =
1

dVar(Yj)

∑
u⊆−{i}

(
d− 1

|u|

)−1
(Var (E(Yj |Xu∪i))−Var (E(Yj |Xu))) .

(3)
Shapley effects can be naturally extended to models with multivariate

outputs following ideas from Gamboa et al. [2013] and Lamboni et al. [2009]
where authors proposed to extend Sobol’ indices to multivariate outputs.
Aggregated Shapley effect of an input i is then defined as:

GShi =

∑p
j=1 Var(Yj)Sh

j
i∑p

j=1 Var(Yj)
, (4)

where Shji is the scalar Shapley effect of input Xi in output Yj . This
sensitivity measure is a weighted sum of the scalar Shapley effects where
weights correspond to the proportion of the variance of each output over
the sum of all individual variances.

2.2 Properties

In this section, we prove some nice properties of aggregated Shapley effects.

Proposition 1. The aggregated Shapley effects GShi, i ∈ {1, . . . , d}, corre-
spond to the Shapley value with characteristic function defined as:

val(i) =

∑p
j=1 Var(Yj)valj(i)∑p

j=1 Var(Yj)
. (5)
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Proof. The proof is straightforward. It is a direct consequence of the linear-
ity and additivity properties of the Shapley value. Let i ∈ {1, . . . , d} and
j ∈ {1, . . . , p}. The characteristic function valj (see Equation 2) has Shapley

value Shji , i ∈ {1, . . . , d}. Thanks to the linearity and additivity properties
(see properties 4. and 5. of the Shapley value), the characteristic function∑p

j=1 Var(Yj)valj(i)∑p
i=1 Var(Yj)

leads to the Shapley value
∑p

j=1 Var(Yj)Sh
j
i∑p

i=1 Var(Yj)
·

The characteristic function (5) can be written in matricial form:

val(i) =

∑p
j=1 Var(Yj)valj(i)∑p

i=1 Var(Yj)
=

∑p
j=1 Var(E(Yj |Xi))∑p

i=1 Var(Yj)
=
tr(Σi)

tr(Σ)
(6)

where Σi is the covariance matrix of E(Y|Xi) and Σ is the covariance
matrix of Y. Note that the characteristic function val of aggregated Shap-
ley effects corresponds to the definition of the aggregated Sobol’ indices
introduced in Lamboni et al. [2009], Gamboa et al. [2013]. In the next
proposition, we prove that aggregated Shapley effects accomplish the natu-
ral requirements for a sensitivity measure mentioned in Proposition 3.1 in
Gamboa et al. [2013].

Proposition 2. Let i ∈ {1, . . . d}. The following items hold true.

i. 0 ≤ GShi ≤ 1.

ii. GShi is invariant by left-composition by any nonzero scaling of f ,
which means, for any λ ∈ R, the aggregated Shapley effect GSh′i of
λf(X) is GShi.

iii. GShi is invariant by left-composition of f by any isometry of Rp, which
means, for any O ∈ Rp×p such that OtO = I, the aggregated Shapley
effect GSh′i of Of(X) is GShi for all i ∈ {1, . . . , d}.

Proof. i. As for all j ∈ {1, . . . , p} 0 ≤ Shji ≤ 1 and as the sum of the
non negative weights Var(Yj)/

∑p
`=1 Var(Y`) is one, we deduce that 0 ≤

GShi ≤ 1. ii. Note that GSh′i can be written as GSh′i =
∑p

j=1 Var(λYj)Sh
′j
i∑p

j=1 Var(λYj)
,

where Sh′ji is the Shapley effect associated to the characteristic function val′j .

Notice that val′j(i) =
Var(E(λYj |Xi))

Var(λYj)
= valj(i). Thus, Sh

′j
i = Shji from where

GSh′i = GShi which means the aggregated Shapley effect is invariant by
any nonzero scaling of f . iii. Let us write g(X) = Of(X) = OY = U. The
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characteristic function associated to the aggregated Shapley effect GSh′i of
U is then (see Equation eq. (6)) val’(i) = tr(ΣU

i )/tr(ΣU) where ΣU
i is the

covariance matrix of E(U|Xi) and ΣU is the covariance matrix of U. Then,

val’(i) =
tr(ΣU

i )

tr(ΣU)
=
tr(OΣY

i O
t)

tr(OΣYOt)
=
tr(ΣY

i )

tr(ΣY)
= val(i).

As val(i) has an unique Shapley value GShi, val′(i) has Shapley value
GShi which proves that GSh′i = GShi for all i ∈ {1, . . . , d}.

In this section, we have proven that aggregated Shapley effects are sen-
sitivity measures. In the next section, we describe the estimation procedure
we propose for aggregated Shapley effects, based the estimation procedure
of scalar Shapley effects proposed in [Broto et al., 2020, Section 6] when
observing an i.i.d. sample of (X,Y). Such a procedure, which does not
require a specific form for the design of experiments is also called given data
procedure.

3 Estimation procedure for scalar and aggregated
Shapley effects

The aggregated Shapley effect estimation procedure we propose in this sec-
tion is based on the given data estimation procedure of the scalar Shapley
effects introduced in [Broto et al., 2020, Section 6.1.1.]. In the application
we consider in Section 6, samples are constructed using acceptance-rejection
rules. Therefore the standard pick-freeze estimation procedure (see, e.g.,
Janon et al. [2014]) can not be used as it is based on a specific pick-freeze
type design of experiments. It is the reason why we turn to the given data
estimation procedure of scalar Shapley effects introduced in [Broto et al.,
2020, Section 6.1.1.]. For sake of clarity, we first present the estimation
procedure for scalar Shapley effects in Section 3.1 before extending it to the
estimation of aggregated Shapley effects in Section 3.2.

3.1 Double Monte Carlo given data estimation of scalar Shap-
ley effects

As noticed in [Song et al., 2016, Theorem 1], replacing the characteris-
tic function c̃j(u) = Var(E(Yj |Xu)) by the characteristic function cj(u) =
E(Var(Yj |X−u)) with u ⊆ {1, . . . , d} in Equation eq. (3) does not change
the definition of Shapley effects. Moreover, as pointed in Song et al. [2016]
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(based on the work in Sun et al. [2011]), the double Monte Carlo estimator
of c̃j(u) can suffer from a non neglectable bias if the inner loop sample is
small, while in contrast the double Monte Carlo estimator of cj(u) is unbi-
ased for any sample size. For that reason, we turn to the double Monte Carlo
estimator of cj(u). To estimate the scalar Shapley effects from the estimates
of cj(u), u ⊆ {1, . . . , d}, the two aggregation procedures are discussed in
[Broto et al., 2020, Section 4], the random permutation aggregation proce-
dure, and the subset aggregation procedure. We focus in this work on the
subset aggregation procedure as it allows a variance reduction. Note that
cj(∅) = 0 and that cj({1, . . . , d}) = Var(Yj), which is assumed to be known
in Broto et al. [2020], and that is estimated by the empirical variance in the
present paper. As already mentioned, we consider the given data version
for the subset aggregation procedure with double Monte Carlo introduced
in [Broto et al., 2020, Section 6.1.1.] for the estimation of scalar Shapley
effects. More precisely, given a n sample (X(i),Y(i)), 1 ≤ i ≤ n of (X,Y),
we define:

ĉj(u) =
1

Nu

Nu∑
`=1

Êju,s` with (7)

Êju,s` =
1

NI − 1

NI∑
i=1

(
fj

(
X(k−u

n (s`,i))
)
− 1

NI

NI∑
h=1

fj

(
X(k−u

n (s`,h))
))2

(8)

with the notation fj(X) = Yj . For ∅  v  {1, . . . , d}, the index kvn(l,m)

denotes as in [Broto et al., 2020, Section 6] the index such that X
kvn(l,m)
v

is the (or one of the) m-th closest element to X
(l)
v in (X

(i)
v )1≤i≤n and such

that (kvn(l,m))1≤m≤NI
are two by two distinct and (s`)1≤`≤Nu is a sample of

uniformly distributed integers without replacement in {1, . . . , n}. NI andNu

are respectively the Monte-Carlo sample sizes for the conditional variance
and expectation. The choice of these two parameters is discussed further.
In [Broto et al., 2020, Theorem 6.6.], it is proved that under theoretical
assumptions, ĉj(u) converges in probability to cj(u) when n and Nu go to
∞. The algorithm that consists in estimating scalar Shapley effects by
plugging eq. (7) in Equation eq. (3) is called subset aggregation procedure:

Ŝh
j

i =
1

d σ̂2j

∑
u⊆−i

(
d− 1

|u|

)−1
(ĉj(u ∪ {i})− ĉj(u)) (9)

where σ̂2j is the empirical estimator of Var(Yj). Note that, in the subset
aggregation procedure, Nu depends on each ∅  u  {1, . . . , d}.
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Finally, we discuss the choice of NI and Nu for all ∅  u  {1, . . . , d}.
We set as in Broto et al. [2020] NI = 3 and we choose Nu according to the
rule proposed in [Broto et al., 2020, Proposition 4.2.] which aims at mini-

mizing
∑d

i=1 Var(Ŝh
j

i ) for a fixed total cost κ
∑
∅ u {1,...,d}Nu = Ntot fixed

by the user. Note that the optimal values N∗u =
⌊
Ntot

(
d
|u|
)−1

(d− 1)−1
⌋
,

∅  u  {1, . . . , d}, do not depend on 1 ≤ j ≤ p. The optimal values N∗u are
computed under theoretical assumptions that are not satisfied for the given
data version of the estimators. However, numerical experiments in Broto
et al. [2020] show that this choice performs well in practice. Note that the
estimator cost in terms of number of model evaluations is n while the cost in
terms of nearest-neighbors search is Ntot. In [Broto et al., 2020, Proposition
6.12.], it is proved that under theoretical assumptions the scalar Shapley ef-

fect estimators Ŝh
j

i converge to the scalar Shapley effects in probability when
n and Ntot go to ∞. Once more, although theoretical assumptions for the
convergence are not guaranteed in the applications, numerical performance
of the estimators have been demonstrated in Broto et al. [2020].

3.2 Estimator of the aggregated Shapley effects

Given scalar Shapley effect estimators whose definition is recalled in the
previous section, we propose to estimate the aggregated Shapley effects by:

ĜShi =

∑p
j=1 σ̂

2
j Ŝh

j

i∑p
j=1 σ̂

2
j

=
1

d
∑p

j=1 σ̂
2
j

p∑
j=1

∑
u⊆−i

(
d− 1

|u|

)−1
(ĉj(u ∪ {i})− ĉj(u)) ,

(10)
with σ̂2j the empirical estimator of Var(Yj) and ĉj(u) defined by (7).

3.3 Dimension reduction: functional principal component
analysis

If model f is space or time-dependent, inspired by Alexanderian et al. [2020]
and Lamboni et al. [2009], we perform a Karhunen-Loève (KL) expansion
to obtain a low-rank model representation. In fact, aggregated Shapley
effects might be computed more effectively in a low-rank representation. To
perform KL expansion, we use the principal component analysis through
conditional expectation (PACE) method proposed by Yao et al. [2005] (see
also Antoniadis et al. [2012] for an illustration of its application). More
precisely, we have a collection of n independent trajectories of a smooth
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random function f(.,X) with unknown mean µ(s) = E(f(s,X)), s ∈ τ ,
where τ is a bounded and closed interval in R, and covariance function
G(s1, s2) = Cov(f(s1,X), f(s2,X)), s1, s2 ∈ τ . We assume that G has a
L2 orthogonal expansion in terms of eigenfunction ξk and non increasing
eigenvalues λk such that:

G(s1, s2) =
∑
k≥1

λkξk(s1,X)ξk(s2,X), s1, s2 ∈ τ.

The KL orthogonal expansion of f(s,X) is:

f(s,X) = µ(s) +
∑
k≥1

αk(X)ξk(s) ≈ µ(s) +

q∑
k=1

αk(X)ξk(s), s ∈ τ, (11)

where αk(X) =
∫
τ f(s,X)ξk(s)ds is the k-th functional principal compo-

nent (fPC) and q is a truncation level. For fPCs estimation, the authors in
Yao et al. [2005] propose first to estimate µ̂(s) using local linear smoothers
and to estimate Ĝ(s1, s2) using local linear surface smoothers (Fan and Gi-
jbels [1996]). The estimates of eigenfunctions and eigenvalues correspond
then to the solutions of the following integral equations:∫

τ
Ĝ(s1, s)ξ̂k(s1)ds1 = λ̂k ξ̂k(s), s ∈ τ,

with
∫
τ ξ̂(s)ds = 1 and

∫
τ ξ̂k(s)ξ̂m(s) = 0 for all m 6= k ≤ q. The problem

is solved by using a discretization of the smoothed covariance (see further
details in Rice and Silverman [1991] and Capra and Müller [1997]). Finally,
fPCs α̂k(X) =

∫
τ f(s,X)ξ̂k(s)ds are solved by numerical integration.

Aggregated Shapley effects are approximated using the low rank KL
model representation with truncation level q, in other words, they are com-
puted with only the q first fPCs:

G̃Shi =
1

d
∑q

k=1 λk

q∑
k=1

∑
u⊆−i

(
d− 1

|u|

)−1 (
E(Var(αk(X)|Xu∪{i}))− E(Var(αk(X)|Xu))

)
.

(12)
Remark eq. (12) can be estimated as eq. (10).

In unreported numerical test cases, we noticed that using the same sam-
ple to perform fPCA and to estimate the Shapley effects provides better
results than splitting the sample in two parts.
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4 Bootstrap confidence intervals with percentile
bias correction

Confidence intervals are a valuable tool to quantify uncertainty in estima-
tion. We consider non parametric bootstrap confidence intervals with bias
percentile correction (see, e.g., Efron [1981], Efron and Tibshirani [1986]).
More precisely, we propose to construct confidence intervals, with a block
bootstrap procedure, following ideas in Benoumechiara, Nazih and Elie-Dit-
Cosaque, Kevin [2019]. Indeed, bootstrap by blocks is necessary to preserve
the nearest-neighbor structure in Equation eq. (8) and to avoid potential
equalities in distance (see Assumption 6.3 in Broto et al. [2020]). We de-
scribe in algorithm 1 how to create B bootstrap samples for scalar Shapley

effect estimators Ŝh
j

i and aggregated Shapley effect estimators ĜShi, and
then we describe the percentile bias correction method.

If model output is scalar, only Steps 1 to 3 of algorithm 1 should be
used. The block bootstrap procedure is described by Steps 3.1 to 3.3. Also,
the same sample (x,y) is used to estimate the variance of the outputs Yj ,
1 ≤ j ≤ p, and the Shapley effects. In unreported numerical experiments, we
noticed once more that using one sample gives better results than splitting
the sample in two parts: one for estimating the variance of the outputs, and
the other to estimate the Shapley effects.

For 1 ≤ i ≤ d, 1 ≤ j ≤ p, let Ri = {ĜSh
(1)

i , . . . , ĜSh
(B)

i } and

Rji = {Ŝh
j,(1)

i , . . . , Ŝh
j,(B)

i }, the bias-corrected percentile method presented
in Efron and Tibshirani [1986] is applied. Let us denote by Φ the standard
normal cumulative distribution function and by Φ−1 its inverse. A bias cor-

rection constant z0, estimated as ẑ0 = Φ−1
(

#{ĜSh
(b)

i ∈Ri s. t. ĜSh
(b)

i ≤ĜShi}
B

)
is computed (similar for Ŝh

j

i ). Then, the corrected quantile estimate q̂(β)
for β ∈]0, 1[ is defined as q̂i(β) = Φ(2ẑ0 + zβ), where zβ satisfies Φ(zβ) = β.
Corrected bootstrap confidence interval of level 1 − α is estimated by the
interval whose endpoints are q̂i(α/2) and q̂i(1− α/2).

To guarantee the validity of the previous BC corrected confidence inter-
val [q̂i(α/2), q̂i(1 − α/2)], there must exist an increasing transformation g,

z0 ∈ R and τ > 0 such that g(ĜShi) ∼ N (GShi − τz0, τ2) and g(ĜSh
∗
i ) ∼

N (ĜShi − τz0, τ2) where ĜSh
∗
i is the bootstrapped ĜShi for fixed sample

(see Efron [1981]). Normality hypothesis can be tested using traditional nor-
mality tests as Shapiro test or using graphical methods as empirical normal
quantile-quantile plots. In our application and test cases, we observed that
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Algorithm 1 B bootstrap samples for Ŝh
j

i and ĜShi

Inputs: (i) A n i.i.d. random sample (xk,yk)k∈{1,...,n} with xk ∈ Rd and

yk ∈ Rp. (ii) For each ∅  u  {1, . . . , d}, a Nu random sample (s`)1≤`≤Nu

from {1, . . . , n}.
Outputs: B bootstrap samples for Ŝh

j

i and ĜShi.
for b = 1 to b = B do

1. Create a n bootstrap sample y(b) by sampling with replacement from
the rows of y.

2. Compute, for 1 ≤ j ≤ p, σ̂2,(b)j the empirical variance of y
(b)
j .

3. For each j ∈ {1, . . . , p}:
3.1. For all u and for all (s`)1≤`≤Nu compute Êju,s` using eq. (8).

3.2. For all u, create a Nu bootstrap sample Ê
j,(b)
u,s` by sampling with

replacement from
(
Êju,s`

)
1≤`≤Nu

computed in Step 3.1.

3.3. Compute ĉj
(b)(u) = 1

Nu

∑Nu
`=1 Ê

j,(b)
u,s` for all u using eq. (7).

3.4. Compute the b bootstrap sample of Ŝh
j

i according to eq. (9):

Ŝh
j,(b)

i =
1

d σ̂
2,(b)
j

∑
u⊆−i

(
d− 1

|u|

)−1 (
ĉj

(b)(u ∪ {i})− ĉj(b)(u)
)
.

4. Compute the b bootstrap sample of ĜShi using eq. (10):

ĜSh
(b)

i =
1

d
∑p

j=1 σ̂
2,(b)
j

p∑
j=1

∑
u⊆−i

(
d− 1

|u|

)−1 (
ĉj

(b)(u ∪ {i})− ĉj(b)(u)
)
.

end for
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g can be chosen as the identity. To prove empirically the performance of
the procedure described in algorithm 1, we compute the empirical probabil-
ity of coverage (POC) of simultaneous intervals using Bonferroni correction.
The POC with Bonferroni correction is the probability that the interval
[q̂i(α/(2d)), q̂i(1 − α/(2d))] contains GShi for all i ∈ {1, . . . , d} simultane-
ously. To be more precise, if the confidence intervals are computed in N
independent samples of size n of (X,Y). The POC is estimated as P̂OC =∑N

k=1
wk

N , where wk is equal to 1 if q̂i(α/(2d)) ≤ GShi ≤ q̂i(1− α/(2d)) for
all i, and 0 otherwise.

5 Test cases

In this section, we numerically study the performance of the estimation pro-
cedure and the probability coverage of the boostrap confidence intervals we
introduced in the previous section. We consider two test cases: a multivari-
ate linear Gaussian model and the functional mass spring model proposed
in the work of Gamboa et al. [2013]. To estimate the scalar Shapley effects,
we use the function shapleySubsetMc of the R package sensitivity corre-
sponding to the estimation procedure defined by (7), (8) and (9). Functional
PCA is performed using the R package FPCA Chen et al. [2020].

5.1 Multivariate linear Gaussian model

We consider a multivariate linear model with two Gaussian inputs based on
the example from Iooss and Prieur [2019]. For this toy function, there is an
analytical expression of the scalar and aggregated Shapley effects (see Iooss
and Prieur [2019]).

The model f is defined as Y = f(X) = BTX with X ∼ N (µ,Γ), Γ ∈
Rd×d a positive-definite matrix and B ∈ Rd×p. In this example, we consider
d = 2 and p = 3 which means Y = (Y1, Y2, Y3). The variance of the centered
random variables X1 and X2 are equal to σ21 = 1 and σ22 = 3, respectively
and their correlation ρ = 0.4. Thus the covariance matrix of X is given by:

Γ =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
=

[
1 0.69

0.69 3

]
,

and the coefficients of B = (βij) ∈ R2×3 are chosen as:

B =

[
1 4 0.1
1 3 0.9

]
.

15



The variance of the output Yj with j ∈ {1, 2, 3} is σ2Yj = β21jσ
2
1 +

2ρβ1jβ2jσ1σ2 + β22jσ
2
2.

The scalar Shapley effects are:

σ2Yjφ
j
1 = β21jσ

2
1

(
1− ρ2

2

)
+ ρβ1jβ2jσ1σ2 + β22σ

2
2

ρ2

2
,

σ2Yjφ
j
2 = β22jσ

2
2

(
1− ρ2

2

)
+ ρβ1jβ2jσ1σ2 + β21σ

2
1

ρ2

2
.

Then, the aggregated Shapley effects for i ∈ {1, 2} are calculated accord-
ing to eq. (10).

First, we focus on scalar Shapley effect estimation and the associated
confidence intervals, for example scalar Shapley effects for Y1 output. For
Y1 output, the most important input is X2 with a Shapley effect of 0.66. In
fig. 1, we analyze estimation accuracy and POC evolution in function of n
and Ntot. n and Ntot values are fixed according to our computation budget.
For each combination of n and Ntot, N = 300 independent random samples
are used. To estimate the bootstrap confidence intervals, we use B = 500
bootstrap samples. The 95% quantile of the absolute error are displayed.
Scalar Shapley effects estimation depends on n and Ntot. As expected, bias
decreases when n and Ntot increase. If n is fixed, bias decreases when Ntot

increases. In particular, bias is the smallest with n = 5000 and Ntot = 1000.
Regardless sample sizes, POCs estimated vary around 0.9 as expected.

The estimation of the bias for aggregated Shapley effects and the POC
evolution by varying n and Ntot are displayed in fig. 2. Similarly as for scalar
effects, POC is close to 0.9, regardless the sample size and, bias reduces when
n and Ntot increase.

We estimate Shapley effects and aggregated Shapley effects if inputs
correlation is higher (ρ = 0.9). POC and bias results are also satisfactory
(not shown). In fact, POC values vary also around 0.9 and bias decreases
and goes to 0 when n and Ntot increases. For this simple test case, we have
shown that confidence intervals using algorithm 1 reach accurate coverage
probability and that bias reduces when n and Ntot increase. Nevertheless in
this test case, estimation is effortless because d = 2.

5.2 Mass-spring model

The method is illustrated on a test case with discretized functional output:
the functional mass-spring model proposed by Gamboa et al. [2013], where
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Figure 1: Linear Gaussian model: mean absolute error of the estimation of
scalar Shapley effects of the output Y1 in N=300 i.i.d. samples in function of
Ntot using different sample sizes a) n = 1000, b) n = 2000 and c) n = 5000.
The 0.05 and 0.95 pointwise quantiles of the absolute error are drawn with
gray polygons. The probability of coverage of the 90% bootstrap simulta-
neous intervals is displayed with dotted lines. The theoretical probability of
coverage 0.9 is also shown with a plain gray line. The bootstrap sample size
is fixed to B = 500.
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Figure 2: Linear Gaussian model: mean absolute error of the estimation of
aggregated Shapley effects in N=300 i.i.d. samples in function of Ntot using
different sample sizes a) n = 1000, b) n = 2000 and c) n = 5000. The
0.05 and 0.95 pointwise quantiles of the absolute error are drawn with gray
polygons. The probability of coverage of the 90% bootstrap simultaneous
intervals is displayed with dotted lines. The theoretical probability of cov-
erage 0.9 is also shown with a gray plain line. The bootstrap sample size is
fixed to B = 500.
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Input Description Distribution

m mass (kg) U [10, 12]
c damping constant (Nm−1s) U [0.4, 0.8]
k spring constant (Nm−1) U [70, 90]
l initial elongation (m) U [−1,−0.25]

Table 1: Mass spring model: Inputs description and uncertainty intervals.
U denotes the uniform distribution.

the displacement of a mass connected to a spring is considered:

m`′′(t) + c`′(t) + k`(t) = 0, (13)

with initial conditions `(0) = l, `′(0) = 0, and t ∈ [1, 40]. There exists
an analytical solution to Equation eq. (13). This model has four inputs
(see more details in table 1). The model output is the vector Y = f(X) =
(`(t1), . . . , `(t800)), ti = 0.05i with i ∈ {1, . . . , 800}.

Inputs are considered independent. The true aggregated Shapley effects
are unknown but they are approximated using a high sample size n = 25 000
and Ntot = 10 000. Then, the Shapley effects estimated are ĜSm = 0.38,
ĜSc = 0.01, ĜSk = 0.51 and, ĜSl = 0.09. Given these results, inputs
ranking is: k, m, l and c which corresponds to the same ranking obtained
using Sobol’ indices (see Table 3 of Gamboa et al. [2013]).

The discretized output is high-dimensional (p = 800). We perform fPCA
(see Section 3.3) to estimate the effects using the first q � p fPCs. fig. 3
shows the POC and bias evolution if different values for n and Ntot are
used for the aggregated effects estimation. We use the first 6 fPCs which
explain 95% of the output variance (see fig. 3 a). For each n and Ntot

combination, the aggregated Shapley effects are estimated for N = 100
independent samples and confidence intervals are estimated with B = 500
bootstrap samples. Bias is large if sample size is small n = 1000 (see fig. 3
b). However, it reduces drastically when sample sizes increases as expected.
In particular, if n = 5000 and Ntot = 2002 bias is the smallest (see fig. 3
d). If n and Ntot are too small, POC estimated values are lower than 0.9.
This might be a consequence of bias in the estimation (see fig. 3 b). But
when Ntot increases, POC is close to 0.9. In general in our experiments,
confidence intervals are correct because POC values are around 0.9 when
Ntot increases.
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Figure 3: Mass spring model: a) Explained variance as a function of the
decomposition basis size. The gray line is displayed at 95% of the variance
explained which corresponds to 6 eigenfunctions. The mean absolute error of
the estimation of aggregated Shapley effects using the first 6 eigenfunctions
inN = 100 i.i.d. samples in function ofNtot using sample of size b) n = 1000,
c) n = 2000 and d) n = 5000. The 0.05 and 0.95 pointwise quantiles of the
absolute error are drawn with gray polygons. The probability of coverage
of the 90% bootstrap simultaneous intervals is displayed with a dotted line.
The 0.9 value is also highlighted with a plain gray line. The bootstrap
sample size is fixed to B = 500.
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6 Snow avalanche modeling

6.1 Model

Our avalanche model is based on depth-averaged Saint-Venant equations
and considers the avalanche as a fluid in motion. In more detail, it considers
only the dense layer of the avalanche. The flow depth is then small compared
to its length. The model assumes the avalanche is flowing on a curvilinear
profile z = l(x), where z is the elevation and x is the projected distance
measured from the top of the avalanche path. Under these assumptions,
shallow-water approximations of the mass and momentum equations can be
used:

∂h

∂t
+
∂hv

∂x
= 0

∂hv

∂t
+

∂

∂x

(
hv2 +

h2

2

)
= h (g sinφ− F)

where v = ‖~v‖ is the flow velocity, h is the flow depth, φ is the local
angle, t is the time, g is the gravity constant and F = ‖~F‖ is a frictional
force. The model uses the Voellmy frictional force F = µgcosφ + g

ξhv
2,

where µ and ξ are friction parameters. The equations are solved with a
finite volumes scheme Naaim [1998].

The numerical model depends on six inputs: the friction parameters
µ and ξ, the length lstart of the avalanche release zone, the snow depth
hstart within the release zone, the abscissa corresponding to the beginning
of the release zone denoted by xstart and the discretized topography of the
flow path, denoted by D = (x, z) ∈ RNs×2 where x ∈ RNS is the vector of
projected abscissa positions and z = l(x) ∈ RNS is the elevation vector. Ns is
the number of points of the discretized path. We use for D the topography of
a path located in Bessans, France. This particular path already considered in
other works (Eckert et al. [2008a, 2010], Favier et al. [2014b], Eckert, Nicolas
et al. [2018]) in well documented in the French avalanche database Bourova
et al. [2016]. The model outputs are the flow velocity, flow depth trajectories
in the path D and runout distance of an avalanche. Note that the model
has two functional and one scalar outputs and these three outputs are the
objects of the GSA study. We develop our GSA in two contexts or scenarios:
(i) little knowledge on the input parameter probability distribution, and (ii)
well-calibrated input parameter distribution.
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Input Description Distribution

µ Static friction coefficient U [0.05, 0.65]
ξ Turbulent friction [m/s2] U [400, 10000]
lstart Length of the release zone [m] U [5, 300]
hstart Mean snow depth in the release zone [m] U [0.05, 3]
xstart Release abscissa [m] U [0, 1600]

Table 2: Avalanche model, scenario 1: Input description and uncertainty
intervals. In the the GSA, we consider volstart = lstart×hstart×72.3/ cos(35◦)
instead of hstart and lstart.

6.2 Scenario 1

6.2.1 Principle

We first determine the most influential input parameters sampled from uni-
form distributions. We thus expect from the GSA a better understand-
ing of the numerical model. Inputs µ and ξ vary in their physical value
ranges. Inputs lstart and hstart vary in their spectrum of reasonable values
given by the avalanche path characteristics. The xstart input distribution is
determined by calculating the abscissa interval where the release zone av-
erage slope is superior to 30◦. Indeed, the slope remains above 30◦ during
the first 1600m of the path. A good approximation of avalanche release
zones is commonly obtained this way. Since different studies (Bartelt et al.
[2012], Brian Dade and Huppert [1998]) suggest that the volume of snow
is a critical quantity that controls flow dynamics, we consider volstart as
input of the GSA instead of hstart and lstart. The latter is evaluated as
volstart = lstart × hstart × 72.3/ cos(35◦). The mean width and slope of the
release zone equal to 72.3m and 35◦, respectively. All uncertainty intervals
are summed-up in table 2. The input correlations are close to 0 since we
assume they are a priori independent.

For a given avalanche simulation, its functional velocity and flow depth
outputs have a high number of zeros because they are null above the begin-
ning of the release zone and after the runout position. Also, there might be
some avalanche simulations that are meaningless in physical terms and/or
not useful to assess the related risk. Therefore to perform GSA, we select
simulations that accomplish the following acceptance-rejection (AR) rules:
(i) avalanche simulation is flowing in the interval [1600m, 2412m], (ii) its
volume is superior to 7000 m3 and, (iii) avalanche runout distance is infe-
rior to 2500m which corresponds to the end of the path. The return period
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of avalanches in the interval [1600m, 2412m] varies from 1 to 10 000 years
according to the work of Eckert et al. [2010]. Roughly speaking, a return
period is the mean time in which a given runout distance is reached or ex-
ceeded at a given path’s position Eckert et al. [2007, 2008b], Schläppy et al.
[2014]. Also, we focus on medium, large and very large avalanches which
have a high potential damage.

6.2.2 Global sensitivity analysis results

We first ran n0 = 100 000 avalanche simulations from an i.i.d. sample of
input distributions described in table 2. Then, by applying (i) to (iii) our
AR sample size was reduced to n1 = 6152 ( section 6.2.1). Even if the initial
sample size is high (n0 = 100 000) and if the corresponding input parameter
sample does not present any significant correlation structure, the AR sample
size is low and we can observe a correlation structure. For example, inputs µ
and ξ were independent for the initial sample but the correlation computed
after the AR algorithm is 0.31. Note that the input parameter correlations
induced by the AR algorithm were the main motivation to compute Shapley
effects and not Sobol’ indices in this first scenario.

On section 6.2.2 are plotted highest density region (HDR) boxplots for
the velocity and flow depth, obtained by using the R package rainbow de-
veloped by Hyndman and Shang [2010]. The HDR boxplot is a vizualization
tool for functional data based on the density estimation of the first two com-
ponents of the PCA decomposition of the observed functions (see Hyndman
[1996] for further details). In the studied interval, the avalanche velocity
ranges from 0.1ms−1 to 71.56ms−1 and avalanches are decelerating (see sec-
tion 6.2.2 a). Flow depths vary from 0.03m to 7.52m. The flow depth curves
exhibit high fluctuations between [2100m, 2300m] (see section 6.2.2 b) which
corresponds to a region where path’s topography is mostly convexe. Runout
distances vary from 2409m to 2484m (see section 6.2.2 c).

On section 6.2.2 panels a and b, ubiquitous (pointwise) Shapley effects
of velocity and flow depth curves are shown, respectively. Depending on the
output, results are quite different. For velocity, xstart is the most relevant
during a large part of the path but its importance decreases along the path
and, conversely, the importance of the other inputs increases. For the flow
depth output, the most important input is volstart since the corresponding
Shapley effects vary from 0.4 to 0.2 along the path. Nevertheless, other in-
puts are not completely negligible. Input importance also varies according
to the topography. In fact, the ubiquitous effect variation corresponds to
local slope changes (see section 6.2.2 a and b). Correlations between ubiq-
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Figure 4: Avalanche model, scenario 1: scatter-plots of initial (black points)
and acceptance rejection (gray points) samples. In the figure’s diagonal,
the density function of the initial (gray color) and AR (transparent) sam-
ples are displayed. Input correlations of the original and AR samples are
shown. 1000 subsamples of original and AR samples are used for illustration
purpose.
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Figure 5: Avalanche model, scenario 1: a) and b) functional HDR boxplots
of velocity and flow depth curves, resp. It is shown 50% HDR (light gray),
100% HDR(dark gray) and modal curve (black line). c) runout distance
boxplot. The AR sample size is n1 = 6152.

uitous effects and local slope have been computed and are rather high. For
example, for the velocity, the absolute value of the correlation is higher than
0.51 for all input parameters. This implies that local slope changes play an
important role on the input contribution to output variations, a nice results
showing the relevance of the GSA analysis to understand the dynamical
properties of the flow. Eventually, for runout distance, the four inputs are
relevant.

section 6.2.2 shows aggregated Shapley effects and 90% confidence inter-
vals computed over space intervals [x, 2412] where x ∈ {1600, 1700, . . . , 2412}.
The aggregated effects are computed in the first fPCs explaining more than
95% of the output variance. Aggregated effects seem more robust than ubiq-
uitous effects, specially in zones where local slope shows high variations (see
section 6.2.2 compared to section 6.2.2). For explaining more than 95% of
the velocity output variance, 2 fPCs are required, while, for explaining more
than 95% of the flow depth output variance, at most 4 fPCs are required,
depending on x. For the velocity output, the most important input is xstart

in the interval [1600m, 2100m] but its importance decreases along the path.
In the interval [2017m, 2412m] where return periods are non trivial, xstart

and volstart are the most important followed by µ and ξ. For the flow depth
output, volstart is the most relevant but its importance decreases along the
path. At the end of the path from 2300m to 2412m where return periods are
high (between 100 to 10 000 years), confidence intervals intersect. It seems
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Figure 6: Avalanche model, scenario 1: a) and b) ubiquitous Shapley ef-
fects of velocity and flow depth curves, resp. and, c) runout distance Shap-
ley effects. Shapley effects are estimated with a sample of size 6152 and
Ntot=2002. The local slope is displayed with a white line. A gray dotted
rectangle box is displayed at interval [2017, 2412] where snow avalanche re-
turn periods vary from 10 to 10 000 years. The bootstrap sample size is
fixed to B = 500.

thus difficult to deduce a clear ranking of the inputs for these last portions of
the path. Nevertheless, it seems that none of the inputs is negligible, even at
the very end of the path. In summary, to estimate velocities with accuracy,
the release zone and volume are the most important parameters and, for the
flow depth, a good approximation of the volume released is essential.

6.3 Scenario 2

6.3.1 Principle

The aim is now to determine the most influential inputs in the context
of strong knowledge regarding input distributions. In Eckert et al. [2010],
the authors developed a Bayesian framework to estimate input distributions
from available avalanche observations. The objective is long-term avalanche
hazard assessment in order to assess the related risk for buildings and people
inside. In the avalanche literature, it is assumed that ξ depends on the
path topography, so it is a parameter and not a variable varying from one
avalanche to another in Eckert et al. [2010]’s model. ξ is therefore fixed
to its posterior estimate, 1300. Other input variables in this scenario are
dependent. The dependence between hstart and lstart is modeled with a linear
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Figure 7: Avalanche model, scenario 1: a) and b) aggregated Shapley effects
of velocity and flow depth curves calculated over space intervals [x, 2412m]
where x ∈ {1600m, 1700m, . . . , 2412m}. Shapley effects are estimated with
samples of size 6152 and Ntot=2002. Effects are estimated using the first
fPCs explaining more than 95% of the output variance. The local slope is
displayed with a gray line. A gray dotted rectangle is displayed at [2017m,
2412m] where snow avalanche return periods vary from 10 to 10 000 years.
The bootstrap sample size is fixed to B = 500.

function lstart = 31.25+87.5hstart, and similarly as in scenario 1, we consider
volstart as input of the GSA instead of hstart and lstart. The complete input
distribution resulting from the Bayesian inference on the studied path is
described in table 3. Input correlations have been computed. As an example,
the correlation between µ and volstart is 0.8. To perform the GSA in this
scenario, our AR rules are: (i) avalanche is flowing in the interval [1600m,
2204m] where snow avalanche return periods vary from 10 to 300 years, (ii)
avalanche volume is superior to 7,000 m3 and, (iii) µ coefficient is inferior
to 0.39 as we focus on dry snow avalanches. Under these conditions, we
sample the full set of dry snow avalanches that could cause strong material
or human damages on the studied site.

6.3.2 Global sensitivity analysis results

We first ran n0 = 100 000 avalanches from an i.i.d. sample of input dis-
tribution following table 3. After applying the AR algorithm, the sample
size was reduced to n2 = 1284 and the input distribution was modified. For
example, µ and volstart correlation changes from 0.8 to 0.2 which is still non
negligible. Ubiquitous Shapley effects are displayed on section 6.3.2 pan-
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Input Distribution

xnstart = xstart
1600 Beta(1.38, 2.49)

hstart|xnstart Gamma
(

1
0.452

(1.52 + 0.03xnstart)
2, 1

0.452
(1.52 + 0.03xnstart)

)
lstart 31.25+87.5hstart

µ|hstart, xnstart N (0.449− 0.013xnstart + 0.025hstart, 0.112)

Table 3: Avalanche model: Scenario 2. Input description and uncertainty
intervals. xnstart is a normalization of xstart. A linear relationship between
hstart and lstart inferred from the local data is used Eckert et al. [2010]. In
the the GSA, we consider volstart = lstart× hstart× 72.3/ cos(35◦) instead of
hstart and lstart.

els a and b. For the velocity, the three inputs have a similar importance
till 1900m, then volstart importance decreases and µ and xstart importance
increases (see section 6.3.2 a). Similarly, as in scenario 1, the effects show
fluctuations which correspond to changes in local slope. In particular, for
the flow depth, input effects suffer radical changes when the local slope de-
creases from 20◦ to 10◦ (see section 6.3.2 b). For the runout distance, all
inputs are relevant (see section 6.3.2 c).

Aggregated effects (see section 6.3.2) present less fluctuations and are
easier to interpret (see section 6.3.2). In summary, under this second sce-
nario, it is fundamental to have a good approximation of the released vol-
ume and abscissa for velocity forecasting, while for flow depth forecasting,
a good approximation of released volume is desirable. Nevertheless, none
of the other inputs are negligible. Note that the uncertainty associated to
the estimation of Shapley effects at 2204m is high (see the width of the
corresponding confidence intervals on section 6.3.2). To outperform the es-
timation accuracy at the end of the path generating a larger initial sample
of avalanches is possible, but the computational burden is prohibitive.

7 Conclusions and perspectives

In this work, we extended Shapley effects to models with multivariate or
functional outputs. We proved that aggregated Shapley effects accomplish
the natural requirements for a GSA measure. For the estimation, we pro-
posed to extend the subset aggregation procedure with double Monte Carlo
given data estimator of Broto et al. [2020]. Also, we proposed an algorithm
to construct bootstrap confidence intervals for scalar and aggregated Shapley
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Figure 8: Avalanche model, scenario 2: a) and b) ubiquitous Shapley effects
of velocity and flow depth curves, c) runout distance Shapley effects. Shapley
effects are estimated with samples of size 1284 and Ntot=800. The local
slope is displayed with a white line. A gray dotted rectangle shows the
interval [2064, 2204] where return periods vary from 10 to 300 years. The
bootstrap sample size is fixed to B = 500.
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Figure 9: Avalanche model, scenario 2: a) and b) aggregated Shapley effects
of velocity and flow depth curves calculated over space intervals [x, 2204]
where x ∈ {1600, 1700, . . . , 2204} and using the first fPCs which have 95%
of output variance. Shapley effects are estimated with samples of size 1284
and Ntot=800. The local slope is displayed with a gray line. A gray dotted
rectangle is displayed at [2017m, 2204m] where return periods vary from 10
to 300 years. The bootstrap sample size is fixed to B = 500.
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effects based on the ideas of Benoumechiara, Nazih and Elie-Dit-Cosaque,
Kevin [2019]. In test cases, the convergence of our estimator was empirically
studied. Also, we proved empirically that the bootstrap confidence intervals
we proposed have accurate coverage probability. Estimation and bootstrap
confidence interval algorithms well behave. Nevertheless, high sample sizes
(n = 5000 and Ntot = 2002) are required to guarantee accurate results.
Remark that it is well known that Shapley effects estimation is costly. It
would be interesting to study theoretically the asymptotic properties of our
estimator, but this study is out of the scope of this paper. Recently, in the R
package sensitivity the function sobolshap knn to estimate Shapley ef-
fects with n and Ntot from a given data sample has been implemented. This
function uses a tree based technique to approximate nearest-neighbor search
which reduces drastically computation times. The function is particularly
attractive if n and Ntot are high, we could even use Ntot = (2d − 2) × n.
We did not use in the present work this function as we were not able to
obtain confidence intervals with accurate coverage probability for the esti-
mation it computes. We rather used the shapleySubsetMc function which
corresponds to the estimator introduced in Broto et al. [2020] on which our
estimator for aggregated Shapley effects is based.

We applied our GSA methods to an avalanche propagation model under
two different settings. Model samples were obtained from an acceptance-
rejection (AR) algorithm and input parameters were not confined in a rect-
angular region. For these reasons, it was not possible to consider indepen-
dence of input parameters. Results showed probative linkages between local
slope and sensitivity indexes. Notably, aggregated Shapley effects were more
stable and easier to interpret than ubiquitous effects, as already observed
by Alexanderian et al. [2020] in the case of aggregated Sobol’ indices. This
demonstrates the usefulness of our approach for many practical problems.
Notably, it could be applied to other avalanche paths to generalize the re-
sults obtained in terms of respective weights of the inputs and interpret the
sensitivity indices more deeply in terms of physical properties of avalanche
flows. Eventually, application was challenging because AR samples were of
moderate size, for example, from the 100 000 initial sample, the AR sam-
pling produced a 6000 to 1200 sample, depending on the setting. In a future
work, it would be useful to construct a surrogate of the avalanche model
to generate larger AR samples, improve the accuracy of aggregated Shapley
effect estimation and thus reduce confidence intervals width.
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Rhône-Alpes region (GRANT CPER07 13 CIRA), the OSUG@2020 labex
(reference ANR10 LABX56) and the Equip@Meso project (reference ANR-
10-EQPX-29-01) of the program “Investissements d’avenir” supported by
the Agence Nationale pour la Recherche.

References

Alen Alexanderian, Pierre A. Gremaud, and Ralph C. Smith. Variance-based
sensitivity analysis for time-dependent processes. Reliability Engineering
& System Safety, 196:106722, 2020. ISSN 0951-8320. doi: https://doi.
org/10.1016/j.ress.2019.106722. URL http://www.sciencedirect.com/

science/article/pii/S0951832019303837.

Anestis Antoniadis, Cline Helbert, Clmentine Prieur, and Laurence Viry.
Spatio-temporal metamodeling for West African monsoon. Environ-
metrics, 23(1):24–36, 2012. doi: 10.1002/env.1134. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/env.1134.

Isadora Antoniano-Villalobos, Emanuele Borgonovo, and Xuefei Lu. Non-
parametric estimation of probabilistic sensitivity measures. Statistics and
Computing, Aug 2019. ISSN 1573-1375. doi: 10.1007/s11222-019-09887-9.
URL https://doi.org/10.1007/s11222-019-09887-9.

Benjamin Auder and Iooss B. Global sensitivity analysis based on entropy.
In In Safety, Reliability and Risk Analysis - Proceedings of the ESREL
2008 Conference, pages 2107–2115. CRC Press, 2008.

P. Bartelt, Y. Bühler, O. Buser, M. Christen, and L. Meier. Modeling mass-
dependent flow regime transitions to predict the stopping and depositional
behavior of snow avalanches. Journal of Geophysical Research (Earth
Surface), 117(F1):F01015, February 2012. doi: 10.1029/2010JF001957.

31

http://www.sciencedirect.com/science/article/pii/S0951832019303837
http://www.sciencedirect.com/science/article/pii/S0951832019303837
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1134
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1134
https://doi.org/10.1007/s11222-019-09887-9


Benoumechiara, Nazih and Elie-Dit-Cosaque, Kevin. Shapley effects for sen-
sitivity analysis with dependent inputs: bootstrap and kriging-based algo-
rithms. ESAIM: ProcS, 65:266–293, 2019. doi: 10.1051/proc/201965266.
URL https://doi.org/10.1051/proc/201965266.

E. Borgonovo. A new uncertainty importance measure. Reliability Engineer-
ing & System Safety, 92(6):771 – 784, 2007. ISSN 0951-8320. doi: https:
//doi.org/10.1016/j.ress.2006.04.015. URL http://www.sciencedirect.

com/science/article/pii/S0951832006000883.

Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review
of recent advances. European Journal of Operational Research, 248(3):
869–887, 2016. doi: 10.1016/j.ejor.2015.06.032. URL https://doi.org/

10.1016/j.ejor.2015.06.032.

Emanuele Borgonovo, Gordon B. Hazen, and Elmar Plischke. A Common
Rationale for Global Sensitivity Measures and Their Estimation. Risk
Analysis, 36(10):1871–1895, 2016. doi: 10.1111/risa.12555. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1111/risa.12555.

E. Bourova, E. Maldonado, J.B. Leroy, R. Alouani, N. Eckert, M. Bonnefoy-
Demongeot, and M. Deschatres. A new web-based system to im-
prove the monitoring of snow avalanche hazard in France. Natural
Hazards and Earth System Sciences, 16(5):1205–1216, 2016. doi: 10.
5194/nhess-16-1205-2016. URL https://hal.archives-ouvertes.fr/

hal-01507671.

W Brian Dade and Herbert E Huppert. Long-runout rockfalls. Geological
Society of America, 26(9):803–806, 1998. doi: 10.1130/0091-7613(1998)
026〈0803:LRR〉2.3.CO;2.

Baptiste Broto, Franois Bachoc, and Marine Depecker. Variance Reduc-
tion for Estimation of Shapley Effects and Adaptation to Unknown Input
Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2):
693–716, 2020. doi: 10.1137/18M1234631. URL https://doi.org/10.

1137/18M1234631.

William B. Capra and Hans-Georg Müller. An accelerated-time model for
response curves. Journal of the American Statistical Association, 92(437):
72–83, 1997. doi: 10.1080/01621459.1997.10473604. URL https://doi.

org/10.1080/01621459.1997.10473604.

32

https://doi.org/10.1051/proc/201965266
http://www.sciencedirect.com/science/article/pii/S0951832006000883
http://www.sciencedirect.com/science/article/pii/S0951832006000883
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1016/j.ejor.2015.06.032
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.12555
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.12555
https://hal.archives-ouvertes.fr/hal-01507671
https://hal.archives-ouvertes.fr/hal-01507671
https://doi.org/10.1137/18M1234631
https://doi.org/10.1137/18M1234631
https://doi.org/10.1080/01621459.1997.10473604
https://doi.org/10.1080/01621459.1997.10473604


Gaelle Chastaing, Fabrice Gamboa, and Clémentine Prieur. Generalized
Hoeffding-Sobol decomposition for dependent variables - application to
sensitivity analysis. Electron. J. Statist., 6:2420–2448, 2012. doi: 10.
1214/12-EJS749. URL https://doi.org/10.1214/12-EJS749.

Yaqing Chen, Cody Carroll, Xiongtao Dai, Jianing Fan, Pantelis Z. Had-
jipantelis, Kyunghee Han, Hao Ji, Hans-Georg Mueller, and Jane-Ling
Wang. fdapace: Functional Data Analysis and Empirical Dynamics, 2020.
URL https://CRAN.R-project.org/package=fdapace. R package ver-
sion 0.5.1.
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Maikol Soĺıs. Non-parametric estimation of the first-order Sobol indices
with bootstrap bandwidth. Communications in Statistics - Simulation
and Computation, 0(0):1–16, 2019. doi: 10.1080/03610918.2019.1655575.
URL https://doi.org/10.1080/03610918.2019.1655575.

E. Song, B. Nelson, and J. Staum. Shapley effects for global sensitivity
analysis: Theory and computation. SIAM/ASA Journal on Uncertainty
Quantification, 4(1):1060–1083, 2016. doi: 10.1137/15M1048070. URL
https://doi.org/10.1137/15M1048070.

Yunpeng Sun, Daniel W. Apley, and Jeremy Staum. Efficient nested sim-
ulation for estimating the variance of a conditional expectation. Opera-
tions Research, 59(4):998–1007, 2011. doi: 10.1287/opre.1110.0932. URL
https://doi.org/10.1287/opre.1110.0932.

Sebastien Da Veiga. Global sensitivity analysis with dependence mea-
sures. Journal of Statistical Computation and Simulation, 85(7):1283–
1305, 2015. doi: 10.1080/00949655.2014.945932. URL https://doi.org/

10.1080/00949655.2014.945932.

Chonggang Xu. Decoupling correlated and uncorrelated parametric uncer-
tainty contributions for nonlinear models. Applied Mathematical Mod-
elling, 37(24):9950 – 9969, 2013. ISSN 0307-904X. doi: https://doi.
org/10.1016/j.apm.2013.05.036. URL http://www.sciencedirect.com/

science/article/pii/S0307904X13003570.

Chonggang Xu and George Zdzislaw Gertner. Uncertainty and sensitivity
analysis for models with correlated parameters. Reliability Engineering
& System Safety, 93(10):1563 – 1573, 2008. ISSN 0951-8320. doi: https:
//doi.org/10.1016/j.ress.2007.06.003. URL http://www.sciencedirect.

com/science/article/pii/S0951832007001652.

39

http://www.sciencedirect.com/science/article/pii/S0165232X13001900
http://www.sciencedirect.com/science/article/pii/S0165232X13001900
https://doi.org/10.1080/03610918.2019.1655575
https://doi.org/10.1137/15M1048070
https://doi.org/10.1287/opre.1110.0932
https://doi.org/10.1080/00949655.2014.945932
https://doi.org/10.1080/00949655.2014.945932
http://www.sciencedirect.com/science/article/pii/S0307904X13003570
http://www.sciencedirect.com/science/article/pii/S0307904X13003570
http://www.sciencedirect.com/science/article/pii/S0951832007001652
http://www.sciencedirect.com/science/article/pii/S0951832007001652


Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analy-
sis for sparse longitudinal data. Journal of the American Statistical Asso-
ciation, 100(470):577–590, 2005. doi: 10.1198/016214504000001745. URL
https://doi.org/10.1198/016214504000001745.

Kaichao Zhang, Zhenzhou Lu, Lei Cheng, and Fang Xu. A new framework
of variance based global sensitivity analysis for models with correlated
inputs. Structural Safety, 55:1 – 9, 2015. ISSN 0167-4730. doi: https://doi.
org/10.1016/j.strusafe.2014.12.005. URL http://www.sciencedirect.

com/science/article/pii/S0167473015000181.

40

https://doi.org/10.1198/016214504000001745
http://www.sciencedirect.com/science/article/pii/S0167473015000181
http://www.sciencedirect.com/science/article/pii/S0167473015000181

	Introduction
	Aggregated Shapley effects
	Definition
	Properties

	Estimation procedure for scalar and aggregated Shapley effects
	Double Monte Carlo given data estimation of scalar Shapley effects
	Estimator of the aggregated Shapley effects
	Dimension reduction: functional principal component analysis

	Bootstrap confidence intervals with percentile bias correction
	Test cases
	Multivariate linear Gaussian model
	Mass-spring model

	Snow avalanche modeling
	Model
	Scenario 1
	Principle
	Global sensitivity analysis results

	Scenario 2
	Principle
	Global sensitivity analysis results


	Conclusions and perspectives

