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We propose a new mechanism for the formation of dark matter clumps in the radiation era. We assume
that a light scalar field is decoupled from matter and oscillates harmonically around its vacuum expectation
value. We include self-interactions and consider the nonrelativistic regime. The scalar dynamics are
described by a fluid approach where the fluid pressure depends on both quantum and self-interaction
effects. When the squared speed of sound of the scalar fluid becomes negative, an instability arises and the
fluctuations of the scalar energy-density field start growing. They eventually become nonlinear and clumps
form. Subsequently, the clumps aggregate and reach a universal regime. Afterwards, they play the role of
cold dark matter. We apply this mechanism first to a model with a negative quartic term stabilized by a
positive self-interaction of order six, and then to axion monodromy, where a subdominant cosine potential
corrects a mass term. In the first case, the squared speed of sound becomes negative when the quartic term
dominates, leading to a tachyonic instability. For axion monodromy, the instability starts very slowly after
the squared speed of sound first becomes negative and then oscillates around zero. Initially the density
perturbations perform acoustic oscillations due to the quantum pressure. Eventually, they start growing
exponentially due to a parametric resonance. The shape and the scaling laws of the clumps depend on their
formation mechanism. When the tachyonic phase takes place, the core density of the clumps is uniquely
determined by the energy density at the beginning of the instability. On the other hand, for axion
monodromy, the core density scales with the soliton mass and radius. This difference comes from the
crucial role that the quantum pressure plays in both the parametric resonance in the linear regime and in the
nonlinear formation regime of static scalar solitons. In both scenarios, the scalar-field clumps span a wide
range of scales and masses, running from the size of atoms to that of galactic molecular clouds, and from
10−3 gram to thousands of solar masses. Because of finite-size effects, both from the source and the lens,
these dark matter clumps are far beyond the reach of microlensing observations. We find that the formation
redshift of the scalar clumps can span a large range in the radiation era; the associated background
temperature can vary from 10 eV to 105 GeV, and the scalar-field mass from 10−26 GeV to 10 GeV.

DOI: 10.1103/PhysRevD.102.083012

I. INTRODUCTION

Dark matter is an essential ingredient of both astrophys-
ics and cosmology. On very large scales, its description as a
cold and pressureless fluid fits all our observations and is
part of the standard model of cosmology [1]. From a more
fundamental point of view, particle physicists have tried in
the last few decades to find natural models of dark matter
involving weakly interacting massive particles (WIMPs).
Despite very promising theoretical candidates, such as
neutralinos in supersymmetric models [2], no experimental
evidence of WIMPs has emerged from data so far. This has
triggered a recent revival of alternative models, where the
origin of dark matter does not follow from the freezing out
of particle interactions below a certain temperature. Indeed,

ever since the analysis of the strong CP problem and the
design of the axion mechanism, the possibility that dark
matter could result from the coherent oscillations of a scalar
field around the minimum of its potential has been
considered [3–5]. Since then, axions [6–9] and axionlike
particles (ALPs) [10] have also been under intense scrutiny,
both from the theoretical and the experimental sides.
However, they are just one particular example of more
general scalar dark-matter models, which can be described
from an effective-field-theory point of view as parametrized
by their masses and the set of their self-interactions [11]. In
the simplest case, called fuzzy dark matter [12,13],
a massive scalar field oscillating around its vacuum
expectation value (vev), and with a sufficiently low mass
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m≲ 10−21 eV, could play the role of dark matter. The
resulting properties of these scalar dark-matter models are
similar to the standard cold dark matter (CDM) for the
formation of large-scale structures [14–21], but not for
small scales, where distinctive features such as a non-
vanishing speed of sound can leave different observational
signatures [19,20,22–35].
In this paper, we focus on one scalar field of mass m

whose self-interactions are subdominant compared to the
quadratic mass term. We also consider that the oscillating
scalar field is mostly time-dependent, with small space-
dependent effects. In momentum space, this amounts to
considering that momenta are small compared to the mass
and that therefore the nonrelativistic approximation of the
dynamics is valid. In this case, and after reducing the field
to its equivalent quantum-mechanical picture, the
Madelung transformation allows one to describe the evo-
lution of the scalar field in terms of a fluid with nontrivial
pressure terms. The first one, which is present even in the
absence of self-interaction, is the so-called quantum pres-
sure. It has a repulsive effect and allows for the formation of
large solitons where the quantum pressure can balance the
gravitational attraction [13]. These quantum-pressure
effects are at the heart of the fuzzy dark matter models,
and require a mass term of low value,m≲ 10−21 eV. When
self-interactions are present and overcome the quantum
pressure, which can happen for masses larger than
10−21 eV, it is known that a repulsive pressure can also
result from positive interaction potentials like ϕ4. In this
case, large solitons can also form by gravitational insta-
bility and eventually stabilize when the gravitational
attraction becomes balanced by the scalar self-repulsion
[33–36]. In all these cases, dark matter is essentially a
smooth fluid with large overdensities in the core of
solitonic objects, which have galactic sizes and could play
the role of galactic dark matter halos with a smooth inner
region. This may alleviate some of the galactic-scale
tensions with the data encountered by the standard CDM
scenario.
On the other hand, and inspired by the possible repre-

sentation of dark matter in the form of primordial black
holes [37] or massive compact halo objects (MACHOs)
[38], it can be envisaged that scalar-field clumps of much
smaller sizes could exist and form all (or a large portion) of
the dark matter content. In this case, the sign of the quartic
self-interactions is crucial [39,40]. For axions, this sign is
negative leading to an attractive interaction between par-
ticles in the nonrelativistic regime. In the relativistic
regime, the self-interaction can become dominant and lead
to the formation of “axitons” as the squared mass of the
axion can become negative for large excursions of the field,
leading to a potential instability and the formation of
clumps [41,42]. Another type of phenomenon, which leads
to the creation of “oscillons” in some scalar field theories
[43–46], has been attributed to an instability where the

modes can undergo a parametric resonance [45] and the
creation of nonlinear overdensities. In this paper, we will
deal with similar mechanisms in the nonrelativistic regime.
In this case, a tachyonic instability can be triggered when
the speed of sound squared coming from the self-inter-
actions becomes negative. This happens for simple models
with a negative quartic interaction compensated by a
positive one of degree six. This instability is counterbal-
anced by the quantum pressure on small scales and by the
repulsive effects of the order-six term on larger scales,
leading to the creation of clumps mostly determined by the
higher-order operator contribution. In another scenario, the
model being of the axion monodromy type, with a scalar
potential where a large mass term is modulated by small
oscillations, the instability felt by the perturbations of the
scalar energy density is due to a parametric resonance
triggered when the speed of sound squared becomes
negative too. In this case, the ensuing parametric-resonance
growth of the instability is delayed by a long period of
acoustic oscillations sustained by the quantum pressure. In
most of these cases, gravity does not play a role and the
clumps are formed in the radiation era. Their subsequent
evolution first involves their 2-body collisional aggregation
and relaxation toward stable halos, which are next diluted
by the expansion of the Universe. At lower redshifts, these
small scalar-field solitons play the role of dark matter
particles, in the same manner as primordial black holes or
MACHOs, and we recover the standard CDM cosmology.
Although these scalar clumps are usually much smaller
than galactic cores that can form in the fuzzy dark matter
models, e.g., they can be as small as one angstrom, they can
also reach sub-galactic sizes of the parsec scale, like
galactic molecular clouds. Hence these scenarios lead to
a wide range of possible dark matter scales.
The two types of formation mechanisms that we consider

lead to very different properties for the clumps. In the
tachyonic case, with a polynomial potential, the density in
the core of the clumps is determined by the features of the
potential, i.e., the energy density where the self-interactions
change from being attractive to repulsive (which also sets
the background energy density at the beginning of the
instability). For axion monodromy this is not the case, as
the clumps can accommodate a continuous distribution of
energy densities in their core. This sharp difference follows
from the nature of the energy functional of the clumps as a
function of the energy density. In the tachyonic case, the
potential energy of the clumps admits a minimum which
characterizes the density of the clumps, giving a mass-
radius relationM ∼ R3. In the axion monodromy setup, the
potential energy is a decreasing function which does not
select a unique equilibrium density, resulting in a M ∼ R5

mass-radius relation when the self-interaction dominates,
and M ∼ R4 when gravity becomes the relevant interaction
after the nonlinear collapse of the structures triggered by
the parametric resonance instability.
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As already stated, the dynamics comprise two steps. The
first one, which we have just described, results from the
type of instability of the fundamental model describing
the physics of the scalar field, e.g., a polynomial interaction
potential vs axion monodromy. The second stage happens
postformation and follows a short aggregation phase, which
can influence the final mass and radius of the clumps. We
describe in detail how this aggregation process depends on
the mass-radius relationship of the clumps and therefore on
the initial formation mechanism. Whereas in the polyno-
mial interaction case the aggregation process leads to a
significant growth of the size and mass of the clumps, in the
axion monodromy case the aggregation is not very efficient
and the mass and radii are unaffected.
The results that we present in this paper use two main

ingredients. The first one is the leading-order fast harmonic
motion of the field, with a frequency set by its mass m, and
the second one is the existence of an instability in the
growth of the energy density contrast, which is triggered by
the negative sign of the speed of sound squared.
The leading-order harmonic motion is guaranteed by the

smallness of the perturbations to the scalar potential
compared to the leading quadratic term. This corresponds
to models with typically two scales associated with two
contributions of different origins to the scalar-field poten-
tial. The first contribution, with a large amplitude, is given
by a quadratic term and gives rise to the leading-order fast
harmonic motion. The second contribution, with a small
amplitude, is such that its nonlinear orders cannot be
neglected. We will consider two cases, (a) when the
small-amplitude self-interaction corrections to the quad-
ratic term are slow varying functions such as a low-order
polynomial, and (b) when they show fast oscillations, such
as a cosine term. The leading-order harmonic oscillations
due to the quadratic term in the scalar potential ensure that the
scalar field behaves like dark matter (with a mean density
decaying as 1=a3 with the expansion of the Universe). The
subleading self-interactions however play a critical role, as
they can lead to instabilities and the fragmentation of the
homogeneous dark-matter distribution.
The two types of instabilities that we exemplify, i.e., the

tachyonic and parametric resonance, have been considered
in the literature in several contexts. In a recent paper, the
case of the “large-misalignment mechanism” [40] was
presented. In this scenario, and taking the cosine axion
potential as an example, if the field starts initially close
enough to the top of the potential, the instability due to the
negative quartic term of the cosine function near the origin
is delayed and a parametric resonance instability sets in.
This leads to the formation of clumps which can be
described as “solitons” when the gravitational attraction
is balanced by the kinetic pressure and “oscillons” when
gravity is irrelevant. Their (meta)-stability is entirely due to
the scalar self-interactions. This scenario applies to the
QCD axion and certain axion monodromy potentials which

are flatter than quadratic for large field values. In our
analysis of the axion monodromy models, with large
quadratic potentials perturbed by a small cosine interaction,
we preserve the harmonic motion at the leading order
throughout our description of the parametric resonance
instability. In this dominant-quadratic-term scenario, the
nonrelativistic approximation applies throughout. In this
case, the parametric resonance instability appears well
before the argument of the cosine potential becomes small.
Moreover, the speed of sound squared becomes negative
well before the parametric resonance starts too. Contrary to
the “large-misalignment mechanism,” where the delay in
the growth of perturbations is due to the flatness of the
interaction potential initially, in our case the delay is due to
the effects of the quantum pressure, which drives initial
acoustic oscillations before becoming low enough and
allowing the onset of the parametric resonance. This delay
can also be understood as the time it takes for these acoustic
oscillations to become tuned to the frequency set by the
cosine self-interaction potential (thanks to their time
dependence, due to the expansion of the Universe and
the decrease of the background density), so that a resonance
can develop. Nonrelativistic clumps and their formation
have been analyzed numerically in a recent paper [47],
where a potential with a negative ϕ4 interaction term close
to the origin was completed by higher order terms,
eventually leading to a bounded potential for large field
values. In this setting, the tachyonic instability plays a
prominent role in the formation of the nonrelativistic
clumps. Eventually, nonlinear effects take over and indi-
vidual clumps form with little scalar interactions between
each other. Later in the evolution, this gas of clumps is
affected by the gravitational attraction and they start
moving toward each other. In this paper, we also present
a similar mechanism for the formation of clumps through a
tachyonic instability and their stabilization by higher order
terms in the scalar potential. Then, we analyze the early
aggregation process before the dilution by the expansion of
the Universe. We also describe the same process in a
thermodynamic way. We pay particular attention to the
parameter space combining theoretical self-consistency
conditions and standard requirements (the formation of
the dark matter clumps should occur before matter-radia-
tion equality and their size should not exceed the parsec
scale). We also check that their gravitational potential well
is too weak to form black holes. Finally, finite-size effects
imply that they cannot be detected by microlensing
observations. We find that the scalar field can have a mass
m ranging from 10−17 eV to 10 GeV, giving rise to dark
matter clumps that range from the size of atoms to that of
galactic molecular clouds.
The paper is arranged as follows. In Sec. II, we review

the classical field model associated with such a scalar field,
and its nonrelativistic regime. In Sec. III, we describe our
first scenario, associated with the tachyonic instability
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where the speed of sound squared becomes negative at low
background densities. We first use a perturbative approach
in Sec. III B, to follow the growth of the scalar-field density
perturbations. In Sec. III C, we study the stable isolated
scalar-field configurations that arise in such a model, i.e.,
the “solitons” that correspond to the final dark matter
clumps. We estimate in Sec. III D the efficiency of the
collisional aggregation of these scalar clouds, shortly after
their formation and before they are diluted by the expansion
of the Universe, and we check in Sec. III E that they do not
collapse to black holes. Then, in Sec. III F, we take into
account theoretical constraints to compute the parameter
space of this scenario. In Sec. III G we compute the scales
spanned by the scalar dark-matter clumps and in Sec. III H
we check that they are far beyond the reach of microlensing
observations.
Next, in Sec. IV, we present a different mechanism for

clump formation, associated with a parametric resonance.
We take as an example a Lagrangian inspired from axion
monodromy, where a dominant mass term is corrected by a
subleading cosine term. The parametric resonance then
arises from the interplay between this oscillating self-
interaction term, the quantum pressure, and the kinetic
terms of the scalar field. We again describe the perturbative
growth of the scalar-field density fluctuations and the stable
solitons that can arise. We also compute the parameter
space of this second scenario and the size of the scalar
clumps. Again, we check that they do not collapse into
black holes and are much below the observational threshold
of microlensing observations.
We present our main conclusions in Sec. V. We finally

complete our discussion with different Appendices on
thermodynamical phase transitions, parametric resonance,
and soliton profiles.

II. CLASSICAL FIELDS AND THEIR
NONRELATIVISTIC LIMIT

A. Classicality

In the following, we shall be interested in models of
scalar dark matter where the dark-matter field can be
described classically. This is a reasonable approximation
for the quantum field ϕ, whose nonrelativistic behavior will
give rise to dark matter, if the occupation number N of the
associated quantum state is very large. Denoting by ρ the
energy density of the field and by n ¼ ρ=m the number
density, where m is the mass of the scalar, the occupation
number can be estimated as [48]

N ≃
ρ

m
λ3dB; λdB ¼ 2π

mv
; ð1Þ

where λdB is the de Broglie wavelength of the scalar
particles associated to ϕ. Here v is their typical velocity.
This gives the condition for classicality

N ∼
ρ

m4v3
≫ 1: ð2Þ

We can envisage two types of situations. In the first one,
the energy density of the scalar field is nearly homo-
geneously distributed in the Universe and behaves like
ρ ≃ ρ0=a3, where ρ0 is the present dark-matter density in
the Universe. Inside large-scale inhomogeneities such as
galaxy halos, the typical velocity of dark-matter particles v0
is small and the classical regime is attained when

m4v30 ≪ ρ0 ∼ 10−48 GeV4; ð3Þ

where we consider low redshifts in the matter era. As we
expect v0 ≃ 10−3, this is the case when

cosmological inhomogeneities only∶ m ≪ 0.1 eV: ð4Þ

In this mass range the field can be treated classically. This
also applies at higher redshifts, as ρ ∝ a−3 and typically
v ∼ a−1 because of the expansion of the Universe.
Another scenario is the one that we consider in this

paper: dark matter is made of scalar-field clumps created in
the radiation era and forming a bound state of dark-matter
fluid. Then, in a fashion similar to primordial black holes,
these clumps play the role of dark matter particles and
behave at late times as in standard CDM cosmologies. In
this case, the density ρ is large inside the clumps, reflecting
the large energy densities at the time of their formation, and
the velocity is negligible as these clumps are equilibrium
configurations. Hence, for such clumpsN will be very large
and we can treat ϕ as a classical field. In fact, the
classicality condition (2) will provide a self-consistency
constraint on the parameter space of the scenarios we study
in this paper.

B. Equations of motion

We focus on scalar-field models characterized by canoni-
cal kinetic terms and an interaction potential VIðϕÞ. Thus,
they are governed by the action

S½ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð5Þ

with

VðϕÞ ¼ 1

2
m2ϕ2 þ VIðϕÞ: ð6Þ

In this paper, we restrict our study to the nonrelativistic
regime, when the self-interactions are small as compared
with the quadratic part,

VI ≪
1

2
m2ϕ2: ð7Þ
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At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i

�
_ψ þ 3

2
Hψ

�
¼ −

∇2ψ

2ma2
þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e�imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X
p≥3

λp
p

�
ϕ

Λ

�
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X
p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

�
ψψ⋆
2mΛ2

�
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ

m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2
2ma2

¼ −mΦ −m
dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
pffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X
p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

�
ρ

2m2Λ2

�
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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̈ϕ̄þ 3H _̄ϕþm2ϕ̄þ dVI

dϕ
¼ 0; ð22Þ

whose solution can be written as a slowly varying defor-
mation of the harmonic oscillator,

ϕ̄ðtÞ ¼ φ̄ðtÞ cosðmt − S̄ðtÞÞ: ð23Þ

Notice the similarity with the ansatz (9) defining the
complex scalar field ψ . The amplitude of the scalar field
evolves in time and decreases with the scale factor

φ̄ ¼ φ̄0a−3=2; ð24Þ

while the phase evolves according to

S̄ðtÞ ¼ S̄0 −
Z

t

t0

dtmΦI

�
m2φ̄2

0

2a3

�
: ð25Þ

Hence, at the background level, the scalar field oscillates
harmonically at the leading order, with the high frequency
m given by the scalar mass. The Hubble expansion and the
self-interactions give rise to a slow decay of the amplitude
and to a phase shift. The power-law decay φ̄ ∝ a−3=2 shows
that the scalar-field energy density ρ̄ϕ ≃m2ϕ̄2=2 decreases
like a−3 and plays the role of a nonrelativistic dark-matter
component.

2. Nonrelativistic limit

Comparing the solution (23) with the nonrelativistic
decomposition (9), we can see that, at the background level,
the complex scalar field ψ̄ is

ψ̄ðtÞ ¼ ψ̄0a−3=2eiS̄; with ψ̄0 ¼
ffiffiffiffi
m
2

r
φ̄0 ¼

ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
mΛ4a3

2ρ̄0

X∞
n¼2

λ2n
ð2nÞ!
ðn!Þ2

�
ρ̄0

2m2Λ2a3

�
n
; ð27Þ

is indeed the solution of the equations of motion derived
from the hydrodynamical action, which read

_̄S ¼ −m
dVI

dρ
; ð28Þ

_̄ρþ 3Hρ̄ ¼ 0: ð29Þ

Hence, at the background level, the evolution of the scalar
field given by the hydrodynamical equations reproduces the
full solution to the scalar-field equation (22).

III. TACHYONIC INSTABILITY FOR SMOOTH
SELF-INTERACTIONS

A. Polynomial self-interactions

In the first part of this paper, we consider the scenario
illustrated in Fig. 1, associated with slowly-varying self-
interaction potentials. For template, we take a low-order
polynomial case where we directly define the model at the
nonrelativistic level,

ΦI ¼ −c1
ρ

ρΛ
þ c2

ρ2

ρ2Λ
; VI ¼ −c1

ρ2

2ρΛ
þ c2

ρ3

3ρ2Λ
; ð30Þ

with ci > 0. This corresponds to

VIðϕÞ ¼ −
c1m4

3ρΛ
ϕ4 þ 2c2m6

15ρ2Λ
ϕ6: ð31Þ

FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.
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We focus on the choice of parameters

c1 ∼ c2 ≪ 1; ð32Þ
meaning that ρΛ is the characteristic density that governs
the shape of the nonlinear self-interaction potential VI. As
we will consider redshifts where ρ̄ ∼ ρΛ, when the change
of shape of the potential can be felt, we also require ci ≪ 1
to fulfil the nonrelativistic condition (21). In practice, at
densities ρ≳ ρΛ, we can expect higher-order terms to come
into play, if (30) is understood as a Taylor expansion in
powers of ρ, originating from the Taylor expansion in ϕ of
VIðϕÞ. However, the physics will not change, as long as dΦI

dρ

shows one change of sign, being negative at low densities
and positive at high densities.
To facilitate the reading of this section, we already present

in Fig. 1 the formation process of the scalar-field clumps that
will play the role of dark-matter particles at low redshifts.
From the first to the fourth column, this goes as follows.
(1) The scalar field ϕ quickly oscillates in the potential

VðϕÞ, which is dominated by its quadratic compo-
nent with a small correction VI. In the nonrelativistic
regime, we can integrate over the fast oscillations of
ϕ. The slow dynamics is then described by the
complex scalar field ψ , or the hydrodynamics
density and velocity fields fρ; v⃗g, and the self-
interaction potential ΦIðρÞ defined by Eq. (19),
i.e., Eq. (30) in our polynomial example.

(2) At early times, when dΦI
dρ > 0, the scalar-field density

perturbations oscillate as acoustic waves. As the
background density ρ̄ decreases with time, it finally
enters the regime where dΦI

dρ < 0. This quickly leads

to a tachyonic instability (c2s < 0) for some inter-
mediate wave numbers k and an exponential growth
of the density contrast δðk⃗Þ.

(3) The scalar density field then quickly reaches the
nonlinear regime and the overdense regions collapse
to form stable configurations (solitons).

(4) Because of their non-negligible velocities, these
scalar clouds collide and grow by aggregation,
relaxing toward more massive solitons. Next, the
expansion of the Universe dilutes these scalar
clumps, which behave as isolated CDM clumps.
At lower redshifts, the amplification by gravitational
instability of perturbations on much larger scales
will form the cosmic web, galaxies, and clusters, as
in the standard ΛCDM scenario.

We describe in the following sections these various
stages in more detail.

B. Cosmological perturbations

1. Linear theory

For small perturbations with respect to the FLRW
background, we can linearize the equations of motion.

As explained in the previous sections, and as illustrated by
the first column in Fig. 1, in the nonrelativistic regime it is
convenient to work with the fluid approach, where the fast
harmonic oscillations of the scalar field ϕ have been
integrated out and we are left with the density-dependent
self-interaction potential ΦIðρÞ. Then, defining the linear
density contrast δ and the divergence θ of the fluid velocity,

δ ¼ ρ − ρ̄

ρ̄
; θ ¼ ∇ · v⃗

a
; ð33Þ

the continuity equation gives the familiar constraint
between the density contrast and the divergence of the
velocity field,

θ ¼ −_δ; ð34Þ
while the Euler equation (18) implies

_θ þ 2Hθ ¼ −
1

a2
∇2ðΦþΦI þΦQÞ: ð35Þ

Combining these two equations, and upon using the
Poisson equation ∇2Φ ¼ 4πGa2ρ̄δ and the expression
(20) of the quantum potential, we obtain, in Fourier space,
the modified growth equation [36]

δ̈þ 2H _δþ
�
c2s

k2

a2
− 4πGρ̄

�
δ ¼ 0; ð36Þ

where we introduced the speed of sound cs as

c2s ¼
k2

4a2m2
þ ρ̄

dΦ̄I

dρ̄
: ð37Þ

The first term comes from the quantum potential and only
plays a role at short distances. This will be crucial in what
follows.

2. Exponential instability

As long as dΦ̄I=dρ̄ > 0, the only destabilizing force is
gravity, which is negligible in the regime we consider here,
i.e., at large density and on short distances, and is only
important at very large scales. However, when dΦ̄I=dρ̄ < 0,
the self-interactions lead to an attractive force that can
dominate on intermediate scales, as also noticed in [50].
Indeed, the quantum pressure always becomes dominant on
very small scales, which are thus stabilized. On very large
scales, gravity plays a role too. In this section, we investigate
scenarios where dΦI=dρ > 0 at high densities and
dΦI=dρ < 0 at low densities. Then, at high redshifts with
a large background density ρ̄, the system is stable, apart from
the slow gravitational instability on large scales, i.e., the
Jean’s instability, and the scalar field remains homogeneous.
At lower densities, the self-interactions become attractive and
destabilize the system, with a fast growth of perturbations on
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intermediate scales. We denote by the subscript cs the scalar
background density and the scale factor when dΦI=dρ
changes sign to become negative,

dΦI

dρ
ðρcsÞ ¼ 0; acs ¼

�
3Ωm 0M2

PlH
2
0

ρcs

�
1=3

; ð38Þ

where we used ρ̄ ∝ a−3 from that period until today. For the
simple polynomial case (30), this density is given by

ρcs ¼
c1
2c2

ρΛ: ð39Þ

Moregenerally, this change of slope ofdΦI=dρwill occur at a
characteristic density ρΛ that governs the self-interaction
potentialVI. Typically, as in the polynomial case (30), shortly
after the time tcs , e.g., after the Universe has expanded by a
factor 2, dΦI=dρwill be nonzero and of the order ofΦIcs

=ρcs ,

a ∼ 2acs∶ ρ̄
dΦ̄I

dρ̄
∼ −jΦIcs

j ≪ 1; ð40Þ

where the last constraint is the nonrelativistic condition (21).
For the polynomial case (30), this reads jΦIcs

j ∼ c1 ≪ 1.
When a≳ acs , and considering time scales that are short
compared to the Hubble time and neglecting gravity, we
obtain exponential growing and decaying modes on inter-
mediate scales, δ� ∝ e�γkt, with

q < qup∶ γq ¼
q
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2up − q2

q
; ð41Þ

where we have introduced the upper unstable wave number

dΦ̄I

dρ̄
< 0∶ qup ¼ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ρ̄

dΦ̄I

dρ̄

s
; ð42Þ

and we denote by q ¼ k=a the physical wave number. The
maximum growth rate γmax is reached at the wave number
qmax, with

qmax ¼
qupffiffiffi
2

p ; γmax ¼
q2up
4m

¼ m

����ρ̄ dΦ̄I

dρ̄

����: ð43Þ

Therefore,wave numbers aroundqmax becomenonlinear first,
as long as the initial power spectrum is not too steep, and
structures of physical size r ∼ 2π=qmax appear. This pertur-
bative growth of the scalar density perturbations is illustrated
by the second column in Fig. 1. Then, shortly after this time
tcs , the system fragments into clumps of size

rNL ∼
2π

qmax
∼

1

m
ffiffiffiffiffiffiffiffiffiffiffi
jΦIcs

j
q ≫

1

m
; ð44Þ

and typical density of the order of ρNL ∼ ρcs , with a mass

MNL ∼
ρcs

m3jΦIcs
j3=2 ; ρNL ∼ ρcs ∼ ρΛ: ð45Þ

Here the subscript “NL” refers to the fact that these are the first
scalar-field structures to reach the nonlinear regime, in terms
of the density contrast δ ∼ 1.

3. Constraints from the linear stage

At the redshift zcs , assuming a standard inflationary
scenario with adiabatic initial conditions, the linear density
contrast on subhorizon scales during the radiation era is [51]

δ ∼ −9Φi ln

�
kηffiffiffi
3

p
�

¼ −9Φi ln

�
qffiffiffi
3

p
H

�
: ð46Þ

This holds before the onset of the exponential instability
and beyond the quantum pressure scale, which stops the
logarithmic growth. Here, η is the conformal time, with
dη ¼ dt=a, and the initial amplitude is of the order of
Φi ∼ 10−5. Therefore, the exponential instability (43)
reaches the nonlinear regime in less than a Hubble time
provided we have

eγmax=H > 105; hence γmax > 12Hcs: ð47Þ

Thus, we obtain the constraint that the growth rate is much
greater than the Hubble expansion rate, γmax ≫ H, which
reads

m

����ρ̄ dΦ̄I

dρ̄

���� ≫ H; hence mjΦIcs
j ≫ Hcs: ð48Þ

This gives a constraint on the parameters m and ρcs ,

H0

m
Ω1=2

γ0

�
ρcs

M2
PlH

2
0

�
2=3

≪ jΦIcs
j ≪ 1; ð49Þ

which also reads

10−13
�

m
1 GeV

�
−1
�

ρcs
1 GeV4

�
2=3

≪ jΦIcs
j ≪ 1: ð50Þ

The condition (48) also ensures that we could neglect the
expansion of the Universe in the analysis above and that
the scalar field ϕ had already started fast oscillations in the
zeroth-order quadratic potential m2ϕ2=2, as m ≫ H (i.e.,
the slow-roll regime governed by the Hubble friction is
already finished).
We have neglected gravity in this analysis. This is valid

provided Φ ≪ ΦI. The typical gravitational potential asso-
ciated with these scalar-field clumps is

Φ ∼
GMNL

rNL
∼

ρcs
M2

Plm
2jΦIcs

j : ð51Þ
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Therefore, gravity is negligible during the formation of
these structures if we have

Φ ≪ ΦI∶
ρcs

M2
Plm

2
≪ jΦIcs

j2; ð52Þ

which reads

10−37
�

m
1 GeV

�
−2 ρcs

1 GeV4
≪ jΦIcs

j2 ≪ 1: ð53Þ

C. Scalar-field solitons

Shortly after the entry into the nonlinear regime, the
collapse of the first structures builds scalar-field clumps
that can grow through collisions. We will analyse this
aggregation process below in Sec. III D. However, after the
scale factor aðtÞ has increased by a factor two or so, the
expansion of the Universe dilutes these scalar-field clumps.
Then, they behave like isolated compact objects, such as
MACHOs, and play the role of CDM particles.
In this section, we describe the way clumps, which are

formed by the linear instability studied previously, even-
tually settle to equilibrium configurations. Of course, we
cannot describe analytically the full time-dependent evo-
lution of the scalar field, from the initial instability to the
stable configurations that we find below. This would
require numerical simulations that go beyond the present
treatment. However, we check that the scalar-field dynam-
ics admit static configurations, often called “solitons,”
which are solutions to the equations of motion and are
natural candidates for the end-point of the scalar-field
structure-formation process. In particular, they correspond
to minima of the total energy at fixed mass, which ensures
their dynamical stability with respect to small nonlinear
perturbations.
Therefore, we expect that the collapse of the first

nonlinear structures, illustrated by the third column in
Fig. 1, will build halos that are not too far from these
solitons. Moreover, as they are later diluted by the Hubble
expansion, these isolated clouds should naturally relax
toward these solitons, possibly radiating a small amount of
scalar waves that can be accreted by those clumps. This
picture is also corroborated by a thermodynamical analysis,
which we present in the Appendix A.

1. Hydrostatic equilibrium as a minimum of the total
energy

Neglecting the expansion of the Universe and using the
fact that the velocity field is curl-free, the continuity and
Euler equations (15) and (18) conserve the total energy

E ¼ Ekin þ Egrav þ EI þ EQ; ð54Þ

where the kinetic, gravitational, self-interaction and quan-
tum-pressure energies are given by

Ekin ¼
Z

dr⃗ρ
v⃗2

2
; Egrav ¼

1

2

Z
dr⃗ρΦ;

EI ¼
Z

dr⃗VI; EQ ¼
Z

dr⃗
ð∇ρÞ2
8m2ρ

: ð55Þ

Following [39,50], we can obtain the properties of isolated
scalar clumps from an energy principle. Indeed, the con-
servation of energy implies that local minima of E are
dynamically stable with respect to small perturbations. This
variational analysis goes beyond linear stability and infini-
tesimal perturbations, and we can expect isolated clumps to
follow such profiles. Local minima at fixed mass M are
given by the equation δE − αδM ¼ 0, where α is the
Lagrangian multiplier associated with the constraint of
fixed mass [39,50]. For the energy (55), the first variation
with respect to ρ and v⃗ gives

δρ
v⃗2

2
þ ρv⃗ · δv⃗þ δρðΦþΦI þΦQ − αÞ ¼ 0: ð56Þ

This implies that v⃗ ¼ 0 and

ΦþΦI þΦQ ¼ α: ð57Þ

Thus, we recover the hydrostatic equilibrium of the Euler
equation (18), ∇ðΦþΦI þΦQÞ ¼ 0. In the following we
analyze the solutions to this equation.

2. Gaussian ansatz for the radial profile

It is not possible to obtain an explicit solution of
Eq. (57), but we can understand the main features of the
equilibrium by minimizing the energy over a class of trial
functions. Thus, as in [39,50], let us consider static
Gaussian spherical density profiles at constant mass M,

ρðrÞ ¼ ρce−ðr=RÞ
2

; with ρc ¼
M

π3=2R3
: ð58Þ

For the polynomial case (30), their energies are

Egrav ¼ −
Gffiffiffi
2

p M5=3ρ1=3c ; EQ ¼ 3πM1=3ρ2=3c

4m2
;

EI ¼ M

�
−

c1
25=2

ρc
ρΛ

þ c2
35=2

ρ2c
ρ2Λ

�
: ð59Þ

Let us neglect the gravitational energy, in agreement with
(52). If we only had the quadratic term in EI, both EQ and
EI would be increasing functions of ρ. Then, the minimum
of the energy would be at ρc ¼ 0. Indeed, both the quantum
pressure and the self-interactions would be repulsive, so
that there would be no stable state and the scalar cloud
would keep expanding and diluting (until gravity comes
into play). Therefore, for small stable clumps to exist, the
linear attractive term in EI must balance the quantum
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pressure before it is dominated by the quadratic repulsive
term. For c1 ∼ c2 the transition between the attractive and
repulsive regimes occurs at ρ ∼ ρΛ ∼ ρcs , as in Sec. III B 1.
Therefore, stable solitons exist provided EI ≳ EQ at ρ ∼ ρΛ.
This gives

solitons exist if M > Mmin; Mmin ∼
ρΛ

c3=21 m3
: ð60Þ

With jΦIcs
j ∼ c1, we find that the initial clumps (45) formed

by the linear instability are actually of the order of the
smallest stable mass Mmin. We have seen in the derivation
of (60) that this threshold also corresponds to a core density
ρc ∼ ρΛ. At higher masses, the quantum pressure becomes
negligible and the density is set by the minimum of EI. This
gives again ρc ∼ ρΛ. Therefore, for all masses above the
threshold Mmin we have

M > Mmin∶ ρc ∼ ρΛ; R ∼
�
M
ρΛ

�
1=3

: ð61Þ

This also means that the total energy E of these solitons is
dominated by their self-interaction energy and it scales
linearly with their mass,

M ≫ Mmin∶ EQ ≪ EI; E ≃ EI ∼ c1M: ð62Þ

The solitons (61) correspond to the regime III-a in Fig. 5 of
the dense axion stars studied in [39], where the results (60)–
(62) were also derived.

3. Numerical computation of the radial profile

A numerical computation of the soliton profiles confirms
the analysis of the previous section. Neglecting the gravi-
tational energy, the equation of equilibrium (57) that
describes minima of the total energy at fixed mass reads

d2y
dx2

þ 2

x
dy
dx

¼ 2y
�
−y2 þ c2

c1
y4 þ α̃

�
; ð63Þ

where we introduced the dimensionless variables

y ¼
ffiffiffiffiffi
ρ

ρΛ

r
; x ¼ ffiffiffiffiffi

c1
p

mr; α̃ ¼ −
α

c1
: ð64Þ

Then, the soliton mass reads

M
M0

¼ 4π

Z
∞

0

dxx2y2; M0 ¼
ρΛ

c3=21 m3
: ð65Þ

As expected, M0 also sets the order of magnitude of the
lower mass threshold Mmin of Eq. (60).
We solve the boundary-value problem (63) with a

double-shooting method (integrating from both boundaries
and matching at an intermediate point) for given values of

α̃. Next, integrating the density over the radius gives the
total mass M as a function of α̃. We show in Fig. 2 the
density profiles that we obtain for the masses M ¼ 70, 190
and 660M0, when we take c1 ¼ c2. We find that at large
masses the core density stabilizes at values of the order of
ρΛ while the mass grows as R3 with the characteristic radius
R. At large radii, r ≫ R, the density shows an exponential
tail, which is governed by the quantum pressure. We also
find a lower value for the mass Mmin of these equilibrium
solutions, with Mmin ≃ 67M0, in agreement with the scal-
ings of Eq. (60). Thus, the numerical computation confirms
the analytical predictions (60) and (61). Because the self-
interaction potential selects the unique density scale ρΛ,
which sets the scale of both the minima of VI and ΦI, the
equilibrium profiles have very simple properties. They
show a flat core at a density of the order of ρΛ and higher
masses are obtained by increasing the radius, withM ∝ R3.
We discuss in more details in the Appendix C 1 the

properties of these solitonic profiles, interpreting the differ-
ential equation (63) as the damped motion of a particle yðxÞ
with time x in a potential UðyÞ. This provides another
simple explanation of the behaviors found in Fig. 2.
As already advocated, within the nonrelativistic approxi-

mation, these solitons are stable configurations minimizing
the energy functional (54) for a given value of the mass M.
This is a feature of the nonrelativistic approximation, where
the oscillation pulsation of the background field is m. For
models where the field probes higher harmonics of the
scalar potential, for instance in axionic cases where the
term in −ϕ4 becomes of the same order as the quadratic
term for large field values, the pulsation can vary at high
enough density, leading to an instability of the solitons for
large densities. This instability implies that the solitons can
have a lifetime which can be much shorter than the age of
the Universe [52]. This is not the case here, as the scalar
field always follows harmonic oscillations at the leading
order. Numerical simulations of a related case to the one
presented in this paper confirm this observation [47].

FIG. 2. Radial density profile for the equilibrium (57). We show
the masses M ¼ 70, 190 and 660 M0, from left to right.
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D. Aggregation

The perturbative analysis of Sec. III B shows that the
fragmentation process starts at the redshift zcs where the
squared sound speed of Eq. (37) changes sign to become
negative. Moreover, the typical size rNL of these nonlinear
structures is initially of the order of 2π=qmax as given by
Eq. (44), their density of the order of ρΛ and their mass
MNL given by Eq. (45). The comparison with Eqs. (60)–
(61) shows that this also corresponds to the lowest mass
associated with stable solitons, as well as with their core
density,

MNL ∼Mmin; ρNL ∼ ρΛ: ð66Þ

Therefore, we could expect these structures to relax toward
stable solitons of mass of the order ofMmin. However, after
formation and before gravity comes into play, these halos
can grow (or be destroyed) through direct collisions. The
typical peculiar velocity v⃗NL at the formation time tcs can
be estimated from the linear theory, at its limit of validity
when δ ∼ 1. From the linearized continuity equation (34)
and the growth rate δðk⃗; tÞ ∝ eγkt, we obtain

v ∼
γkδ

q
: ð67Þ

At the onset of the formation of the clumps, when the
modes of physical wave number qmax reach the nonlinear
regime, we obtain from Eqs. (42)–(43)

v2NL ∼ jΦIcs
j: ð68Þ

If we assume that the halos aggregate after each collision,
and relax to a more massive equilibrium soliton with the
scalings (61), their number density decreases with time as

dn
dt

þ 3Hn ¼ −n2σv; ð69Þ

with a cross section σ ∼ 4πR2 and a typical relative velocity
v. This relies on the hydrodynamical picture, where scalar-
field solitons behave as spheres of a barotropic fluid with a
large pressure. In the regime where quantum pressure
dominates, the wavelike nature of the system as described
by the Schrödinger equation could lead to true solitonic
behaviors, where the solitons cross each other (as in the
one-dimensional cubic Schrödinger equation). However, in
this paper we focus on a different regime where the self-
interactions dominate over the quantum pressure. Thus, the
bulk of the solitons and the scalings (61) are only
determined by the shape of the self-interactions, while
the quantum pressure only governs the low-density tail of
the solitons. Then, we can expect the system to behave like
a fluid rather than a set of waves. Thanks to the linear
scaling with mass of the total energy (62), this aggregation

model conserves the total energy and can proceed without
radiating significant scalar-field waves.
The Hubble expansion rate decreases as HðtÞ ∝ a−2 in

the radiation era while the velocity dispersion decays as
v ∝ 1=a with the expansion of the Universe, if we neglect
for simplicity the velocity changes due to collisions.
Assuming the mass distribution of the solitons remains
peaked around a characteristic massMðtÞ, we haveMðtÞ ∝
1=ða3nÞ by conservation of the effective scalar-field density
ρ in a comoving volume. This expresses the growth of the
halos as they merge and the falloff of their comoving
number density. Then, the cross section grows as
σ2 ∝ ða3nÞ−2=3. This gives for the solution of Eq. (69)

nðtÞ ¼ ni

�
a
ai

�
−3
�
1þ niσivi

6Hi

�
1 −

�
ai
a

�
2
��

−3
; ð70Þ

where the subscript i stands for the initial condition at the
formation time, tcs . The first factor corresponds to the
dilution by the expansion of the Universe and the second
factor to the mergings of the clumps. At late times the
comoving number density nc goes to a finite value,

a ≫ ai∶ nc ¼ nci

�
1þ niσivi

6Hi

�
−3
; ð71Þ

which corresponds to a typical size and mass of the final
solitons of the order of

R∞¼Ri

�
1þniσivi

6Hi

�
; M∞¼Mi

�
1þniσivi

6Hi

�
3

: ð72Þ

At the initial time, of the order of tcs , we have from
Eqs. (44) and (68), in agreement with the analysis of
Sec. III C and with the relationship (66),

Ri∼
1

m
ffiffiffiffiffiffiffiffiffiffiffi
jΦIcs

j
q ; vi∼

ffiffiffiffiffiffiffiffiffiffiffi
jΦIcs

j
q

; σi∼R2
i ; ni∼

1

R3
i
: ð73Þ

This gives

niσivi
Hi

∼
mjΦIcs

j
Hcs

≫ 1; ð74Þ

where we used the constraint (48) associated with the
exponential growth of small perturbations at zcs . Thus, we
have a significant merging and growth of the scalar clouds.
Then, from Eq. (72) the typical size and mass of the scalar
clumps formed at the end of the aggregation process is

Rclump ∼
vi
Hi

∼

ffiffiffiffiffiffiffiffiffiffiffi
jΦIcs

j
q
Hcs

; Mclump ∼
ρ̄cs
H3

cs

jΦIcs
j3=2: ð75Þ
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This size corresponds to the distance that can be traveled by
an initial soliton during a Hubble time, sweeping material
along the way, before the expansion of the Universe dilutes
the scalar clouds and halts collisions. This ballistic approxi-
mation follows from the fact that we did not include the
change of velocity after collisions (but we included the
growth of the cross section with the rise of the halo mass).
This is clearly an upper bound and we can expect a broad
distribution of halo sizes, Ri ≤ R ≤ R∞, with a typical size
at a lower value associated with Brownian-like trajectories.
Because of this significant aggregation process, the scalar-
cloud masses grow much beyond the threshold (60). This
implies that the quantum pressure is negligible and the
radial profile of the solitonic solutions (57) is close to a top-
hat, as in (61). Wewill check in Sec. III F below that gravity
remains negligible despite this growth of the soliton mass.
This aggregation process and the final dilution by the
Hubble expansion toward a collection of isolated dark-
matter solitons are illustrated by the fourth column in
Fig. 1.
In this section we have discussed the merging of the

initial solitons by aggregation using an effective description
based on the master equation (69). This provides a
phenomenological understanding of the complex processes
which occur when scalar-field configurations collide. A
more precise characterisation of the dynamics of multi-
soliton states and their collisions would require numerical
simulations and a quantitative comparison with our effec-
tive results based on (69). Numerical studies of soliton
collision have been performed in the recent past, for
instance with Fuzzy Dark Matter in mind [53,54]. In the
self-interacting case of interest here, semianalytic methods
combined with numerical studies have been used in the
case of quartic interactions [55] and also for bounded
potentials with an attractive quartic behaviour for small
field values [47]. The latter case is the closest to the one
presented in this section. Numerically, various types of
phenomena have been observed. Merging of solitons
occurs as well as orbiting solitons in a binary system
and even bouncing. When merging happens, a certain
amount of scalar energy has been seen to be radiated away.
This phenomenon was also observed in the case of negative
quartic interactions [56], where it has been obtained that up
to thirty percent of the initial soliton mass can be radiated
away. This quantitative result has been obtained in a
different part of the soliton phase diagram, i.e., where
gravity is responsible for the existence and stability of the
solitons whereas in our case gravity is negligible. In our
case we hope that the compact nature of the solitons could
lead to a reduced rate of scalar wave emission. All in all, a
better quantitative understanding of the effect of this
possible radiation loss on the asymptotic number of clumps
is certainly important. One analytic possibility would be to
include loss terms in (69) which could be fitted with
numerical results. Such an analysis requires new numerical

simulations and a comparison with modified master equa-
tions with loss terms. We plan to come back to this topic in
forthcoming works.

E. No collapse into black holes

We now check that the scalar-field clumps formed in this
process do not collapse eventually into black holes. This is
avoided if the gravitational potential Φ at the surface of the
stable solitons obtained above is weak and far in the
Newtonian regime, jΦj ≪ 1. From Eq. (75) we have

jΦj ∼ GMclump

Rclump
∼
ρ̄cs jΦIcs

j
M2

PlH
2
cs

≪ jΦIcs
j ≪ 1: ð76Þ

Here we used the fact that the scalar-field energy density is
subdominant in the radiation era, so that ρ̄cs ≪ M2

PlH
2
cs from

the Friedmann equation. Therefore, the clumps are far in the
weak-gravity regime and do not form black holes. This is
consistent with the fact that gravity is always subdominant
with respect to the scalar-field self-interactions.

F. Parameter space

The scenario described in the previous sections leads to
the formation of scalar clouds, or solitons, at times shortly
after tcs. This is due to an exponential instability, which
leads to a fragmentation of the homogeneous background
and the formation of clumps of initial size (44). This is
followed within a Hubble time by a strong aggregation
process, where these scalar clouds merge to reach sizes up
to (75). The profiles of these halos should relax to the
solitonic solutions (57), which for the large final masses,
Mclump ≫ Mmin, are approximately top-hats at the density
ρΛ, from (61). These scalar clouds form the dark matter
“particles” that play the role of the WIMPs or primordial
black holes of other dark matter models. In this section, we
derive the parameter space of the model allowed by
theoretical constraints. This is shown in Fig. 3 in the
ðTcs ; mÞ plane, for the choices jΦIcs

j ¼ 10−5 and jΦIcs
j ¼

10−8 (upper and lower panels).
First, we require the size of the scalar clumps to be below

Rmax ¼ 1 pc, so that they remain much below the size of
small galaxies and can build realistic dark matter profiles in
galactic halos. The typical size of the clumps formed at the
end of the aggregation phase was obtained in Eq. (75),
which also reads

Rclump ¼
jΦIcs

j1=231=2MPl

T2
cs

: ð77Þ

This gives the constraint

Rclump < Rmax∶ Tcs >
jΦIcs

j1=431=4M1=2
Pl

R1=2
max

; ð78Þ
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which is shown by the blue solid line labeled
“Rclump < Rmax” on the left in Fig. 3, with the choice
Rmax ¼ 1 pc.
Second, we require the formation of the scalar

clumps to occur before the time of matter-radiation equal-
ity. This ensures that we recover the standard CDM
scenario at lower redshifts. Therefore, we impose the lower
bound

Tcs > Teq; with Teq ≃ 1 eV; ð79Þ

which is shown by the red dot-dashed line labeled “Teq” on
the left in Fig. 3. We can see that for jΦIcs

j≳ 10−9 this
constraint is automatically satisfied once we verify the first
constraint (78), Rclump < Rmax.
Next, we also have three theoretical self-consistency

conditions. First, the condition (48) for an exponential
instability gives a lower bound on the scalar-field mass m,

mjΦIcs
j ≫ Hcs∶ m ≫

T2
csffiffiffi

3
p jΦIcs

jMPl

: ð80Þ

This corresponds to the orange solid line labeled
“mjΦIj ≫ H” in Fig. 3. Here, we take a factor 103 to
ensure the left and right-hand sides are separated by at least
three orders of magnitude.
Second, the classicality condition (2) provides an upper

bound on the scalar mass m,

m ≪ ρ1=4cs jΦIcs
j−3=8; ð81Þ

where we used Eq. (73) for vi. This can be written in terms
of the temperature Tcs as

ρ

m4v3
≫ 1∶ m ≪

M1=8
Pl H

1=8
0 T3=4

cs

ð3Ωγ0Þ3=16jΦIcs
j3=8 : ð82Þ

This is shown by the green solid line labeled “ρ ≫ m4v3” in
Fig. 3. Here, we again take a factor 103 to ensure the left-
and right-hand sides are separated by at least three orders of
magnitude.
Third, we assumed that the gravitational force is neg-

ligible during the formation process. This is given by the
constraint (52), which also reads

jΦj ≪ jΦIcs
j∶ m ≫

H1=4
0 T3=2

cs

ð3Ωγ0Þ3=8jΦIcs
jM3=4

Pl

: ð83Þ

This corresponds to the black dashed line labeled
“jΦj ≪ jΦIcs

j” in Fig. 3. We can see that it is automatically
verified when the previous conditions are satisfied.
We can check that gravity remains small in the final

solitons that are built after the nonlinear collapse and the
aggregation stage. This is satisfied provided we have
jEgravj ≪ jEIj, where Egrav and EI are the gravitational
and self-interaction energies of the final solitons. From
Eq. (75) and with EI ∼Mc1 ∼MjΦIcs

j, this gives the
condition

jEgravj < jEIj∶ Tcs >
31=4M1=2

Pl H
1=2
0

8πΩ3=4
γ0

: ð84Þ

FIG. 3. The yellow shaded area is the domain of validity, in the
plane ðTcs ; mÞ, of the scenario described in this paper associated
with potentials of the form (6). The upper panel shows the case
jΦIcs

j ¼ 10−5 and the lower panel the case jΦIcs
j ¼ 10−8. From

the left and turning clockwise, the constraints that delimit the
allowed domain are associated with the maximum size of
the clumps, the classicality condition, and the condition that
the instability rate is much greater than the Hubble rate. The left
red dot-dashed line is the temperature Teq at matter-radiation
equality. The lower black dashed line is the condition for gravity
to be negligible during the formation process (the linear stage of
the tachyonic instability) while the left black dotted line in the
lower panel is the condition for gravity to be negligible in the final
nonlinear solitons (it does not appear in the upper panel as it is
slightly to the left of this panel boundary). Within the region
delimited by the previous conditions, we automatically have
Tcs > Teq and negligible gravity.
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This is shown by the vertical black dotted line labeled
“Egrav ¼ EI” on the left in the lower panel in Fig. 3. This
line does not depend on the choice of jΦIcs

j and it does not
appear in the upper panel because it is located slightly to the
left of this panel boundary. We can see that in both cases it is
located to the left of the maximum-radius boundary (78).
Therefore, the condition (84) is automatically satisfied and
the solitons always remain governed by the self-interactions.
Thus, as shown in Fig. 3, the parameter space of the

model takes the form of a triangle in the ðTcs ; mÞ plane. It is
delimited by the maximum clump size (78), the exponen-
tial-instability condition (80), and the classicality condition
(82). The requirements that the formation occurs before the
matter-radiation equality, (79), and that gravity remains
small, (83), are automatically satisfied. Gravity also auto-
matically remains small in the final scalar clumps, (84).
Thus, we can see that the scalar-field mass spans the range

10−26 GeV≲m≲ 10 GeV; ð85Þ

while the background temperature at the redshift zcs covers
the range

10 eV≲ Tcs ≲ 105 GeV: ð86Þ

This gives a wide range of temperatures and masses in the
allowed parameter space.

G. Mass and size of the scalar clumps

The typical size and mass of the clumps formed at the
end of the aggregation phase were obtained in Eq. (75).
This gave Eq. (77) for the radius, and for the mass:

Mclump ¼
jΦIcs

j3=233=4M7=2
Pl H

1=2
0

Ω3=4
γ0 T3

cs

: ð87Þ

The clump mass and radius are independent of the scalar-
field mass m and only depend on the redshift zcs when the
tachyonic instability appears. We show in Fig. 4 the clump
mass and radius as a function of Tcs . We also display the
Schwarzschild radius of the clumps,

RSch ¼ 2GM: ð88Þ

It is much smaller than the radius of the clumps, in
agreement with the result (76) that the clumps are in the
weak-gravity regime and do not form black holes.
We can see that the clumps cover a huge range of masses

and radii, frommicroscopic to subgalactic scales. Thus, their
mass goes from 10−3 gram up to 1037 gram ∼ 104 M⊙, and
their radius from 0.01 angstrom to 1 parsec. At low mass,
their core density is of the order of ρ ∼ 1027 gram=cm3,
much above that of neutron stars, while at large mass it is of
the order of ρ ∼ 10−13 gram=cm3 ∼ 1017ρ̄0, which remains

much greater than the current mean density ρ̄0 of the
Universe. At the large-mass end, these clumps are thousand
timesmoremassive than the Sun, like themostmassive stars,
but have much greater radii, up to the parsec. Thus, they are
similar to galactic molecular clouds and do not correspond to
the standard stellar-mass MACHOs (massive compact halo
objects), which are strongly constrained by microlensing
observations.

H. Evading microlensing constraints

Massive compact halo objects, such as primordial black
holes, can be constrained by microlensing observations.
Indeed, such MACHOs located in the Milky Way halo
would cause a time-varying amplification of background
stars when then cross their line of sight. Monitoring the
Andromeda galaxy (M31) with the Subaru Hyper Suprime-
Cam (HSC), the number of observed microlensing events
has provided strong upper bounds on the abundance of
primordial BH in the mass range 10−11 < MBH < 10−6 M⊙
[57]. At low BH mass, the microlensing sensitivity is

FIG. 4. Upper panel: mass of the clumps as a function of the
background temperature Tcs at the onset of the tachyonic
instability, for jΦIcs

j ¼ 10−5 (upper blue solid line) and jΦIcs
j ¼

10−8 (lower red dashed line). Lower panel: radius of the clumps.
The lower dotted lines show the Schwarzschild radius RSch.
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strongly decreased by finite-source-size and wave-optics
effects [57–59]. In this section, we show that the scalar-
field solitons produced in our scenario only produce very
small magnifications of distant stars, much below obser-
vational thresholds.
For pointlike lenses, the relevant scale in the lens plane is

the Einstein radius RE,

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMdLð1 − dL=dsÞ

p
; ð89Þ

where dL and ds are the distances from the observer to the
lens and to the source [60,61]. For dL ¼ 1 kpc and
ds ¼ dM31 ≃ 770 kpc, this gives

RE ≃ 10−8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mclump

1 g

s
meter; ð90Þ

which is shown by the black dashed line in Fig. 5. We can
see that at large masses RE becomes smaller than the radius
Rclump of the clumps. Therefore, in contrast with the case of
primordial black holes, we must take into account the

effects associated with the finite size of these lenses and this
will make high-mass solitons evade detection by micro-
lensing. The flat red dotted line in Fig. 5 shows the impact
parameter dL

ds
Rs of a circular source of one solar radius,

Rs ¼ R⊙, which is aligned with the lens and the observer.
At low clump mass, dL

ds
Rs is much greater than the clump

size and the Einstein radius, which means that the finite size
of the source plays a significant role. For the case of
primordial black holes, this finite-source effect signifi-
cantly decreases the lensing magnification. This implies
that microlensing observations cannot constrain small
black holes below 1022 gram [57–59]. This will also
prevent the detection of low-mass solitons in our case.
For small lenses, wave-optics effects also decrease the
magnification as compared with the geometrical-optics
prediction that neglects finite-lens effects. However, these
wave-optics effects are subdominant and smeared out by
the finite-size effects of the lens [58]. Therefore, in this
paper we do not consider the subdominant wave-optics
effects and focus on the dominant finite-size effects, which
already reduce the microlensing magnification to a very
small level.
To simplify the computation, we approximate the lens by

a disk of constant surface density Σ. This should be a good
approximation as the solitons have a flat core and a shallow
envelope that shows a fast exponential decrease, see Fig. 2.
Then, with the optical axis centered on the lens disk, we
define the normalized radius x0 of the lens, in the lens
plane, as

x0 ¼
Rclump

RE
; ð91Þ

and the normalized impact parameter y of a source at radius
r in the source plane, as

y ¼ dLr
dsRE

: ð92Þ

In particular, the outer normalized impact parameter ys, for
a circular source of radius Rs in the source plane that is
aligned with the lens and the observer, is

ys ¼
dLRs

dsRE
: ð93Þ

For such axially symmetric lenses, the lens equation is
[60,61].

y ¼ x −
mðxÞ
x

; ð94Þ

where the dimensionless lens mass within radius x is

FIG. 5. Characteristic radii in the lens plane. We show the
clump radius Rclump (blue solid line), the Einstein radius RE

(black dashed line), and the outer impact parameter dL
ds
Rs of a

source of one solar radius aligned with the lens (red dotted line).
We take dL ¼ 1 kpc and ds ¼ dM31 ≃ 770 kpc.
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mðxÞ ¼ 2

Z
x

0

dx0x0κðx0Þ; ð95Þ

with κ the lens convergence. For a constant surface density

disk, we have κ ¼ R2
E

R2
clump

¼ 1=x20 inside the disk, and κ ¼ 0

outside of the disk. This gives

x < x0∶ mðxÞ ¼ x2

x20
; x > x0∶ mðxÞ ¼ 1; ð96Þ

and the lens mapping becomes [60]

jxj < x0∶ y ¼ x
�
1 −

1

x20

�
;

jxj > x0∶ y ¼ x −
1

x
: ð97Þ

It is useful to define the quantity y0 by

y0 ¼
����x0 − 1

x0

����: ð98Þ

We show in Fig. 6 the normalized radii x0, y0, and ys in the
lens plane, as a function of the clump mass. The inversion
of the lens mapping (97) provides the position xðyÞ of the
image as a function of the position y of the source. By axial
symmetry, we can take y ≥ 0. If there are several solutions
xiðyÞ, the lensing of the distant source gives rise to several
images on the sky.
For x0 < 1, the size of the lens is small and there can be

strong lensing effects for small impact parameter. Thus,
there are three images at small impact parameter [60],

x0<1; y<y0∶x�¼
y�

ffiffiffiffiffiffiffiffiffiffiffiffi
y2þ4

p
2

; xc¼
x20

x20−1
y: ð99Þ

The images x� are outside of the lens disk, the image xc is
inside the disk. As light can propagate through the scalar
cloud, the central image xc is a true solution. The
magnifications associated with these images are

μ� ¼ � 1

4

�
yffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
y

� 2

�
;

μc ¼
�
1 −

1

x20

�
−2
; ð100Þ

and the total magnification is their sum

μ¼jμþjþjμ−jþjμcj¼
y2þ2

y
ffiffiffiffiffiffiffiffiffiffiffiffi
y2þ4

p þ
�
1−

1

x20

�
−2
: ð101Þ

For large impact parameter, only the image xþ exists

x0 < 1; y > y0∶ xþ ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
2

: ð102Þ

For y → ∞ we recover xþ ≃ y, as the deflection angle
decreases at large impact parameter. The magnification is

μ ¼ μþ ¼ 1

4

�
yffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
y

þ 2

�
; ð103Þ

which goes to unity (no magnification) at large distance y.
For x0 > 1, the size of the lens is large and there is

always only one image. At small impact parameter it is
inside the disk,

x0 > 1; y < y0∶ xc ¼
x20

x20 − 1
y; ð104Þ

FIG. 6. Lensing radii normalized to the Einstein radius, in the
lens plane. We show the normalized scalar-clump radius x0 (blue
solid line), the source radius ys (red dotted line) for a star of one
solar radius, and the characteristic quantity y0 ¼ jx0 − 1=x0j. We
take dL ¼ 1 kpc and ds ¼ dM31 ≃ 770 kpc.
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while at large impact parameter it is outside of the disk,

x0 > 1; y > y0∶ xþ ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
2

: ð105Þ

The total magnification is then either μ ¼ μc or μ ¼ μþ,
with these quantities already given in (100).
As seen in Fig. 6, at small scalar-clump mass the size of

the source is large, ys ≫ y0, which means that finite-source
effects must be taken into account. Therefore, we integrate
the magnification over the surface of the source.
Approximating the source as a disk of radius ys of constant
surface brightness, the maximum total magnification is
obtained when the source is centered on the optical axis,
that is, it is aligned with the lens and the observer. This
gives for the maximum total magnification

μ̄0 ¼
1

πy2s

Z
ys

0

d2y⃗μðyÞ ¼ 2

y2s

Z
ys

0

dyy
X
i

jμiðyÞj: ð106Þ

In the last expression we used the axial symmetry and we
explicitly wrote the sum over the images i of the source, to
include the case when there are several images. On the
other hand, the magnification μ is also obtained from the
Jacobian matrix Aij ¼ ∂yi∂xj as μ ¼ 1

detðAÞ ¼ x
y
dx
dy, where we

used the axial symmetry in the last expression. Therefore,
the total magnification (106) also reads

μ̄0 ¼
2

y2s

X
i

����
Z

dxixi

����: ð107Þ

As is well known, because gravitational light deflection
does not involve emission, absorption, or frequency shift,
the specific intensity and the surface brightness are not
modified. Then, the magnification is the ratio of the solid
angles subtended by the image and the source in the
absence of lensing [60], d2x=d2y. We recover this ratio
in Eq. (106), which we sum over the number of images.
From the above analysis, we have four cases associated

with x0≷1 and ys≷y0. We obtain

x0 < 1; ys < y0∶ μ̄0 ¼
x2þs − x2−s þ x2cs

y2s
;

x0 < 1; ys > y0∶ μ̄0 ¼
x2þs

y2s
;

x0 > 1; ys < y0∶ μ̄0 ¼
x2cs
y2s

;

x0 > 1; ys > y0∶ μ̄0 ¼
x2þs

y2s
; ð108Þ

where xþs, x−s, and xcs are the positions of the images
associated with a source at position ys. We can see in Fig. 6
that for low clump mass, where x0 < 1, we have ys ≫ y0.
Thus, we obtain

x0ðMclumpÞ < 1∶ μ̄0 ¼
x2þs

y2s
¼

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=y2s

p
2

�2

≃ 1þ 2

y2s
≃ 1; ð109Þ

which is very close to unity as ys ≫ 1. For intermediate
clump mass, where x0 > 1 and ys > y0, we obtain again

x0ðMclumpÞ > 1 and ys > y0∶

μ̄0 ¼
x2þs

y2s
≃ 1þ 2

y2s
≃ 1; ð110Þ

which is again very close to unity as we still have ys ≫ 1.
Finally, for large clump mass, where x0 > 1 and ys < y0,
we obtain

x0ðMclumpÞ > 1 and ys < y0∶

μ̄0 ¼
x2cs
y2s

¼
�

x20
x20 − 1

�
2

≃ 1þ 2

x20
≃ 1; ð111Þ

which is very close to unity as x0 ≫ 1. Numerically, we find
that μ̄0 − 1 < 10−3 over all clump masses. This is much
below the observational threshold μT ¼ 1.34 [57].
Therefore, microlensing observations do not constrain the
models studied in this paper. At low clump masses, this is
because the finite-source effects decrease the lensing mag-
nification. The same effect prevents the detection of small
primordial black holes. At large masses, the microlensing
inefficiency is due to the finite-lens effect, because the scalar-
clump radius is much greater than the Einstein radius,
x0 ≫ 1. This is different from primordial black hole scenar-
ios, where large masses can be constrained by microlensing
because the Schwarzschild radius is much smaller than the
Einstein radius, as RE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2RSchdLð1 − dL=dsÞ
p

≫ RSch.
Instead, our massive scalar clumps have a very large radius
and are similar to galactic molecular clouds, rather than
compact objects. This leads to small gravitational potential
wells, hence to very small deflection angles and lensing
magnifications. As noticed in Sec. III D, in a more realistic
computation the clumps are expected to have a finite range of
masses and radii below the peak values (75). However, the
very small magnification μ̄0 − 1 < 10−3 ensures that our
result should not change once we take into account the finite
width of the clump mass function.

IV. AXION MONODROMY

In this section we present another mechanism for the
formation of clumps. In this case parametric resonance
plays the main role. We consider this effect in the context of
axion monodromy potentials as it is illustrated schemati-
cally in Fig. 7.
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A. Cosine potential

Axions have been a long standing candidate for dark
matter. In the case of the QCD axion, which arises after the
breaking of the Peccei-Quinn symmetry, the potential term
arises nonperturbatively and is periodic. This is a generic
feature of axions or axionlike particles, where the axion
field can be seen as a Goldstone mode of a globally broken
symmetry. The potential terms for these scalar (or pseu-
doscalar) fields possesses the remaining discrete symmetry
ϕ → ϕþ f which is associated to the original Uð1Þ
symmetry and arises either from nonperturbative effects
or from soft breaking terms prior to the symmetry breaking
phenomenon. Generically, this gives rise to cosine poten-
tials. In the misalignement mechanism, the axion field is
constant until the Hubble rate drops below the axion mass.
Then oscillations start and the axion becomes a good dark
matter candidate. In certain string scenarios, where the
axions come from the integrated forms of string theory
along closed cycles of the compactification manifold, the
coupling of these fields to internal fluxes can give rise to
additional polynomial interactions in the axion field [62].
This has been called axion monodromy as the potential
does not remain periodic due to these fluxes but is shifted
when ϕ → ϕþ f. In the following we will focus on the
potential [63]

VðϕÞ¼m2
0

2
ϕ2þM4

I ½1− cosðϕ=fÞ�; M4
I

f2
≪m2

0: ð112Þ

We can absorb the quadratic part of the cosine into the mass
term and write VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ, with

m2 ¼ m2
0 þ

M4
I

f2
≃m2

0; ð113Þ

VIðϕÞ ¼ M4
I

�
1 − cosðϕ=fÞ − ϕ2

2f2

�
: ð114Þ

For ϕ ≪ f we recover an attractive quartic potential, with
λ4 ¼ −M4

I =ð6f4Þ < 0. In the following, we consider that
the mass term dominates over the cosine interaction. Notice
that this is different from [63], where the two terms have the
same order of magnitude. In the nonrelativistic regime,
where we average over the fast oscillations of the scalar
field, the effective interaction potential becomes [33]

ΦIðρÞ ¼
8ρb
ρa

�
2J1ð

ffiffiffiffiffiffiffiffiffiffi
ρ=ρb

p Þffiffiffiffiffiffiffiffiffiffi
ρ=ρb

p − 1

�
; ð115Þ

with

ρa ¼
8m4f4

M4
I

; ρb ¼
m2f2

2
; ρb ≪ ρa: ð116Þ

This corresponds to the integrated potential

VIðρÞ ¼
8ρb
ρa

½−ρþ 4ρb − 4ρbJ0ð
ffiffiffiffiffiffiffiffiffiffi
ρ=ρb

p
Þ�; ð117Þ

obtained by averaging the potential VIðϕÞ over the period
of the fast leading-order oscillations. This gives for the
squared-sound speed associated with the quantum pressure
and the self-interactions

c2s ¼
k2

4a2m2
−
8ρb
ρa

J2ð
ffiffiffiffiffiffiffiffiffiffi
ρ̄=ρb

p
Þ: ð118Þ

Thus, at large background densities the self-interaction
contribution to the squared sound speed oscillates around
zero, with increasing amplitude as time goes on. From the
asymptotic behavior of the second-order Bessel function, we
obtain at large background densities for this contribution

ρ̄ ≫ ρb∶ c2s jI ≃
8ρb
ρa

ffiffiffi
2

π

r �
ρ̄

ρb

�
−1=4

cos

� ffiffiffiffiffi
ρ̄

ρb

r
−
π

4

�
: ð119Þ

FIG. 7. The main stages of the formation of scalar dark-matter clumps for the parametric-resonance scenario (112).
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As the speed of sound squared becomes negative quasiper-
iodically, therewill be instabilities thatwewill spell out in the
following section.
As for the tachyonic case, to facilitate the reading of the

next sections, we already present in Fig. 7 the main stages
of the formation of the scalar dark-matter clumps.
(1) The scalar field ϕ again quickly oscillates in the

potential VðϕÞ, dominated by its quadratic compo-
nent with a small correction VI. This self-interaction
contribution now shows fast oscillations, such as the
cosine in Eq. (112). Integrating out the fast leading-
order oscillations of ϕ, the nonrelativistic self-
interaction potential ΦIðρÞ defined by Eq. (19),
i.e., Eq. (115) in our example, now shows oscil-
lations with a decaying amplitude at large densities.

(2) At early times, the scalar-field density perturbations
again oscillate as acoustic waves. As the background
density ρ̄ decreases with time, the amplitude of the
self-interactions grows and they finally become
relevant. As in the scenario presented in the first
part of this paper and illustrated in Fig. 1, a
tachyonic instability would develop at late times,
associated with the first region connected to the
origin where dΦI

dρ < 0 (the first significant drop of ΦI

seen in the lower left panel in Fig. 7). However, at
much earlier times, still in the region where ΦIðρÞ
shows many oscillations, a parametric resonance
triggered by these oscillatory features develops and
amplifies the scalar density perturbations.

(3) The scalar density field then quickly reaches the
nonlinear regime. Because of the intricate properties
and time-dependent nature of the parametric reso-
nance, the length scales and densities that first
become nonlinear do not correspond to those asso-
ciated with stable isolated structures. This suggests
that the system will undergo a significant redistrib-
ution toward greater structures that can form stable
solitons.

(4) The relative velocities are now rather modest and we
do not expect significant collisional aggregation.
Finally, the expansion of the Universe again dilutes
the scalar clumps, which then behave as isolated
CDM particles. At much lower redshifts, gravita-
tional instability will again build the cosmic web and
galaxies as in the standard ΛCDM scenario.

We describe in the following sections these various
stages in more detail.

B. Dynamics of the scalar density field

1. Acoustic oscillations of the density contrast

From Eqs. (118) and (119), the squared sound-speed c2s
becomes negative on subhorizon scales for the first time at
the redshift zcs , when ρ̄ ¼ ρcs with

H2
cs

4m2
¼ 8ρb

ρa

ffiffiffi
2

π

r �
ρcs
ρb

�
−1=4

; ð120Þ

where we assumed that we are in the large-density regime
(119),

ρcs ≫ ρb: ð121Þ

This gives the useful relationship

ρcs
ρb

∼
�
ρb
ρa

�
4
�

m
Hcs

�
8

: ð122Þ

Since we have ρb=ρa ≪ 1, Eq. (120) also implies

z ≤ zcs∶
H
m

≪ 1: ð123Þ

Thus, the slow-roll stage of the evolution of the scalar field
ϕ, when it was governed by the Hubble friction, finished
long before zcs and the scalar field shows fast oscillations in
its mainly quadratic potential m2ϕ2=2. This justifies the
effective description in terms of the hydrodynamical
variables fρ; v⃗g and of the self-interaction potential
ΦIðρÞ, as illustrated in the first column in Fig. 7.
Equation (120) also reads

Hcs ∼ 10−2
�

m
1 GeV

�
16=19

�
ρb
ρa

�
8=19

�
ρb

1 GeV4

�
2=19

GeV:

ð124Þ

Using the approximation (119), the evolution equation (36)
of the linear density contrast reads

δ̈þ 1

t
_δþ H4

cs

4m2

k2

k2cs

�
k2

k2cs

�
t
tcs

�
−2

þ
�

t
tcs

�
−5=8

× cos

� ffiffiffiffiffiffi
ρcs
ρb

r �
t
tcs

�
−3=4

�	
δ ¼ 0; ð125Þ

where we introduced kcs ¼ acsHcs . Here we used H ¼
1=ð2tÞ in the radiation era and in the cosine term we
discarded the constant phase −π=4, which can be absorbed
in a small change of tcs or of the origin of time. Making the
change of time coordinate

η ¼ − ln

�
1

2

ffiffiffiffiffiffi
ρcs
ρb

r �
t
tcs

�
−3=4

�
≪ −1; ð126Þ

we obtain

d2δ
dη2

þ H2
cs

9m2

k2

k2cs

�
k2

k2cs
þ e11ðη−ηcs Þ=6 cos ð2e−ηÞ

�
δ ¼ 0: ð127Þ
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The time coordinate η grows with cosmic time but it is
restricted to large negative values, as the asymptotic form
(119) of the Bessel function only applies when the argu-
ment of the cosine is large. As shown in Appendix B, at
early times the density contrast shows acoustic oscillations
with a constant amplitude, driven by the quantum pressure
term. For moderate wave numbers, we obtain

k2

k2cs
≪

m
Hcs

e−η;
Hcsk

mkcs
eηþ11ðη−ηcs Þ=12 ≪ 1∶

δðηÞ ≃ δi cos

�
Hcsk

2

3mk2cs
ðη − ηiÞ

��
1þ H2

csk
2

36m2k2cs

× e2ηþ11ðη−ηcs Þ=6 cos ð2e−ηÞ
�
; ð128Þ

whereas for large wave numbers we have

k2

k2cs
≫

m
Hcs

e−η;
Hcs

m
eηþ11ðη−ηcs Þ=6 ≪ 1∶

δðηÞ ≃ δi cos
�
Hcsk

2

3mk2cs
ðη − ηiÞ

�
þ δi sin

�
Hcsk

2

3mk2cs
ðη − ηiÞ

�

× sin ð2e−ηÞ Hcs

12m
eηþ11ðη−ηcs Þ=6: ð129Þ

Because Hcs ≪ m and eη ≪ 1, the density contrast only
starts growing beyond its initial value δi ∼ 10−5 long after
the redshift zcs , at the time tgðkÞ with

k < kg∶ tgðkÞ ¼ tg∞

�
k
kg

�
−16=23

;

k > kg∶ tgðkÞ ¼ tg∞; ð130Þ

where we define

kg ¼ kcs

�
ρcs
ρb

�
11=68

�
m
Hcs

�
11=34

≫ kcs ; ð131Þ

and

tg∞ ¼ tcs

�
ρcs
ρb

�
4=17

�
m
Hcs

�
8=17

≫ tcs : ð132Þ

Thus, the time tgðkÞ decreases at higher wave numbers, up
to kg. At greater wave numbers, tgðkÞ ¼ tg∞ is constant and
fluctuations on these very small scales start growing
simultaneously at tg∞. At that time, the argument of the
cosine is of the order of

jτg∞j ∼
ffiffiffiffiffiffi
ρcs
ρb

r �
tg∞
tcs

�
−3=4

∼
�
ρcs
ρb

�
11=34

�
m
Hcs

�
−6=17

∼
�
ρb
ρa

�
22=17

�
m
Hcs

�
38=17

; ð133Þ

where in the last expression we used the relation (122). This
is still a large value if ρb=ρa is not too small. Then, the
squared-sound speed (119) can still show many oscillations
as the background density decreases. If jτg∞j≲ 1, we have
ρ=ρb ≲ 1 and we are in the low-density regime of the self-
interactions, where we approximate the Bessel functions by
their low-order Taylor expansion. Then, we recover the
polynomial case (30)–(31) with a tachyonic instability,
associated with the negative value λ4 < 0 of the quartic term
of the potential VIðϕÞ for ϕ ≪ f. Thus, we are back to the
physics analyzed in the previous Secs. III B. Therefore, in the
followingwe consider inmore details the case jτg∞j ≫ 1.We
will see that in this scenario a parametric resonance takes
place before the tachyonic instability can set in,

parametric resonance forjτg∞j ≫ 1: ð134Þ

2. Mathieu-equation resonances

Changing time coordinate to

τ ¼ −e−η ¼ −
1

2

ffiffiffiffiffiffi
ρcs
ρb

r �
t
tcs

�
−3=4

≪ −1; ð135Þ

and writing δðτÞ as

δðτÞ ¼ ð−τÞ−1=2yðτÞ; ð136Þ

the evolution equation (127) becomes

d2y
dτ2

þ ½AðτÞ − 2qðτÞ cosð2τÞ�y ¼ 0; ð137Þ

where we shifted the argument of the cosine by a phase π
(corresponding to a negligible shift of τ) to recover the
standard sign of the Mathieu equation, and

AðτÞ ¼
�
1

4
þ H2

csk
4

9m2k4cs

�
1

τ2

¼ 1

4τ2
þ 4

9

�
τ

τg∞

�
−2
�
k
kg

�
4

; ð138Þ

qðτÞ¼ H2
csk

2

18m2k2cs

ð−τcsÞ11=6
ð−τÞ23=6 ¼ 2

9

�
τ

τg∞

�
−23=6

�
k
kg

�
2

: ð139Þ

Here τg∞ is the value of τ at the time tg∞ introduced in
(132), and it is of the order of (133). For wave numbers
smaller than kg, we can also write in terms of τgðkÞ,
associated with the time tgðkÞ of (130),
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k < kg∶ Aðk; τÞ ¼ 1

4τ2
þ 4

9

�
τ

τgðkÞ
�

−2
�
k
kg

�
68=23

;

qðk; τÞ ¼ 2

9

�
τ

τgðkÞ
�

−23=6
: ð140Þ

Equation (137) has the form of a Mathieu equation with
slowly-varying coefficients. The coefficients AðtÞ and qðtÞ
grow with cosmic time as jτj decreases. For constant
coefficients A and q, Floquet theory shows that the
Mathieu equation has solutions of the form e�iντPð�τÞ,
where PðτÞ is periodic of period π and ν is the characteristic
Mathieu exponent [64,65]. When ν has a nonzero imagi-
nary part, μ ¼ jImðνÞj ≠ 0, there is a growing and a
decaying solution, y� ∼ e�μτ, up to an oscillating prefactor.
This gives instability bands in the plane ðq; AÞ of the
parameters, see [65]. These instability bands touch the A-
axis, at q ¼ 0, at the discrete values An ¼ n2, where
n ¼ 1; 2; 3;…. Their width ΔA grows with q for q > 0.

a.Intermediate wave numbers
Let us first consider wave numbers of the order of kg. For

t≲ tg∞ we have q≲ 1 and A≲ 1. Therefore, we are in the

first stability region of the Mathieu-equation stability chart,
see [65]. This agrees with the perturbative analysis of the
Appendix B and the results (128)–(129). After that time,
AðtÞ and qðtÞ grow beyond unity along a line A ∼ q12=23

and enter a first unstable region at q ≃ 0.4. Then, yðτÞ
grows exponentially as eμτ, where μ ¼ jImðνÞj is the
imaginary part of the characteristic Mathieu exponent
[64,65]. Indeed, AðτÞ and qðτÞ evolve on a timescale given
by jτj whereas the cosð2τÞ term oscillates on the much
shorter time scale π ≪ jτj. Then, it takes a time Δτ for the
density contrast δ to grow from δi ∼ 10−5 to unity, with

Δτ ∼
5 ln 10

μ
: ð141Þ

This is much shorter than jτj as soon as μ is of the order of
unity. Therefore, the density contrast reaches the nonlinear
regime soon after the time tg∞, on comoving scales
xg ∼ 1=kg.
This case is shown by the upper right panel in Fig. 8. It

clearly shows the oscillations with almost constant ampli-
tude until the time tg∞ and the exponential rise shortly after
tg∞. The density contrast quickly grows by a factor of 105.

FIG. 8. Evolution of the modulus of the density contrast δðk⃗; τÞ, for different wave numbers k, from Eq. (137). For illustration, the
characteristic time τg∞ is set to −103 and the initial condition to jδij ¼ 10−5. For k ¼ 1.5kg and k ¼ 1.9kg (lower panels), the oscillations
of δðτÞ are so fast that they cannot be distinguished in the figure and the curve fills all the area under its upper envelope.
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b.Low wave numbers
Let us now consider low wave numbers, k ≪ kg. From

Eq. (140), we can see that they remain in the stability region
fq≲ 1; A≲ 1g until the time tgðkÞ > tg∞, in agreement
with the perturbative result (128). They enter the first
unstable region with q ≃ 0.9 and A ≃ 0, along the q-axis.
Since dark-matter clumps have already formed at the latest
at the time tg∞, on the scale xg, this is no longer relevant.
This case is shown by the upper left panel in Fig. 8. It

clearly shows the oscillations with constant amplitude until
the time tgðkÞ > tg∞ and the exponential rise at tgðkÞ. In
agreement with the analysis above, the oscillation fre-
quency is lower than for the case k ¼ kg and the instability
appears later.

c.High wave numbers
Higher wave numbers have larger values of q and A,

along a line A ∼ q2. This mostly goes through the stable
regions of the Mathieu equation, except for very narrow
instability bands that are missed in the first-order pertur-
bative result (129), apart from the first one. Indeed, the first
signs of these higher instability bands appear as secular
terms in higher orders of perturbation theory [66].
Nevertheless, we can check that the instability rate does
not diverge at high wave numbers.
First, we can obtain a conservative lower bound on the

time tmin
g when the density contrast becomes of order unity.

Indeed, Eq. (B8) is valid at all orders (B7) of the
perturbative expansion (B4) and provides an upper bound
on secular terms. This gives jδj < 3jδij until the time tg min,
with

tg min ¼ tcs

�
m
Hcs

�
8=11

≫ tcs : ð142Þ

This time does not depend on the wave number. This
implies that there is no ultraviolet divergence; the time
when the density contrast becomes of the order of unity
does not go to zero at high k and remains above the finite
value (142).
We can check that this agrees with estimates obtained

from the stability chart of the constant-coefficients Mathieu
equation. First, let us consider the behavior of large wave
numbers, k ≫ kg, when they cross high-order instability
bands. Let us recall that for large n, not too far from the A-
axis, the nth instability band occurs at An with an
exponentially small width ΔAn [67,68],

An ≃ n2; ΔAn ∼
8ðq=4Þn
½ðn − 1Þ!�2

�
1 −

q2

4n3
þ…

�
: ð143Þ

At time t, we have for wave numbers greater than kg, A ≃
4τ2g∞k4

9τ2k4g
and q ¼ 2ð−τg∞Þ23=6k2

9ð−τÞ23=6k2g . This gives n ≃ 2τg∞k2

3τk2g
and we are

inside an instability band when n is very close to an integer.
We can check that the corrective term in the bracket in
(143) is negligible for jτj ≥ jτg∞j and k ≫ kg. Then, we
obtain for the width ΔA the asymptotic upper bound

n ≫ 1∶
ΔA
A

≲ exp

�
−
4τg∞k2

3τk2g
ln

k
kg

�
: ð144Þ

The time spent inside the instability region is Δτ
jτj ¼ 1

2
ΔA
A .

Therefore, with a growth exponent μn, the density contrast
grows during the time spent in the nth instability band by a
factor

n ≫ 1∶ eμnΔτn ≲ exp
h
μnjτnje

−4τg∞k2

3τnk2g
lnðk=kgÞi

: ð145Þ

As μn decreases at high n, we can see that the growth
becomes negligible at high k. We can resum the cumulative
growth due to the crossing of successive instability bands

by a given wave number k. From n ≃ 2τg∞k2

3τk2g
, we obtain the

crossing time τn of the nth band, τn ≃
2τg∞k2

3nk2g
. As jτnj ≫

jτg∞j for all n, we can apply Eq. (145) for all n ≫ 1.
Neglecting the decrease of μn with n, we obtain the
conservative estimate of the cumulative growth factor G
by the time tg∞,

Gn0;N ¼
YN
n¼n0

eμnΔτn ¼ eSn0 ;N ; ð146Þ

where N ¼ 2k2

3k2g
is the final band reached at the time tg∞,

n0 ≫ 1 is the lowest value where we can use Eq. (145), and

n0 ≫ 1∶ Sn0;N ≲ XN
n¼n0

μjτnje
−4τg∞k2

3τnk2g
lnðk=kgÞ

∼ μjτg∞j
�
k
kg

�
2−2n0 XN−n0

l¼0

1

lþ n0

�
k
kg

�
−2l

: ð147Þ

The sum over l converges and the limit N → ∞ provides
an upper bound. This also shows that the cumulative
growth is dominated by the lower bands, n ∼ n0. This gives

n0 ≫ 1∶ Gn0;N ≲ exp

�
jτg∞j

�
k
kg

�
2−2n0

�
; ð148Þ

where we take the upper bound μ ≲ 1. Thus, the cumulative
growth due to the crossing of high-order bands, for instance
n ≥ 10, decreases at high wave numbers. Therefore, there
is no ultraviolet divergence due to the crossing of high-
order instability bands by high wave numbers.
To estimate the growth associated with the crossing of

the first few instability bands, we evaluate the growth
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obtained for the first band n ¼ 1, which should be the
largest one. From Eqs. (138)–(139), we can see that high
wave numbers, k ≫ kg, cross the first instability band,
n ¼ 1, at time t1 ∼ tg∞ðk=kgÞ−8=3 with A ≃ 1 and
q ∼ ðk=kgÞ−17=3 ≪ 1. At low q, the width of the first
instability band is ΔA1 ∼ q, with a growth rate μ1 ∼ q
[69]. This gives a growth factor

n¼ 1; k≫ kg∶ eμ1Δτ1 ∼exp

�
jτg∞j

�
k
kg

�
−28=3

�
; ð149Þ

which again goes to unity at large k. Moreover, we can infer
that Eq. (149) provides the extension down to n0 ¼ 1 of
Eq. (148), which was only valid for large n0 and neglected
the decrease of μ at low q.
This high-wave number case is shown by the two lower

panels in Fig. 8. In agreement with the analysis above, the
instability appears earlier for higher k but the amount of
growth decreases as the instability bands are narrower with
lower growth rates. Moreover, higher-order instability
bands crossed at later times do not significantly change
the amplitude of the density contrast. In the case k ¼ 1.9kg,
shown in the lower right panel, the instability band crossed
at − logð−τÞ ≃ −3.1 actually leads to a small decrease of
jδj. This can happen depending on the phase of the density
contrast at the entry of the narrow instability band, if it
starts with a greater weight on the decaying mode. At
higher k, there is no significant change from the initial
amplitude jδij ¼ 10−5 of the oscillations.
This analysis shows that the growth factor decreases at

high wave numbers. Therefore, only a finite range of wave
numbers above kg has been able to show a significant
growth of the density contrast by the time tg∞. This agrees
with the finiteness of the bound (142), which provides a
lower bound for the earliest instability time of the fastest-
growing mode k.
This linear growth of the scalar density perturbations by

a parametric resonance is illustrated by the second column
in Fig. 7.

3. Initial nonlinear scalar structures

Thus, we can conclude that the density contrast becomes
of the order of unity at a time tNL with

tg min ≤ tNL ≤ tg∞; ð150Þ

for wave numbers kNL somewhat greater than kg. We can
obtain an upper bound for the highest unstable wave
number from Eq. (149), which as we explained above is
not modified by the crossing of higher-order instability
bands. This gives for the wave numbers where the Mathieu-
equation instability bands can have some significant effect,

k ≤ kg

�
ρcs
ρb

�
33=952

�
m
Hcs

�
−9=238

: ð151Þ

This provides an upper bound for the wave numbers where
the density contrast first becomes of the order of unity. The
small exponents show that this upper bound is not many
orders of magnitude greater than kg.
Thus, we can consider that the density contrast reaches

the nonlinear regime at times of the order of tg∞, on
comoving scales xg ∼ 1=kg. This gives a typical size for
the first nonlinear structures in physical coordinates
rNL ∼ ag∞=kg, which yields

rNL ∼
1

Hcs

�
ρcs
ρb

�
−3=68

�
m
Hcs

�
−3=34

<
1

Hcs

; ð152Þ

and a typical mass

MNL ∼
ρcs
H3

cs

�
ρcs
ρb

�
−33=68

�
m
Hcs

�
−33=34

: ð153Þ

Thus, we obtain a typical size that is somewhat smaller than
1=Hcs , but not by a great factor as the exponents in
Eq. (152) are rather small. Using the relation (122) we
can also write rNL and MNL as

rNL ∼
1

m

�
ρb
ρa

�
−3=17

�
m
Hcs

�
19=34

;

MNL ∼
ρb
m3

�
ρb
ρa

�
35=17

�
m
Hcs

�
209=34

; ð154Þ

and the typical density as

ρNL ∼ ρ̄g∞ ∼ ρb

�
ρb
ρa

�
44=17

�
m
Hcs

�
76=17

: ð155Þ

Comparing with Eq. (133) we find

ρNL ∼ ρbjτg∞j2 ≫ ρb; ð156Þ

as we assumed jτg∞j ≫ 1 following (134).
In contrast with the polynomial case (45), the typical

density ρNL at the entry into the nonlinear density contrast
regime is not only set by a characteristic density scale of the
self-interaction potential, such as ρb or ρa that would play
the role of ρΛ in Eq. (45). This is clearly shown by the new
factorm=Hcs that involves both the scalar-field massm and
the Hubble expansion rate, which could be seen as an
external parameter. This is due to the importance of the
quantum pressure.
In the polynomial case, the instability was triggered by

the change of sign of the self-interactions contribution to
the squared speed of sound, see Eq. (38). The quantum
pressure then only determined the lower bound for the
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scales where the instability can develop, see Eqs. (41)–(43),
introducing in this manner the length scale 1=m. Thus, the
quantum pressure only played a secondary role. This is also
seen in the solitons found in the polynomial case, see
Eqs. (60)–(61). The quantum pressure only sets the
minimal mass Mmin and radius Rmin of the solitons, but
their typical core density ρΛ and their scaling law (61) do
not involve the quantum pressure, which plays a negligible
role at high masses (and only governs the low-density tails
of these scalar clouds).
In contrast, in the case of the Bessel-type self-interaction

potential (117), which decays at large densities in an
oscillatory manner, the instability is triggered by a para-
metric resonance between the oscillations of the potential
and the harmonic oscillator built by the combination of the
scalar-field kinetic term and its quantum pressure. This
harmonic oscillator corresponds to the term δ̈þ c2s

k2

a2 δ in
the equation of motion (36), where we only include the
quantum pressure contribution to c2s , or to the term y00 þ Ay
in the generalized Mathieu equation (137). Thus, instead of
a tachyonic instability we have a parametric resonance. It
clearly involves the interplay between the scalar-field
kinetic terms, its quantum pressure, and its self-inter-
actions. This explains the appearance of the new factor
m=Hcs in Eq. (155), as compared with Eq. (45). As could
be expected, this multiplicative factor can be expressed in
terms of jτg∞j in (156), which measures the possibility for
the parametric resonance to take place, and its advance
before the tachyonic instability that would be found at low
densities, see the discussion above (134).

C. Scalar-field solitons

1. Equilibrium profiles

As in Sec. III C, we now look for the equilibrium profiles
of isolated scalar-field halos. Local minima of the energy E
at fixed mass M are still given by Eqs. (56)–(57), which
coincide with the hydrostatic equilibrium of the Euler
equation (18). For the trial Gaussian density profile (58),
the gravitational and quantum-pressure energies Egrav and
EQ are still given by Eq. (59), while the self-interaction
energy EI reads

EG
I ¼ −

8ρb
ρa

M þ 8ρb
ρa

MEG
I ðρc=ρbÞ; ð157Þ

where ρc is the density at the center of the halo and we
introduced the function

EG
I ðwÞ ¼

16ffiffiffi
π

p
w

Z
∞

0

duu2½1 − J0ð
ffiffiffiffi
w

p
e−u

2=2Þ�: ð158Þ

On the other hand, for a top-hat profile we obtain the same
form (157) but with a scaling function ET:H:

I ðwÞ given by

ET:H:
I ðwÞ ¼ 4

w
½1 − J0ð

ffiffiffiffi
w

p Þ�: ð159Þ

We display the functions EG
I ðwÞ and ET:H:

I ðwÞ in Fig. 9. The
top-hat profile shows the decaying oscillations arising from
the self-interaction potential (117). The regular Gaussian
profile erases these small oscillations, through the smooth
radial integration, and only shows a smooth decay. At large
densities, w ≫ 1, we have EG

I ðwÞ ∼ ðlnwÞ3=2=w and
ET:H:
I ðwÞ ∼ 1=w, while at low densities we have EIð0Þ ¼ 1.
The first term proportional to M in Eq. (157) plays no

role, as we consider minima of the total energy at constant
mass. This had to be the case, because it originates from the
linear term in ρ in the self-interaction potential (117), which
could be absorbed as a small correction to the quadratic
term ϕ2 of the potential VðϕÞ, see also Eq. (113). This
corresponds to a small change of the scalar-field mass and
should not alter the physics.
Neglecting logarithmic corrections, we write

EIjM ∼M
ρ2b

ρaðρb þ ρcÞ
; ð160Þ

which gives the correct asymptotes at both low and high
core densities, except for numerical prefactors. Here, the
subscript jM means that we have removed the irrelevant
constant contribution − 8ρb

ρa
M. Then, looking for a mini-

mum with respect to ρc of the sum of the self-interaction
and quantum-pressure energies, EIjM þ EQ, we obtain from
Eqs. (59) and (160) that the minimum ρc is nonzero for
masses above a lower threshold Mmin, with

FIG. 9. Self-interaction energy EIðρc=ρbÞ for a Gaussian profile
(upper dashed line) and a top-hat profile (lower solid line). We
can see the negligible influence of the oscillations compared to
the overall decrease. The absence of minimum as seen for the
Gaussian profile entails that a continuous distribution of densities
can be present for clumps in axion monodromy models.
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Mmin ∼
�
ρb
ρa

�
−3=2 ρb

m3
; ð161Þ

and for higher masses it scales as

M ≫ Mmin∶ ρc ∼ ρb

�
M

Mmin

�
2=5

: ð162Þ

Below the mass Mmin the self-interactions are not strong
enough to resist the quantum pressure and the halo keeps on
extending with a density that goes to zero. The existence of
a critical massMmin is thus common to the cosine potential
(112) studied in this section and to potentials such as the
polynomial case (30). This is because small halo masses
require small radii for the density to be large enough for the
self-interactions to become important, but small radii
further increase the impact of the quantum pressure, as it
involves gradients of the density.
On the other hand, the cosine potential (112) does not

select a unique density ρΛ, up to factors of unity. This could
be seen from the analysis of linear perturbations in Sec. IV
B, where we obtained instabilities for a range of densities,
which peak at a density ρg that can be many orders of
magnitude above the potential scale ρb. In the context of
static isolated solitons, this is also seen from the self-
interaction energy EI shown in Fig. 9, which does not
display a unique minimum but keeps decreasing at large
densities, possibly showing an infinite series of local
minima along the way. Then, Eq. (162) shows that the
interplay between the self-interactions and the quantum
pressure select a mass-dependent typical density ρc for the
equilibrium profile. This core density grows with M as
ρc ∝ M2=5. Thus, while in the polynomial case the quantum
pressure played no significant role in the soliton profiles
(apart from setting their minimum mass) and their scaling
law (61), becoming negligible at high masses, for the
Bessel potential (117) the quantum pressure plays a key
role at all soliton masses. There, the soliton profile is
always set by the balance between the self-interactions and
the quantum pressure.
The self-interactions and quantum-pressure energies of

these solitons scale as

EI ∼ −
ρb
ρa

M þ ρb
ρa

Mmin

�
M

Mmin

�
3=5

;

EQ ∼
ρb
ρa

Mmin

�
M

Mmin

�
3=5

: ð163Þ

As in the polynomial scenario (62), the total energy E ≃ EI
is dominated by the self-interactions energy. However, this
leading term − ρb

ρa
M does not play any role in the deter-

mination of the equilibrium profile, which is set by the
balance between the self-interactions and quantum-
pressure contributions associated with the subleading terms

∝ M3=5 [but note that both contributions are positive
in Eq. (163)].
Thus, the importance of the quantum pressure term for

scenarios with Bessel-type potentials like (117), in contrast
with the polynomial scenario (30) mostly governed by its
self-interactions, appears both for the parametric resonance
studied in Sec. IV B and for the isolated soliton profiles
studied in this section.

2. Numerical computation of the radial profile

As for the polynomial case studied in Sec. III C 3, we
confirm the analytical results with a numerical computation
of the soliton profiles. Neglecting the gravitational energy,
the equation of equilibrium (57) that describes minima of
the total energy at fixed mass now reads

d2y
dx2

þ 2

x
dy
dx

¼ J1ðyÞ þ α̃y; ð164Þ

where we introduced the dimensionless variables

y¼
ffiffiffiffiffi
ρ

ρb

r
; x¼

ffiffiffiffiffiffiffiffiffiffi
32ρb
ρa

s
mr; α̃¼−

1

2
−α

ρa
16ρb

: ð165Þ

The soliton mass is also given by the integral (65), butM0 is
now given by

M0 ¼
�
32ρb
ρa

�
−3=2 ρb

m3
; ð166Þ

which also sets the order of magnitude of the lower mass
threshold Mmin of Eq. (161).
We again solve the boundary-value problem (164) with a

double-shooting method. We first show in Fig. 10 the mass
—density relation of the equilibrium profiles that we obtain
in this fashion. As expected we recover a mass-dependent
core-density, with a slope that agrees with the analytical
prediction (162). We show in Fig. 11 the soliton profiles

FIG. 10. Mass-core density relation for the spherical-equilib-
rium soliton profiles obtained from Eq. (164).
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obtained for three masses M. Even though the Bessel
function J1ðyÞ in Eq. (164) is not scale-free, its cosinelike
oscillations are mostly erased by the smooth density
profiles, as was the case for the self-interaction energy
EG
I shown in Fig. 9 for the Gaussian profile ansatz. Then,

the profiles obtained at these vastly different masses and
densities are quite similar and regular, without significant
oscillations. As for the polynomial case studied in Fig. 2,
they show an exponential tail at large radii. These smooth
behaviors explain why we recover the simple analytic
prediction (162).
We discuss in more detail in the Appendix C 2 the

properties of these solitonic profiles, interpreting again the
differential equation (164) as the damped motion of a
particle yðxÞ with time x in a potential UðyÞ. This provides
another simple explanation for the behaviors found in
Fig. 11. In particular, it clearly explains why the solitonic
profiles obtained for the polynomial case in Fig. 2 and those
obtained for the cosine model in Fig. 11 show different
behaviors.

D. Mergings in the nonlinear regime

1. Initial relaxation onto the soliton scaling law

We have seen in Sec. IV B 3 that, at the entry of the
density contrast into the nonlinear regime, the first struc-
tures have a mass MNL and a density ρNL given by
Eqs. (154)–(155). Comparing with the minimum mass
Mmin and the minimum density ρmin ∼ ρb of the solitons
found in Eqs. (161)–(162), we obtain

MNL

Mmin
∼ jτg∞j11=4 ≫ 1;

ρNL
ρmin

∼ jτg∞j2 ≫ 1; ð167Þ

where we used Eq. (133). Thus, in contrast with the
polynomial scenario (66), the first nonlinear structures
are much greater than the smallest stable solitons and also
have a greater density. As for the discussions below (156)
and (162), this mismatch and the appearance of the factors
jτg∞j is due to the interplay between the self-interactions,
the kinetic terms and the quantum pressure, which cannot
be neglected in this scenario. Moreover, we find that these

initial structures fMNL; ρNLg deviate from the soliton
scaling law (162), since we obtain

ρNL ∼ ρb

�
MNL

Mmin

�
8=11

≫ ρb

�
MNL

Mmin

�
2=5

: ð168Þ

In other words, these initial structures are too dense as
compared with the soliton equilibrium profiles. Therefore,
they cannot relax to stable solitons without significant
changes. In particular, if we consider an aggregation
mechanism as in Sec. III D, we can no longer assume that
they constitute the first steps of an aggregation process that
evolves along the soliton scaling law (162), since this
starting point itself deviates from this scaling law. The
mismatch (168) is due to the fact that the static solitons are
governed by the balance between the quantum pressure and
the self-interactions, whereas the instability that gives rise
to the first nonlinear structures (154) also involves the
kinetic energy, associated with the time derivatives in the
equations of motion (127) or (137).
The structures of massesMNL cannot expand within one

Hubble time to lower their density so as to fall onto the
scaling law (162), because of the conservation of mass
within large comoving volumes (there is no outer space to
expand into). Therefore, it is more natural to assume that
they evolve toward the scaling law (162) by merging while
keeping a density of the order of ρNL. From (167) we find
that this target mass Mi is

Mi ¼ MNLjτg∞j9=4; so that ρNL ∼ ρb

�
Mi

Mmin

�
2=5

: ð169Þ

This also means that the radius of these clumps has grown
to Ri with

Ri ¼ rNLjτg∞j3=4: ð170Þ

We can compare this size with the initial velocity vNL of the
structures that enter the nonlinear regime. At the time tg∞,
we again estimate the typical velocity from the continuity
equation (34), v ∼ r ∂δ

∂t. With a growth rate δ ∼ eμτ, we
obtain when δ ∼ 1 and with μ ∼ 1,
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FIG. 11. Density profiles of the spherical-equilibrium solitons obtained from Eq. (164). We show the cases of soliton mass
M ¼ 7 × 106M0, 2 × 1010M0 and 1015M0 from left to right.
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vNL ∼ rNL
jτg∞j
tg∞

: ð171Þ

Comparing with (170), we can see that it takes less than a
Hubble time for a disturbance to travel from rNL to Ri, as
Ri − rNL ≪ vNLtg∞. This suggests that it is indeed possible
for the scalar-field structures to reach the mass Mi within a
Hubble time and to relax on the soliton scaling law (162).
This stage is illustrated by the third column in Fig. 7. It
seems difficult however to obtain a more rigorous descrip-
tion of this process by analytical means. A more detailed
study of this nonlinear stage is left for future works using
numerical simulations.

2. Lack of significant aggregation

As in the polynomial scenario discussed in Sec. III D, we
could expect the scalar-field clumps Mi formed by this
relaxation process to grow further through collisions. From
the analysis above, we start with the initial mass Mi of
Eq. (169), density ρi ∼ ρNL, radius Ri ∼ ðMi=ρiÞ1=3 and the
velocity vi ∼ Ri=tg∞. This velocity estimate is somewhat
uncertain. It is somewhat lower than the initial velocity
(171) at the entry into the nonlinear regime, but this is
expected as the velocity of the clouds should decrease as
they merge. We estimate the aggregation of the scalar
clumps following the approach presented in Sec. III D. We
still have MðtÞ ∝ 1=ða3nÞ but the radius of the clouds no
longer grows as M1=3, because equilibrium profiles no
longer remain at a constant density ρΛ. Instead, their
characteristic density grows asM2=5 with their mass, which
means that their radius only grows as R ∝ M1=5 and their
cross section asM2=5. Then, the solution of the aggregation
equation (69) becomes

nðtÞ ¼ ni

�
a
ai

�
−3
�
1þ 3niσivi

10Hi

�
1 −

�
ai
a

�
2
��

−5=3
; ð172Þ

where the subscript i stands for the initial condition at the
time tg∞. At late times the comoving number density goes
to the finite value

nc ¼ nci

�
1þ 3niσivi

10Hi

�
−5=3

; ð173Þ

which corresponds to a typical size and mass of the final
halos of the order of

R∞ ¼ Ri

�
1þ 3niσivi

10Hi

�
1=3

;

M∞ ¼ Mi

�
1þ 3niσivi

10Hi

�
5=3

: ð174Þ

As compared with Eq. (72), we can see that the slower
growth of the radius and cross section as the clumps merge

significantly damps the efficiency of the aggregation
process. Moreover, with ni ∼ 1=R3

i , σi ∼ R2
i and vi ∼

Ri=ti we obtain

niσivi
Hi

∼ 1; hence R∞ ∼ Ri; M∞ ∼Mi: ð175Þ

Therefore, there should be no significant aggregation
through collisions. This is quite different from the strong
aggregation process found for the polynomial case in
Sec. III D. This is due to the much slower velocity, which
we took as vi ∼ Ri=tg∞. This is related to the different
formation process of the first nonlinear structures. Whereas
in the polynomial scenario we had a tachyonic instability,
leading to the fast formation of virialized scalar clouds with
a typical velocity set by the strength of the self-interactions,
v ∼

ffiffiffiffiffiffiffiffijΦIj
p

as in Eq. (73), for the Bessel-type self-inter-
action potential we have a parametric resonance that is not
directly set by the strength of the self-interactions, ρb=ρa,
but by the interplay between the kinetic terms, the quantum
pressure and the self-interactions, leading to a resonance
between the oscillatory behavior of the self-interaction
potential and the oscillations of the scalar field due to its
wavelike properties (the quantum pressure term combined
with the kinetic term). This leads to very different scalings,
as seen by the comparison of vNL in Eq. (171), which
explicitly involves the cosmic time tg∞, with vi in Eq. (73),
which only involves the self-interactions strength ΦI.
On the other hand, if we take the larger initial value vNL

of Eq. (171) instead of Ri=tg∞, which is greater by a factor
jτg∞j1=4, we obtain a more significant aggregation process
with R∞ ∼ Rijτg∞j1=12 and M∞ ∼Mijτg∞j5=12. The rela-
tively small exponents show that these values are not so
much larger than the previous estimates (175), unless jτg∞j
is huge.
Another difference from the polynomial scenario of

Sec. III D is that energy is no longer conserved along
the soliton scaling law. Indeed, from Eq. (163) we find for
the total energy per unit mass (apart from kinetic energy)

E
M

∼ −
ρb
ρa

þ ρb
ρa

�
M

Mmin

�
−2=5

: ð176Þ

This means that the internal specific energy decreases as the
solitons merge. This favors the mergings toward more
massive halos but also suggests that some energy is radiated
away as low-mass scalar waves. These may later form
smaller objects or a continuous component, that could be
accreted at later times by the solitons.
Thus, the estimate (175) is more uncertain than for the

polynomial case (75). We can expect a broad range of halo
masses and more complex nonlinear dynamics than for the
polynomial case studied in Sec. III D. A more detailed
investigation is left for future numerical simulations.

NONRELATIVISTIC FORMATION OF SCALAR CLUMPS AS A … PHYS. REV. D 102, 083012 (2020)

083012-27



As in the case of the tachyonic instability, the solitons
that are studied here evade the large-excursion instability
which can happen for dense configurations, when the
amplitude of the background field probes anharmonic parts
of the scalar potential. In the case of axionic potentials, this
instability could have interesting consequences such as the
implosion of the solitonic configurations and potential
detectable effects in the form of gravitational waves
[40]. Here, we avoid these phenomena as the field never
violates harmonicity at leading order. On the other hand, as
the effective potential ΦIðρÞ for the axion monodromy case
oscillates at large-enough density, in the nonrelativistic
regime that we have considered, it is plausible that some of
the extrema of the energy functional that we have found are
not in fact bona fide minima but local maxima of the
energy. In this case, and similarly to the large-excursion
case, there could be metastable or unstable solitonic
configurations. We could for instance envisage that a
maximum evolves toward a minimum simply by rearrange-
ment of its field configuration or explodes under the
destabilising effect of the quantum pressure. We leave
these questions to future investigations.

E. Solitons dominated by gravity

In contrast with the tachyonic scenario presented in
Sec. III, the relatively weaker strength of the self-inter-
actions in this parametric-resonance scenario implies that,
for certain values of the model parameters, the solitons
formed during the nonlinear stage become dominated by
gravity rather than by the self-interactions.
First, if we consider the structures of mass MNL and

density ρg∞, at the entry into the nonlinear regime, we obtain
from (167) and (59) that Egrav ≪ EQ provided we have

m ≫
�
ρb
ρa

�
−1 H3=8

0 T5=4
g∞

35=16Ω9=16
γ0 M5=8

Pl

: ð177Þ

We will check in Sec. IV G that this condition is always
satisfied, for the range of parameters that we consider.
However, as the structures merge to reach the greater

massMi of Eq. (169), their self-gravity also grows and can
dominate over the self-interactions. Then, we find that
gravity remains small as compared with the quantum
pressure and the self-interactions for these masses Mi
provided we have

negligible gravity∶ m <
�
ρb
ρa

�
−1 Ω9=8

γ0 T7=2
g∞

37=8M7=4
Pl H

3=4
0

: ð178Þ

This boundary is shown by the black dotted line in Fig. 12
below and it is not satisfied for low values of the parameter
Tg∞. In this case, before they reach the mass Mi of
Eq. (169), the nonlinear scalar-field clumps become domi-
nated by gravity rather than by the self-interactions. This

leads to a different scaling law from (162) for the resulting
solitons. Thus, the balance between self-gravity and the
quantum pressure yields the new scaling law

ρc ∼
m6M4

M6
Pl

; ð179Þ

FIG. 12. The shaded area is the domain of validity, in the plane
ðTg∞; mÞ, of the scenario described in this paper associated with
potentials of the form (112). The upper panel shows the case
ρb
ρa
¼ 10−5 and the lower panel the case ρb

ρa
¼ 10−8. From the left

and turning clockwise, the constraints that delimit the allowed
domain are associated with the condition of formation before the
matter-radiation equality, the classicality condition, and the
parametric-resonance condition. The lower black dashed line is
the condition for gravity to be negligible during the parametric-
resonance stage, until the density fluctuations reach the nonlinear
regime. The black dotted line labeled “Egrav ¼ EQ” is the
boundary condition (178). Thus, the triangular parameter space
is split into two allowed regions, separated by this transition line.
Nonlinear scalar-field solitons in the yellow domain to the right of
this line are governed by the balance between the quantum
pressure and the self-interactions, whereas solitons in the ma-
genta domain to the left of this line are governed by the balance
between the quantum pressure and gravity.
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for the relationship between the core density and the soliton
mass. If the nonlinear structures now merge at the char-
acteristic density ρg∞ until they reach this new scaling law
(179), the clump mass Mi of Eq. (169) is replaced by

Mi;grav ¼
ρ1=4g∞M3=2

Pl

m3=2 : ð180Þ

Assuming that there is no significant aggregation after-
wards, as the clumps are diluted by the expansion of the
Universe, this also gives the order of magnitude of the final
scalar-field clumps that play the role of the dark matter
particles.
These final relaxation and dilution phases are illustrated

by the fourth column in Fig. 7.

F. No collapse into black holes

1. Solitons dominated by self-interactions

As for the tachyonic scenario, we again check that the
scalar-field clumps do not collapse into black holes. We
first consider the case where the condition (178) is satisfied:
the solitons are dominated by the balance between the
quantum pressure and the self-interactions, while gravity is
negligible. Then, from Eq. (175) the gravitational potential
at the surface of these stable solitons reads

jΦj ∼ GM∞

R∞
∼

ρ̄cs
M2

PlH
2
cs

�
ρb
ρa

�
3=17

�
m
Hcs

�
−18=17

≪ 1; ð181Þ

as all factors in the last expression are much smaller than
unity. Thus, these clumps are far in the weak-gravity regime
and do not form black holes. This is again consistent with
the fact that gravity is subdominant with respect to the
scalar-field self-interactions, which are already weak.

2. Solitons dominated by gravity

However, in the regime studied in Sec. IV E when the
condition (178) is violated, gravity dominates over the self-
interactions and the scaling law of the solitons is changed to
Eq. (179). Together with Eq. (180), this gives for the
gravitational potential

Φ ∼
ρ1=2g∞

mMPl
: ð182Þ

We will check in Sec. IVG and in Fig. 15 below that
jΦj ≪ 1 over the allowed parameter space delimited by
other constraints (parametric-resonance condition, classi-
cality condition, …). Therefore, in this case again, the
clumps remain far in the Newtonian-gravity regime and do
not form black holes.

G. Parameter space

We now study the parameter space of this parametric-
resonance model for the formation of dark matter as scalar
clouds. This is shown in Fig. 12 over the ðTg∞; mÞ plane,
for the choices ρb

ρa
¼ 10−5 and ρb

ρa
¼ 10−8. As compared with

the tachyonic scenario considered in Sec. III F, the back-
ground temperature Tg∞ at the formation time (when the
parametric resonance is in full swing) plays the same role as
Tcs (when the tachyonic instability appeared). The ratio ρb

ρa
[which sets the magnitude of the self-interactions as
compared with the quadratic term in the scalar-field
potential VðϕÞ, see Eqs. (112) and (116)], plays the same
role as ΦIcs

(which also set the relative magnitude of the
self-interactions in the tachyonic model).
As in the tachyonic scenario, we require that the scalar

clouds form before the time of matter-radiation equality, in
order to recover a standard CDM scenario at low redshifts.
Therefore, we impose the lower bound

Tg∞ > Teq; with Teq ≃ 1 eV; ð183Þ

which is shown by the red dot-dashed line labeled “Teq” on
the left in Fig. 12.
We also have further theoretical self-consistency con-

ditions. Again, we must satisfy the condition m ≫ H, so
that the slow-roll stage ends much before the formation of
the scalar clouds and our nonrelativistic analysis is valid,
far inside the oscillatory stage of the scalar field ϕ at the
bottom of its mainly quadratic potential. Using Eqs. (132),
(122), and (133), we obtain the useful relations

Hcs

m
∼
�
Hg∞

m

�
17=57

�
ρb
ρa

�
16=57

; ð184Þ

and

jτg∞j ∼
�
ρb
ρa

�
2=3

�
m

Hg∞

�
2=3

∼ 31=3
�
ρb
ρa

�
2=3m2=3M2=3

Pl

T4=3
g∞

: ð185Þ

The relations (184) and (185) show that the conditions
jτg∞j ≫ 1 and ρb

ρa
≪ 1 automatically ensure m ≫ Hg∞ and

m ≫ Hcs . Therefore, the conditionm ≫ H is automatically
satisfied, once the parametric-resonance condition (134),
jτg∞j ≫ 1, is verified. Using Eq. (185), this gives the
condition

jτg∞j ≫ 1∶ m ≫
�
ρb
ρa

�
−1 T2

g∞ffiffiffi
3

p
MPl

: ð186Þ

This is shown by the orange solid line labeled “jτg∞j ≫ 1”
in Fig. 12. Here, we take a factor 103 to ensure that the left
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and right-hand sides in Eq. (186) are separated by at least
three orders of magnitude.
Second, the classicality condition (2) provides an upper

bound on the scalar mass m,

m ≪ ρ1=4g∞v−3=4NL : ð187Þ

From Eq. (171) we obtain

vNL ∼
�
ρb
ρa

�
1=2

jτg∞j−1=4 ≪ 1; ð188Þ

which shows that velocities are indeed nonrelativistic.
Then, Eq. (187) gives

ρ

m4v3
≫ 1∶ m ≪

�
ρb
ρa

�
−2=7M2=7

Pl H
1=7
0 T4=7

g∞

31=7Ω3=14
γ0

: ð189Þ

This is shown by the green solid line labeled “ρ ≫ m4v3” in
Fig. 12. Here, we again take a factor 103 to ensure the left-
and right-hand sides are separated by at least three orders of
magnitude.
Third, we assumed that gravity is negligible during the

initial growth of the scalar-field fluctuations. The equation of
motion (36) shows that this is satisfied if 4πGρ̄ ≪ c2sk2=a2.
From Eq. (119) the self-interaction contribution to the
squared sound speed is c2s jI ∼ ρb

ρa
ð ρ̄ρbÞ−1=4. At time tg∞, for

density ρg∞ and wave number kg, this condition gives

jΦj ≪ jΦIg∞ j∶ m ≫
�
ρb
ρa

�
−1 H3=8

0 T5=4
g∞

35=16Ω9=16
γ0 M5=8

Pl

: ð190Þ

This corresponds to the black dashed line labeled
“jΦj ≪ jΦIg∞ j” in Fig. 12. We can see that it is automatically
verified when the previous conditions are satisfied. As
expected, Eq. (190) coincides with the condition (177) that
ensures that gravity is still negligible at the entry into the
nonlinear regime.
Thus, as shown in Fig. 12, the parameter space of the

model takes the form of a triangle in the ðTg∞; mÞ plane. It
is delimited by the background temperature Teq at matter-
radiation equality, (183), the parametric-resonance condi-
tion (186), and the classicality condition (189). The
requirement that gravity remains small during the forma-
tion process, (190), is automatically satisfied. Thus, we can
see that the scalar-field mass spans the range

10−28 GeV≲m≲ 10 GeV; ð191Þ

while the background temperature at the redshift zg∞ covers
the range

1 eV≲ Tg∞ ≲ 106 GeV: ð192Þ

As for the tachyonic scenarios, this gives a wide range of
temperatures and masses in the allowed parameter space.
In contrast with the tachyonic scenarios, although gravity

is always negligible during the parametric-resonance stage,
where the density fluctuations grow until they reach the
nonlinear regime, gravity can become dominant in the final
solitons that form after the nonlinear collapse and the
relaxation toward the soliton scaling laws. This is the new
phenomenon studied in Sec. IV E: for scalar masses above
the threshold (178) the clumps formed at the end of the
nonlinear stage are dominated by gravity. The transition
between the regimes where gravity is negligible or dom-
inant with respect to the self-interactions in the final clumps
is shown by the black dotted line labeled “Egrav ¼ EQ”,
given by Eq. (178). This divides the triangle of the allowed
parameter space in the ðTg∞; mÞ plane in two parts. In the
right part, shownby the yellow shaded area, the final solitons
are governed by the balance between the quantum pressure
and the self-interactions. In the left part, shown by the
magenta shaded area, the final solitons are governed by the
balance between the quantumpressure and their self-gravity.
We can also check that the scalar-field clumps do not

form black holes. We have seen in Sec. IV F 1 that this is
guaranteed by Eq. (181) when the solitons are governed by
the balance between the self-interactions and the quantum
pressure, i.e., to the right of the black dotted line
“Egrav ¼ EQ” in Fig. 12. For models to the left of this
transition line, the soliton self-gravity dominates over the
scalar-field self-interactions and their gravitational poten-
tial is given by Eq. (182). The latter remains small provided
we have:

Φ ≪ 1 for m ≫
H1=4

0 T3=2
g∞

Ω3=8
γ0 M3=4

Pl

: ð193Þ

We again checked that this boundary line is much below the
shaded area in Fig. 12. Therefore, over all the allowed
parameter space the scalar-field clumps do not collapse into
black holes.

H. Mass and size of the scalar clumps

In the regime dominated by the self-interactions, the
mass and the size of the solitons formed at the end of the
nonlinear stage are given by (175). This yields

negligible gravity∶ Mclump ∼
�
ρb
ρa

�
1=2 31=4M5=2

Pl H
1=2
0

Ω3=4
γ0 mTg∞

;

Rclump ∼
�
ρb
ρa

�
1=6 31=3M2=3

Pl

m1=3T4=3
g∞

: ð194Þ

In the regime dominated by the self-gravity, the mass and
the size of the solitons formed at the end of the nonlinear
stage are given by Eqs. (179)–(180). This yields
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negligible self-interactions∶ Mclump ∼
M13=8

Pl H1=8
0 T3=4

g∞

ð3Ωγ0Þ3=16m3=2 ;

Rclump ∼
ð3Ωγ0Þ3=16M3=8

Pl

m1=2H1=8
0 T3=4

g∞
:

ð195Þ

In contrast with the tachyonic case studied in Sec. III G,
the mass and size of the clumps depend on the scalar massm,
in addition to the background temperature Tg∞. Therefore,
there is a finite range of clump mass and radius for a given
Tg∞, as displayed in Figs. 13 and 14. We obtain a deformed
triangular domain, which corresponds to the domain of
parameter space shown in Fig. 12. Its boundaries are again
set by the background temperature Teq at matter-radiation

equality, (183), the parametric-resonance condition (186),
and the classicality condition (189), as labeled in the figure.
The black dotted line labeled “Egrav ¼ EQ” again divides the
allowed domain into a region where self-gravity is negligible
(to the right of this transition line) and a region where it is
dominant (to the left). The slope of the upper and lower
boundaries differs on either side of the transition because the
clump mass and radius are either given by Eq. (194) or
by Eq. (195).
As for the tachyonic case shown in Fig. 4, we find that

the clumps cover a huge range of masses and radii, from
microscopic to subgalactic scales. Thus, their mass goes
from 10−6 gram up to 1036 gram ∼ 103 M⊙, and their
radius from 0.01 angstrom to 0.1 parsec. Again, the largest
clumps are similar to galactic molecular clouds and do not
correspond to the standard stellar-mass MACHOs (massive
compact halo objects).

FIG. 13. Mass of the clumps as a function of the background
temperature Tg∞ at the peak of the parametric resonance, for
ρb
ρa
¼ 10−5 (upper panel) and ρb

ρa
¼ 10−8 (lower panel). For a given

Tg∞ there is a wide range of possible clump masses Mclump. The
yellow and magenta domains, on either side of the black dotted
line “Egrav ¼ EQ”, correspond to the yellow and magenta
domains shown in Fig. 12.

FIG. 14. Radius of the clumps as a function of the background
temperature Tg∞ at the peak of the parametric resonance, for
ρb
ρa
¼ 10−5 (upper panel) and ρb

ρa
¼ 10−8 (lower panel). For a given

Tg∞ there is a wide range of possible clump radii Rclump. The
yellow and magenta domains, on either side of the black dotted
line “Egrav ¼ EQ”, correspond to the yellow and magenta
domains shown in Figs. 12 and 13.
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Because the largest radius obtained in Fig. 14 is slightly
below 1 pc, the condition Rclump < Rmax is automatically
satisfied for Rmax ¼ 1 pc. This is why we did not plot this
condition in Fig. 12.

I. Evading microlensing constraints

As for the tachyonic scenario, we now check whether
these scalar clumps can be detected through microlensing
observations. Considering again the lensing of a distant star
of one solar radius in M31, at ds ¼ M31 ≃ 770 kpc, by a
clump located in the Milky Way at dL ¼ 1 kpc, we show in
Fig. 15 the characteristic radii in the lens plane as a function
of the clump mass Mclump. The source projected radius,
dL
ds
Rs ∼ 106 meter and the Einstein radius RE of Eq. (89) are

the same as in Fig. 5. We also show the Schwarzschild
radius RSch of Eq. (88). As in Figs. 13 and 14, there is now a
finite range of clump radii for a given clump mass. The
finite allowed parameter space shown in Fig. 12 translates
into the orange, green and red dot-dashed line that enclose
the label “Rclump.” The breaks in the orange and green
boundary lines, associated with the parametric-resonance
and classicality conditions (186) and (189), are due to the
transition from the self-interaction regime (194) to the self-
gravity regime (195). The red dot-dashed curve, associated
with the constraint (183) on the background temperature,
does not show any break because it is fully in the self-
gravity regime, see Fig. 12.
As compared with the tachyonic case displayed in Fig. 5,

we obtain similar clump masses and radii, but with the line

Rclump of Fig. 5 being thickened toward higher radii into a
finite-size band.
First, we can see that the clump radii are always much

greater than the Schwarzschild radius RSch. This confirms
that the clumps do not form black holes, in agreement with
the analysis of Sec. IV F and Eq. (193).
Second, the comparison with Fig. 5 shows that we have

the same lensing properties as in the tachyonic case. The
Einstein radius RE is always much smaller than either the
projected source radius, dL

ds
Rs ∼ 106 meter, or the lens

radius, Rclump. This implies that gravitational lensing effects
are very small. The strongest lensing effects are obtained
for clump radii along the lower boundary of the allowed
domain, the orange curve associated with the parametric-
resonance condition jτg∞j ≫ 1 in Fig. 12. Indeed, this
minimizes the decrease of the lensing magnification due to
finite-lens effects. We show in Fig. 16 the normalized
lensing radii x0 and y0 obtained along this lower boundary
of the clump-radius domain. We also plot the normalized
source radius ys. We can see that we have the same
configuration as in Fig. 6. At low clump masses, where
x0 < 1, we have ys ≫ y0 and ys ≫ 1; using Eq. (109) this
gives again μ̄0 ≃ 1. At intermediate clump masses, we have
x0 > 1, ys > y0 and ys ≫ 1; using Eq. (110) this also gives
μ̄0 ≃ 1. At large clump masses, we have x0 ≫ 1 and
ys < y0; using Eq. (111) this gives again μ̄0 ≃ 1. We found
by a numerical computation that μ̄0 − 1 ≪ 10−6 over all
clump masses.
Thus, as for the clumps formed in the tachyonic scenario,

the clumps formed in the parametric-resonance scenario

FIG. 15. Characteristic radii in the lens plane. The range of
allowed clump radii for a given massMclump is the domain labeled
“Rclump” delimited by the orange, green, and red dot-dashed
curves. We also show the Schwarzschild radius RSch (blue dot-
dashed line), the Einstein radius RE (black dashed line), and the
outer impact parameter dL

ds
Rs of a source of one solar radius

aligned with the lens (red dotted line). We take dL ¼ 1 kpc
and ds ¼ dM31 ≃ 770 kpc.

FIG. 16. Lensing radii normalized to the Einstein radius, in the
lens plane. We show the normalized scalar-clump radius x0
associated with the smallest clumps of a given mass in the
allowed domain (orange solid line), and the associated quantity
y0 ¼ jx0 − 1=x0j (black dot-dashed line). The red dotted line is
the source radius ys for a star of one solar radius. We take dL ¼
1 kpc and ds ¼ dM31 ≃ 770 kpc.
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cannot be detected by microlensing. Again, at low clump
masses this is due to the finite size of the source, which also
prevents the detection of low-mass black holes, while at
large masses this is due to the large size of the lens. In this
regime, they are much bigger than both the Schwarzschild
and the Einstein radii; these large clumps are similar to
galactic molecular clouds, rather than compact objects,
with shallow gravitational potential wells.

J. Discussion

The model we have described in this section is formally
equivalent to the one discussed in [63] for a different range
of parameters. It is relevant to define

κ ¼ M4
I

m2
0f

2
≃ 16

ρb
ρa

≪ 1: ð196Þ

The regime described in [63] corresponds to κ ≳ 1, where a
rapid growth of the perturbations and the nonlinear evolution
of the scalar field have been studied using numerical
simulations. The formation of clumps has been observed
and the consequences for structure formation analyzed. In
this paper, we conduct a similar analysis in the κ ≪ 1
regime. If the argument of the cosine interaction term were
small, the model would reduce to the tachyonic instability
case that we treated in the first part of the paper. On the
contrary, as the argument of the cosine term τg∞ ≫ 1 is
large, this regime is never attained and a parametric-
resonance phase sets in first. In this case, the instability is
slow initially and a long period of acoustic oscillations takes
place before the onset of the parametric-resonance insta-
bility. Subsequently, we find that the result of this instability
can only be the formation of solitons maintained in an
equilibrium state by either the self-interactions or gravity. As
our treatment is only analytical, we have no description of
the intermediate steps, which we plan to investigate numeri-
cally in the future. Technically, we have obtained our
description of the instabilities using the nonrelativistic
approximation of the scalar-field dynamics. This should
give an accurate picture as the velocities of the matter
perturbations in the linear regime, up to its limit, are small.
Similarly, the solitons are stable configurations where the
fluid is at rest. In the intermediate regime, relativistic effects
might be at play and a full numerical investigation needs to
be performed. This is left for future work.

V. CONCLUSION

We have studied the formation of clumps in scalar-field
models of darkmatter. These small clumps form at very high
redshift, in the radiation era, and could be a candidate for the
dark matter (in a manner similar to primordial black holes or
small compact objects). We have explicitly worked in the
nonrelativistic regime, where the homogeneous background
density of dark matter is realised in the form of rapid

oscillations of the scalar field around the origin and self-
interactions appear as small corrections to this background
behavior. In the nonrelativistic regime, the dark-matter field
can be described by a fluid with nontrivial pressure. The
pressure comprises two terms. The first one originates from
the kinetic terms of the scalar field and appears in the
nonrelativistic description as a so-called quantum pressure.
The second is due to the self-interactions and leads to a
pressure term that is a function of the scalar-field energy
density.We have shown that the fluid equations, in particular
the Euler equation, develop unstable behaviors when the
effective speed of sound squared becomes negative.
We have envisaged two scenarios. In the first one, the

speed of sound squared becomes negative below a certain
energy density, resulting in a tachyonic instability. At the
field-theory level, this instability appears when the quartic
term of the field potential is negative. This is similar to the
case of the axions where the cosine potential changes
convexity at large enough values of the field. For axions,
this implies that perturbations of the scalar field have a
tachyon instability at large values of the field along its
background oscillations, leading to the formation of axi-
tons. Here, we show that a tachyonic instability due to the
negative quartic interaction term in the potential is present
in the nonrelativistic regime, where the oscillations of the
scalar field are still almost harmonic. The resulting growth
of the density contrast for the scalar energy density shows a
fast exponential growth, which leads to a nonlinear regime
where clumps with a nontrivial spherical profile emerge.
These solitons have a well-defined density, which depends
on the scalar potential of the scalar field. As a result, the
clumps have a mass-radius relationship of theM ∼ R3 type.
A second scenario appears for axionmonodromymodels,

where a dominant quadratic term for the scalar field is
perturbed by cosine interactions. In this case, the density
contrast shows a parametric-resonance instability and grows
after a period of acoustic oscillations governed by the
quantum pressure. In the nonlinear regime, the correspond-
ing solitons have spherical profiles with a mass and a radius
that are continuously distributed above a minimum mass
threshold and obey a scaling law that follows from
the balance between the self-interactions and the quantum
pressure. This results in a mass-radius relationshipM ∼ R5.
This is reminiscent of the formation of oscillons in the
relativistic regime, where a delayed formation occurs before
parametric resonance takes place. Interestingly, despite
gravity being always negligible during the formation
mechanism, for small scalar mass and low formation red-
shift, gravity can eventually dominate the final relaxation
toward the highly nonlinear solitons, and hence the proper-
ties of the scalar clumps after the aggregation phase. In this
case, themass-radius relationship is inM ∼ 1=R. As a result,
the final scalar clumps in the axion monodromy case can be
governed by the balance of the quantum pressurewith either
the scalar self-interactions or the clump self-gravity.
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We have been able to give an analytic description of the
formation of scalar clumps using both linear and nonlinear
arguments. The linear analysis shows that the instability
due to the negative values of the speed of sound squared is
always at the origin of the clumps considered here. We have
also solved numerically for the nonlinear profiles of the
final collapsed objects, which must satisfy the equations of
hydrostatic equilibrium. In the case of the tachyonic
instability, we also present in Appendix A a thermody-
namical analysis that confirms the fragmentation of the
system toward highly inhomogeneous configurations, with
clumps at the characteristic density ρΛ. However, we have
not followed the detailed relaxation from the entry into the
nonlinear regime toward these stable spherical configura-
tions. This would require numerical simulations which go
beyond the present work and are left for future studies.
We have computed the allowed parameter space of these

models and found that the formation redshift and the scalar-
field mass span many orders of magnitude, 10−26 GeV≲
m≲ 10 GeV. The dark-matter clumps formed by the scalar-
field solitons also cover a huge range of scales, much beyond
the usual MACHOs, as we find 10−3gram≲Mclump ≲
103 M⊙ and 0.01 angstrom≲ Rclump ≲ 1 parsec. Thus, they
run from the size of atoms to that of galactic molecular
clouds. Because of finite-source and finite-lens effects, we
found that these dark-matter clumps are far below the
detection thresholds of microlensing observations.
Scalar clumps are particularly interesting as they would

be amenable to new tests of dark matter [40]. For instance,
the creation of the clumps in the nonlinear regime could
lead to the emission of gravitational waves [70]. Their
existence could even be detected by the ultrasensitive
detectors of gravitational wave experiments [71]. In the
future, we intend to perform a more thorough investigation
of the dynamics of nonrelativistic clump formation using
numerical methods [47].
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APPENDIX A: THERMODYNAMICS

In Secs. III B and III C in the main text, we have
described the dynamics leading to the formation of sca-
lar-field clumps using a three-pronged approach. We have
first studied the tachyonic linear instabilities leading to the
nonlinear regime, where the system can develop strong
inhomogeneities. Second, we have obtained stable static
equilibrium configurations. Third, we have described the
aggregation process which yields the final masses and radii
of the clumps. In this Appendix, we describe in this
polynomial scenario a thermodynamic approach, where
the transition from a smooth background to a strongly

inhomogeneous system, associated with the formation of
clumps, can be seen as resulting from the thermodynamics
of the dark-matter fluid and its interaction potential ΦI. A
similar analysis may be envisaged for the case of the axion
monodromy models. This is left for future work.

1. Phase diagram

We describe here how a thermodynamical analysis
shows that structures at the characteristic density ρΛ should
form. We discard the expansion of the Universe and use the
physical coordinate r⃗ ¼ ax⃗ as the spatial coordinate. The
total energy E, conserved by the continuity and Euler
equations, is given by Eq. (54), which reads

E ¼
Z

dr⃗

�
ρ
v⃗2

2
þ 1

2
ρΦþ VI þ

ð∇ρÞ2
8m2ρ

�
: ðA1Þ

To analyze the effect of the change of sign of the self-
interactions with the density, we neglect the quantum
pressure and gravity, which only come into play at very
small and very large scales. In particular, we have seen in
Sec. III C that they are negligible for the static equilibrium
configurations of interest in the case of isolated scalar
clouds (solitons). We consider static equilibrium configu-
rations, with vanishing velocity field, within a given
volume V. Then, each state is described by the density
field ρðr⃗Þ. It is characterized by its mass M, energy E and
entropy S,

M ¼
Z

dr⃗ρðr⃗Þ; E ¼
Z

dr⃗VI½ρðr⃗Þ�; ðA2Þ

S ¼ −
Z

dr⃗ρðr⃗Þ ln ρðr⃗Þ
ρΛ

: ðA3Þ

In the microcanonical ensemble, the most likely configu-
rations are those that maximise the entropy at fixed values
of the mass and the energy. This means that we look for the
maximum of S − E=T þ ðμ=TÞM, where 1=T and (μ=T)
are Lagrange multipliers associated with the energy and
mass constraints. This is equivalent to the minimization of
the grand potential Ω defined by

Ω ¼ E − TS − μM ¼
Z

dr⃗

�
VI þ Tρ ln

ρ

ρΛ
− μρ

�
: ðA4Þ

Formally, this also corresponds to the macrocanonical
ensemble, where we also look for the minimum of the
grand potential Ω where T and μ are the temperature and
the chemical potential. In our case, because there is no
external thermal bath or reservoir of particles, we work in
the microcanonical ensemble and consider a fixed volume
with a given mass and energy. Then, T and μ are only
Lagrange multipliers. However, we will refer to T and μ as
the effective temperature and chemical potential in the
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following, to simplify the terminology and facilitate the
intuition of the behaviors that we obtain, which follow the
standard properties of phase transitions.
The characteristic density ρΛ is introduced in Eq. (A3) to

make the argument of the logarithm dimensionless. Any
other density could be used, as its value is irrelevant
because it is degenerate with the Lagrange multiplier μ
in Eq. (A4). The thermodynamical equilibrium is given by
the minimum of the grand potential. This gives

δΩ
δρ

¼ 0∶ ΦI þ T½lnðρ=ρΛÞ þ 1� − μ ¼ 0; ðA5Þ

where we neglect gravity and the quantum pressure. In this
approximation, we obtain a local equation in r⃗, except for
the global constraints associated with the total mass and
energy. It is convenient to introduce a reduced effective
chemical potential μ̂ by

μ̂ ¼ μ=T − 1; ðA6Þ

so that the thermodynamical equilibrium reads

μ̂ ¼ lnðρ=ρΛÞ þΦI=T: ðA7Þ

At fixed temperature, this implicit equation determines the
density ρðμ̂Þ as a function of μ̂. We show the curve μ̂ðρÞ for
several values of T in the upper panel in Fig. 17, for the
polynomial case (30) with c1 ¼ c2.
At large temperature, T → ∞, the self-interactions ΦI

become negligible; the grand potential is governed by the
entropy. Then, the function μ̂ðρÞ is monotonically increas-
ing and Eq. (A7) gives the unique solution ρ ≃ ρΛeμ̂. This
implies a homogeneous system at this density. At low
temperature, T → 0, the self-interactions come into play.
There is still a single solution to Eq. (A7), hence a
homogeneous equilibrium, as long as μ̂ðρÞ remains a
monotonic increasing function of ρ,

homogeneous∶ 1þ 1

T
ρ
dΦI

dρ
> 0: ðA8Þ

Thus, we recover the condition (42), dΦI
dρ < 0, for insta-

bilities and inhomogeneities to appear. More precisely, let
us consider self-interaction potentials ΦIðρÞ such that the
derivative with respect to ln ρ has a finite minimum. Then,
the curve μ̂ðρÞ becomes nonmonotonic below the critical
temperature Tc with

Tc ¼ max

�
−

dΦI

d ln ρ

�
: ðA9Þ

For the polynomial case (30) this gives the critical temper-
ature

Tc ¼
c21
8c2

: ðA10Þ

As seen in the upper panel in Fig. 17, for T < Tc, there are
three solutions ρðμ̂Þ to the equation (A7), ρ− < ρm < ρþ,
when μ̂ is in the range μ̂2 < μ̂ < μ̂1, where μ̂1 and μ̂2 are the

FIG. 17. Thermodynamical diagrams for the polynomial case
(30) with c1 ¼ c2. Upper panel: curve μ̂ðρÞ at fixed temperature T
from Eq. (A7), for T ¼ 3Tc, Tc and Tc=3. Middle panel: grand
potential, normalized by ρΛV, from Eq. (A4), at the low temper-
ature T ¼ Tc=3. Lower panel: phase diagram in the plane ðT; ρÞ.
At low temperature, T < Tc, the system splits in two phases of
densities ρþ and ρ− if ρ− < ρ̄ < ρþ.
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local maximum and minimum of the curve μ̂ðρÞ, at
densities ρ1 < ρ2. From Eq. (A7), we obtain for the self-
interaction potential (30)

ρ1
ρΛ

¼ c1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21−8c2T

p
4c2

;
ρ2
ρΛ

¼ c1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21−8c2T

p
4c2

: ðA11Þ

Both ρ− < ρ1 and ρþ > ρ2 are local minima of the grand
potential Ω whereas ρm is a local maximum, as seen in the
middle panel in Fig. 17. The low-density minimum ρ− is
not easily seen in the figure because the potential Ω is only
slightly below zero. However, its presence is easily seen
from the fact that the grand potential (A4) behaves as Ω ≃
VTρ ln ρ

ρΛ
at low densities, because VIðρÞ goes to zero as ρ2.

This means that ΩðρÞ is a decreasing function of ρ at low
densities, which implies that there is a local minimum ρ− in
the middle panel in Fig. 17 at a density below ρΛ=10. The
physical solution is the deepest minimum among fρ−; ρþg.
For μ̂ ≃ μ̂2 (upper dashed line in the middle panel in
Fig. 17), close to the low-density monotonic branch, this
is ρ−, whereas for μ̂ ≃ μ̂1 (lower dot-dashed line), close to
the high-density monotonic branch, this is ρþ. In-between
these two regimes, there is a critical value μ̂s (solid line),
μ̂2 < μ̂s < μ̂1, where we make the transition from ρ− to ρþ
as the values Ω− and Ωþ of the grand potential cross each
other. This gives a first-order phase transition, with a finite
density jump at the critical chemical potential μ̂s. In the
limit of low temperature, we can obtain the analytic
behavior of ρ− and ρþ at the critical chemical potential
μ̂s as follows. From Eqs. (A4) and (A5), we find that the
grand potential at equilibrium reads

Ωeq ¼ V½VI − ρΦI − ρT�: ðA12Þ

For the polynomial case (30), this gives

Ωeq ¼ V

�
−ρT þ c1

2

ρ2

ρΛ
−
2c2
3

ρ3

ρ2Λ

�
: ðA13Þ

On the other hand, from Eq. (A11) we obtain the asymp-
totic behaviors

T → 0∶
ρ1
ρΛ

≃
T
c1

→ 0;
ρ2
ρΛ

→
c1
2c2

: ðA14Þ

Then, from ρ− < ρ1 we obtain ρ− → 0 and Ω− → 0.
Therefore, at the critical chemical potential μ̂s, where
Ω− ¼ Ωþ, we also have Ωþ → 0 at low temperature.
From Eq. (A13), together with the finite lower bound

ρþ > ρ2, this implies c1
2

ρþ
ρΛ
− 2c2

3

ρ2þ
ρ2Λ

→ 0. Thus, we obtain the

low-temperature asymptotes

T → 0∶ ρ− → 0 and ρþ → ρ∞ at μ̂s; ðA15Þ

with

ρ∞ ¼ 3c1
4c2

ρΛ: ðA16Þ

We show the densities ρ−ðTÞ and ρþðTÞ of these two
phases in the lower panel in Fig. 17. The curves agree with
the asymptotic limits (A15).
Therefore, at high temperature, T > Tc, the system is

homogeneous with the density ρ ¼ M=V. At low temper-
ature, T < Tc, the system shows a phase transition with a
coexistence of two phases at densities ρ− < ρþ, with the
chemical potential given by the critical value μ̂sðTÞ (to
coexist the two phases must have the same value of Ω).
Thus, if the mean density ρ̄ in the volume V is below ρ− or
above ρþ, the system is homogeneous at the density ρ̄. If we
have ρ− < ρ̄ < ρþ, the system is inhomogeneous, with a
coexistence of the two phases at densities ρ− and ρþ. Their
relative abundance is then given by the constraint on the
total mass,

M ¼ ρ̄V ¼ ρ−V− þ ρþVþ: ðA17Þ

Since V− < V is bounded and ρ− → 0, we find at low
temperature

T → 0∶ ρþVþ ≃M; Vþ ≃
ρ̄

ρþ
V ≪ V: ðA18Þ

In other words, at low temperature and density below ρΛ,
the system goes to a configuration where most of the
volume is empty and a small fraction of the volume is at the
characteristic density ρ∞. This characteristic density is
slightly above the density ρcs of Eq. (39) where dΦI=dρ
vanishes. However, this thermodynamical analysis does not
predict the size of the high-density clumps.

2. Evolution in the phase diagram

We now go back to the minimization problem (A4)
within the context of the micro-canonical ensemble and of
the cosmological scalar-field dynamics studied in the main
text, in Sec. III B. Let us consider a constant scalar-field
mass M within a constant large comoving volume V, as is
appropriate for cosmological dynamics. The system is
homogeneous until the redshift zcs where the tachyonic
instability sets in and quickly leads to nonlinear density
contrasts. The thermodynamical analysis above is then
meant as a shortcut to predict the final state of the relaxation
associated with the highly nonlinear dynamics that follow
the entry into the nonlinear regime. To do so, we must find
where the initial configurations and their subsequent
evolution lies in the phase diagram shown by the lower
panel in Fig. 17. As we are interested in times after zcs, and
the expansion of the Universe dilutes the mean density ρ̄
below the initial value ρcs ∼ ρΛ, see Eq. (39), we have that ρ̄
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becomes increasingly small as compared with ρΛ and with
the upper branch ρþ ∼ ρΛ of the phase diagram. To find out
whether the system is in the strongly inhomogeneous region
to the left or in the homogeneous region to the right of the
boundary curve ρ−we need the energy of the system (indeed,
the effective temperature T is the Lagrange multiplier
associated with the energy). From Eq. (A2), the energy that
corresponds to the homogeneous configuration is

ρ̄ ≪ ρΛ∶ Eðρ̄Þ ¼ VVIðρ̄Þ ≃ −
c1
2

ρ̄

ρΛ
M: ðA19Þ

On the other hand, the energy that corresponds to inhomo-
geneous configurations, with domains at ρþ ≃ ρ∞ from
Eq. (A16) and at ρ− ≪ ρΛ, is

Eðρþ; ρ−Þ ¼ VþVIðρ̄þÞ þ V−VIðρ̄−Þ ≃ −
3

16

c21
c2

M; ðA20Þ

where we used Eq. (A18). Thus, we obtain Eðρþ; ρ−Þ ≪
Eðρ̄Þ < 0 and as expected the inhomogeneous configuration
associated with low T is also associated with a low energy, in
our case a large negative energy. On the other hand, at the
entry into the nonlinear regime at the redshift zcs we have
ρ ≃ ρcs ∼ ρΛ and the initial energy isEcs ∼ −c1M. As long as
gravity is negligible, that is, until gravitational clustering
develops at redshifts z≲ 10, the local self-interactions
associated with the potential VI conserve the energy within
large comoving volumes, which are essentially independent
of each other (it is simply the sum of the internal energies of
the scalar-field solitons contained within each comoving
volume). Therefore, we keep E ∼ −c1M, which selects the
inhomogeneous configuration (A20), whereas the homo-
geneous configuration (A19) corresponds to an increasingly
far high-energy configuration, with Eðρ̄Þ → 0−.
Thus, we can conclude that at the entry in the nonlinear

regime, at zcs , the system is close to the upper-right point in
the phase diagram shown by the lower panel in Fig. 17,
where the curves ρþ and ρ− meet with ρþ ∼ ρ− ∼ ρ̄ ∼ ρΛ,
and that at later times the system moves to the lower-left
part of the diagram, increasingly far into the inhomo-
geneous region to the left of the boundary curve ρ−. Hence
this simple thermodynamical analysis suggests that after
the tachyonic instability studied in Sec. III B 2 has reached
the nonlinear regime the complex dynamics that follow will
lead to a fragmentation of the system over domains of
density of the order of ρþ ∼ ρΛ, which contain most of the
mass, and domains of density ρ− ≪ ρΛ, which make most
of the volume. This agrees with a simple halo model where
the scalar field is clustered into the stable solitons obtained
in Sec. III C amidst empty space.

APPENDIX B: TIME-DEPENDENT
MATHIEU EQUATION

The evolution equation (127) reads

d2δ
dη2

þ ω2δþ ϵe11ðη−ηcs Þ=6 cos ð2e−ηÞδ ¼ 0; ðB1Þ

with

ω ¼ Hcsk
2

3mk2cs
; ϵ ¼ H2

csk
2

9m2k2cs
: ðB2Þ

By assumption, for the asymptotic behavior (119) of the
Bessel function to be valid, we restrict ourselves to the
range

e−η ≫ 1: ðB3Þ

We typically have ω ≪ 1 and ϵ ≪ 1 as Hcs ≪ m, except
for very large wave numbers. We can look for a perturbative
expansion in ϵ of the form

δðηÞ ¼
X∞
n¼0

ϵnδðnÞðηÞ: ðB4Þ

The zeroth-order solution is

δð0ÞðηÞ ¼ δi cos½ωðη − ηiÞ�; ðB5Þ

with the initial conditions fδ ¼ δi; δ0 ¼ 0g at the initial
time ηi. Thus, when the self-interactions are negligible the
density contrast shows acoustic oscillations of constant
amplitude because of the quantum pressure term. In this
regime, the density perturbations do not grow. Using for
instance the method of variation of parameters or Green’s
function [66], we obtain the solution of Eq. (B1) up to order
n as

δðnÞðηÞ¼ cos½ðωðη−ηiÞ�
Z

η

ηi

dη0
sin½ωðη0−ηiÞ�

ω

×e11ðη0−ηcs Þ=6 cosð2e−η0 Þδðn−1Þðη0Þ− sin½ðωðη−ηiÞ�

×
Z

η

ηi

dη0
cos½ωðη0−ηiÞ�

ω
e11ðη0−ηcs Þ=6 cosð2e−η0 Þ

×δðn−1Þðη0Þ: ðB6Þ

From this recursion it is easy to obtain the upper bound

jϵnδðnÞðηÞj ≤ jδij
n!

�
12ϵ

11ω
e11ðη−ηcs Þ=6

�
n
: ðB7Þ

Therefore, the perturbative expansion (B4) converges for
all values of ω, ϵ and η. Moreover, we have
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jδj < 3jδij for
12ϵ

11ω
e11ðη−ηcs Þ=6 < 1: ðB8Þ

Thus, for any wave number the solution is well described
by the zeroth-order acoustic oscillations (B5) at sufficiently
early times.
From Eq. (B6) we obtain the first-order correction δð1Þ in

terms of incomplete Gamma functions. For moderate
values of ω, and large values of e−η, this gives

ω ≪ e−η∶ δð1ÞðηÞ ≃ δi
4
e11ðη−ηcs Þ=6e2η cos½ðωðη − ηiÞ�

× cos ð2e−ηÞ; ðB9Þ

whereas for large values of ω we obtain

ω ≫ e−η∶ δð1ÞðηÞ ≃ δi
4ω

e11ðη−ηcs Þ=6eη sin½ðωðη − ηiÞ�
× sin ð2e−ηÞ: ðB10Þ

We can directly check on the equation of motion (B1) that
these are the first-order perturbative corrections associated
with the zeroth-order term (B5) in these two regimes. The
amplitudes (B9) and (B10) are smaller than the conservative
upper bound (B7) by factors eη ≪ 1. This is due to the fast
oscillating factor cosð2e−ηÞ in the perturbative term of the
equation of motion (B1), which damps its impact on the
dynamics. Then, the density contrast is well described by
the zeroth-order solution (B5) until the first order correction,
given by either (B9) or (B10), becomes of the same order.

APPENDIX C: SOLITON RADIAL PROFILE AS A
DAMPED TRAJECTORY IN A POTENTIAL

1. Polynomial case

The differential equation (63) that determines the radial
profile of the scalar-field solitons, defined as a minimum of
the energy at fixed mass, can also be interpreted as the
trajectory yðxÞ of particle that rolls down a potential UðyÞ,
with a time-dependent friction,

d2y
dx2

þ 2

x
dy
dx

¼ −
dU
dy

; ðC1Þ

where x is interpreted as a time coordinate, running from 0
to þ∞. In particular, we have

d
dx

�
1

2

�
dy
dx

�
2

þ UðyÞ
�
¼ −

2

x

�
dy
dx

�
2

≤ 0; ðC2Þ

which shows that the total energy of the particle, defined as
the sum of its kinetic and potential energies, decreases with
the time x. The boundary conditions of the trajectory are
dy
dx ¼ 0 at x ¼ 0, because we require a regular profile at the
origin, and yðxÞ ¼ 0 at x → ∞, as the density must

decrease at large radii to obtain a finite mass. With
Uð0Þ ¼ 0, this means that at late times the particle must
settle to the point y ¼ 0 and that it starts at x ¼ 0 from a
value y0 > 0 with Uðy0Þ > 0 and a vanishing velocity.
For the polynomial scalar-field potential (30), associated

with the differential equation (63), the effective particle
potential UðyÞ reads

UðyÞ ¼ 1

2
y4 −

c2
3c1

y6 − α̃y2: ðC3Þ

It depends on the unknown parameter α̃, which is a function
of the soliton mass M. This parameter α̃ is strictly positive
so that the density shows an exponential tail at large radii
with y ∼ e−

ffiffiffiffi
2α̃

p
x.

We show in Fig. 18 the potentials UðyÞ for the soliton
profiles displayed in Fig. 2, over the range 0 ≤ y ≤ y0
covered by the particle as it rolls down its potential from the
starting point y0. As α̃ > 0, we can see from (C3) and
Fig. 18 that the potential UðyÞ first decreases as −α̃y2 at
low y. This corresponds to the fact that the particle coming
from the right must take an infinite time (x → ∞) to reach
the zero-density point y ¼ 0, by slowly climbing upward
the potential UðyÞ. Note that the friction becomes negli-
gible at late times because of the factor 2=x. Thanks to the
attractive self-interaction term y4=2, the potential UðyÞ
turns upward to positive values at larger y, and next turns
downward because of the large-density repulsive self-
interaction term − c2

3c1
y6. In particular, there is only one

local minimum y− and a global maximum yþ > y− over the
range 0 ≤ y < þ∞. The particle must start slightly to the
left of the maximum yþ to roll down to y ¼ 0, which is
reached at infinite time. Therefore, we can see that the
density profile can only reach large masses by having the
particle start very close to the maximum yþ, so that it stays
there for a very long time of the order of xþ, until it rolls
down the potential UðyÞ to finally settle at y ¼ 0. This

FIG. 18. Trajectories in the potentials UðyÞ for different soliton
masses, corresponding to the soliton radial profiles of Fig. 2.
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convergence of the starting point to the maximum yþ is
clearly seen in Fig. 18 as we increase the soliton mass. This
in turns means that we have a constant density core at
ρ ¼ ρΛy20 up to an increasingly large core radius xþ,
beyond which the density falls off to converge to its
exponential tail. This agrees with the profiles found in
Fig. 2. The position of the maximum yþ is set by the
balance between the attractive and repulsive self-inter-
actions, at y2 ∼ c1

c2
∼ 1, and it does not significantly depend

on the parameter α̃, and hence nor on the soliton mass M.
This means that the core density remains of the order of ρΛ
and stabilizes to a finite value for large masses, in agree-
ment with Fig. 2.

2. Cosine model

For the cosine scalar-field potential (112), the soliton
radial density profiles are given by Eq. (164). As in
Eq. (C1), this can be interpreted as the trajectory of a
particle yðxÞ over time x, rolling down a potential UðyÞ
with a time-dependent friction term 2

x
dy
dx. The potential UðyÞ

is now given by

UðyÞ ¼ J0ðyÞ − 1 −
α̃

2
y2: ðC4Þ

We show in Fig. 19 the trajectories in the potentials UðyÞ
associated with the density profiles of Fig. 11. The parameter
α̃ is now negative, in the range − 1

2
< α̃ < 0. The density

shows an exponential tail at large radii, with y ∼ e−
ffiffiffiffiffiffiffiffiffiffi
α̃þ1=2

p
x.

This again gives a potential UðyÞ that decreases with y near
the origin, as UðyÞ ≃ −ð1þ 2α̃Þy2=4, so that the particle
climbs the potential upward at late time to reach the origin at
infinite time. In contrast with the polynomial case studied in
Fig. 18, the soliton no longer gains mass by starting
increasingly close to a maximum yþ but by starting at
increasingly largevalues y0. There, theBessel function J0ðyÞ
and its oscillations are negligible and the potential is
dominated by the quadratic term −α̃y2=2. Thus, for large
masses, the particle slowly rolls down the quadratic potential

−α̃y2=2 from increasingly large initial values y0, until y
becomes of order unity withU ≃ −1. It next takes an infinite
time to climb up to ðy ¼ 0; U ¼ 0Þ. This agrees with the
radial density profiles of Fig. 11, with a core density and a
core radius that grow with the soliton mass.
We can also see that the oscillations of the Bessel

function J0ðyÞ in UðyÞ, which arise from the Bessel
function J1ð

ffiffiffiffiffiffiffiffiffiffi
ρ=ρb

p Þ in the self-interaction potential
ΦIðρÞ in Eq. (115), have a negligible impact at large mass.
This explains why the soliton mass-density relation shown
in Fig. 10 takes the power-law form (162) predicted by the
simple analytic ansatz (158)–(159). The Bessel function is
not scale free but it only brings negligible deviations from
the power-law behaviors arising from the main quadratic
component UðyÞ ≃ −α̃y2=2.
We can infer that a similar behavior will be found for

other models where the self-interaction component UIðyÞ
goes to a constant or grows more slowly than y2 at large y,
in contrast with the polynomial case of Sec. C 1 where we
had UIðyÞ ∼ − c2

3c1
y6 at large y. In the general case, UðyÞ is

related to the self-interaction potential VI by

UðyÞ ¼ α

2
y2 −

1

2ρΛ
VIðρΛy2Þ; ðC5Þ

where we defined y and the dimensionless radius x by

y ¼
ffiffiffiffiffi
ρ

ρΛ

r
; x ¼

ffiffiffi
2

p
mr; ðC6Þ

and ρΛ is a characteristic density. Thus, models where
VIðρÞ is bounded or grows more slowly than ρ, will have
solitonic density profiles with a core density that grows at
high masses, as in Figs. 19 and 11. In contrast, models
where VIðρÞ has a minimum at a characteristic density ρΛ
and grows faster than ρ at larger densities will have
solitonic density profiles with a core density that converges
to a finite value of order ρΛ and a radius that grows asM1=3

at high masses, as in Figs. 18 and 2.

FIG. 19. Trajectories in the potentials UðyÞ for different soliton masses, corresponding to the soliton radial profiles of Fig. 11.
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