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Abstract

Dynamic models are simplified representations of some real-world entities that
change over time. They are essential analytical tools with significant applica-
tions, e.g., in environmental and social sciences. Due to physical constraints
applied on the outputs, it happens that input parameters are confined to a non-
rectangular domain. In order to perform sensitivity analysis in this setting, we
introduce the notion of aggregated Shapley effects and we propose an algorithm
to estimate them with associated bootstrap confidence intervals. Our procedure
is applied to analyze the sensitivity of an avalanche flow dynamic model from an
input/output sample obtained by considering only input combinations leading
to avalanche events that are both realistic and of interest for risk purposes. More
precisely, we analyze the sensitivity in two different settings: (i) little knowl-
edge on the input parameter probability distribution, and (ii) well-calibrated
input parameter distribution. This leads insightful results regarding avalanche
dynamics and potential related hazard, which demonstrate the usefulness of our
approach for practical problems.

Keywords: Global sensitivity analysis, dependent inputs, aggregated Shapley
effects, bootstrap confidence intervals, snow avalanche propagation model,
snow avalanche hazard assessment

1. Introduction

Dynamic models are simplified representations of some real-world entities
that change over time, in equations or computer codes. These models are use-
ful for the analysis of real-world phenomena, e.g., in environmental or social
sciences. For a better understanding of a phenomenon or for forecasting pur-
poses, it might be important to identify which input parameters entering in the
formulation of such dynamic models are influential on the outputs of interest.
Determining these influential parameters is one aim of global sensitivity analy-
sis (GSA) (see, e.g., [1] or more recently [2, 3] for a review of global sensitivity
measures).

A particularity of dynamic models is that the outputs they produce are
functional, typically time and/or space dependent (see, e.g., [4, 5, 6]). More
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specifically, the application that motivated our study is a snow avalanche flow
dynamic model proposed by [7] and heavily used for hazard and risk within a
stochastic setting [8, 9, 10]. In order to describe the variability of all avalanche
events likely to occur on a given path and assess the related hazard, we do not
focus on a single avalanche event, so that input parameters of the propagation
model cannot be considered as stochastically independent. Indeed, even if input
parameter combinations are first sampled independently, we only analyze in the
GSA the ones leading to snow avalanche simulations that are both realistic and
of interest for risk purposes. For example, an avalanche simulation is rejected
if its volume is inferior to 7000 m3 as such small events do not represent a
significant threat for downstream settlements. As mentioned in [11], this setting
encompasses a wide range of situations encountered in the natural sciences,
engineering, design, economics and finances where model parameters are subject
to certain limitations imposed e.g. by conservation laws, geometry, costs, quality
constraints etc. Our previous work in [5] was focused on the analysis of a single
avalanche event, based on aggregated Sobol’ indices whose interpretation is
not clear in the present framework of dependent inputs. For that reason, we
develop a GSA methodology capable to handle dependent inputs, with unknown
dependence structure, as far as dynamic models through functional outputs (or
high-dimensional multivariate outputs as functional outputs are most of the
time represented on a discrete grid).

In this paper, we focus on sensitivity analysis based on Shapley effects in-
troduced in [12]. The main advantage of such an approach is that it is possible
to attribute a non negative sensitivity index to each parameter, and the sum of
the indices is equal to one [13, 14], even if the inputs are not independent.

A first algorithm to estimate Shapley effects was proposed in [15]. Then
Benoumechiara and Elie-Dit-Cosaque [16] proposed a block bootstrap procedure
for quantifying the uncertainty of an estimate produced by the aforementioned
algorithm. More recently, [13] proposed a subset aggregation procedure which
leads to a significant reduction of the variance of Shapley effect estimation. Let
us also cite the algorithm proposed in [17] based on the Möbius inverse, which
offers a computationally efficient alternative for the estimation of Shapley effects,
the simple Monte Carlo sampling-based algorithm proposed in [18] focused on
independent inputs but which can be extended with a loss of efficiency to the
dependent framework. The main advantage of the subset aggregation procedure
introduced in [13] is that it has a version, based on nearest-neighbors, which
does not require the ability to sample from the exact conditional distributions
of the input parameters. Note that the authors in [13] do not quantify the
uncertainty associated to their estimation procedure with confidence intervals.

In the present paper, we introduce the notion of aggregated Shapley ef-
fects for multivariate outputs with potentially dependent inputs, generalizing
the notion of aggregated Sobol’ indices [19, 20]. We also study their invariance
properties and we propose a given data estimation procedure, extending the
nearest neighbor approach introduced in [13] and the block bootstrap proce-
dure introduced in [16]. By given data procedure, we mean a procedure which
can be applied to any given finite set of input/output data. Eventually, we
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demonstrate the usefulness of this methodology in our complex avalanche ap-
plication where the set of output simulations is constrained in order to keep
only meaningful snow avalanche events. More precisely, we perform the GSA of
our avalanche flow dynamic model in two different settings: (i) little knowledge
on the input parameter probability distribution, and (ii) well-calibrated input
parameter distribution as function of available field observations [8].

The paper is organized as follows. In Section 2, we introduce aggregated
Shapley effects and state their main properties. In Section 3, we propose a
given data estimation procedure for aggregated Shapley effects by extending the
nearest-neighbor procedure introduced in [13] for the estimation of scalar Shap-
ley effects. In Section 4, we extend the block bootstrap algorithm introduced
in [16] to the given data framework. Finally in Section 5, our GSA procedure
is applied to an avalanche dynamic model. We discuss our conclusions and per-
spectives in Section 6. The proofs of the propositions stated in Section 2, as
far as auxiliary statistics and graphs are postponed to Appendix A. Additional
numerical experiments are provided as supplementary material.

2. Aggregated Shapley effects

Shapley effects are sensitivity measures to quantify input importance pro-
posed by [12]. Several recent works have demonstrated the great interest of
Shapley effects for analyzing sensitivity in the framework of dependent inputs
(see, e.g., [15, 21, 14]). In this section, we introduce the notion of aggregated
Shapley effects, a natural extension of Shapley effects to multivariate outputs,
generalizing the notion of aggregated Sobol’ indices [19, 22].

2.1. Definition

LetY = f(X) withY = (Y1, . . . , Yj , . . . , Yp) ∈ Rp andX = (X1, . . . , Xi, . . . , Xd) ∈
Rd. The input vector is defined on some probability space (Ω,F ,PX) and
f ∈ L2(PX). For any u ⊆ {1, . . . , d}, let us define −u = {1, . . . , d} \ u.
We set Xu = (Xi)i∈u. In our application to avalanche hazard assessment,
Y = (Y1 = f(s1,X), . . . , Yp = f(sp,X)), with s1, . . . , sp ∈ R the p discretiza-
tion points along the avalanche corridor.

For any j = 1, . . . , p and any i = 1, . . . , d, the Shapley effect of Yj with
respect to Xi is defined as in [12] by:

Shji =
1

d

∑
u⊆−{i}

(
d− 1

|u|

)−1

(valj(u ∪ {i})− valj(u)) (1)

with

valj(u) =
Var (E(Yj |Xu))

Var(Yj)
, u ⊆ {1, . . . , d}. (2)

Thus Shji is the Shapley value of input Xi for characteristic function u 7→ valj(u)
(see [23] for more details).
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Generalizing the notion of aggregated Sobol’ indices in [19, 20], we introduce
the notion of aggregated Shapley effects. For any i = 1, . . . , d, the aggregated
Shapley effect of Y ∈ Rp with respect to Xi is defined as:

GShi =

∑p
j=1 Var(Yj)Sh

j
i∑p

j=1 Var(Yj)
· (3)

2.2. Properties

In Propositions 2.1 and 2.2 below, we state the main properties of aggregated
Shapley effects. The proofs are postponed to Appendix A.1.

Proposition 2.1. The aggregated Shapley effects GShi, i ∈ {1, . . . , d}, corre-
spond to the Shapley values for characteristic function defined as:

u ⊆ {1, . . . , d} 7→ val(u) =

∑p
j=1 Var(Yj)valj(u)∑p

j=1 Var(Yj)
=

tr(Σu)

tr(Σ)
,

with Σu the covariance matrix of E(Y|Xu) and Σ the covariance matrix of Y.

In the next proposition, we prove that aggregated Shapley effects accomplish
the natural requirements for a sensitivity measure mentioned in [22, Proposition
3.1].

Proposition 2.2. Let i ∈ {1, . . . d}. The following items hold true.

i. 0 ≤ GShi ≤ 1.

ii. GShi is invariant by left-composition by any nonzero scaling of f , which
means, for any λ ∈ R with λ ̸= 0, the aggregated Shapley effect GSh′i of
λf(X) is GShi.

iii. GShi is invariant by left-composition of f by any isometry of Rp, which
means, for any O ∈ Rp×p such that OtO = I, the aggregated Shapley
effect GSh′i of Of(X) is GShi for all i ∈ {1, . . . , d}.

In practice, there does not exist any analytical formula for aggregated Shap-
ley effects. Therefore we propose in the next section an estimator built on a
given input/output sample (X(k),Y(k)), k = 1, . . . , n.

3. Estimation procedure for scalar and aggregated Shapley effects

In this section, we first recall the definition of the given data estimator of
scalar Shapley effects introduced in [13, Section 6] (see Section 3.1). Then we
define in Section 3.2 a natural extension of this estimator to aggregated Shapley
effects. In the targeted application to snow avalanche modeling (see Section 5),
the sample is obtained from an acceptance rejection algorithm. Therefore we
need a so-called given data estimator, that is an estimator that can be computed
with any given input/output sample.
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3.1. Given data estimator of scalar Shapley effects proposed in [13]

Let u ⊆ {1, . . . d}. As noticed in [15, Theorem 1], replacing the character-
istic function u 7→ c̃j(u) = Var(E(Yj |Xu)) by u 7→ cj(u) = E(Var(Yj |X−u)) in
Equation (1) does not change the definition of Shapley effects. The estimation
of the Shapley effects Shji , 1 ≤ i ≤ d, then relies on the estimation of the cj(u)’s
for all u ⊆ {1, . . . , d}. To estimate cj(u) = E(Var(Yj |X−u)), it is usual to use
a double Monte Carlo estimator: an inner loop to estimate the variance and
an outer loop to estimate the expectation. In the following, we estimate scalar
Shapley effects with the estimator introduced in [13] which combines a subset
aggregation procedure with a given data adaptation of the double Monte Carlo
estimator of cj(u).

The estimator introduced in [13, Section 6] works as follows: assume we are

given a set of n independent random samples (X(k),Y(k))1≤k≤n of (X,Y), then
for 1 ≤ j ≤ p, ∅ ⊊ u ⊊ {1, . . . , d}, let 1 ≤ Nu ≤ n be an integer, let (sℓ)1≤ℓ≤Nu

be a sample of uniformly distributed integers in {1, . . . , n} (with or without
replacement). The inner Monte Carlo loop estimates the conditional variance
Var(Yj |X−u) using NI nearest neighbors of each Xsℓ

−u, 1 ≤ ℓ ≤ Nu:

Êj
u,sℓ

=
1

NI − 1

NI∑
i=1

 ∑
υ:Xυ

−u∈B−u,ℓ

Y υ
j − 1

NI
Ȳsℓ

2

(4)

with Ȳsℓ =
1

NI

∑
υ:Xυ

−u∈B−u,ℓ

Y υ
j and B−u,ℓ the set of NI closest neighbors of

Xsℓ
−u. If there are ex aequo among the neighbors, one draws randomly without

replacement. The closest neighbors are computed using the Euclidean distance
in Rku with ku denoting the cardinality of −u. Then, we define the outer Monte
Carlo loop to estimate the expectation as:

ĉj(u) =
1

N∗
u

N∗
u∑

ℓ=1

Êj
u,sℓ

. (5)

Note that cj(∅) = 0 and cj({1, . . . , d}) = Var(Yj), which is assumed to be
known in [13], and that is estimated by the empirical variance in the present
paper. In [13, Theorem 6.6.], it is proven that under mild assumptions, ĉj(u)
converges in probability to cj(u) as n and N∗

u go to ∞. Finally, the subset
aggregation procedure consists in estimating scalar Shapley effects by plugging
(5) in Equation (1):

Ŝh
j

i =
1

d σ̂2
j

∑
u⊆−i

(
d− 1

|u|

)−1

(ĉj(u ∪ {i})− ĉj(u)) (6)

where σ̂2
j is the empirical estimator of Var(Yj). Note that the choice of the

Euclidean distance for the computation of closest neighbors has been done ar-
bitrarily as the most simple choice, and that future work could expand the
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framework to other distances and investigate to which extent results are sensi-
tive to this choice.

Remark 3.1. In this remark, we discuss the choice of the numbers Nu, u ⊆
{1, . . . , d}. These integers are related to the estimation accuracy of the expec-
tation of the conditional variances E (Var(Yj |X−u))∅⊊u⊊{1,...,d} and are referred

to as the accuracies hereafter. If all the Nu were chosen equal to n, the compu-
tation cost for the search of the nearest neighbors would be in O

(
n(2d − 2)

)
. To

reduce this cost to a prescribed computational budget Ntot, with 2d − 2 ≤ Ntot

much smaller than n(2d − 2), the authors in [13] suggested to choose the set
of accuracies that minimize the estimation variance for a prescribed total cost
Ntot =

∑
∅⊊u⊊{1,...,d} Nu. Note that for a given data strategy, we do not mea-

sure the cost in terms of number of model evaluations, as the sample is already
available. Here the cost is measured in terms of nearest-neighbor search Ntot. In
the framework where it is possible to sample from the conditional distributions
of the input vector, the optimal accuracies [13, Proposition 4.2., Remark 4.3.]

are given by N∗
u = Round

(
Ntot

(
d
|u|
)−1

(d− 1)−1
)
, for all ∅ ⊊ u ⊊ {1, . . . , d},

with for x ∈ R, Round (x) denoting the integer greater than one closest to x.
In the given data framework, we compared this choice of accuracies with the
uniform one, Nu = Round

(
Ntot/(2

d − 2)
)
for all ∅ ⊊ u ⊊ {1, . . . , d}, for a test

case in dimension d = 10. The accuracies N∗
u suggested in [13] led to better

results, at least on that experiment. The results of these tests are available as
supplementary material.

Remark 3.2. Regarding the number of neighbors, the authors in [15] proved
that in the usual double loop setting, choosing NI = 3 is better than choosing
NI = 2 and that the gain in increasing NI from 3 decreases as NI increases.
In our experiments we chose NI = 3 although the best choice in the given data
framework is an open question, that should deserve great attention in future
research.

3.2. Estimator of the aggregated Shapley effects

Given scalar Shapley effect estimators whose definition is recalled in the
previous section, we propose to estimate aggregated Shapley effects by:

ĜShi =

∑p
j=1 σ̂

2
j Ŝh

j

i∑p
j=1 σ̂

2
j

=
1

d
∑p

j=1 σ̂
2
j

p∑
j=1

∑
u⊆−i

(
d− 1

|u|

)−1

(ĉj(u ∪ {i})− ĉj(u)) (7)

with σ̂2
j the empirical estimator of Var(Yj) and ĉj(u) defined by (5).
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3.3. Dimension reduction: functional principal component analysis

For space or time-dependent models, a preliminary step consists in per-
forming a functional principal component analysis (fPCA). Then we compute
the aggregated Shapley effects for the vectorial output composed with the first
principal components. Most of the time, it allows easier interpretation for real
applications. KL expansion is obtained by applying the principal component
analysis through conditional expectation (PACE) method introduced in [24].

4. Block bootstrap confidence intervals

We propose in this section to construct confidence intervals with a block
bootstrap procedure, extending to the given data framework the procedure pro-
posed in [16]. Bootstrap by blocks is necessary to preserve the nearest-neighbor
structure in Equation (4). Algorithm 4.1 describes more precisely the block
bootstrap procedure.

Algorithm 4.1 B bootstrap samples for Ŝh
j

i and ĜShi

Inputs: (i) A n i.i.d. random sample (Xk,Yk)k∈{1,...,n} with Xk ∈ Rd and

Yk ∈ Rp. (ii) For each ∅ ⊊ u ⊊ {1, . . . , d}, a Nu random sample (sℓ)1≤ℓ≤Nu

from {1, . . . , n}.
Outputs: B bootstrap samples for Ŝh

j

i and ĜShi.
for b = 1 to b = B do

1. Create a n bootstrap sample Y(b) by sampling with replacement from
the rows of Y.

2. Compute, for 1 ≤ j ≤ p, σ̂
2,(b)
j the empirical variance of Y

(b)
j .

3. For each j ∈ {1, . . . , p}:
3.1. For all u and for all (sℓ)1≤ℓ≤Nu

compute Êj
u,sℓ using (4).

3.2. For all u, create a Nu bootstrap sample Ê
j,(b)
u,sℓ by sampling with

replacement from
(
Êj

u,sℓ

)
1≤ℓ≤Nu

computed in Step 3.1.

3.3. Compute ĉj
(b)(u) = 1/Nu

∑Nu

ℓ=1 Ê
j,(b)
u,sℓ for all u using (5).

3.4. Compute the b bootstrap sample of Ŝh
j

i according to (6):

Ŝh
j,(b)

i =
1

d σ̂
2,(b)
j

∑
u⊆−i

(
d− 1

|u|

)−1 (
ĉj

(b)(u ∪ {i})− ĉj
(b)(u)

)
.

4. Compute the b bootstrap sample of ĜShi using (7):

ĜSh
(b)

i =
1

d
∑p

j=1 σ̂
2,(b)
j

p∑
j=1

∑
u⊆−i

(
d− 1

|u|

)−1 (
ĉj

(b)(u ∪ {i})− ĉj
(b)(u)

)
.

end for
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It is the first time a block bootstrap procedure for given data estimation of
(aggregated) Shapley effects is proposed. For a scalar output, only Steps 1 to 3
of Algorithm 4.1 should be used, with the block bootstrap procedure described
by Steps 3.1 to 3.3.

5. Application to Snow avalanche modeling

In this section, we present the implementation of the whole procedure on
our real case-study. However, preliminary to this implementation, we conducted
numerical experiments on toy models to evaluate the impact of the total budget
Ntot and of the numbers N∗

u on the accuracy of Shapley effect estimation as far
as on the coverage probability of bootstrap confidence intervals. The results we
obtained are provided as supplementary material.

5.1. Model

Our snow avalanche model is based on shallow-water (depth-averaged) Saint-
Venant equations and considers the avalanche as a fluid in motion. In more
detail, it considers only the dense layer of the avalanche. The flow depth is then
small compared to its length. The model assumes the avalanche is flowing on
a curvilinear profile z = l(x), where z is the elevation and x is the projected
distance measured from the top of the avalanche path. Under these assumptions,
shallow-water approximations of the mass and momentum equations can be
used:

∂h

∂t
+

∂hv

∂x
= 0

∂hv

∂t
+

∂

∂x

(
hv2 +

h2

2

)
= h (g sin θ − F)

where v = ∥v⃗∥ is the flow velocity, h is the flow depth, θ is the local angle, t is

the time, g is the gravity constant and F = ∥F⃗∥ is a frictional force. The model
uses the classical Voellmy (see, e.g., [25]) frictional force F = µgcosθ+g/(ξh)v2,
where µ and ξ are friction parameters. This formulation remains partially ad-
hoc, and arguably oversimplified with regards to the complexity of real snow
flows (see, e.g., [26]). However, it is still by far the most common choice in the
snow and avalanche community (see, e.g., [27]), as it provides robust simulation
results in many configurations.

The partial differential equation (PDE) system is solved numerically using
a finite volume scheme on the path curvilinear profile with a 5m resolution.
Hence, even if the PDEs are expressed in a two-dimensional frame, they in
fact represent a one-dimensional flow on the curvilinear profile (see, e.g., [28]).
For each avalanche simulation, standard boundary conditions detailed in the
original paper [7] where used, and it has been established in [29] that the choice
of boundary conditions generally does not have many influence on the simulation
results.
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The numerical model depends on six inputs: the friction parameters µ and
ξ, the length lstart of the avalanche release zone, the snow depth hstart within
the release zone, the abscissa corresponding to the beginning of the release zone
denoted by xstart and the discretized topography of the flow path, denoted by
D = (x, z) ∈ RNs×2 where x ∈ RNS is the vector of projected abscissa positions
and z = l(x) ∈ RNS is the elevation vector. Ns is the number of points of the
discretized path. The model outputs are the flow velocity, flow depth trajectories
in the path D and runout distance of an avalanche. Note that the model has two
functional and one scalar outputs and these three outputs are the objects of the
GSA study. Specifically, for each avalanche, the model evaluates velocity and
flow depth all along the path topography at each time step of the simulation,
which leads, at the end of the simulation, a Ns × Tsim

flow depth and velocity
field, with Tsim

the number of time steps of the simulation. From this set
of outputs, we retain and analyse, at each position of the path, the maximal
velocity and maximal flow depth only (namely two vectors of size Ns for each
simulation).

We use for D the topography of a path located in Bessans, France. This par-
ticular path already considered in other works [30, 8, 10, 31] in well documented
in the French avalanche database [32]. We develop our GSA in two contexts or
scenarios: (i) little knowledge on the input parameter probability distribution,
and (ii) well-calibrated input parameter distributions.

Note eventually that we do not fully distinguish within both scenarios dif-
ferent types of avalanches (e.g. involving wet/dry snow). The reason is that
from a hazard assessment perspective for settlements, one needs to consider all
avalanches likely to occur, independently from the type of the flow/snow. As a
consequence, the distributions of friction parameters used in Scenarios 1 and 2,
notably of friction parameter µ that represents in first approximation snow qual-
ity in Voellmy friction law, primarily correspond to the whole local avalanche
activity altogether, either from expert considerations (Scenario 1) or according
to the local data (Scenario 2). For both scenarios, our range of friction coeffi-
cient values is well in accordance with large data sets from the literature [33].
Also, for the case study, it is important to acknowledge that the data set used to
obtain the posterior distribution of scenario 2 indeed includes both dry and wet
snow avalanches. However, as dry snow avalanches with low values of friction
parameter µ generally have the longest runout distances and the highest veloc-
ity, scenario 2 that aims at investigating sensitivity in local hazard assessment
gives more weight to them by excluding avalanches with high friction values.

5.2. Scenario 1

5.2.1. Principle

We first determine the most influential input parameters sampled from uni-
form distributions. We thus expect from the GSA a better understanding of the
numerical model. Inputs µ and ξ vary in their physical value ranges. Inputs
lstart and hstart vary in their spectrum of reasonable values given the charac-
teristics of the avalanche path. The xstart input distribution is determined by
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Input Description Distribution
µ Static friction coefficient U [0.05, 0.65]
ξ Turbulent friction [m/s2] U [400, 10000]
lstart Length of the release zone [m] U [5, 300]
hstart Mean snow depth in the release zone [m] U [0.05, 3]
xstart Release abscissa [m] U [0, 1600]

Table 1: Avalanche model, scenario 1: Input description and uncertainty intervals. In the
GSA, we consider volstart = lstart × hstart × 72.3/ cos(35◦) instead of hstart and lstart.

computing the abscissa interval where the release zone average slope is supe-
rior to 30◦. Indeed, the slope remains above 30◦ during the first 1600m of
the path. A good approximation of avalanche release zones is commonly ob-
tained this way. Since different studies [27, 34] suggest that the volume of
snow is a critical quantity that controls flow dynamics, we consider volstart
as input of the GSA instead of hstart and lstart. The latter is evaluated as
volstart = lstart × hstart × 72.3/ cos(35◦). The mean width and slope of the
release zone equal to 72.3m and 35◦, respectively. All uncertainty intervals are
summed-up in Table 1. The original input correlations are close to 0 since the
original inputs were drawn independently. They are not exactly equal to zero
as they are estimated from a sample.

For a given avalanche simulation, its functional velocity and flow depth out-
puts have a high number of zeros because they are null above the beginning
of the release zone and after the runout position. Also, there might be some
avalanche simulations that are meaningless in physical terms and/or not useful
to assess the related risk. Therefore to perform GSA, we select simulations that
accomplish the following rules:

(i) avalanche simulation is flowing in the interval [1600m, 2412m],

(ii) its volume is superior to 7000 m3 and,

(iii) avalanche runout distance is inferior to 2500m which corresponds to the
end of the path.

In the following, we use the terminology constrained sample to deal with the
sample obtained after applying rules (i) to (iii). This set of constraints makes
that we switch from a large sample of simulated avalanches to a much smaller
one, and the constraints by the runout distance play a critical role in this re-
duction. Indeed, even if most of the original avalanches are able to flow rather
far downwards in the path due to the slope, we analyse in this GSA only those
that are able to travel beyond the flat area at the bottom of the path, and,
hence, represent the highest risk for people. Specifically, for the studied path,
the return period of avalanches in the interval [1600m, 2412m] varies from 1 to
10, 000 years according to [8] and local data (not used in this scenario). Roughly
speaking, a return period is the mean time in which a given runout distance is
reached or exceeded at a given path’s position. Hence, this GSA focuses on
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the most extreme, yet possible, snow avalanches. In addition, the constraint
on snow volumes makes that the GSA focuses on medium to very large snow
avalanche sizes, which have a high damage potential.

5.2.2. Global sensitivity analysis results

We first ran n0 = 100 000 avalanche simulations from an i.i.d. sample of
input distributions described in Table 1. Then, by applying (i) to (iii) the size
of the constrained sample was reduced to n1 = 6152 (Appendix A.2). Even
if the initial sample did not present any significant correlation structure, the
constrained sample does. For example, inputs µ and ξ were independent for
the initial sample but the correlation computed after applying the constraints
is about 0.31. Note that the input parameter correlations induced by the con-
straints were the main motivation to compute Shapley effects and not Sobol’
indices in this first scenario.

In Appendix A.2 are plotted highest density region (HDR) boxplots for the
velocity and flow depth, obtained by using the R package rainbow developed by
[35]. The HDR boxplot is a vizualization tool for functional data based on kernel
density estimation of the scores associated to the two first principal components
of the functional data (see [36] for further details). In the data we consider in our
study, the avalanche velocity ranges from 0.1ms−1 to 71.56ms−1 and avalanches
are decelerating (see Figure A.8 a). Flow depths vary from 0.03m to 7.52m.
The flow depth curves exhibit high fluctuations in the interval [2100m, 2300m]
(see Figure A.8 b) which corresponds to a region where path’s topography is
mostly convex. Runout distances vary from 2409m to 2484m (see Figure A.8
c). The focus, for each simulation, on maximal velocity and flow depth at each
position of the path explains the large velocity and flow depth values that are
attained at many positions of the path, but with a strong variability from one
retained avalanche to another. These high values and high variability between all
avalanche events potentially occurring on the studied path are in full consistency
with classical observations of real snow avalanches (e.g., [37]). By contrast, the
used physical constraints define a specific population of retained snow avalanches
in terms of runout distances, with a lower variability from one retained avalanche
to another.

On Figure 1 panels a and b, ubiquitous (pointwise) Shapley effects of veloc-
ity and flow depth curves are shown, respectively. Depending on the output,
results are quite different. For velocity, xstart is the most relevant during a large
part of the path but its importance decreases along the path and, conversely,
the importance of the other inputs increases. For the flow depth output, the
most important input is volstart since the corresponding Shapley effects vary
from 0.4 to 0.2 along the path. Nevertheless, other inputs are not completely
negligible. Input importance also varies according to the topography. In fact,
the ubiquitous effect variation corresponds to local slope changes (see Figure
1 a and b). Correlations between ubiquitous effects and local slope have been
computed and are rather high. For example, for the velocity, the absolute value
of the correlation is higher than 0.51 for all input parameters. This implies that
local slope changes play an important role on the input contribution to output
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variations, a nice result showing the relevance of the GSA analysis to under-
stand the dynamical properties of the flow. Eventually, for runout distance, the
four inputs appear as relevant, but the uncertainty regarding Shapley values is
very high. This is presumably a consequence of the constraints we use, since
the latter considerably reduce the variance of runout distances with regards to
the original sample. This may preclude investigating in details to which extent
the different inputs control this specific output.
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Figure 1: Avalanche model, scenario 1: a) and b) ubiquitous Shapley effects of velocity and
flow depth curves, resp. and, c) runout distance Shapley effects. Shapley effects are estimated
with a sample of size 6152 and Ntot=2002. The local slope is displayed with a white line. A
gray dotted rectangle box is displayed at interval [2017, 2412] where snow avalanche return
periods vary from 10 to 10 000 years. The number of bootstrap samples is fixed to B = 500.

Figure 2 (resp., 3) shows the correlations between the fPCs and the velocity
(resp., flow depth) output for scenario 1. The first fPC has a positive correlation
with the velocity, always higher than 0.57, however the correlation decreases
drastically from the top to the bottom of the path. By contrast, the second
fPC is less correlated to the velocity, the correlation is positive at the top of the
path, then the correlation decays and even becomes highly negative for x ≥ 2300
m. Hence, these two components identify well two regions of the path where
velocity behaves differently: the first fPC corresponds to the release and transit
area of the path, where avalanches accelerate and maintain their velocity while
the second fPC identifies the runout area where avalanches are decelerating and
eventually stop. The behavior is similar for the flow depth, with a sharp peak
in the second fPC corresponding to the location in the runout area where slope
becomes null and then negative. To strengthen our physical interpretation, we
estimated the scalar Shapley effects for each fPC with n = 6152 andNtot = 2002.
As far as velocity is concerned, for the first fPC, xstart is the most important
input and for the second fPC, volstart, xstart and µ are the most relevant. For
the flow depth, for the first fPC, volstart is the most relevant. For the second
fPC, the inputs xstart, volstart and µ are the most important inputs.
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Figure 2: Avalanche model, scenario 1: a) and c) correlations between the first and second
fPCs and the velocity. Scalar Shapley effects for b) fPC 1 and d) fPC 2 are estimated with
n = 6152 and Ntot = 2002. For the confidence intervals, B = 500 is used. The local slope is
displayed with a gray line.
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Figure 3: Avalanche model, scenario 1: a) and c) correlations between the first and second
fPCs and the flow depth output. Scalar Shapley effects for b) fPC 1 and d) fPC 2 are estimated
with n = 6152 and Ntot = 2002. For the confidence intervals, B = 500 is used. The local
slope is displayed with a gray line.
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Figure 4 shows aggregated Shapley effects and 90% confidence intervals com-
puted over space intervals [x, 2412] where x ∈ {1600, 1700, . . . , 2412}. The ag-
gregated effects are computed in the first fPCs explaining more than 95% of
the output variance. Aggregated effects seem more robust than ubiquitous ef-
fects, specially in zones where local slope shows high variations (see Figure 4
compared to Figure 1). For explaining more than 95% of the velocity output
variance, 2 fPCs are required, while, for explaining more than 95% of the flow
depth output variance, at most 4 fPCs are required, depending on x. For the ve-
locity output, the most important input is xstart in the interval [1600m, 2100m]
but its importance decreases along the path. In the interval [2017m, 2412m]
where return periods are non trivial, xstart and volstart are the most important
followed by µ and ξ. For the flow depth output, volstart is the most relevant but
its importance decreases along the path. At the end of the path from 2300m to
2412m where return periods are high (between 100 to 10 000 years), confidence
intervals intersect. It seems thus difficult to deduce a clear ranking of the in-
puts for these last portions of the path. Nevertheless, it seems that none of the
inputs is negligible, even at the very end of the path. In summary, to estimate
velocities with accuracy, the release zone and volume are the most important
parameters and, for the flow depth, a good approximation of the volume released
is essential.
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Figure 4: Avalanche model, scenario 1: a) and b) aggregated Shapley effects of ve-
locity and flow depth curves calculated over space intervals [x, 2412m] where x ∈
{1600m, 1700m, . . . , 2412m}. Shapley effects are estimated with a set of independent samples
of size 6152 and Ntot=2002. Effects are estimated using the first fPCs explaining more than
95% of the output variance. The local slope is displayed with a gray line. A gray dotted
rectangle is displayed at [2017m, 2412m] where snow avalanche return periods vary from 10
to 10 000 years. The number of bootstrap samples is fixed to B = 500.

5.3. Scenario 2

5.3.1. Principle

The aim is now to determine the most influential inputs in the context of
strong knowledge regarding input distributions. In [8], the authors developed
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a Bayesian framework to estimate input distributions from available avalanche
observations. The objective is long-term avalanche hazard assessment in order to
later assess the related risk for buildings and people. In the avalanche literature,
it is assumed that ξ depends on the path topography, so it is a parameter and
not a variable varying from one avalanche to another in [8]’s model. The input
ξ is therefore fixed to its posterior estimate, 1300. Other input variables in this
scenario are dependent. The dependence between hstart and lstart is modeled
with a linear function lstart = 31.25 + 87.5hstart, and similarly as in scenario 1,
we consider volstart as input of the GSA instead of hstart and lstart. The complete
input distribution resulting from the Bayesian inference on the studied path is
described in Table 2. Input correlations have been computed. As an example,
the correlation between µ and volstart is 0.8. Then, as a preliminary step to
GSA, we apply the following constraints:
(i) avalanche is flowing in the interval [1600m, 2204m] where snow avalanche
return periods vary from 10 to 300 years, according to the work of [8] and local
data (implicitly used in this scenario for model calibration),
(ii) avalanche volume is superior to 7 000 m3 and,
(iii) µ coefficient is inferior to 0.39 so as to focus on dry snow avalanches with
long runouts and high velocities.
Under these conditions, we sample a large set of dry snow avalanches that could
cause material or human damages on the studied site according to the available
local data, namely avalanches fully relevant for land-use planning purposes.

Input Distribution
xnstart =

xstart

1600 Beta(1.38, 2.49)
hstart|xnstart Gamma

(
1

0.452 (1.52 + 0.03xnstart)
2, 1

0.452 (1.52 + 0.03xnstart)
)

lstart 31.25+87.5hstart
µ|hstart, xnstart N (0.449− 0.013xnstart + 0.025hstart, 0.11

2)

Table 2: Avalanche model: Scenario 2. Input description and uncertainty intervals. xnstart
is a normalization of xstart. A linear relationship between hstart and lstart inferred from the
local data is used [8]. Gamma distribution parameters are its shape and rate. In the the GSA,
we consider volstart = lstart × hstart × 72.3/ cos(35◦) instead of hstart and lstart.

5.3.2. Global sensitivity analysis results

We first ran n0 = 100 000 avalanches from an i.i.d. sample of input distri-
bution following Table 2. After applying the constraints, the sample size was
reduced to n2 = 1284 and the input distribution was modified. For example,
µ and volstart correlation changes from 0.8 to 0.2 which is still non negligible.
Ubiquitous Shapley effects are displayed on Figure 5 panels a and b. For the
velocity, the three inputs have a similar importance till 1900m, then volstart
importance decreases and µ and xstart importance increases (see Figure 5 a).
Similarly, as in scenario 1, the effects show fluctuations which correspond to
changes in local slope, which clearly appears on fPCs (Appendix A.3). In par-
ticular, for the flow depth, input effects suffer radical changes when the local
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slope decreases from 20◦ to 10◦ (see Figure 5 b). For the runout distance, all
inputs appear as relevant, or, at least, difficult to discriminate (see Figure 5
c). Again, this may be linked to the set of constraints that targets a specific
population of snow avalanches, with a rather low variability in terms of runout
distances from one avalanche to another.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

velocity

abscissa position [m]

S
h

1600 1800 2000 2200

µ
xstart

volstart

10
20

30
40

Lo
ca

l s
lo

pe
 [d

eg
re

es
]

a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

flow depth

abscissa position [m]

S
h

1600 1800 2000 2200

µ

xstart

volstart

10
20

30
40

Lo
ca

l s
lo

pe
 [d

eg
re

es
]

b)

●

●

●

0.
20

0.
30

0.
40

runout distance

S
h

µ xstart volstart

c)

Figure 5: Avalanche model, scenario 2: a) and b) ubiquitous Shapley effects of velocity and
flow depth curves, c) runout distance Shapley effects. Shapley effects are estimated with a set
of independent samples of size 1284 and Ntot=800. The local slope is displayed with a white
line. A gray dotted rectangle shows the interval [2064, 2204] where return periods vary from
10 to 300 years. The number of bootstrap samples is fixed to B = 500.

Aggregated effects (see Figure 6) present less fluctuations and are easier to
interpret (see Figure 5). In summary, under this second scenario, it is funda-
mental to have a good approximation of the released volume and abscissa for
velocity forecasting, while for flow depth forecasting, a good approximation of
released volume is desirable. Nevertheless, none of the other inputs are negligi-
ble. Note that the uncertainty associated to the estimation of Shapley effects at
2204m is high (see the width of the corresponding confidence intervals on Figure
6). To outperform the estimation accuracy at the end of the path generating a
larger initial sample of avalanches is possible, but the computational burden is
prohibitive.

5.4. Outcomes for avalanche modelling, related hazard, assessment and outlooks

For both scenarios, our GSA results are in overall accordance with previ-
ous works documenting the sensitivity of snow avalanche models to their input
conditions using less formalised methods [38]. They also relate to more gen-
eral results regarding snow avalanche dynamics. For instance, it is well known
that in the transit area of the path, an avalanche accelerates up to a maximal
velocity and this limit velocity can be explicitly computed on a constant slope
under the assumption of a Voellmy friction law [39, 40, 41]. More generally,
with depth-averaged flow equations, it is known that initial conditions corre-
sponding to the avalanche release are important only in the early phases of the
flow and are forgotten later, especially in the runout area where velocity and
flow depths become primarily constrained by local slope. It is therefore all the
more logical that the influence of xstart on velocity decreases as the avalanche
flows downslope.
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Figure 6: Avalanche model, scenario 2: a) and b) aggregated Shapley effects of velocity and
flow depth curves calculated over space intervals [x, 2204] where x ∈ {1600, 1700, . . . , 2204}
and using the first fPCs which have 95% of output variance. Shapley effects are estimated
with a set of independent samples of size 1284 and Ntot=800. The local slope is displayed
with a gray line. A gray dotted rectangle is displayed at [2017m, 2204m] where return periods
vary from 10 to 300 years. The number of bootstrap samples is fixed to B = 500.

However, in the snow avalanche literature, it is thought that runout dis-
tances is the variable that is primarily controlled by the friction parameters,
and the velocity/flow depths much less [42, 27]. By contrast, our results suggest
that things are not that clear, with the different outputs being controlled by
friction parameters and other avalanche model input parameters with rather
similar importance. Also, the fPCs convey new useful information about the
avalanche model and its sensitivity, as demonstrated by the probative linkages
between local slope and sensitivity indices we highlighted. This provides first
concrete illustration of the interest of our approach for practitioners/physicists
of the field. On this basis, our approach could/should now be applied to other
avalanche paths, and to different avalanche models with different friction laws
so as to generalize and widen the results obtained and, more widely, to elucidate
new physics related to avalanche flows. For instance, the control of friction pa-
rameters by the different input variables, may indicate complex physics which is
not well understood so far, and the Voellmy friction law we used is robust and
widely used in the community but still oversimplified with regards to reality.
Hence, conducting an in-depth sensitivity analysis within our framework with
different, more complex, friction laws may well help to understand which terms
of the friction model critically influence avalanche flows.

6. Conclusions and further perspectives

In this work, we introduced the notion of aggregated Shapley effects and
we stated their main properties. We extended the subset aggregation proce-
dure with double Monte Carlo given data estimator introduced in [13] to the
estimation of aggregated Shapley effects. Also, we proposed an algorithm to
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construct bootstrap confidence intervals for scalar and aggregated Shapley ef-
fects, extending the block bootstrap procedure introduced in [16] to the given
data framework. Many interesting questions as the choice of the number of
nearest neighbors NI or the one of the accuracy numbers Nu are still open and
represent challenging theoretical perspectives. From the applicative point of
view, first insightful results regarding avalanche dynamics and potential related
hazard, were obtained. Our analysis was focused on the computation of the
complete multivariate distribution of all potential avalanches at the study site,
namely on the hazard quantification step of risk assessment. However, avalanche
risk estimates within runout areas can be directly evaluated from the output
of the avalanche dynamic model [43, 44], combining them with vulnerability
relations for buildings and people (e.g., [45]) so as to evaluate destruction and
lethality rates. Our framework could be in the future used to conduct a com-
plete sensitivity analysis in avalanche risk assessment taking into account both
the hazard and vulnerability/exposure components of risk. This would comple-
ment existing results currently limited to separate investigations of avalanche
risk sensitivity to vulnerability relations and runout distributions [10, 45]. More
widely, global sensitivity analyses remain so far seldom and rough in the snow
avalanche community and in the wider community of people working on gravi-
tational hazards. Such analyses are yet urgently needed to better quantify and
mitigate the related risks, notably to focus the model developments and simu-
lation efforts on the most influential inputs. Our work i) proposes an approach
having the theoretical properties required to handle the complexity of depen-
dent functional inputs in full rigour, and ii) demonstrates its applicability and
potential usefulness. It should therefore be seen as an important step forward
likely to be used in the future by a wide range of practitioners of gravitational
hazard domain (snow avalanches, landslides, rockfall, etc.).
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Appendix A.

In this appendix, we provide the proofs of Propositions 2.1 and 2.2, some
descriptive statistics of avalanche simulations for scenario 1 and the results we
obtained for the functional principal component analysis for Scenario 2.

Appendix A.1. Proofs of Propositions 2.1 and 2.2

Proof of Proposition 2.1. The proof is straightforward. It is a direct conse-
quence of the linearity and additivity properties of the Shapley value. Let
i ∈ {1, . . . , d} and j ∈ {1, . . . , p}. The characteristic function valj (see (2))

has Shapley value Shji , i ∈ {1, . . . , d}. Thanks to the linearity and additivity
properties (see properties 4. and 5. of the Shapley value), the characteristic
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function u ⊆ {1, . . . , d} 7→ val(u) =

∑p
j=1 Var(Yj)valj(u)∑p

i=1 Var(Yj)
leads to the Shapley

value

∑p
j=1 Var(Yj)Sh

j
i∑p

i=1 Var(Yj)
· Moreover,

val(u) =

∑p
j=1 Var(Yj)valj(u)∑p

j=1 Var(Yj)
=

∑p
j=1 Var(E(Yj |Xu))∑p

j=1 Var(Yj)
=

tr(Σu)

tr(Σ)
(A.1)

where Σu is the covariance matrix of E(Y|Xu) and Σ is the covariance matrix of
Y. Thus for any u ⊆ {1, . . . , d}, val(u) is equal to the aggregated Sobol’ index
associated to u.

Proof of Proposition 2.2. i. As for all j ∈ {1, . . . , p} 0 ≤ Shji ≤ 1 and as the
sum of the non negative weights Var(Yj)/

∑p
ℓ=1 Var(Yℓ) is one, we deduce that

0 ≤ GShi ≤ 1.
ii. Note that GSh′i can be written as GSh′i =

∑p
j=1 Var(λYj)Sh

′j
i /

∑p
j=1 Var(λYj),

where Sh′ji is the Shapley effect associated to the characteristic function val′j .

Note that val′j(u) = Var(E(λYj |Xu))/Var(λYj) = valj(u) for all u ⊆ {1, . . . , d}.
Thus, Sh

′j
i = Shji from where GSh′i = GShi which means the aggregated Shap-

ley effect is invariant by any nonzero scaling of f .
iii. Let us write g(X) = Of(X) = OY = U. The characteristic function asso-
ciated to the aggregated Shapley effect GSh′i of U is then (see Equation (A.1))
val’(u) = tr(ΣU

u )/tr(ΣU) where ΣU
u is the covariance matrix of E(U|Xu) and

ΣU is the covariance matrix of U. Then, for all u ⊆ {1, . . . , d}

val’(u) =
tr(ΣU

u )

tr(ΣU)
=

tr(OΣY
u Ot)

tr(OΣYOt)
=

tr(ΣY
u )

tr(ΣY)
= val(u).

As val(u) has a unique Shapley value GShi, val′(u) has Shapley value GShi
which proves that GSh′i = GShi for all i ∈ {1, . . . , d}.
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Appendix A.2. Avalanche modelling, scenario 1: data description
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Figure A.7: Avalanche model, scenario 1: scatter-plots of initial (black points) and constrained
(gray points) samples. In the figure’s diagonal, the density function of the initial (gray color)
and constrained (transparent) samples are displayed. Input correlations of the original and
constrained (denoted by AR as obtained from an acceptance rejection algorithm) samples are
shown. 1000 subsamples of original and constrained samples are used for illustration purpose.

1600 1800 2000 2200 2400

0
20

40
60

abscissa position [m]

ve
lo

ci
ty

 [m
/s

]

a)

1600 1800 2000 2200 2400

0
5

10
15

abscissa positionh [m]

flo
w

 d
ep

th
 [m

]

b)

24
20

24
40

24
60

24
80

ru
no

ut
 d

is
ta

nc
e 

[m
]

c)

Figure A.8: Avalanche model, scenario 1: a) and b) functional HDR boxplots of velocity
and flow depth curves, resp. It is shown 50% HDR (dark gray), 100% HDR (light gray) and
modal curve, the curve in the sample with the highest density (black line). c) runout distance
boxplot. The constrained sample size is n1 = 6152.
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Appendix A.3. Functional principal components obtained for Scenario 2
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Figure A.9: Avalanche model, scenario 2: a) correlation between the velocity and the first
fPC, c) correlation between the velocity and the second fPC. Scalar Shapley effects for b) fPC
1 and d) fPC 2 are estimated with n = 1284, Ntot = 800. Confidence intervals are built with
B = 500. The local slope is displayed with a gray line.
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Figure A.10: Avalanche model, scenario 2: a) correlation between the flow depth and the first
fPC, c) correlation between the flow depth and the second fPC. Scalar Shapley effects for b)
fPC 1 and d) fPC 2 are estimated with n = 1284, Ntot = 800. Confidence intervals are built
with B = 500. Local slope is displayed with a gray line.
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In this supplementary material, we provide numerical experiments conducted
on toy models to validate the GSA method we introduced in the paper

1. Comparison between two sets of accuracy numbers

In this appendix, we compare on a toy model the uniform allocation of the
budget Ntot, namely Nu = Round

(
Ntot/(2

d − 2)
)
, with the allocation intro-

duced in [1], defined by N∗
u = Round

(
Ntot

(
d
|u|
)−1

(d− 1)−1
)
. We consider the

Gaussian linear model example from [2], f(X) =

d∑
i=1

βiXi, where the Xis are

independent centered Gaussian variables with standard deviation σi = i2 and,
βi = 1 for all i ∈ {1, . . . , d}. The scalar Shapley effects can be computed analyt-

ically [2]: Shi = β2
i σ

2
i /

∑d
i=1 σ

2
i . We used N = 100 independent sets of samples

of size n = 10 000 and Ntot = 54 000 to draw the boxplots shown in Figure 1. Ta-
ble 1 shows the accuracy to estimate each conditional element E (Var(Y |X−u))
as a function of |u| in dimension d = 10. On Figure 1, we see that, at least
for this toy example, the allocation proposed in [1] leads to a better accuracy
than the uniform allocation. When dimension is low (for example d = 4 as in
the mass-spring model), taking N∗

u or Nu give similar results because the two
options are quite similar.

|u| 1 2 3 4 5 6 7 8 9
N∗

u 600 133 50 29 24 29 50 133 600

Nu = Round
(
Ntot/(2

d − 2)
)

53 53 53 53 53 53 53 53 53

Table 1: Input dimension d = 10: Nu values for both strategies (i) and (ii) for n = 10 000
(number of simulations) and Ntot = 54 000 (total cost).
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Figure 1: Linear Gaussian model with d = 10 inputs: comparison between Nu =
Round

(
Ntot/(2d − 2)

)
for all u (called Nu uniform) and Nu = N∗

u for all u with n = 10 000
and Ntot = 54 000. The true scalar Shapley effects are displayed with black lines.

2. Estimation accuracy and coverage probability of bootstrap confi-
dence intervals on toy models

In this section, we numerically study the accuracy of the estimation proce-
dure as far as the coverage probability of bootstrap confidence intervals. We
consider two toy models: a multivariate linear Gaussian model and the func-
tional mass-spring model proposed in [3]. To estimate scalar Shapley effects,
we use the function shapleySubsetMc of the R package sensitivity [4] corre-
sponding to the estimation procedure defined by Equations (4), (5) and (6) in
the main document. Functional PCA is performed using the R package FPCA

[5].

2.1. Multivariate linear Gaussian model in dimension d = 2

We consider a multivariate linear model with two Gaussian inputs for which
the analytical formulation of the scalar and aggregated Shapley effects is pro-
vided in [6].

The model f is defined as Y = f(X) = BTX with X ∼ N (µ,Γ), Γ ∈ Rd×d

a positive-definite matrix and B ∈ Rd×p. In this example, we consider d = 2
and p = 3 which means Y = (Y1, Y2, Y3). The variance of the centered random
variables X1 and X2 are equal to σ2

1 = 1 and σ2
2 = 3, respectively and their

correlation ρ = 0.4. Thus the covariance matrix Γ of X and the coefficients of

2



B = (βij) ∈ R2×3 are given by:

Γ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
1 0.69

0.69 3

]
,

B =

[
1 4 0.1
1 3 0.9

]
.

For j = 1, 2, 3, we then get Var (Yj) = σ2
Yj

= β2
1jσ

2
1 + 2ρβ1jβ2jσ1σ2 + β2

2jσ
2
2 .

The scalar Shapley effects can be computed and we get:

σ2
Yj
ϕj
1 = β2

1jσ
2
1

(
1− ρ2

2

)
+ ρβ1jβ2jσ1σ2 + β2

2σ
2
2

ρ2

2
,

σ2
Yj
ϕj
2 = β2

2jσ
2
2

(
1− ρ2

2

)
+ ρβ1jβ2jσ1σ2 + β2

1σ
2
1

ρ2

2
.

Then, the aggregated Shapley effects for i ∈ {1, 2} are computed according
to Equation (3) in the main document. Let us first focus on scalar Shapley effect
estimation and the associated confidence intervals, for example scalar Shapley
effects for the first component of the output, Y1. For Y1, the most important
input is X2, with a Shapley effect around 0.66. In Figure 2, we analyze the
evolution of the estimation accuracy through the mean absolute error (MAE)
and the probability of coverage (POC) as a function of n and Ntot. The value
of Ntot varies from 100 to n(2d − 2) = 2n. For each combination of n and
Ntot, N = 300 independent sets of random samples are used for estimating the
MAE and the POC. The number of bootstrap samples is fixed to B = 500. The
evolution of the 5% and 95% quantiles of the MAE is also drawn. As expected,
the estimation accuracy increases with n and Ntot. Also, for fixed n, it increases
with Ntot. As Ntot reaches n, which means Nu = n/2 for all u as d = 2, the
decrease of the MAE slows down from exponential to linear. This behavior
seems coherent with the result stated in [1, Corollary 6.8] which asserts that
there exits 0 < C < +∞ such that, for Nu ≥ Cn1/(d−|u|) and δ > 0:

|ĉ1(u)− c1(u)| = op

(
1

n1/(2(d−|u|)−δ

)
. (1)

The bound in (1), although suffering from the curse of dimensionality, does not
depend on Ntot anymore. To the best of our knowledge, solving efficiently the
dimensionality issue in the estimation of Shapley effects is still an open challenge.
Note that very recently, an algorithm based on random forests which improves
the computational cost of Shapley effects was proposed in [7] (see also [8] for a
recent review on the use of random forests for GSA). Finally, the behavior of the
POC is as expected, around 0.9 whatever n and Ntot. The evolution of the MAE
and POC for the estimation of aggregated Shapley effects as function of n and
Ntot is displayed in Figure 3. Similarly as for the estimation of scalar effects, the
accuracy increases with n and Ntot. However for fixed n, the POC deteriorates

3



for large Ntot (POC is around 0.8 for Nu = n). The reason for this deterioration
is not well understood yet. However, these numerical experiments suggest that
it is reasonable to keep all theNu strictly below n to guarantee the POC accuary.
We also estimated Shapley effects in the case where input correlation ρ set equal
to 0.9. The conclusions were similar both for the estimation accuracy and for
the coverage probability, thus we decided not to present the figures here.
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Figure 2: Linear Gaussian model, d = 2: MAE for scalar Shapley effects of output Y1 estimated
from N=300 sets of independent samples of size a) n = 1000, b) n = 2000 and c) n = 5000, as
a function of Ntot. The 0.05 and 0.95 pointwise quantiles of the absolute error are drawn with
gray polygons. Empirical coverage probability of the 90% bootstrap simultaneous confidence
intervals is displayed with dotted lines. Theoretical coverage probability 0.9 is shown with a
plain gray line. The number of bootstrap samples is fixed to B = 500.
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Figure 3: Linear Gaussian model, d = 2: MAE for aggregated Shapley effects estimated from
N=300 sets of independent samples of size a) n = 1000, b) n = 2000 and c) n = 5000, as a
function of Ntot. The 0.05 and 0.95 pointwise quantiles of the absolute error are drawn with
gray polygons. Empirical coverage probability of the 90% bootstrap simultaneous confidence
intervals is displayed with dotted lines. Theoretical coverage probability 0.9 is also shown
with a gray plain line. The number of bootstrap samples is fixed to B = 500.

2.2. Mass-spring model

In this section, we consider a test case with discretized functional output:
the functional mass-spring model considered in [3], where the displacement of a
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mass connected to a spring is considered:

mℓ′′(t) + cℓ′(t) + kℓ(t) = 0, (2)

with initial conditions ℓ(0) = l, ℓ′(0) = 0, and t ∈ [0, 40]. There exists an ana-
lytical solution to Equation (2). This model has four inputs (see more details in
Table 2). The model output is the vectorY = f(X) = (ℓ(t1), . . . , ℓ(t800)), ti =
0.05i with i ∈ {1, . . . , 800}.

Input Description Distribution
m mass (kg) U [10, 12]

c damping constant (Nm−1s) U [0.4, 0.8]

k spring constant (Nm−1) U [70, 90]
l initial elongation (m) U [−1,−0.25]

Table 2: Mass-spring model: Input description and uncertainty intervals. U denotes the
uniform distribution. The inputs are independent from each other.

Inputs are considered independent. The true aggregated Shapley effects
are unknown but they are approximated using a high sample size n = 25 000
and Ntot = 10 000. Then, the Shapley effects estimated are ĜSm = 0.38,
ĜSc = 0.01, ĜSk = 0.51 and, ĜSl = 0.09. Given these results, inputs ranking
is: k, m, l and c which corresponds to the same ranking obtained using Sobol’
indices (see Table 3 of [3]). The discretized output is high-dimensional (p = 800).
We perform fPCA (see Section 3.3 in the main document) to estimate the effects
using the first q ≪ p fPCs. Figure 4 shows the POC and bias evolution if
different values in n and Ntot are used for the aggregated effect estimation. We
use the first 6 fPCs which explain 95% of the output variance (see Figure 4 a).
For each n and Ntot combination, the aggregated Shapley effects are estimated
for a set of N = 100 independent random samples and confidence intervals are
estimated with a set of B = 500 bootstrap samples. The accuracy is not very
good if sample size is small n = 1000 (see Figure 4 b). However, it reduces
drastically when the sample size n increases as expected. On our experiments,
the smallest MAE is achieved for n = 5000 and Ntot = 2002 (see Figure 4 d).
The confidence interval reaches the expected POC 0.9 as soon as n and Ntot are
large enough (see Figure 4 b).
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Figure 4: Mass-spring model: a) Explained variance as a function of the number of principal
components. The gray line is displayed at 95% of the variance explained which corresponds
to 6 components. The MAE computed from a set of N = 100 independent realizations of
the aggregated Shapley effect estimates, using the first 6 principal components, is drawn as a
function of Ntot with b) n = 1000, c) n = 2000 and d) n = 5000. The 0.05 and 0.95 pointwise
quantiles of the MAE are drawn with gray polygons. The probability of coverage of the 90%
bootstrap simultaneous intervals is displayed with a dotted line. The theoretical POC 0.9 is
highlighted with a plain gray line. The number of bootstrap samples is fixed to B = 500.
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