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Abstract Our goal is to study the genetic composition of a population in
which each individual has 2 parents, who contribute equally to the genome
of their o�spring. We use a biparental Moran model, which is characterized
by its �xed number N of individuals. We �x an individual and consider the
proportions of the genomes of all individuals living n time steps later, that
come from this individual. When n goes to in�nity, these proportions all con-
verge almost surely towards the same random variable. When N then goes
to in�nity, this random variable multiplied by N (i.e. the stationary weight
of any ancestor in the whole population) converges in law towards the mix-
ture of a Dirac measure in 0 and an exponential law with parameter 1/2, and
the weights of several given ancestors are independent. This gives an explicit
formula for the limiting (deterministic) distribution of all ancestors' weights.

Keywords Biparental Moran model · Ancestor's genetic contribution ·
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1 Introduction

This paper deals with the role of the pedigree, i.e. the complete description of
all ancestral lines, in the genetic composition of a population with biparental
genetic transmission.
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In population genetics models with monoparental transmission the number
of ancestors of a sample of individuals classically decreases backwards in time,
till the occurrence of a common ancestor from which all the genetic material
of the sampled individuals necessarily derives. On the contrary, as was already
observed in several articles, notably [7,6], we expect the genetic material of a
sample of individuals in populations with biparental genetic transmission to
originate from a large number of ancestors, that is not decreasing nor constant
backwards in time. From this observation, an element of interest in these
populations, is the contribution of a set of ancestors to the genetic material of
a sample of individuals. As mentioned in several articles, ([18,19,20,21]), this
contribution is highly dependent on the pedigree, i.e. the joint succession of
ancestors, of the sampled individuals.

Biparental genealogies have received some interest, notably in [6,7,9], in
which time to recent common ancestors and ancestors' weights are investigated
for the Wright-Fisher biparental model. In [7], a convergence result was stated
based on a �rst and second moment calculation and an unproved independence
ansatz. The time to the recent common ancestors for the biparental Moran
model is also studied in [12]. The convergence of the genealogical process of
a sample of individuals towards a diploid coalescent is considered notably in
[15,16,5,4] respectively for the diploid Wright-Fisher model and for a 2-sex
Wright-Fisher model. [14] and [2] study the link between pedigree, individual
reproductive success and genetic contribution. Finally, in [1,10], recombination
between loci and its impact on genome transmission in populations with sexual
reproduction are investigated.

In this article we consider the Moran biparental model in which we assume
that both parents and the replaced individual are in di�erent sites and study
the amounts of genetic material transmitted by all ancestors in future gener-
ations. More precisely, we de�ne the "weight" of an ancestor in a given sam-
pled individual as the probability that a given gene of the sampled individual
comes from this ancestor. Note that this de�nition implicitely conceptualizes
the genome as a concatenation of in�nitely-many independently segregating
loci that have no impact on reproductive success. This idealized model however
has the advantage of providing explicit formulas for the asymptotic weights
of ancestors. We prove (Theorem 1 and Corollary 1) �rst that the weights
of an ancestor in all individuals are asymptotically equal (this was proved in
[6] for the Wright-Fisher model and one can think it holds under quite gen-
eral assumptions). Secondly, we prove that the total weights of l ancestors in
the population (properly rescaled by a factor of N) converge in law when the
number of individuals N goes to in�nity, to a vector of l independent random
variables, that are equal to 0 with probability 1/2, or follow an exponential
law with parameter 1/2. This result also gives (Corollary 2) that the properly
rescaled plot of ordered weights of all ancestors converges to the inverse of
the cumulative distribution function associated to this limiting law, which is
illustrated by simulation outcomes (Figure 2). To prove these results we �rst
introduce the pedigree graph of the population, representing the parental links
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Fig. 1 Graph representing the pedigree of a population with 8 individuals, during 7 time
steps. The time orientation is from past to future.

between individuals. The genealogy of a gene is then a random walk on this
graph, going backwards in time. The moments of the weights of l ancestors
are then studied by considering the dynamics and the stationary distribution
of a k-particle random walk on the random pedigree graph (for any k ≥ l). We
next �nd an appropriate projection of this k-particles random walk (on the
space of multiplicities of multisets with cardinality k) which remains a Markov
chain due to symmetries of the model. The particular dynamics of this new
Markov chain when the number N of individuals is large �nally leads us to use
to the characterization of the stationary distribution of Markov chains based
on oriented spanning trees, given notably in [17]. The limiting (when N goes
to in�nity) stationary distribution of the k particle Markov chain as well as
the limiting law of ancestors' weights are then derived.

2 Biparental Moran model

We consider a population of N individuals following a neutral biparental
Moran model. More precisely, individuals are numbered by {1, 2, ..., N} = I
and at each discrete time step t ∈ N = {0, 1, 2, ...}, a triplet of distinct indi-
viduals (πt, µt, κt) ∈ I3 is chosen uniformly at random among the population.
The �rst two individuals, πt (father) and µt (mother), produce one new o�-
spring that replaces the individual κt ∈ I. This forms the population at time
t+1. Note that one could alternatively choose the three individuals πt, µt and
κt uniformly and independently at random in the population, at any time t.
The di�erence between these two models should be negligible when N is large
and all the results stated from now should remain true for this second model,
though some calculations are simpler in the �rst model that we now consider.

This reproduction dynamics de�nes an oriented random graph on I × N
(as represented in Figure 1), denoted GN , representing the pedigree of the
population, such that between time t + 1 and time t, two arrows are drawn
from (κt, t+ 1) to (πt, t) and (µt, t) respectively and N − 1 arrows are drawn
from (x, t+ 1) to (x, t) for each x ∈ I \ {κt}.

Now let us consider a gene (portion of genome) of an individual i present
in the population at time n. The genealogy of this gene (i.e. the individual in
which a copy of this gene was present, assuming no mutation and no recom-

bination, at each time t = n − k ≤ n), denoted by (X
(n)
k , n − k)0≤k≤n, is a
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random walk on this random graph, starting from the position (i, n). One can
then consider the random variable

An(i, j) = P(X(n)
n = j|X(n)

0 = i,GN ) (1)

(which is a deterministic function of the random graph GN ). This quantity,
given the genealogy GN , is the probability that any gene of individual i living
in generation n comes from ancestor j living at generation 0. If genome size is
very large and the evolutions of distant genes are su�ciently decorrelated, we
can expect this quantity to be close to the proportion of genes of individual
i that come from individual j. This quantity will also be called the weight of
the ancestor j in the genome of individual i. It is also natural to consider the
random variable

Mn(j) =

N∑
i=1

An(i, j)

that measures the weight of the ancestor j, in the population living n time
steps later. Note that Mn(j) ∈ [0, N ] and that

∑N
j=1Mn(j) = N for all n.

Let us denote by Fn the �ltration associated to the restriction of GN to
I × {0, ..., n}. We then have the following lemma:

Lemma 1 For all j the stochastic process (Mn(j))n∈N is a martingale with
respect to the �ltration (Fn)n∈Z+

, whose law is independent of j.

Proof

Mn+1(j) =

N∑
i=1

P(X(n+1)
n+1 = j|X(n+1)

0 = i,GN ) by de�nition

=

N∑
i=1

N∑
i′=1

P(X(n+1)
n+1 = j,X

(n+1)
1 = i′|X(n+1)

0 = i,GN )

=

N∑
i=1

N∑
i′=1

P(X(n+1)
n+1 = j|X(n+1)

1 = i′, X
(n+1)
0 = i,GN )

× P(X(n+1)
1 = i′|X(n+1)

0 = i,GN )

=

N∑
i=1

N∑
i′=1

P(X(n+1)
n+1 = j|X(n+1)

1 = i′,GN )

× P(X(n+1)
1 = i′|X(n+1)

0 = i,GN ) by the Markov property.

=

N∑
i=1

N∑
i′=1

P(X(n)
n = j|X(n)

0 = i′,GN )P(X(n+1)
1 = i′|X(n+1)

0 = i,GN )

=

N∑
i=1

N∑
i′=1

An(i
′, j)P(X(n+1)

1 = i′|X(n+1)
0 = i,GN ) by de�nition of An.
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Therefore since An(i
′, j) ∈ Fn and P(X(n+1)

1 = i′|X(n+1)
0 = i,GN ) is inde-

pendent of Fn,

E(Mn+1(j)|Fn) =
N∑
i′=1

An(i
′, j)

N∑
i=1

E
(
P(X(n+1)

1 = i′|X(n+1)
0 = i,GN )

)
=

N∑
i′=1

An(i
′, j)NP(X(n+1)

1 = i′)

=

N∑
i′=1

An(i
′, j) by exchangeability of elements of I

=Mn(j).

ut

As Mn(j) ∈ [0, N ] for all n and j, the martingale (Mn(j))n∈N is bounded
and therefore converges almost surely to some random variable M∞(j) when
n goes to in�nity. Our main result is now the following

Theorem 1 (i) For all j ∈ I, there exists a random variable A∞(j) such that

An(i, j) −−−−→
n→∞

A∞(j) a.s.

In particular,

M∞(j) = NA∞(j) a.s.

Note that the distribution of M∞ depends on N .
(ii) For any l ≤ N and any k1, ..., kl ∈ Z+,

E
(
Mk1
∞ (1)...Mkl

∞(l)
)
−−−−→
N→∞

l∏
i=1

2ki−1ki! . (2)

A corollary of the second point of this theorem is

Corollary 1 For l ≤ N , let us de�ne R1, ..., Rl, independent random variables
on R+, such that Ri is equal to 0 with probability 1/2 or follows an exponential
law with parameter 1/2). Then

(M∞(1), ...,M∞(l)) ====⇒
N→∞

(R1, ..., Rl).

This theorem also gives an explicit formula for the limiting distribution of
all ancestors' weights.

Corollary 2 For any i ∈ I, let M̃i be the i-th order statistic of the vector
(M∞(1), ...,M∞(N)). Then for all u ∈ [0, 1), when N goes to in�nity,

M̃[Nu] → −2 ln(2(1− u))1{u>1/2} in probability

which coincides with the quantile function of the random variables Ri.
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Fig. 2 We run one simulation of the Moran model for N = 100 (left) and N = 10000
(right): in blue/black, we plot ancestors' weights ranked in increasing order after 100000
time steps, whereas in red is the function x 7→ −1x>N/2 × 2 ln(2(1− x/N)).

This convergence is illustrated in Figure 2.

Remark 1 Our main result consists in giving the asymptotic distribution of
ancestors' weights. The proof of this result relies on guessing a priori what
will be the form of the limiting distribution. This guess (from which For-
mula (2) follows) can be done by assuming asymptotic independence of an-
cestors' weights. Under this hypothesis, we �nd that the Laplace transform
of the asymptotic distribution of M∞(1) should satisfy the equation h(λ) =
E(exp(−λM∞(1))) = 1

3 + 2
3h
(
λ
2

)
h(λ), which leads to conjecture the limiting

distribution of the weight of a given ancestor, as done in [7] for the Wright-
Fisher model (Equation (A.13)).

Remark 2 Similar results should hold when considering a non biological ex-
tension of our model in which the genealogical graph has constant reverse
branching multiplicity m (here m = 2), i.e. each "child" has m "parents". In
that case the limiting weight of a given ancestor is expected to be equal to 0
with probability 1/m, or (with probability 1− 1/m) to follow an exponential
law with parameter 1/m.

3 Proofs

Proof (Proof of Theorem 1) (i) The dynamics of An de�ned in Equation (1)
is the following: {

An+1(i, j) = An(i, j) if i 6= κn
An+1(κn, j) =

1
2 (An(πn, j) +An(µn, j))

Therefore if we de�ne Ln(j) = maxi∈I An(i, j) and ln(j) = mini∈I An(i, j) for
all n ∈ Z+ and j ∈ I, the sequences (Ln(j))n and (ln(j))n are respectively
non-increasing and non-decreasing in n, for all j ∈ I. Then the di�erence
Ln(j)− ln(j) is decreasing in n. Now at each time step n, let us de�ne imin(j)
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any element in argminiAn(i, j), and imax(j) any element in argmaxiAn(i, j),
and

Dn = {at time n, imin(j) is killed and replaced by an o�spring of imax(j)}.

We know that P(Dn|Fn−1) = 1/N2 so by the conditional Borel-Cantelli lemma
([11]) in�nitely many events {Dn, n ∈ N} occur. Note that once at most N −1
such events have occurred, the di�erence Ln(j) − ln(j) is at least divided by
2. Therefore this di�erence Ln(j)− ln(j) goes almost surely to 0 when n goes
to in�nity.

Therefore An(i, j) converges to A∞(j) = L∞(j) almost surely, when n goes

to in�nity. This also implies that M∞(j) =
∑N
i=1A∞(j) = NA∞(j).

(ii) Note that

Mn(j) =

N∑
i=1

An(i, j) = NP
(
X(n)
n = j|X(n)

0 ∼ U(I),GN
)

where U(I) denotes the uniform law on I. For each j ∈ I, Mn(j) is a de-
terministic function of the random pedigree graph GN , and the quantities
Mn(1), Mn(2), ..., Mn(N) are random variables adding up to N that all de-

pend on the same random graph GN . Let (X(1,n)
i , n− i)i≤n, (X(2,n)

i , n− i)i≤n,
..., (X

(k,n)
i , n − i)i≤n be k independent random walks on GN starting at gen-

eration n, such that for all j, the positions X
(j,n)
0 are independent and follow

the uniform law on I. For each k1, k2, ..., kl ∈ Z+ such that
∑l
j=1 kj = k, we

have

Mk1
n (1)...Mkl

n (l) = NkP
(
X(1,n)
n = 1|GN

)
P
(
X(2,n)
n = 1|GN

)
...P

(
X(k1,n)
n = 1|GN

)
× P

(
X(k1+1,n)
n = 2|GN

)
...P

(
X(k1+...+kl,n)
n = l|GN

)
= NkP

(
X(1,n)
n = ... = X(k1,n)

n = 1, ...,

X(k1+...+kl−1+1,n)
n = ... = X(k1+...+kl,n)

n = l|GN
)
,

hence after integrating on the random pedigree graph GN ,

E
(
Mk1
n (1)...Mkl

n (l)
)

= NkP(X(1,n)
n = ... = X(k1,n)

n = 1, ...,

X(k1+...+kl−1+1,n)
n = ... = X(k1+...+kl,n)

n = l).

After integrating on the graph, the sequence (X
(1,n)
n , ..., X

(k,n)
n )n∈N is a Markov

chain on the �nite space Ik. We can think of it as the (non independent) mo-
tion of k particles on I. This Markov chain is irreducible and aperiodic. Indeed,

at each time step, (X
(1,n)
n , ..., X

(k,n)
n )n∈N stays in the same state with positive

probability (at least when the number of occupied sites is strictly smaller than
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N , which will be the case when N goes to in�nity), which gives aperiodic-
ity. Next, starting from any element of Ik, it can reach the state (1, 1, ..., 1)
with positive probability, for example due to the following sequence of events.
During k consecutive time steps, site 1 is chosen as father, and one of the

sites di�erent from 1 and occupied by {X(1,n)
n , ..., X

(k,n)
n } is chosen as child.

Then all particles at the child position are sent to the father site 1. Similarly,

starting from the state (1, 1, ..., 1), the Markov chain (X
(1,n)
n , ..., X

(k,n)
n )n∈N

can reach any state (i1, ..., ik) of Ik (iu is the position of the u − th par-
ticle) with positive probability, for example due to the following sequence
of events. Let us assume without loss of generality that i1 6= 1, and choose

δ1 6= δ2 ∈ I \ {i1, ..., ik}. Then the Markov chain (X
(1,n)
n , ..., X

(k,n)
n )n∈N jumps

from (1, 1, ..., 1) to (i11iu=i1 + δ11iu 6=i1)1≤u≤k with positive probability (site 1
is chosen as child, and sites i1 and δ1 are chosen as parents; all particles u such
that iu = i1 are sent to parental site i1 and other particles are sent to parental
site δ1). At this stage, particles are either in site i1 or in site δ1. Next, the

Markov chain (X
(1,n)
n , ..., X

(k,n)
n )n∈N jumps from (i11iu=i1 + δ11iu 6=i1)1≤u≤k

to (i11iu=i1 + i21iu=i2 + δ21iu 6=i1)1≤u≤k with positive probability (site δ1 is
chosen as child, and sites i2 and δ2 are chosen as parents; all particles u such
that iu = i2 are sent to parental site i2 and other particles are sent to parental
site δ2), and so on, alternating δ1 and δ2. This gives a path with positive
probability and less than k steps leading from (1, 1, ..., 1) to any (i1, ..., ik).

The Markov chain (X
(1,n)
n , ..., X

(k,n)
n )n∈N is then aperiodic and irreducible,

and therefore its law converges, when n goes to in�nity, to a stationary law on
Ik, denoted νN,k. Then for each k1, k2, ..., kl ∈ Z+ such that

∑l
j=1 kj = k,

E
(
Mk1
∞ (1)...Mkl

∞(l)
)
= NkνN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l)

where in the right hand side term the number i ∈ [[1, l]] = {1, 2, ..., l} is repeated
ki times. Our aim is then to prove that

NkνN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l) −−−−−→
N→+∞

l∏
i=1

2ki−1ki!,

which will give Equation (2) in Theorem 1.

Note that νN,k is invariant under any permutation of its k entries and
any permutation on I, therefore it is determined by its value on vectors of the
form (1, ..., 1, 2, ..., 2, ..., l, ..., l). This invariance leads naturally to the following
change in state space: for any x ∈ Ik, let us de�ne and denote the con�guration
associated to x by the multiset {x} = {k1, k2, ..., kl}, where k1, ..., kl are the
number of repetitions of each element of I present in x. The number l, also
denoted L({x}) will be called the size of the con�guration {x} (which will
sometimes be called an l-con�guration). As an example, if N ≥ 4, k = 4 and
x = (3, 1, 4, 4) then {x} = {1, 1, 2} which has size 3, and if N ≥ 2, k = 4 and
x = (1, 1, 2, 1), then {x} = {1, 3} which has size 2.
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As mentioned previously, by exchangeability of all sites of I and all entries
of νN,k, if {x} = {y} then νN,k(x) = νN,k(y). Now if {x} = {k1, ..., kl}, then
the number of states y ∈ Ik such that {y} = {x} is equal to r({x}) := N !

(N−l)! ×
k!∏l
i=1 ki!

× 1∏k
j=1 nj !

in which nj is the number of i's such that ki = j, i.e. the

number of sites occupied by j particles. The term N !
(N−l)! corresponds to the

choice of the l occupied sites, the term k!∏l
i=1 ki!

to the dispatching of the k

Markov chains to these l sites, and the term 1∏k
j=1 nj !

to the exchangeability of

sites with same multiplicity.

So if we denote by

νN,k({x}) =
∑

y∈Ik, {y}={x}

νN,k(y)

the limiting (when n goes to in�nity) probability that the Markov chain

(X
(1,n)
n , ..., X

(k,n)
n )n∈N is in con�guration {x} = {k1, ..., kl}, then we have

νN,k(y) =
νN,k({x})
r({x})

for each y ∈ Ik such that {y} = {x}.

So when N goes to in�nity,

νN,k(x) ∼
νN,k({x})

N l

∏l
i=1 ki!

k!
×

k∏
j=1

nj !, (3)

and we now study νN,k({x}).

Let us consider the projection (Y
(k)
n )n∈N of the Markov chain (Xn(1), ..., Xn(k))n∈N

on the space of con�gurations of k elements, i.e. on the space Sk = {{k1, ..., kl} :
ki ∈ Z+,

∑l
i=1 ki = k}. Thanks to the symmetries of the construction, this

projection (Y
(k)
n )n∈N is in fact an irreducible Markov chain whose transition

probabilities are studied now, assuming that N > k.

At each time step the Markov chain (Y
(k)
n )n∈N can, starting from {k1, ..., kl},

either stay at the same point, or jump to a di�erent con�guration, which has
size l − 1, l, or l + 1. By considering all possible events occurring to the pop-
ulation, one obtains (details are given in Appendix A) that for any given

positive integers k1, k2, ..., kl such that
∑l
i=1 ki = k and any positive integers

k′1, k
′
2, ..., k

′
l+1, when the population size N goes to in�nity,
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P(Y (k)
n+1 = {k′1, k′2, ..., k′l+1}|Y (k)

n = {k1, k2, ..., kl}) ∼
C({k1, ..., kl}, {k′1, ..., k′l+1})

N
or = 0 for all N,

P(Y (k)
n+1 = {k′1, k′2, ..., k′l−1}|Y (k)

n = {k1, k2, ..., kl})

∼
2C1({k1, ..., kl}, {k′1, ..., k′l−1})

N2
,
C2({k1, ..., kl}, {k′1, ..., k′l−1})

N3

or = 0 for all N,

P(Y (k)
n+1 = {k′1, k′2, ..., k′l} 6= {k1, k2, ..., kl}|Y (k)

n = {k1, k2, ..., kl})

∼ C({k1, ..., kl}, {k′1, ..., k′l})
N2

, or = 0 for all N,

P(Y (k)
n+1 = Y (k)

n |Y (k)
n = {k1, k2, ..., kl})

=

{
1− C({k1,...,kl})

N +O
(

1
N2

)
, if l < k,

1− k(k−1)
N2 +O

(
1
N3

)
, if l = k.

(4)
where C({k1, ..., kl}), C({k1, ..., kl}, {k′1, ..., k′l+1}), C1({k1, ..., kl}, {k′1, ..., k′l−1}),
C2({k1, ..., kl}, {k′1, ..., k′l−1}) and C({k1, ..., kl}, {k′1, ..., k′l}) are strictly posi-
tive constants.

Our proof now relies on the characterization of Markov chain stationary
distributions given by the Markov chain tree Theorem, presented notably in
[17], [8] (Lemma 3.1 in Chapter 6), and [13] (Section 4.4.). More precisely, for
each con�guration {x} ∈ Sk let us introduce the set G({x}) of {x}-graphs
which is the set of oriented trees rooted in (and directed to) {x}, included in
the transition graph of Y (k) and spanning all points of Sk. For each oriented
tree g ∈ G({x}) we de�ne its weight π(g) as the product of the transition
probabilities of all arrows of g, for the Markov chain Y (k).

Then from the Markov chain tree theorem, the stationary distribution of
the Markov chain Y (k) is such that for each {x} ∈ Sk,

νN,k({x}) =
∑
g∈G({x}) π(g)∑

{x}∈Sk
∑
g∈G({x}) π(g)

. (5)

We now study the trees g ∈ G({x}) and their weights' equivalents when
the population size N goes to in�nity. Let us �x any con�guration {x} =
{k1, ..., kl} ∈ Sk and construct an oriented tree g ∈ G({x}), as follows. First,
one can �nd in the transition graph of the Markov chain (Y

(k)
n )n∈N a directed

path from {1, ..., 1} to {x} with exactly k − l steps, for instance by removing
one entry and adding it to another entry at each step (as an example if k = 4
and {x} = {2, 2}, the path {1, 1, 1, 1}-{2, 1, 1}-{2, 2} has positive probability).
From the proof of Equations (4) in Appendix A, one can always �nd such
a path whose probability is equivalent to C/N2(k−l) when N goes to in�n-
ity, where C depends on the path but not on N . Now for each con�guration
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{x′} = {k′1, k′2, ...k′l} 6= {1, ..., 1} that is not in this path, we choose another
con�guration {x′′} = {k′′1 , k′′2 , ...k′′l+1} such that an arrow from {x′} to {x′′}
exists in the transition graph of (Y

(k)
n )n∈N. Such a con�guration {x′′} exists,

since, assuming without loss of generality that k′1 > 1, (Y
(k)
n )n∈N jumps from

{k′1, k′2, ...k′l} to {k′1 − 1, k′2, ..., k
′
l, 1} with positive probability. From Equation

(4), the transition probability from {x′} to {x′′} is equivalent to C/N when
N goes to in�nity, where C does not depend on N . The concatenation of the
path from {1, ..., 1} to {x} and these arrows starting outside of this path is a
set of #Sk−1 arrows forming a speci�c oriented tree T rooted and directed to
{x}. When the population size N goes to in�nity, the weight of this oriented
tree is equivalent to

C(T )
N2(k−l)

1

N#Sk−1−(k−l)
=

C(T )
N#Sk−1+(k−l) ,

where the quantity C(T ) does not depend on N . This is also the highest
order of magnitude for the weight for an oriented tree pointing to {x} since it
contains only (k− l) arrows from an l′-con�guration to an l′− 1-con�guration
which is the minimum number of such transitions, from Appendix A.

Therefore for each con�guration {x} ∈ Sk, since G({x}) does not depend
on N , ∑

g∈G({x})

π(g) ∼ C

N#Sk−1+(k−L({x})) . (6)

when N goes to in�nity, where C is a positive constant that depends only
on k. The term of highest order of the �rst sum in the denominator of (5) is
then for the con�guration {x} = {1, 1, ..., 1} for which L({x}) = k, therefore
Equations (5) and (6) yield that

νN,k({x}) ∼ C({x})
NL({x})

Nk
when N goes to in�nity. (7)

Let us now come back to the Markov chain (X
(1,n)
n , ..., X

(k,n)
n )n∈N, i.e. the

annealed distribution of the k particles Markov chain, and denote by Q(N,k)

its transition matrix. We know from Equations (3) and (7) that its stationary
law satis�es that for all x ∈ Ik:

νN,k(x) ∼
K({x})
Nk

when N goes to in�nity, (8)

where K({x}) = C({x})
∏l
i=1 ki!

k! ×
∏k
j=1 nj ! does not depend on N .

We will now prove that K({x}) =
∏l
i=1 2

ki−1ki!.

The stationary law νN,k of (X
(1,n)
n , ..., X

(k,n)
n )n∈N is the unique probability

solution of

νN,k = νN,kQ
(N,k).
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This equation can be decomposed as follows, as explained below :

νN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l) = νN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l)×
N − l
N

+ 2

N∑
κ=l+1

∑
µ∈[[1,l]]
π∈[[1,l]]
µ<π

1

N(N − 1)(N − 2)

×
kµ∑
i=0

kπ∑
j=0
i+j 6=0

(
1

2

)i+j∑
C2

νN,k(1, ..., 1, ..., (µ, κ), ..., (µ, κ), ..., (π, κ), ..., (π, κ), ..., l, ..., l)

+ 2

N∑
κ=l+1

l∑
µ=1

N∑
π=l+1
π 6=κ

1

N(N − 1)(N − 2)

κµ∑
i=1

(
1

2

)i∑
C1

νN,k(1, ..., 1, ..., (µ, κ), ..., (µ, κ), ..., l, ..., l).

(9)
Note �rst that transitions under Q(N,k) occur as follows : a) birth and death

and parental sites are chosen uniformly and independently among distinct
sites (i.e. with probability 1/(N(N − 1)(N − 2)) for each choice of a triple)
b) particles initially at a birth and death site are independently assigned to
one of the parental sites with probability 1/2, c) other particles do not change
site.

Note that choosing a birth and death position among {1, .., l} yields a 0
transition probability to the state (1, ..., 1, 2, ..., 2, ..., l, ..., l). The �rst term
in Equation (9) corresponds to the case where the birth and death position
κ was chosen among non occupied sites at the previous step (in which case

the Markov chain (X
(1,n)
n , ..., X

(k,n)
n ) does not change state and therefore was

already in the site (1, ..., 1, 2, ..., 2, ..., l, ..., l) of interest). The second term cor-
responds to the case where κ was an initially (i.e. before the transition) occu-
pied site (di�erent from 1, ...,l), and both parental positions µ and π belong
to {1, ..., l}. The sum over C2 is a sum over all possible choices of i particles in
the position µ among the kµ and j particles in the position π among the kπ,
that were initially in the birth and death position κ, and the notation (µ, κ)
(resp. (π, κ)) means either µ (resp. π) or κ, depending on this choice. The

term (1/2)
i+j

is the probability that the i chosen particles go to the maternal
site µ while the j others go to the paternal site π. The third term corresponds
to the case where κ was an occupied site (di�erent from 1, ...,l), the mother
was chosen among {1, ..., l} and the father among {l+1, ..., N} (or conversely,
which leads to the "2" factor). As before the sum over C1 is a sum over all
possible choices of i particles in the position µ among the kµ, that were at κ
at the previous step, and the notation (µ, κ) means either µ or κ, depending

on this choice. The term (1/2)
i
is the probability that the i chosen particles

all go to the maternal site.

We now use Equation (8) and consider the �rst order in Equation (9). Note
�rst that a cancellation occurs for the 0-order term in N , so the �rst order in
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Equation (9) is 1/N after this cancellation. Note also that the second term in
the right hand-side of (8) does not contribute to this order. Finally, in the last
term, in the particular case where i = κµ, νN,k(1, ..., 1, ..., (µ, κ), ..., (µ, κ), ..., l, ..., l) =
νN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l).

K({k1, ..., kl})×

[
l − 2

l∑
µ=1

(
1

2

)kµ]

= 2

l∑
µ=1

kµ−1∑
i=1

(
1

2

)i(
kµ
i

)
K({k1, ..., kµ − i, ..., kl, i}).

(10)

The left term l−2
∑l
µ=1

(
1
2

)kµ
is non null as long as {k1, ..., kl} 6= {1, ..., 1}

so Equation (10) gives the value of K for any l-con�guration as a function of
the values of K for l + 1-con�gurations, so Equation (10) admits only one
solution once K({1, ..., 1}) is �xed, by induction. Therefore all solutions of
Equation (10) are proportional. We now prove that for any constant C(k),

K({x}) = C(k) ×
∏l
i=1 2

ki−1ki! is a solution to this equation. On the right
side we get

C(k)× 2

l∑
µ=1

kµ−1∑
i=1

(
1

2

)i
kµ!

i! (kµ − i)!

 l∏
j=1,j 6=µ

kj ! 2
kj−1

 i! 2i−1(kµ − i)! 2kµ−i−1

= C(k)× 2

l∑
µ=1

kµ−1∑
i=1

(
1

2

)i+1
 l∏
j=1

kj ! 2
kj−1


= C(k)×

 l∏
j=1

kj ! 2
kj−1

 l∑
µ=1

1
2 −

(
1
2

)kµ
1− 1

2

= C(k)×

 l∏
j=1

kj ! 2
kj−1

[ l∑
µ=1

(
1−

(
1

2

)kµ−1)]

which is equal to the left-side term of Equation (10).

We �nally prove that C(k) = 1. Note that

∑
x∈Ik

νN,k(x) =

k∑
l=1

∑
x∈Ik,L({x})=l

νN,k(x) = 1.

Now for any l ∈ {1, ..., k}, from Equation (7),∑
x∈Ik,L({x})=l

νN,k(x) =
∑

{x}∈Sk,L({x})=l

νN,k({x}) ∼
c(k, l)

Nk−l ,
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when population size N goes to in�nity, where c(k, l) is a quantity that does
not depend on N . Therefore when N goes to in�nity,

1 =
∑
x∈Ik

νN,k(x) ∼
∑

x∈Ik,L({x})=k

νN,k(x) ∼ K({1, ..., 1}) = C(k).

ut

Proof (of Corollary 1) First, if X is a random variable with probability density
1
2δ0(t) +

1
4e
− 1

2 t on R+, then

αk = E(Xk) = 2k−1k!

and the power series
∑
k αkr

k/k! has a positive radius of convergence. From
Theorem 1, E(M∞(1)k) → αk for all k ∈ N when N → ∞. Then from The-
orems 30.1 and 30.2 of [3], M∞(1) ====⇒

N→∞
X, and the limiting independence

between the random variables M∞(1),..., M∞(l) follows similarly, from the
product decomposition in the right-hand side of Equation (2). ut

Proof (of Corollary 2) The function ψ : u 7→ −1u>1/2 × 2 ln(2(1− u)) de�ned
on [0, 1) is the inverse of the cumulative distribution function of the random
variable R1, which satis�es ψ−1(x) = 1− 1

2e
−x/2 for all x ∈ R. Now let x ∈ R

and D∞(x) = #{j:M∞(j)≤x}
N . We know from Corollary 1 that E(D∞(x)) =

P(M∞(1) ≤ x) −→ P(R1 ≤ x) when N goes to in�nity. Now

E(D∞(x)2) =
1

N2
E(#{j, k :M∞(j) ≤ x,M∞(k) ≤ x})

=
1

N
P(M∞(1) < x) +

N(N − 1)

N2
P(M∞(1) ≤ x,M∞(2) ≤ x))

−→ P(R1 ≤ x)2 when N goes to in�nity, from Theorem 1.

Therefore, for all x ∈ R, D∞(x) converges to P(R1 ≤ x) = ψ−1(x) in L2,
hence in probability. Note that

M̃j > a⇒ ND∞(a) ≤ j − 1

and

M̃j < a⇒ ND∞(a) ≥ j.
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Therefore for any u > 0,

P(|M̃[Nu] − ψ(u)| > ε) ≤ P
(
D∞(ψ(u) + ε) ≤ [Nu]− 1

N

)
+ P

(
D∞(ψ(u)− ε) ≥ [Nu]

N

)
≤ P(D∞(ψ(u) + ε) ≤ u− 1

N
) + P(D∞(ψ(u)− ε) ≥ u− 1

N
)

= P
(
D∞(ψ(u) + ε) ≤ ψ−1(ψ(u) + ε)

+ [u− 1

N
− ψ−1(ψ(u) + ε)]

)
+ P

(
D∞(ψ(u)− ε) ≥ ψ−1(ψ(u)− ε)

+ [u− 1

N
− ψ−1(ψ(u)− ε)]

)
.

Now ψ−1 is strictly increasing on R+ so ψ−1(ψ(u) + ε)− u = C+(u, ε) > 0 for
all u > 0, and since ψ−1(v) = 0 if v < 0, u−ψ−1(ψ(u)− ε) = C−(u, ε) > 0 for
all u > 0. So

P(|M̃[Nu] − ψ(u)| > ε) ≤ P(D∞(ψ(u) + ε) ≤ ψ−1(ψ(u) + ε)− C+(u, ε)−
1

N
)

+ P
(
D∞(ψ(u)− ε) ≥ ψ−1(ψ(u)− ε)− 1

N
+ C−(u, ε)

)
≤ P(D∞(ψ(u) + ε) ≤ ψ−1(ψ(u) + ε)− C+(u, ε))

+ P
(
D∞(ψ(u)− ε) ≥ ψ−1(ψ(u)− ε) + C−(u, ε))

2

)
if N is large enough. So P(|M̃[Nu] − ψ(u)| ≥ ε) goes to 0 when N goes to
in�nity.

ut
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A Transition matrix of the con�guration Markov chain

In this section we derive the transition probabilities of the Markov chain
(
Y

(k)
n

)
n∈N

, whose

states are con�gurations of the form {k1, k2, ..., kl} where ki ∈ Z+,
∑l

i=1 ki = k and l is
called the size of the con�guration. We distinguish 4 types of events occurring to this chain:
jumping from a con�guration with size l to a con�guration with size l + 1, jumping from
a con�guration with size l to a con�guration with size l − 1, jumping from a con�guration
with size l to a di�erent con�guration with size l, and staying in the same con�guration.

The size of the con�guration is increased by 1 during one time step if one of the l
occupied sites is chosen as position of the child and all the Markov chains present at that
site are sent on exactly two parental positions that are distinct from the already occupied
sites (both new parental positions must be occupied after the repartition of the Markov
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chains present at the children site). This gives that the probability to jump from {k1, ..., kl}
to a given state {k′1, ..., k′l+1} (supposing that N > k) is equal to

(N − l)(N − l − 1)

(N − 1)(N − 2)
×

C({k1, ..., kl}, {k′1, ..., k′l+1})
N

or 0, (11)

where the quantity

C({k1, ..., kl}, {k′1, ..., k′l+1}) =
l∑

u=1

ku−1∑
a=0

(
ku
a

)(
1

2

)ku

× 1{k′1,...,k
′
l+1
}={k1,...,ku−1,ku+1,...,kl,a,ku−a}

does not depend on N , which gives the equivalence result in the �rst line of Equation (4).
Note that in the particular case where l = k then the transition probability from {k1, ..., kl}
to any state {k′1, ..., k′l+1} is equal to 0.

The size of the con�guration is decreased by 1 if one of the occupied sites is chosen as
child position and all the Markov chains present at that site are sent on one or two already
occupied sites (which can happen either when both parental positions were already occupied,
or when one parental position was not already occupied but no Markov chains present at
the child position are sent to this parent). This gives that the probability for the Markov

chain
(
Y

(k)
n

)
n∈N

to jump from {k1, ..., kl} to a given state {k′1, ..., k′l−1} (supposing that

N > k) is equal to

2(N − l)

N(N − 1)(N − 2)
C1({k1, ..., kl}, {k′1, ..., k′l−1}))

+
1

N(N − 1)(N − 2)
C2({k1, ..., kl}, {k′1, ..., k′l−1})

(12)

where the quantities

C1({k1, ..., kl}, {k′1, ..., k′l−1}) =
∑

1≤u6=v≤l

(
1

2

)ku

× 1{k′1,...,k
′
l−1
}={k1,...,ku−1,ku+1,...,kv−1,kv+1,...,kl,kv+ku}

and

C2({k1, ..., kl}, {k′1, ..., k′l−1}) =
∑

1≤u6=v 6=w≤l

ku∑
a=0

(
ku
a

)(
1

2

)ku

× 1{k′1,...,k
′
l−1
}={k1,...,ku−1,ku+1,...,kv−1,kv+1,...,kw−1,kw+1,...,kl,kw+a,kv+ku−a},

do not depend on N . Note that if there exist u 6= v in [[1, l]] such that k′v = kv + ku and
k′i = ki otherwise, then the quantity C2({k1, ..., kl}, {k′1, ..., k′l−1}) is positive. This gives the
equivalence result stated in the second line of Equation (4).

To keep exactly l occupied sites while changing state, we need to choose one parental
site among the occupied sites and one parental site among the unoccupied sites, and at
least one Markov chain present at the child site must choose the last one. This gives that

the probability for the Markov chain
(
Y

(k)
n

)
n∈N

to jump from {k1, ..., kl} to a given state

{k′1, ..., k′l} 6= {k1, ..., kl} is equal, when N > k, to

2(N − l)

N(N − 1)(N − 2)
C({k1, ..., kl}, {k′1, ..., k′l}), (13)
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where the quantity

C({k1, ..., kl},{k′1, ..., k′l}) =
∑

1≤u6=v≤l

ku∑
a=1

(
ku
a

)(
1

2

)ku

× 1{k′1,...,k
′
l
}={k1,...,ku−1,ku+1,...,kv−1,kv+1,...,kl,a,kv+ku−a}

is independent of N , which gives the equivalence result in the third line of Equation (4).

The last event is when the Markov chain
(
Y

(k)
n

)
n∈N

stays on the same state {k1, ..., kl}.
From previous calculations we get that the probability of this event is equal to 1− C({k1,...,kl})

N
+O

(
1

N2

)
if l 6= k

1− k(k−1)

N2 +O
(

1
N3

)
if l = k.

(14)

The �rst line is directly given by Equations (11), (12) and (13). The second line can be
calculated directly without using these equations. We indeed consider the case in which all
k particles are located in di�erent sites, and consider the probability for the con�guration
Markov chain to change state during one time step. For this event to occur, one of the
occupied sites must be chosen for the child position, and the associated particle must be
sent to another of these occupied sites, which gives a k(k − 1)/(N(N − 1)) probability.
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