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Abstract We investigate the use of learning approaches to handle Bayesian inverse problems in a computationally
efficient way when the signals to be inverted present a moderately high number of dimensions and are in large number.
We propose a tractable inverse regression approach which has the advantage to produce full probability distributions
as approximations of the target posterior distributions. In addition to provide confidence indices on the predictions,
these distributions allow a better exploration of inverse problems when multiple equivalent solutions exist. We then
show how these distributions can be used for further refined predictions using importance sampling, while also
providing a way to carry out uncertainty level estimation if necessary. The relevance of the proposed approach is
illustrated both on simulated and real data in the context of a physical model inversion in planetary remote sensing.
The approach shows interesting capabilities both in terms of computational efficiency and multimodal inference.

Keywords Inverse problems · Bayesian analysis ·Mixtures of Gaussians · Importance sampling · Remote sensing ·
Planetary science

1 Introduction

A wide class of problems from medical imaging [20, 37, 33, 39] to astrophysics [12, 16, 7, 48] can be formulated
as inverse problems [54, 21]. An inverse problem refers to a situation where one aims at determining the causes of a
phenomenon from experimental observations of its effects. The resolution of such a problem generally starts by the
so-called direct or forward modelling of the phenomenon. It theoretically describes how input parameters x ∈ X are
translated into effects y ∈ Y . Then from experimental observations of these effects, the goal is to find the parameter
values that best explain the observed measures.

Typical situations or constraints that can be encountered in practice are that 1) both direct and inverse rela-
tionships are (highly) non-linear, e.g. the direct model is available but is a (complex) series of ordinary differential
equations as in [37, 29]; 2) the observations y are high-dimensional (of dimension D in our notation) because they
represent signals in time or spectra, as in [48, 6, 35]; 3) many such high-dimensional observations are available and
the application requires a very large number of inversions (denoted byNobs in what follows), e.g. [16, 33]; 4) the pa-
rameters x to be predicted (of dimension L) is itself multi-dimensional with correlated dimensions so that predicting
its components independently is sub-optimal, e.g. when there are known constraints such as their sum is one like for
concentrations or probabilities [16, 6]. More specifically, we aim at addressing cases for which D is much greater
than L, with L typically smaller than a few tens and D about few hundreds, while the number of observations to be
inverted Nobs can be of the order of a few millions.
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The most standard resolution approaches are based on optimization techniques, minimizing a cost function be-
tween observed and modelled effects possibly augmented with regularization terms (e.g. a priori knowledge). How-
ever, such methods cannot generally handle massive inversions of high dimensional data and quantify uncertainty.
Moreover, the choice of the regularization parameter is not obvious and requires application dependent fine tuning.

Beyond optimization techniques, we propose to investigate learning and regression approaches which are less
commonly used to solve inverse problems. The main principle is to transfer the cost of individual inversions to
the estimation of an inversion operator that once learned provides multiple predictions at low cost. In addition, to
account for uncertainty in a principled manner, we consider Bayesian inversion techniques. They provide a full
posterior probability distribution as the output of the inversion. However, Bayesian inversion is often impaired by an
intractable normalizing constant in the Bayes formula and requires the use of sampling intensive approaches such
as Markov Chain Monte Carlo (MCMC) techniques [46] or Approximate Bayesian Computation (ABC) techniques
[49]. MCMC and ABC procedures provide samples of x values that follow the posterior distribution. These samples
can be used to compute point estimates of the parameters or more generally to get an empirical approximation of
the posterior probability distribution function (pdf). Despite coming with theoretical guaranties and being used for
example in remote sensing [48], medical imaging [8] or geology [36], a limitation of such sampling-based approaches
is their cost. A large number of samples has to be simulated and this for each y to be inverted. This is problematic
when the number and dimension of y increase. Although more and more approaches address this issue, e.g. [5, 31],
sampling techniques do not scale easily to high dimensional and big data settings.

In this work, we develop an approach, referred to as fast Bayesian inversion. Assuming parameters and effects are
random variables X ∈ X and Y ∈ Y , we consider a data set D = {(xn,yn), n = 1 : N}, built from the forward
model via a data generating model or directly from observed realizations of X and Y if available. An inversion
operator is learned from D via a parametric probability distribution p(x | y; θ). The model p(x | y; θ̂) that best fits
the data is selected in a family of so-called Gaussian Locally Linear Mapping (GLLiM) models [17]. Indeed the
latter have the ability to capture non linear relationships in a tractable manner based on flexible mixtures of Gaussian
distributions. The estimated parameter θ̂ captures the relationship between X and Y as a whole and does not depend
on a specific observed y to be inverted. The learned model p(x | y; θ̂) can be used as an approximation of the true
posterior density denoted by p0(x | y). Its formulation allows to compute moments, modes etc. straightforwardly so
that for each new y to be inverted we can derive good candidates values for x at low cost. A simple solution is to
estimate x as the posterior mean, that is the mean of p(x | y; θ̂). However, this may not be a good prediction when
there exist several solutions. In this latter case, the modes of p(x | y; θ̂) are likely to be a better choice. Overall, we
propose to choose between candidate solutions using some reconstruction criterion and to replace a costly continuous
search in the parameter space by a discrete choice among a small finite number of candidates solutions (e.g. the
posterior mean and posterior modes).

We show that such a parametric approximation and the consequent choice of the posterior mean of p(x | y; θ̂)
generally provides satisfying predictions. However, they may not be as accurate as predictions generated by non para-
metric MCMC or ABC methods when they are feasible. We therefore investigate the augmentation of the parametric
approximation with some subsequent importance sampling to get an improved approximation while maintaining
tractability. We keep the principle of proposing a discrete number of candidate solutions for efficiency but each of
them is refined using an additional importance sampling step.

As for the design of the data set D, we present an Expectation Maximization (EM) algorithm to estimate the
appropriate level of uncertainty to use in the data generating model when this level is not given by the experts.

The rest of the paper is organized as follows. In Section 2, we briefly review other fast inversion procedures and
justify our Bayesian choice. In Section 3, we recall the main ingredients of the GLLiM parametric regression model
used to learn an approximation of p0(x | y). In Section 4, we specify different ways to exploit the GLLiM output for
prediction using means or modes, while in section 5, we propose a further improvement using importance sampling
in cases where the likelihood of the forward model is available. The EM algorithm for estimating the uncertainty
level is given in Section 6. Illustrations are given in Section 7 with the proposed approach tested on synthetic data
and on a challenging real inverse problem in planetary remote sensing. A discussion and conclusion end the paper.

2 Alternative fast inversion procedures

Among alternatives to standard optimization that may provide low cost inversions are grid search approaches used
for example in remote sensing [15] and medical imaging [58, 33]. The optimization step is replaced by a simpler
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look-up or matching operation. A large data set D = {(xn,yn), n = 1 : N} is generated (stored or computed
on the fly) by running the theoretical model for many different parameter values corresponding to a grid in the full
X space. Note that if D is available from direct observation, the precise knowledge of the theoretical model is not
necessary. Inverting the model on an observed y consists of comparing y to the yn’s in D in order to find the best
match (the nearest neighbor) according to a similarity score. The solution is then set to the parameters xn associated
to this best match. The speed gain is significant in comparison to traditional optimization methods as retrieving a
value from memory is often faster than undergoing an expensive computation. The sequence {x1, . . . ,xN} is fixed
and does not depend on y but for each new y, the matching scores to all yn’s have to be computed. It follows that
grid search approaches are prone both to solution instability and intractability in high dimensions [6].

More recently, deep learning methods have been extensively applied to inverse problems (see [2] for a survey).
The idea is to replace the theoretical inverse function by an approximate one, deduced from training samples. The
learning strategy has been proposed by several groups using deep learning tools [57, 28, 13, 3, 4, 51, 22]. Like with
grid search approaches, the prediction with neural networks is fast, since the heavy computations of the first step are
done offline. Despite recent successes in classification tasks, neural networks still raise questions. First, the number
of parameters of this type of learning machines is so high that the former are very difficult to interpret. In the case of
multiple solutions, the inverse model is not even a function. Second, it has been shown that neural networks may be
highly non robust to noisy observations. The work in [53] presents striking examples. Third this inversion technique
does not generally estimate uncertainties on the solution. Finally, [1] points out that the learning step might require
a lot of data, especially if the observation space is high dimensional. Deep learning methods overall require more
computational resources.

Other learning or regression methods adapted to high dimensions include inverse regression methods, i.e. sliced
inverse regression [34], partial least squares [14], approaches based on mixtures of regressions with different variants,
e.g. mixtures of experts [40], cluster weighted models [30], and kernel methods [39]. Inverse regression methods are
flexible in that they reduce the dimension in a way optimal to the subsequent y to x mapping estimation that can
itself be carried out by any kind of standard regression tool. In that sense, inverse regression methods are said to be
non-parametric or semi-parametric. In [39], the authors propose a regression with an appropriate kernel function to
learn the non-linear mapping. The procedure has the advantage to be semi-parametric but a serious limitation is that
the model components are optimized in each dimension separately.

Thus, the difficulty is that the above methods are either not specifically designed for high dimensional data or
are limited to point-wise predictions with no guaranty or indication of the prediction reliability. In this work, we aim
at combining learning and Bayesian approaches to make the best use of the known forward model while taking into
account the inherent uncertainties related to the model. So doing, we assume, as all methods previously mentioned,
that evaluating the forward model is not problematic so that generating training data from the model can be done in
a reasonable time.

3 Fast Bayesian approach to inverse problems

A natural way to account for uncertainties is to adopt a statistical formulation. Our knowledge on the forward model
is encoded in the following Data generating model.

3.1 Data generating model

In our inverse problem setting, we call parameters the input values x that generate the observed effects y. This
denomination should not be confused with parameters defining statistical models that we denote by θ in most cases.
The parameters and observations are therefore assumed to be random variables X ∈ X ⊂ RL and Y ∈ Y ⊂ RD of
dimensionL andD respectively whereD is usually much greater thanL.L is typically smaller than a few tens andD
about few hundreds. The case of ultra-high D values is not investigated in this paper. In practice, when dealing with
such ultra-high dimensional observations, it is common to preprocess them to produce lower dimensional summary
statistics. The forward model is described by a likelihood function linking parameters values x to the probability of
observing some effects y and denoted by Lx(y) = p0(y | X = x). We will further assume that the relationship
between X and Y is described by a known function F and that the uncertainties on the theoretical model are
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independent on the input parameter X. In other words,

Y = F (X) + ε (1)

where ε is a random variable. For instance, ε is assumed to be a centered Gaussian variable with covariance matrixΣ,
so that Lx(y) = N (y;F (x),Σ),whereN ( . ;F (x),Σ) denotes the Gaussian pdf with mean F (x) and covariance
Σ. Firstly we assume thatΣ is given but this constraint is then relaxed with a proposal to estimateΣ in Section 6.

To complete the model, we consider a prior distribution on the possible parameter values denoted by p0(x). This
probabilistic formulation allows, according to the Bayesian theorem, to transform an a priori probability distribution
into a posterior distribution p0(x | y) ∝ Lx(y) p0(x) which incorporates the physical model and the actual observa-
tions with their uncertainties. However, even with the simplifying Gaussian likelihood function above, in most cases
of interest F is non linear and the Bayesian inversion does not provide an explicit solution for the posterior p0(x | y)
due to an intractable normalizing constant in the Bayes formula.

As an alternative to sampling of the posterior (MCMC or ABC) which does not scale well with dimension and
number of inversions to be carried out, we propose to use the data generating model (p0(x),Lx(y)) for the learning
phase of the inversion. For reasonable choices of the two model ingredients, the prior and the likelihood, generating
a data set D = {(xn,yn), n = 1 : N} is a straightforward task. Without further knowledge, a common setting
is to use a uniform prior on the parameter space and a Gaussian likelihood. From this data set, we can then adopt
a regression or learning approach to learn a mapping from the parameter space to the observation space. The main
principle is to transfer the cost of individual heavy simulation-based inversions to the learning of a global inverse
operator which can then be applied at very little cost to a large number of y values. To perform this task, we propose
to use the Gaussian Locally Linear Mapping (GLLiM) approach described in the next section.

3.2 Parametric posterior approximation with Gaussian mixtures

In the same vein as inverse regression approaches, and in contrast to deep learning approaches mentioned in Section 2,
we propose to use the Gaussian Locally Linear Mapping (GLLiM) model [17] that provides a probability distribution
selected in a family of mixture of Gaussian distributions {p(x |y; θ), θ ∈ Θ}, where the mixture parameters are
denoted by θ. There have been several extensions and uses of GLLiM, including more robust [41, 56] and deep [32]
versions. However in all these contexts, the focus is on using the model for predictions without fully exploiting the
posterior distributions provided by GLLiM.

An attractive approach for modeling non linear data is to use a mixture of linear models. We assume that each
Y is the noisy image of X obtained from a K-component mixture of affine transformations. This is modeled by
introducing a latent variable Z ∈ {1, . . . ,K} such that

Y =
K∑
k=1

1I{Z=k}(AkX + bk + εk) (2)

where 1I is the indicator function, Ak a D × L matrix and bk a vector of RD that define an affine transformation.
Variable εk corresponds to an error term which is assumed to be zero-mean and not correlated with X capturing both
the observation noise and the reconstruction error due to the affine approximation. To make the affine transformations
local, the latent variable Z should also depend on X.

For the posterior distribution p(x | y) to be easily derived from the likelihood p(y | x), it is important to control
the nature of the joint p(y,x). Once a family of tractable joint distributions is chosen, we can look for one that is
compatible with (2). In [17] the GLLiM model is derived assuming that the joint distribution is a mixture of Gaussian
distributions. Using a subscript G to specify the model, it is assumed that εk ∼ N (0,Σk) and that X is distributed
as a mixture of K Gaussian distributions specified by pG(x|Z = k) = N (x; ck,Γ k), and pG(Z = k) = πk .
It follows that the model parameters are θ = {πk, ck,Γ k,Ak, bk,Σk}k=1:K .

One interesting property of such a parametric model is that the mixture setting provides some guaranties that
when choosing K large enough it is possible to approximate any reasonable relationship [40] and that both condi-
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tional distributions are available in closed form :

pG(y|X = x, θ) =
K∑
k=1

ηk(x)N (y;Akx + bk,Σk) with ηk(x) =
πkN (x; ck,Γ k)∑K
j=1 πjN (x; cj ,Γ j)

(3)

pG(x|Y = y, θ∗) =
K∑
k=1

η∗k(y)N (x;A∗ky + b∗k,Σ
∗
k) with η∗k(y) =

πkN (y; c∗k,Γ
∗
k)∑K

j=1 π
∗
jN (y; c∗j ,Γ

∗
j )
. (4)

In (4), a new parametrization θ∗ = {πk, c∗k,Γ ∗k,A∗k, b∗k,Σ∗k}k=1:K is used to illustrate the similarity between the
two conditional distributions (3) and (4). The parameter θ∗ is easily deduced from θ as follows:

c∗k =Akck + bk, Γ ∗k = Σk +AkΓ kA
>
k

Σ∗k =
(
Γ−1
k +A>kΣ

−1
k Ak

)−1
(5)

A∗k =Σ∗kA
>
kΣ
−1
k , b∗k = Σ∗k

(
Γ−1
k ck −A>kΣ−1

k bk

)
.

In practice when D is much larger than L, it is more efficient to estimate θ from the available data D to then
deduce θ∗ and subsequently the conditional distribution of interest (4). The size of θ can be significantly reduced by
choosing constraints on matrices Σk without oversimplifying the target conditional (4). Typically, diagonal covari-
ance matrices can be used with a drastic gain. To estimate θ a standard Expectation-Maximization (EM) algorithm
can be used. The number of parameters depends on the exact variant learned but is in O(DKL). More specifically
for the case of diagonal covariances Σk, the number of parameters is K − 1 + K(L + L(L + 1)/2 + DL + 2D)
which for K = 100, L = 4 and D = 10 leads to 7499 parameters and to 61499 parameters if D = 100. All details
are provided in [17].

Fitting a GLLiM model to D results in an analytical expression denoted by pG(x|y, θ̂∗) of the form (4) which
is a mixture of Gaussian distributions and can be seen as a parametric mapping from y values to the pdfs on x. The
parameter θ̂

∗
is the same for all conditional distributions and does not need to be re-estimated for each new y to be

inverted. This is in contrast to sampling procedures like MCMC which would require a new set of samples for each
inversion.

A recent result [40], on the density of multiple output mixtures of expert models, justifies a somewhat arbitrary
choice of K as soon as it is large enough. Intuitively, highly non-linear F may require a greater K. Automatic model
selection procedures can also be used to select K (see [17]). Alternatively, the choice of K can be guided by the
quality of the learned direct model, which only requires a learning data set to be evaluated.

4 Fast inversions and predictions

In applications, the main question is then how to use the approximate posterior pG(x|y, θ∗) to provide predictions
or more general information on the value of x for a given y. We consider mainly prediction by the means and by the
modes and investigate below different ways to approximate these quantities.

4.1 Different prediction schemes

4.1.1 Prediction using the posterior mean

The approximate posterior mean EG [X |Y = y, θ∗] minimizes the mean square error and is given by the mean of
(4). For a given y, a first estimator for x is then

x̄G(y) = EG
[
X |Y = y, θ∗

]
=

K∑
k=1

η∗k(y)
(
A∗ky + b∗k

)
.

Its computation is straightforward once the GLLiM model has been learned. As shown later in our experiments and
various papers [17, 16, 41, 56], it performs well in several cases. Similarly, other moments can be easily computed.
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The variance of distribution (4), which accounts for the dispersion around the prediction by the mean, admits the
following expression:

varG(y) =
K∑
k=1

η∗k(y)
[
Σ∗k + (A∗ky + b∗k)(A∗ky + b∗k)T

]
− x̄G(y) x̄G(y)T .

4.1.2 Prediction with the posterior modes

Prediction by the mean is likely to yield good results when the solution is unique and the posterior unimodal. How-
ever, it is only a limited summary of the posterior whose full shape may be more informative. When the inverse
problem has multiple solutions, the true posterior distribution may reflect that by exhibiting several modes. It follows
that the GLLiM approximation may also be multimodal and the prediction by the mean, although a good approxi-
mation of the true E[X|Y = y], may provide a low probability solution that is not satisfying for the user. Another
problem arises when F has a low sensitivity to part of its variables. Even if the posterior distribution is unimodal, its
mean may differ quite largely from its mode.

An alternative then is to look at the modes of the mixture (4) provided by GLLiM. Unfortunately, finding the
modes of a Gaussian mixture is not an easy task [45]. Heuristics have been proposed starting from the mixture
centroids [10] but in contrast to the mean, there is no analytical formula for the modes and they need to be determined
for each new y. The issue of multiple solutions and their localization is highly dependent on y. In practice, their
number is not known. The mixture centroids which correspond to the means of the mixture components are not
usually good candidates for the modes. However, as suggested in [10], they can be good starting points for a fixed-
point iterative scheme. When there are a lot of components in the mixture, the density could be explored starting
from the centroids with the highest weights to locate the main possible modes using this heuristic scheme. We refer
to [10] for details.

In what follows we propose to address the case of two solutions for x but the same approach generalizes for more.
To account for all mixture components, we consider the following procedure. For any y of interest, the GLLiM ap-
proximation of the posterior pG(x|y; θ∗) will likely exhibit a majority of low probability components with only a few
of them useful for inverting y. Recall that the weight of component k is given by η∗k(y) = η∗(y)−1πkN (y; c∗k,Γ

∗
k),

η∗(y) being a normalisation factor (independent of k). Thus, only components with centroids close to y and high
πk are likely to matter. For a simplified, exploitable mixture, the initial K-component Gaussian mixture is modified
into a 2-component one. Among the many merging algorithms (see [26] for an overview), the algorithm described in
[47] is used. This algorithm relies on two steps :

– given two Gaussian components, merge them into a single Gaussian with same weight, mean and variance as the
original sum;

– at each iteration, select the two components to be merged by minimizing the Kullback-Leibler divergence be-
tween the current mixture and the one that would be obtained by merging these two components.

It follows a final mixture of 2-components with respective weight, mean and covariance denoted by (πy1 ,µ
y
1 ,Σ

y
1)

and (πy2 ,µ
y
2 ,Σ

y
2).

The new centroids are considered as prediction candidates and are denoted respectively by x̂centroid,1(y) = µy1
and x̂centroid,2(y) = µy2 . It is expected that these centroids are close to the modes of the posterior, but there
is no guaranty in the general case. In addition, the merging cost is cubic in K, which might be problematic to
maintain computational efficiency. However, this step may be strongly speed up by discarding the none significant
Gaussian components. As already pointed out, the posterior is likely to be composed of a majority of very low
weighted components, which are the components far away from the observed y. In this case, a preliminary step can be
added to merge for instance the 50% less significant components with an expected 8 times speed gain. Alternatively,
components can be removed when their weight is below a fixed threshold. A threshold as small as 10e−10 can already
be efficient for this purpose. One important property of the merging algorithm is that the mean and variance of the
initial GLLiM mixture are preserved, that is x̄G(y) = πy1 x̂centroid,1(y) + πy2 x̂centroid,2(y). Hence, if the mean
is close to one of the two final centroids, this means that one of the weight πyi is close to one while the other one is
close to zero, suggesting a unimodal distribution. In contrast, a mean far from both centroids suggests multimodality.

Addressing the two-mode case is the simplest case beyond unimodality. If more than two modes are expected,
merging to two modes is likely not to be accurate. In that case the merging can be adapted to the expected number
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of modes if this number is known. If this number is not known, one possibility is to start from the K centroids found
by GLLiM and apply the heuristic procedure [10], possibly starting from the centroids with the highest weights. The
GLLiM centroids are unlikely to directly provide the modes but they can be a good first indication of multimodality.
Applying the heuristic scheme of [10] for a general number of modes is likely to be time consuming and was not
further investigated in this paper. The rationale for restricting to a small number of modes is that in most inverse
problems, the forward model results from expert knowledge on the physical phenomenon of interest. Such a model
that would lead to a lot of equivalent solutions, typically more than 2-3, may then be considered as not well designed
and would be subject to improvement before the statistician intervention.

4.1.3 Comparison and selection of predictions

The analysis of the approximate posterior potentially provides a number of possible predictions for x. When F is
known, a simple criterion to compare them is to compute the residuals, that is the distance of F (x) to the observed y.
The residuals can be compared for each of the three predictions x̄G, x̂centroid,1 and x̂centroid,2 using the formula,
R(x) = ||y − F (x)||2/||y||2. In a multi-solution scenario, the two centroids should have low residual errors while
the mean should have a higher one. Reversely, a high residual error for one of the centroids, combined with a low
weight, indicates that it should be discarded. The residual error criterion can be used to assess other values of x.

4.2 Accounting for measurement errors

Independently of the chosen prediction scheme, the use of a unique θ∗ parameter for all inversions provides a great
gain when massive inversions are required but it also assumes that the same model is valid for all observations to
be inverted and that the dictionary D is a good representation of them. Although this is a standard assumption, we
can point out another useful feature of GLLiM which is to efficiently adapt to known measurement errors. This
corresponds to the case where the observed yobs comes with some covariance matrix Σobs indicating that the data
provider was able to measure uncertainty on the observed data. We interpret this additional information as a mea-
surement error to be distinguished from Σ in (1) which rather accounts for uncertainty on the model. It follows
that the observation to be inverted should rather be written as y = yobs + εobs where εobs is following a centered
Gaussian distribution with covariance Σobs. This means that the initial dictionary D is not fully adapted to invert y
if the data generating process does not account for this additional measurement error. Therefore, another training set
Dobs should be simulated and used instead, with a corrected likelihood corresponding to Y = F (X) + ε + εobs.
Obviously this may be too time consuming if this has to be done for each inversion. Fortunately, it is straightforward
to check that the structure of the Gaussian mixture approximation avoid the re-learning of the GLLiM model. Indeed,
it suffices to change the estimated Σk’s into Σk + Σobs and to report this change when computing θ∗ in (5) and
the corresponding pG(x|Y = y, θ∗). It should be noted that the uncertainty on the model and the measurement
errors combine in our inversion scheme. This is actually a generic characteristic of the Bayesian formalism applied
to inversion problems in geophysics [55].

5 Exploration of the posterior distribution with important sampling

In the previous section, we indicated how the GLLiM posterior could be used for prediction. In this section, we lever-
age our knowledge of the true model F to enhance the predictions using importance sampling (IS). More specifically,
since the real posterior p0(x | y) ∝ Lx(y) p0(x) is only known up to a constant, we first present in Section 5.1
standard self-normalized importance sampling [46]. We then propose in Section 5.2 to use a refinement referred
to as incremental mixture importance sampling (IMIS) which is more flexible in terms of computational cost and
efficiency.
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5.1 Self-normalized importance sampling

5.1.1 Mean prediction with importance sampling

The so-called self-normalized importance sampling is based on the observation that, using the tractable part denoted
by p̃0(x | y) = Lx(y) p0(x), the posterior mean writes

E[X | Y = y] =

∫
x p̃0(x|y) dx∫
p̃0(x|y) dx

=

∫
x p̃0(x|y)

ν(x) ν(x) dx∫ p̃0(x|y)
ν(x) ν(x) dx

for any distribution ν(x) satisfying ν(x) > 0 where p̃0(x|y) > 0. When ν is easy to compute and to simulate from,

the law of large numbers justifies the approximation of E[X | Y = y] by x̄IS(y) = (
I∑
i=1

wi)
−1

I∑
i=1

wixi , where

the xi’s are I i.i.d. realizations simulated according to ν and thewi’s are weights computed aswi = p̃0(xi|y)/ν(xi).
A natural candidate for ν is the approximate posterior provided by GLLiM, pG(x|y; θ∗), from which it is

easy to simulate. For i = 1 : I , let xGi be simulated from pG with the associated importance weight wGi =
p̃0(xGi |y)/pG(xGi |y; θ∗). Eventually the importance sampling (IS) approximation of the mean is given by

x̄IS−G(y) =

∑I
i=1 w

G
i x

G
i∑I

i=1 w
G
i

. (6)

5.1.2 Centroid-based prediction with importance sampling

Similarly, predictions with the posterior modes as introduced in Section 4 can be refined using again importance
sampling. We propose to use the knowledge learned from the merged posterior into two Gaussian components, in
cases where we focus on two modes. A more general case can be easily considered. We therefore look for posterior
modes around the two centroids found after merging. To incorporate this information, for the first mode (resp. the
second), p0(x | y) ∝ Lx(y) p0(x) is pooled with N (x;µy1 ,Σ

y
1) (resp. N (x;µy2 ,Σ

y
2)). The proposal distribution

is then restricted to N (x;µy1 ,Σ
y
1) (resp. N (x;µy2 ,Σ

y
2)) so that we simulate: for i = 1 : I , x1

i ∼ N (µy1 ,Σ
y
1)

and compute the associated importance weights w1
i = p0(x1

i | y) which are large when x1
i is close to a posterior

mode. Eventually we take as IS approximation of the first mode the value given by

x̄IS−centroid,1(y) =

∑I
i=1 w

1
i x

1
i∑I

i=1 w
1
i

. (7)

5.2 Incremental mixture importance sampling

Remaining in the same vein, we study a refinement of importance sampling, motivated by the numerous advanced
methods existing in the literature. Among them, we choose the incremental mixture importance sampling (IMIS),
mainly for its simplicity and its computational efficiency. IMIS has the same requirements than IS, that is, a target
and a proposal distributions (up to a multiplicative constant), and is parametrized by three integers (I0, J, B). The
main idea is to, instead of sampling I samples at once, start with I0 (typically an order smaller than I), and to
successively sample J groups of B samples, using the previous group to refine sequentially the proposal distribution
with additional components. The choice of the parameters (I0, J, B) is application-specific. In practice, it is often
guided by computational requirements. Once I0 is chosen, there are two main alternatives. Taking a large J and
a small B makes IMIS lean towards MCMC algorithms. Fewer simulations are generated at each step but the last
simulations are closer to the target distribution. In contrast, a large B and a small J almost amount to plain IS
(exactly IS when J = 0 or B = 0). The fact that the computational cost is dominated by J induces a trade-off
between computational efficiency and precision. A sketch of the IMIS procedure is given in Algorithm 1. We refer
to [52] and [44] for the full description of the method.

The same approach as in Section 5.1 is then used to predict means and modes.
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Algorithm 1: Sketch of the IMIS algorithm, see [44] for details
Result: I = I0 +BJ weighted simulations {(xIMIS

i , wIMIS
i ), i = 1 : I}

Starts with a standard IS step (as described in section 5.1), yielding I0 weighted simulations {(xi, wi), i = 1 : I0}.
while j ≤ J do

Find the highest weight and its associated simulation denoted bymj .
Using the B closest neighbours, in Mahalanobis distance, ofmj within the sample, compute an empirical covariance Vj .
Generate B new simulations from the Gaussian distributionN (mj ,Vj) and add them to the current sample.
Add the GaussianN (mj ,Vj) as an additional mixture component to the importance distribution, and update the weights of

all the simulations using the updated importance distribution.
end

5.2.1 Mean prediction with incremental mixture importance sampling

The IMIS algorithm 1 is applied to obtain a weighted sample of size I {xIMIS
i , wIMIS

i , i = 1 : I} leading to an
approximation of the mean given by

x̄IMIS−G(y) =

∑I
i=1 w

IMIS
i xIMIS

i∑I
i=1 w

IMIS
i

. (8)

5.2.2 Centroid-based prediction with incremental mixture importance sampling

As in section 5.1.2, for the first mode, the prior is set to p(x) = N (x;µy1 ,Σ
y
1) and used as initial importance

distribution. The IMIS algorithm 1 then yields a weighted sample {xIMIS,1
i , wIMIS,1

i , i = 1 : T} from which the
IMIS approximation of the first mode is computed,

x̄IMIS−centroid,1(y) =

∑I
i=1 w

IMIS,1
i xIMIS,1

i∑I
i=1 w

IMIS,1
i

. (9)

The second mode is handled similarly.
Finally this approach provides a potential additional refinement for the values of x that can be checked by

calculating the reconstruction error both for a unimodal or multimodal case. More details are given in the experiments
section 7.

6 Estimation of the uncertainty on the model via EM

We propose a procedure which allows to handle the situations where the uncertainty on the model is not known. This
uncertainty may include both deviations from the theoretical model and measurements errors. However, estimation
is possible only under the restrictive assumption that this uncertainty is represented by the same covariance matrix
for all observations. In other words, the observed {ym,m = 1 : Nobs} to be inverted are assumed to be independent
realizations of the same model given by Y = F (X)+ε, with ε ∼ N (0,Σ) and X ∼ p(x). We use the same generic
notation Σ as in Section 3.1 although it may also include a constant Σobs component. The goal is then to estimate
Σ from the ym’s. If the associated {xm,m = 1 : Nobs} were also observed, a straightforward maximum likelihood
estimation of Σ would be given by, N−1

obs

∑Nobs

m=1(ym − F (xm))(ym − F (xm))T . As in standard missing data
settings, the idea is to treat the missing xm as latent variables and to use an EM algorithm to estimate Σ. Starting
from an initial valueΣ(0), the EM algorithm consists of updating at iteration (r),

Σ(r) = arg max
Σ

Nobs∑
m=1

E[log p(ym,Xm;Σ) | ym;Σ(r−1)]

= arg min
Σ

Nobs log |Σ|+
Nobs∑
m=1

E[(ym − F (Xm))TΣ−1(ym − F (Xm)) | ym;Σ(r−1)]
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from which we can derive that

Σ(r) =
1

Nobs

Nobs∑
m=1

E[(ym − F (Xm))(ym − F (Xm))T | ym;Σ(r−1)] . (10)

The expression above requires expectations with respect to p(x | Y = ym;Σ(r−1)) which we propose to compute
using importance sampling with pG(x | Y = ym; θ(r−1)) as importance distribution. But the use of the GLLiM
approximation pG requires a dictionary D(r−1) and a learning step of the GLLiM parameters which is generally
different at each iteration. To avoid high computational cost, we can however make use of the GLLiM model property
already mentioned on Section 4.2 to update pG directly by modifying the Σk parameters from an initial learned
GLLiM model corresponding to θref. The value ofΣ used to initialize the EM algorithm is application dependent.

Algorithm 2: EM uncertainty estimation
Result: EstimatedΣ.
Generate a training dictionary Dref and learn a GLLiM model θref .
InitializeΣ toΣ(0) (application dependent).
while r ≤ rmax do

Update the GLLiM parameter θ(r−1) using θref andΣ(r−1) as described in Section 4.2.
foreach ym do Importance Sampling

For i = 1 : Im, sample xi from pG(x | Y = ym; θ(r−1));

Compute the weights w(r)
i = p(xi | Y = ym;Σ(r−1))/pG(xi | Y = ym; θ(r−1))

Compute S(r)
m := (

∑Im
i=1 w

(r)
i )−1

Im∑
i
w

(r)
i (ym − F (xi))(ym − F (xi))

T

end

updateΣ(r−1) according to (10) asΣ(r) = N−1
obs

Nobs∑
m=1

S
(r)
m

end

7 Illustrations

The different prediction schemes introduced earlier are tested on various experiments. The first part of this section
is devoted to toy examples, designed to illustrate potential numerical issues for which we propose solutions. The
second part tackles our main real data application: an inverse problem in remote sensing. The algorithms are cur-
rently implemented in the Julia programming language [9], and available online. Computation times are provided
in Appendix A.1. Our approach is compared with two MCMC algorithms: a standard Metropolis-Hastings sampler,
and a state-of-the-art Hamiltonian sampler [27], using the Julia packages KissMCMC and Mamba with their default
parameters. The notations previously introduced are recalled in Table 1.

7.1 Validation on simple models and synthetic examples

7.1.1 Procedure

A similar procedure is adopted for all the tests in this part. In most applications, for a given forward model F , the
training data set is simulated using a range of values for each parameter. Without loss of generality, the parameter
space is then assumed to be P = [0, 1]L after normalization of each parameter if necessary. A set of N training
parameter vectors is generated randomly using Sobol quasi-random sequences [50] to get evenly spaced samples
in P . The corresponding N training observations (yn’s) are then generated by applying the forward model to each
simulated parameter vector and adding some centered Gaussian noise with covariance matrix Σ = σ2Id. It follows
a set D = {(xn,yn), n = 1 : N} with yn = F (xn) + εn with εn ∼ N (0,Σ). D is used to learn a GLLiM
model with K mixture components as described in Section 3. Statistical selection procedures exist to choose K in a

https://gitlab.inria.fr/bkugler/kernelo/-/tree/master/simulations
https://github.com/mauro3/KissMCMC.jl
https://github.com/brian-j-smith/Mamba.jl
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Notation Description
yobs observation (dimension D)
xobs for synthetic experiment, original true parameters (dimension L)
xobs,1 for synthetic multi solution experiment, first original true parameters
xobs,2 for synthetic multi solution experiment, second original true parameters
xobs,3 for synthetic multi solution experiment, third original true parameters
x̄G mean of the GLLiM posterior density (dimension L)

x̂centroid,1 first centroid of the merged GLLiM density (dimension L)
x̂centroid,2 second centroid of the merged GLLiM density (dimension L)

x̂mode mode of the GLLiM density (dimension L)
x̂mode,1 first mode of the GLLiM density (dimension L)
x̂mode,2 second mode of the GLLiM density (dimension L)

x̄MCMC−MH MCMC - Metropolis-Hastings estimator of the mean of the posterior (dimension L)
x̄MCMC−HMC MCMC - Hamiltonian-Monte-Carlo estimator of the mean of the posterior (dimension L)

x̄IS−G Importance Sampling estimator of the mean of the posterior (dimension L)
x̄IS−centroid,1 Importance Sampling estimator of the first mode of the posterior (dimension L)
x̄IS−centroid,2 Importance Sampling estimator of the second mode of the posterior (dimension L)
x̄IMIS−G Incremental Mixture Importance Sampling estimator of the mean of the posterior (dimension L)

x̄IMIS−centroid,1 Incremental Mixture Importance Sampling estimator of the first mode of the posterior (dimension L)
x̄IMIS−centroid,2 Incremental Mixture Importance Sampling estimator of the second mode of the posterior (dimension L)

x̂best best prediction among all estimators (with respect to the reconstruction error)

Table 1 Notations.

principled way. However, not to create distraction from our main messages, in our experimentsK is chosen manually
as specified in Table 6 (Appendix A.1). As previous studies, we observe (see Tables 2 and 3) that the exact value of
K is not critical and does not significantly impact the results as soon as K is large enough.

A test set T = {(xmobs,ymobs),m = 1 : Nobs} is then simulated similarly, with Nobs parameter vectors xmobs
and ymobs = F (xmobs). To mimic standard remote sensing situations, this test set is supposed to come with additional
information on the measurement uncertainty. Each observation ymobs is assumed to be corrupted with a centered
Gaussian noise with covariance matrix Σm

obs. Following common practice in remote sensing (e.g. [48]), Σm
obs is

generally taken as Σm
obs = diag(F (xmobs)/αobs)

2 for some positive scalar αobs to be specified representing a
percentage of uncertainty.

For predictions, the different schemes are compared leading to several possible values x for each observation
yobs ∈ T in the test set. More specifically, we consider up to 9 different predictions all based on the initial GLLiM
model with K components. As explained in Section 4.2, the learned GLLiM parameters are adjusted to account for
Σn
obs’s. Then the 9 prediction values are: the GLLiM expectation value (x̄G), the two GLLiM mixture centroids,

x̂centroid,1 and x̂centroid,2, and their counterparts obtained after importance sampling (IS and IMIS), namely,
x̄IS−G, x̄IS−centroid,1, x̄IS−centroid,2 and x̄IMIS−G, x̄IMIS−centroid,1, x̄IMIS−centroid,2. The importance
sampling procedures require the simulation of I for IS and I0 + BJ for IMIS parameter vectors according to the
chosen proposal distribution. The specific values ofD,L,K,N,Nobs, I, I0 +BJ are specified for each experiment
and recap in Table 6.

The predictions are compared using the (relative) reconstruction error (sometimes also called residual error)
defined as R(x) = ||yobs − F (x)||2/||yobs||2. In the following tables, R̄ will denotes the reconstruction error
averaged over the test dataset. When ground truth values xobs of the parameters are available, another performance
criterion is the prediction error on x denoted by E(x) = ||x− xobs||∞. Similarly Ē will refer to the error averaged
over the test dataset. When the parameters space is [0, 1]L this quantity belongs to [0, 1] making it comparable from
one experience to another.

In practice, we suggest to retain the value, denoted by x̂best, that minimizes the reconstruction error among all
the proposed estimators. This way of selecting x̂best has the advantage not to require ground truth values and is
therefore valid for both the synthetic examples in this section and the real data example in Section 7.2. Nonetheless,
depending on the subsequent application of the inversion results, other selection procedures can be followed, like
retaining the values that ensure the best coherence in the (e.g. spectral) dimension of the Nobs observations.

7.1.2 Example 1: Simple double solution problem

A first example illustrating the multiple solutions case is obtained with F (x) = (x − 0.5)2 (L = D = 1), which
admits two solutions denoted by xobs,1 and xobs,2 = 1 − xobs,1 for every observation. In this example, N =
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50000, σ = 0.01 and K = 40. For the test set, Nobs = 100 parameter values are sampled along sinus functions
for visualization purpose and observations are generated applying F with a noise set with αobs = 1000. I = 10000
samples are drawn to perform IS and I0 +BJ = 2000+10×500 = 7000 for IMIS. Figure 1 shows that predictions
based on the mean cannot retrieve the true solutions, while centroid predictions after mixture merging are accurate.
The IS-GLLiM and IMIS-GLLiM means are close to the GLLiM mean showing that thfigurese inaccuracy is not
coming from the GLLiM approximation.

Fig. 1 Double solution case. Mean predictions using GLLiM and refined with importance sampling (red, yellow and orange) vs centroid
predictions (blue) using the two-component mixture obtained by merging the GLLiM mixture components. The true parameter values
xobs,1 and xobs,2, chosen along sinus functions, are in green.

7.1.3 Example 2: Importance sampling for the centroids

In this example, the goal is to illustrate how importance sampling may correct the imprecision due to the approxima-
tion induced by the first GLLiM mapping step. F is designed so as to exhibit 2 solutions with D = 9 and L = 4,
F = A◦G◦H , whereA is aD×L injective matrix,G(x) = (exp(x1), exp(x2), exp(x3), exp(x4)) andH(x) =
(x1, x2, 4(x3 − 0.5)2, x4). The resulting F is therefore non-linear and yields two solutions for each observation,
denoted by xobs,1 and xobs,2 = 1 − xobs,1. In this example, N = 50000, σ = 0.01, Nobs = 500, αobs = 1000.
Three different values of K = 30, 50, 70 are tested. As in previous simulations, the Nobs xnobs’s are set along a
sinus function. Figure 2 shows that importance sampling significantly improves predictions. This is confirmed by
the reconstruction and prediction errors reported in Table 2. To handle the double solutions in a meaningful way we
compute these errors by comparing the pair (xobs,1,xobs,2) with the most favorable permutation of the two predicted
centroids. In particular, Table 2 shows that K does not have a huge impact on the results and that the quality of the
GLLiM approximation is not the major factor in the IS and IMIS prediction quality.

7.2 A physical model inversion in planetary science

Our real data application comes from the study of the Martian environment, in particular the morphological, com-
positional and textural characterization of sites representing various geological contexts at different periods of the
history of Mars. The composition of the materials is established on the basis of spectral mixing and physical mod-
elling techniques using images produced by hyperspectral cameras (Compact Reconnaissance Imaging Spectrometer
for Mars [38] or CRISM@MRO). Information on the microtexture of surface materials such as grain size, shape,
roughness and internal structure can also be used as tracers of geological processes [19]. This information is acces-
sible under certain conditions thanks to hyperspectral image sequences acquired from eleven different angles by the
CRISM instrument during a site flyover by MRO. It should be noted that such observations can also be measured in
the laboratory, on known materials in order to validate a model, or on materials of unknown origin, such as meteorite
fragments [43]. In both cases, the interpretation of the surface Bidirectional Reflectance Distribution Factor (BRDF)
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Fig. 2 Importance sampling for centroids. IS and IMIS centroid predictions (yellow and brown) starting from GLLiM withK=30 (blue).
The L= 4 parameters are shown separately with the true centroids in green. Relative reconstruction errors are shown with a logarithmic
scale in the top right plot; for each scheme, a dotted line indicates the average error.

Prediction schemes K = 30 K = 50 K = 70
R̄(x̂centroid,1) 0.1526 (0.1143) 0.147 (0.1186) 0.1468 (0.1155)
R̄(x̂centroid,2) 0.1509 (0.1166) 0.1471 (0.1182) 0.145 (0.1191)

R̄(x̄IS−centroid,1) 0.014 (0.0254) 0.0166 (0.0362) 0.0209 (0.0467)
R̄(x̄IS−centroid,2) 0.0149 (0.0241) 0.0147 (0.0345) 0.0136 (0.0322)

R̄(x̄IMIS−centroid,1) 0.0014 (0.0026) 0.0016 (0.0065) 0.0017 (0.0053)
R̄(x̄IMIS−centroid,2) 0.0012 (0.0019) 0.0013 (0.0022) 0.0014 (0.0031)

Ē(x̂centroid,1) 0.2513 (0.1218) 0.2435 (0.1218) 0.2419 (0.125)
Ē(x̂centroid,2) 0.2472 (0.1133) 0.2468 (0.1249) 0.2319 (0.1119)

Ē(x̄IS−centroid,1) 0.1442 (0.2517) 0.1057 (0.2078) 0.1286 (0.2366)
Ē(x̄IS−centroid,2) 0.1424 (0.2481) 0.1345 (0.2445) 0.1313 (0.233)

Ē(x̄IMIS−centroid,1) 0.1413 (0.2615) 0.1381 (0.258) 0.1556 (0.2722)
Ē(x̄IMIS−centroid,2) 0.1306 (0.2553) 0.1107 (0.2338) 0.1128 (0.2361)

Table 2 Importance sampling for centroids. Average reconstruction (first 6 lines) and prediction (last 6 lines) errors, for 6 prediction
schemes, 1000 tests, 3 GLLiM settings. Standard deviations are in parenthesis and best averages are in bold.

extracted from these observations, in terms of composition and microtexture, is based on the inversion of physical
models of radiative transfer linking physical and observable parameters in a non-linear way.

The Hapke model [23, 24, 25] is a semi-empirical photometric model that relates physically meaningful param-
eters to the reflectivity of a granular material for a given geometry of illumination and viewing. Formally, it links a
set of parameters x ∈ R6 to a theoretical BRDF denoted by y = Fhapke(x) ∈ RD . A given experiment defines D
geometries of measurement, each parametrized by a triplet (θ0, θ, φ) of incidence, emergence and azimuth angles.
Moreover, x = (ω, θ, b, c, B0, h) are the sensitive parameters (respectively single scattering albedo, macroscopic
roughness, asymmetry parameter and backscattering fraction, amplitude and width of the opposition effect). We will
consider two versions of the Hapke model to conduct our experiments. One for which we ignore the angular width h
and the amplitude B0 of the opposition effect to simplify the model and because we do not have generally access in
practice to geometries that could constrain these parameters. This entails L = 4 and the measurement of a few tens
of geometries. The other version corresponds to the full Hapke Model with L = 6 parameters. In that case a larger
number of geometries is required in particular to sample the opposition effect. More details on these notations and
their photometric meaning may be found for example in [48], alongside the explicit expression of Fhapke.

In the following experiments, we also apply a change of variable γ = 1 −
√

1− ω, in order to avoid a high
non-linearity of Fhapke when ω tends to 1. Indeed Fhapke is equivalent to

√
1− ω when ω is close to 1. This may
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lead to infinite derivatives with respect to ω, a challenging situation for a locally linear model. Better results are
observed for some edge case observations while the change does not impact other cases.

The experiments in this section use different learning sets for the initial GLLiM model (see Table 6). Results are
reported for three configurations: L = 4 with D = 10 and 11 geometries, and L = 6 with D = 336 geometries
for the full Hapke model and a higher dimensional case. The size of the training set is N = 50000 or N = 100000
and different values of K are considered as summarized in Table 6. Predictions are obtained following the same
procedure than in the previous section.

7.2.1 Example 3: Synthetic data from the Hapke model

Prior to real data inversion, a first step is to check the ability of our method to accurately capture the Hapke model
main features. To this end, Nobs = 100 synthetic observations are generated. The L = 4 parameters above are
considered and each of them is simulated along a sinus function for visualization purpose. GLLiM is learned with
N = 50000 and σ = 0.0001. Form = 1 : Nobs and l = 1 : L, xm,lobs = 0.5+0.4 sin( 2mπ

Nobs
+ lπ

4 ). The corresponding
reflectance curves are generated as ymobs = Fhapke(x

m
obs) corrupted by a noise defined by αobs = 1000. The

dimension of the observed vector (D = 10) and the measurement geometries used to define Fhapke are borrowed
from a real laboratory experiment presented in the next example. The experimental setting defines geometries at
which the measurements are made, which in turn define Fhapke. The number of geometries thus corresponds to
the size D of each observation. In this experiment D = 10. All the prediction schemes are performed but only
the GLLiM expectation prediction x̄G, its refinement by importance sampling x̄IMIS−G and the best prediction in
terms of reconstruction error, denoted by x̂best are reported in Figure 3. This example highlights the interest of the
different predictions methods. The GLLiM expectation prediction x̄G is often good enough, the centroid estimations
not giving additional information, apart from confirming the uni-modality of the posterior. See the estimation of ω
in Figure 3 where all predictions coincide. However, it appears on the other parameters that a better precision can be
reached using importance sampling starting from the GLLiM posterior approximation as proposal distribution. This
is visible in the reconstruction error plot of Figure 3. At last, in some cases, prediction by the mean can be further
improved by considering centroids. This corresponds to the case where the x̂best estimation significantly differs from
the two others. For a more quantitative analysis, Table 3 provides the reconstruction and prediction errors for these
observations. The centroid predictions, not plotted for clarity, are added in this table. The comparison has also been
made with two MCMC schemes, a Metropolis-Hastings (MH) and an Hamiltonian (HMC) procedures. MCMC-HMC
provides the best performance but IMIS reaches the same level of performance while being significantly faster. As
an illustration, Table 4 reports results for GLLiM and IMIS with K = 70 and various values of (I0, B, J) while MH
and HMC are run with various numbers of iterations I to approximately match the IMIS settings.

Prediction schemes K = 40 K = 70 K = 100
R̄(x̄G) 0.0613 (0.0598) 0.0471 (0.0619) 0.029 (0.0238)

R̄(x̄IMIS−G) 0.0002 (0.0002) 0.0002 (0.0002) 0.0002 (0.0002)
R̄(x̄IMIS−centroid,1) 0.0005 (0.001) 0.0006 (0.001) 0.0006 (0.001)
R̄(x̄IMIS−centroid,2) 0.0002 (0.0002) 0.0002 (0.0002) 0.0002 (0.0001)

R̄(x̂best) 0.0001 (0.0001) 0.0001 (0.0002) 0.0001 (0.0001)
Ē(x̄G) 0.1351 (0.1048) 0.1106 (0.1042) 0.0933 (0.1007)

Ē(x̄IMIS−G) 0.0119 (0.0219) 0.0107 (0.0215) 0.0109 (0.0218)
Ē(x̄IMIS−centroid,1) 0.0381 (0.0673) 0.0428 (0.1006) 0.043 (0.0808)
Ē(x̄IMIS−centroid,2) 0.0126 (0.0229) 0.0126 (0.0227) 0.0111 (0.0192)

Ē(x̂best) 0.0114 (0.0219) 0.0106 (0.0222) 0.0105 (0.0203)

Table 3 Synthetic data from the 4 parameter Hapke model. Average reconstruction (first 5 lines) and prediction (last 5 lines) errors, for 5
prediction schemes, 1000 tests, 3 GLLiM settings. Standard deviations are in parenthesis and best averages are in bold.

7.2.2 Example 4: High dimensional synthetic data from Hapke model

To illustrate our approach on a high dimensional case, the full Hapke model is considered with D = 336 geometries
and L = 6 parameters. Nobs = 100 couples (xmobs,y

m
obs)1...Nobs

are generated similarly to the previous example
with αobs = 50. GLLiM is learned for K = 100 with N = 100000 and σ = 0.005. Figure 4 and Table 5 compare
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Prediction scheme Ē R̄ Time
x̄MCMC−MH - I : 104 0.0996 (0.1157) 0.004 (0.0041) 3.7 s
x̄MCMC−MH - I : 105 0.0314 (0.0736) 0.0011 (0.0009) 18.3 s
x̄MCMC−HMC - I : 103 0.0146 (0.0393) 0.0006 (0.0043) 2 m
x̄MCMC−HMC - I : 104 0.0102 (0.021) 0.0002 (0.0002) 23 m
x̄MCMC−HMC - I : 105 0.0127 (0.0288) 0.0005 (0.0033) 4 h
x̄G - K : 70 0.1106 (0.1042) 0.0471 (0.0619) 0.07 s
x̄IMIS−G - K : 70 - I0 : 200, B : 100, J : 10 0.0384 (0.068) 0.001 (0.0011) 1.9 s
x̄IMIS−G - K : 70 - I0 : 2500, B : 1000, J : 10 0.0178 (0.0322) 0.0003 (0.0003) 12.5 s
x̄IMIS−G - K : 70 - I0 : 2500, B : 1000, J : 20 0.0107 (0.0215) 0.0002 (0.0002) 30.9 s

Table 4 Synthetic data from the 4 parameter Hapke model: Performance comparison with MCMC approaches in terms of computational
time, prediction and reconstruction error. Best values are in bold and standard deviations in parenthesis. I denotes the number of MCMC
iterations while I0 +BJ is the total number of simulations for IMIS.

Fig. 3 Inversion of synthetic data from the 4 parameter Hapke model. A GLLiM model is learned from training data with K = 70.
The GLLiM mean prediction x̄G (squares, red), its refined version with importance sampling x̄IMIS−G (circles, red), the reconstruc-
tion best prediction x̂best among all prediction schemes including the centroids (squares, blue), and the Hamiltonian MCMC mean
x̄MCMC−HMC (circles, teal) are compared. The values to be recovered xobs are in green. Relative reconstruction errors are shown
with a logarithmic scale in the top right plot.

the two MCMC approaches with IMIS. Overall, the IMIS results are satisfying, of the same order than the MCMC-
HMC results, with similar or better prediction and reconstruction errors but obtained in a shorter time (Table 5). The 4
parameters of the reduced Hapke model are retrieved, and h and B0 are known to be hard to constrain. The posterior
distributions for these two parameters are likely to exhibit plateaus around the expected solutions. Consequently the
mean may not correspond to the modes. The fact that the x̂best solution sometimes deviates from the IMIS and
MCMC means is an indicator of this phenomenon. This is not surprising as the selected set of geometries, which
corresponds to what can be practically measured in the laboratory, only contrains weakly B0 and h. In addition,
when comparing Figures 3 and 4, it appears that the addition of weakly constrained parameters in the model may
slightly degrade the determination of the other parameters. We also note in this example that importance sampling
may sometimes fail when the proposal distribution has its mass concentrated outside of [0, 1]L, so that all samples are
rejected. One simple way to handle such cases is to use the same scheme as in Section 4.2 to shift back the proposal
to [0, 1]L.

7.2.3 Example 5: Laboratory observations

Reflectance measurements in the laboratory on crushed minerals are now considered (see [42] for more details).
We focus on three experiments (Olivine, Nontronite and Basalt), each of them measured at 100 wavelengths in the



16 Benoit Kugler et al.

Fig. 4 Inversion of high dimensional synthetic data from the 6 parameter Hapke model. A GLLiM model is learned from training data
with K = 100. The importance sampling mean x̄IMIS−G (star, purple) and the MCMC means (dash, brown and teal) are compared.
The values to be recovered xobs are in green. Relative reconstruction errors are shown with a logarithmic scale in the top right plot.

Prediction scheme Ē R̄ Time
x̄MCMC−MH - I : 106 0.2885 (0.1339) 0.0191 (0.0135) 1 h 27 m
x̄MCMC−HMC - I : 103 0.269 (0.1134) 0.0237 (0.0125) 3 h 20 m
x̄IMIS−G - I0 : 2500, B : 1000, J : 20 0.2699 (0.1166) 0.0173 (0.0125) 9 m
x̂best (idem) 0.3096 (0.1384) 0.0136 (0.0097) 9 m

Table 5 Synthetic high dimensional data from the 6 parameter Hapke model: Performance comparison with MCMC approaches in terms
of computational time, prediction and reconstruction error. Best values are in bold and standard deviations in parenthesis. I denotes the
number of MCMC iterations while I0 +BJ is the total number of simulations for IMIS.

spectral range 400-2800 nm, seen as independent observations. For our test we select the Nontronite dataset since
it presents the largest spectral variations. It corresponds therefore to a number of Nobs = 100 observations ymobs
(m = 1 : Nobs) to invert. As before, the experimental setting defines geometries at which the measurements are
made, which in turn define Fhapke. The sizeD of each observation isD = 10 and the corresponding angles are such
that the incidence and azimuth angles are fixed to θ0 = 45 and Φ = 0. GLLiM is run with K = 100, N = 100000
and σ = 0.001. In Figures 5 and 6, our results are compared to that obtained with MCMC techniques, used for
example in [48]. To illustrate MCMC procedures, we select the Hamiltonian Monte Carlo algorithm investigated
before for its better performance over Metropolis-Hastings algorithm. For each of the 100 observations to be inverted,
106 samples were generated with a burnin period of 5 × 105 samples. For a comparison with [48], the noise added
to the observations ymobs’s is, in this example, Σm

obs = diag(max(ymobs/20, 0.01)2). This corresponds most of the
time to a relative error of 5%. For very dark material, the reflectance ymobs is low. The above formula therefore
ensures a minimum noise of 0.01 unit of reflectance in all cases. Figure 5 provides the inversion results for the
Nontronite measurements for each wavelength, in the form of spectra for each parameter and for the reconstruction
error. The parameter ω is accurately retrieved. The three other parameters show abrupt variations between successive
observations. This is not physically satisfying and probably results from the relative low sensitivity of the direct
model to these parameters, yielding posterior distributions with no clear peaks, responsible in turn for rather unstable
predictions in theX space. Figure 10 in Appendix A.2 shows a complementary plot with centroids predictions. These
predictions confirm that for parameters (θ̄, b, c), the marginal posteriors are not concentrated around their means,
yielding a large range of high probability values including the centroids as shown by the reconstruction errors. This
explains the irregularity of the x̂best prediction and provides insight on why such a dataset is challenging to invert.
Figure 6 compares the observation to reconstructions from predictions. For this last figure, the results are shown via
polar plots, the angle being the emergence angle and the radius the level of reflectance. The yellow line indicates the
illumination direction. Three different wavelengths among the ymobs’s are chosen to fall on specific spectral features.
The plots show then 10 points which coordinates are (ym,dobs , θd) or (Fhapke(x)d, θd) for d = 1 : D and for different
predictions x. The MCMC prediction targets the mean and is therefore closer to our mean predictions while it appears
that our x̂best predictions provide better reconstructions.
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Fig. 5 Inversion of Nontronite laboratory observations. A GLLiM model is learned from training data with K = 100. The GLLiM mean
prediction refined with importance sampling x̄IMIS−G (red), the reconstruction best prediction x̂best (blue) and the MCMC prediction
(teal) are compared. Standard deviations are also shown. Relative reconstruction errors are shown with a logarithmic scale in the top right
plot.

Fig. 6 Nontronite observation reconstructions. Comparison between original (black) and reconstructed observations (blue, red, teal) along
the emergence angle, for three wavelengths : 540, 1260 and 1900 nm. The incidence and azimuth angles are equal to 45 and 0 respectively.

7.2.4 Uncertainty level estimation

In this section, the algorithm 2 described in Section 6 to assess the uncertainty in the model is tested. Synthetic data
are first considered with the same setting, Fhapke, D = 10, L = 4, as in the inversion of Nontronite observations.
Observations are simulated with Σ = σ2ID and σ = 0.2 (high uncertainty level, Figure 7 (a)) or σ = 0.03 (low
uncertainty level, Figure 7 (b)), satisfying the assumptions made in Section 6 and Algorithm 2. To simplify the
notation, we will denote by σD the diagonal matrix containing the D standard deviations here all equal to σ. The
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EM algorithm is constrained to provide diagonal covariances. It is initialized with Σ(0) = 0.25ID . The choice of
Σ(0) is application dependent and should be of the magnitude of the observations.

Figure 7 shows the evolution of the distance between the estimated diagonal σ(r)
D at iteration r and the true σD .

For comparison, the distance between the true σD and the maximum likelihood estimator σestD defined in Section
6 and calculated with the true x’s is also provided. The figures show in addition the final value for σ(r)

D denoted
by σlastD . These simulations illustrate that the algorithm performs satisfactorily with moderate to high uncertainty
levels, but is relatively less efficient with low levels because of a lack of sensitivity to such levels.

We then consider three real datasets (Nontronite, Basalt and Olivine), again from the laboratory experiment
described in Example 5. Recall that for each dataset, diagonal Σm

obs’s accounting for measurement uncertainty are
considered in addition to the measurements themselves. This information is provided by experts and can be used
as a reference to assess the quality of our estimation. In this case the assumptions of Section 6 and Algorithm 2
do not hold as the uncertainty cannot be represented as a constant Σ across observations. Our estimations are then
compared to σobsD set to the average over Nobs of the square roots of the Σm

obs’s which are themselves of the order
ofΣm

obs = diag(ymobs/20)2. In addition, it is usually expected that the standard deviation is not too much dependent
on the geometry. Following this expectation, the EM algorithm is run with an isotropic constraint onΣ.

Figure 8 shows the estimated uncertainty level (more specifically, the standard deviations for each geometry)
using polar plots. It appears that the estimated standard deviations are of the same order as those given by the experts
in particular for Olivine and Nontronite data sets. When expert references are considered as reliable, the observed
deviations may be interpreted as an indication of the lesser ability of the theoretical model Fhapke to provide a
good modelling of the observations. However, for the Basalt results, the deviation is more likely to come from an
underestimation of the expert measurement error due to the darkness of the material.

Fig. 7 Noise estimation on synthetic data. True value is σ = 0.2 (a) and σ = 0.03 (b). Left: evolution of ||σ(r)
D − σD||2 (blue) and

||σestD − σD||2 (orange). Right: comparison between final value σlastD (blue), σestD (red) and σD (black).

Fig. 8 Noise level estimation on laboratory data. Comparison between the given σobsD (black) and the estimated σlastD provided by the
EM algorithm (isotropic constraint, in orange), along geometries of measurements.

7.2.5 Example 6: Massive inversion of spatial and spectral Mars data

We conclude our experiments with a large scale inversion. The dataset comes from a multi-angular observation
of the South Pole of Mars by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) [38]. The
targeted scene presents spatially segregated C02 ice, H2O frost, and mineral dust [18]. After fusion and atmospheric
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correction of eleven hyperspectral images [11], the dataset provides both spatial and spectral dimensions, totaling
Nobs = 156100 = 3122 × 50 measurements vectors ymobs, which makes MCMC approaches unacceptably slow.
Each ymobs is provided with an additional diagonal Σm

obs accounting for measurement uncertainty. Maps of Hapke
parameter values are generated from the results of our inversion and superposed with transparency onto the full
resolution CRISM nadir image, which serves as a geological control background image. The maps are shown in
Figure 9 for ω and θ̄ and in Appendix A.3 for b and c. The methods with and without taking into account the
centroids (x̂best and x̄IMIS−G respectively) are compared. The results are satisfying from the application point of
view. The colour composition of Figure 9 first line reflects the variation of ω at three wavelengths and corresponds
well with the spatial distribution of the three previous materials and their known spectral optical properties. The map
of θ̄ averaged over the spectral dimension is color coded by intervals of values whose spatial variations are correlated
with the composition and the structures of the terrains. In general (see also maps b and c in Appendix A.3), all
predicted parameters preserve some spatial regularity and show meaningful correlations with the composition and
the geology. The prediction including centroids (x̂best) mostly agrees with the mean prediction (x̄IMIS−G) while
increasing the spatial regularity.

Fig. 9 Mars South Pole dataset. Parameter ω in synthetic colors coding 3 wavelengths (top) and parameter θ̄ averaged over spectral
dimension (bottom), predicted using x̄IMIS−G (left) or x̂best (right). The darkest (top) or colorless (bottom) patches correspond to
missing data or failed inversion by GLLiM.

8 Conclusion and future work

This paper introduced a new statistical approach to inverse problems that we referred to as fast Bayesian inversion.
The originality comes from the preliminary estimation of a global inversion operator in place of successive individual
inversions. This operator is obtained via a so-called GLLiM inverse regression model and takes a simple parametric
form, which once learned, provides at low cost approximations to the target posterior distributions. These approxi-
mate posteriors are subsequently refined using importance sampling. We showed the ability of the method to carry
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out Bayesian inversion in a computationally efficient way that allows to handle massive inversions while maintaining
the advantages of a Bayesian analysis. It improves prediction accuracy, reduces the estimation time, while providing
a rich information on parameter estimates via posterior distributions. This later information is essential in complex
inverse problems when multiple equivalent solutions can exist. Using a physical model inversion issue in planetary
remote sensing, we illustrated that we could obtain very satisfying results in situations where traditional MCMC
approaches are not tractable.

The flexibility of the proposed approach opens the way to further improvements. There is a vast literature on
importance sampling that could certainly be further exploited. Sampling re-sampling or more elaborate forms of
importance sampling via sequential Monte Carlo techniques could certainly lead to even more efficient procedures.
Overall, importance sampling can be seen as a way to enhance GLLiM predictions but in a symmetric manner, the
GLLiM posteriors can also be seen as good candidates for an informed importance proposal distribution, especially
when dealing with multimodal posteriors. Future work should also include the adaptation and optimization of the
learning set with respect to the targeted range of parameters. In other words, the possibility to use more informative
priors on the parameter space could be explored to take even more benefits from the Bayesian approach.

A Appendix

A.1 Computation times

The simulations ran on a laptop with 4 cores (at 2.5 Ghz). Table 6 shows computation times. For each experiment, the time is divided in
two parts, the time for the learning step (GLLiM inference) and the time for the prediction step, which consists either of mixture merging,
mode-finding and importance sampling (Examples 1 to 6) or of noise level estimation via the EM algorithm. Most experiments run in few
minutes. The complexity of the forward model and the way it is implemented can take an important part in the resulting running time. This
appears in the comparison of examples 2 and 3 which mainly differ in the choice of F . The Hapke model (Example 3) benefits from a more
efficient implementation which explains running time twice smaller for similar settings. For equivalent forward model implementations,
the time depends mainly on the size and dimensionality of the learning set and on the number of inversions to be performed. Learning sets
have equivalent complexity in our experiments, except for the high dimensional example (Example 4, D = 336). Higher computation
times are observed in case of massive inversions. In particular, Example 6 with 156,100 inversions takes few hours. We believe it is the
first time that such spatial and spectral parametric maps are obtained due to the intractability of other methods in this setting.

A.2 Centroids predictions for the Nontronite dataset

Figure 10 provides a complementary analysis to the results in Figure 5, for Example 5. The centroids predictions show that, for parameters
θ̄, b, c, the marginal posteriors are not concentrated around their means, yielding a large range of high probability predictions including the
centroids, as shown by the reconstruction errors.

A.3 Massive inversion of spatial and spectral Mars data

Figure 11 shows the maps for parameters b and c after inversion of the real Mars data described in Section 7.2.5.
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Experiment L D K N I ∗ Nobs Learn. x̄G Pred. - 1 obs.
Ex. 1 : Simple double solutions
problem : IS 1 1 40 5 104 104 100 50.4 s 0.03 s 1.5 s - 0.01 s

IMIS 1 1 40 5 104 104 100 50.4 s 0.03 s 6.6 s - 0.07 s
Ex. 2 : Centroids for double so-
lutions : IS 4 9 30 5 104 2 104 500 3 m 0.16 s 23.2 s - 0.05 s

IMIS 4 9 30 5 104 14 000 500 3 m 0.13 s 50.1 s - 0.10 s
IS 4 9 50 5 104 2 104 500 4 m 0.27 s 22.2 s - 0.04 s
IMIS 4 9 50 5 104 14 000 500 4 m 0.26 s 51.0 s - 0.10 s
IS 4 9 70 5 104 2 104 500 6 m 0.35 s 22.3 s - 0.04 s
IMIS 4 9 70 5 104 14 000 500 6 m 0.28 s 51.4 s - 0.10 s

Ex. 3 : Hapke - Synthetic data :
MH 4 10 - - 104 100 - - 3.7 s - 0.04 s

MH 4 10 - - 105 100 - - 18.3 s - 0.18 s
HMC 4 10 - - 103 100 - - 2 m - 1.4 s
HMC 4 10 - - 104 100 - - 23 m - 14.1 s
HMC 4 10 - - 105 100 - - 3 h 36 m - 2 m
IMIS 4 10 40 5 104 1 200 100 2 m 0.04 s 1.8 s - 0.02 s
IMIS 4 10 40 5 104 12 500 100 2 m 0.04 s 11.5 s - 0.11 s
IMIS 4 10 40 5 104 22 500 100 2 m 0.07 s 29.7 s - 0.30 s
IMIS 4 10 70 5 104 1 200 100 5 m 0.07 s 1.9 s - 0.02 s
IMIS 4 10 70 5 104 12 500 100 5 m 0.07 s 12.5 s - 0.12 s
IMIS 4 10 70 5 104 22 500 100 5 m 0.09 s 30.9 s - 0.31 s
IMIS 4 10 100 5 104 1 200 100 7 m 0.12 s 2.5 s - 0.03 s
IMIS 4 10 100 5 104 12 500 100 7 m 0.11 s 12.8 s - 0.13 s
IMIS 4 10 100 5 104 22 500 100 7 m 0.09 s 31.0 s - 0.31 s

Ex. 4 : Hapke - High dimen-
sional synthetic data : MH 6 336 - - 106 100 - - 1 h 27 m - 52.4 s

HMC 6 336 - - 103 100 - - 3 h 20 m - 2 m
IMIS 6 336 100 105 22 500 100 4 h 18 m 20.6 s 9 m - 5.7 s

Ex. 5 : Hapke - Laboratory ob-
servations : IMIS 4 10 100 105 22 500 100 17 m 0.08 s 35.8 s - 0.36 s

HMC 4 10 - - 106 100 - - 9 h 29 m - 5 m
Ex. 6 : Hapke - Glace observa-
tions : IMIS 4 11 50 5 104 4 200 156 100 5 m 1 m 2 h 43 m - 0.06 s
Noise estimation on synthetic
data - σ = 0.2 4 10 50 5 104 2 104 2 103 3 m - 55 m
Noise estimation on synthetic
data - σ = 0.03 4 10 50 5 104 2 104 2 103 3 m - 55 m
Noise estimation on Nontronite 4 10 50 5 104 104 100 3 m - 1 m
Noise estimation on Basalt 4 10 50 5 104 104 100 3 m - 1 m
Noise estimation on Olivine 4 10 50 5 104 104 100 3 m - 1 m

Table 6 Settings and computation times for synthetic and real data experiments. The column x̄G displays the time spent only for the
computation of x̄G for all the observations, while the last column takes into account all the prediction schemes. ∗ For MCMC algorithms,
the number of simulations done for each observation is reported under I while for IMIS I corresponds to I0 +BJ .

References

1. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Problems 33(12), 124007 (2017)
2. Arridge, S., Maass, P., Öktem, O., Schönlieb, C.B.: Solving inverse problems using data-driven models. Acta Numerica 28, 1–174

(2019)
3. Balsiger, F., Steindel, C., Arn, M., Wagner, B., Grunder, L., El-Koussy, M., Valenzuela, W., Reyes, M., Scheidegger, O.: Segmentation

of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach. Frontiers in
Neurology 9, 777 (2018)

4. Barbieri, M., Brizi, L., Giampieri, E., Solera, F., Castellani, G., Testa, C., Remondini, D.: Circumventing the Curse of Dimensionality
in Magnetic Resonance Fingerprinting through a Deep Learning Approach. arXiv:1811.11477 [physics] (2018)

5. Bardenet, R., Doucet, A., Holmes, C.: Towards scaling up Markov chain Monte Carlo: An adaptive subsampling approach. In:
International Conference on Machine Learning (ICML), Proceedings of the 31st International Conference on Machine Learning
(ICML), pp. 405–413. Beijing, China (2014)

6. Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L., Girard, S.: Retrieval of Mars surface physical properties from OMEGA hyper-
spectral images using regularized sliced inverse regression. Journal of Geophysical Research: Planets 114(E6), E06005 (2009)

7. Bernard-Michel, C., Douté, S., Gardes, L., Girard, S.: Estimation of Mars surface physical properties from hyperspectral images using
Sliced Inverse Regression (2007)



22 Benoit Kugler et al.

Fig. 10 Inversion of Nontronite laboratory observations. x̄IMIS−G is in red, x̄IMIS−centroid,1 and x̄IMIS−centroid,2 are in blue.
Relative reconstruction errors are shown with a logarithmic scale in the top right plot.

8. Bertrand, C., Ohmi, M., Suzuki, R., Kado, H.: A probabilistic solution to the MEG inverse problem via MCMC methods: The re-
versible jump and parallel tempering algorithms. IEEE Transactions on Biomedical Engineering 48(5), 533–542 (2001)

9. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.: Julia: A Fresh Approach to Numerical Computing. SIAM Review 59(1), 65–98
(2017)

10. Carreira-Perpinan, M.: Mode-finding for mixtures of Gaussian distributions. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22(11), 1318–1323 (2000)

11. Ceamanos, X., Douté, S., Fernando, J., Schmidt, F., Pinet, P., Lyapustin, A.: Surface reflectance of Mars observed by CRISM/MRO:
1. Multi-angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS-ReCO). Journal of Geophysical
Research: Planets 118(3), 514–533 (2013)

12. Chiancone, A., Forbes, F., Girard, S.: Student Sliced Inverse Regression. Computational Statistics & Data Analysis 113, 441–456
(2017)

13. Cohen, T.S., Geiger, M., Koehler, J., Welling, M.: Spherical CNNs. arXiv:1801.10130 [cs, stat] (2018)
14. Cook, R.D., Forzani, L.: Partial least squares prediction in high-dimensional regression. Annals of Statistics 47(2), 884–908 (2019)
15. Darvishzadeh, R., Matkan, A.A., Ahangar, A.D.: Inversion of a radiative transfer model for estimation of rice canopy chlorophyll

content using a lookup-table approach. IEEE Journal of selected topics in applied earth observations and remote sensing 5(4), 1222–
1230 (2012)

16. Deleforge, A., Forbes, F., Ba, S., Horaud, R.: Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov
Dependencies. IEEE Journal of Selected Topics in Signal Processing 9(6), 1037–1048 (2015)

17. Deleforge, A., Forbes, F., Horaud, R.: High-dimensional regression with gaussian mixtures and partially-latent response variables.
Statistics and Computing 25(5), 893–911 (2015)

18. Douté, S., Pilorget, C.: Physical state and temporal evolution of icy surfaces in the Mars South Pole. European Planetary Science
Congress 11, EPSC2017–491 (2017)

19. Fernando, J., Schmidt, F., Douté, S.: Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective
for the characterization of the geological processes. Planetary and Space Science 128, 30–51 (2016)

20. Frau-Pascual, A., Vincent, T., Sloboda, J., Ciuciu, P., Forbes, F.: Physiologically Informed Bayesian Analysis of ASL fMRI Data. In:
M.J. Cardoso, I. Simpson, T. Arbel, D. Precup, A. Ribbens (eds.) Bayesian and grAphical Models for Biomedical Imaging, Lecture
Notes in Computer Science, pp. 37–48. Springer International Publishing (2014)

21. Giovannelli, J.F., Idier, J.: Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing. John Wiley &
Sons, Inc. (2015)

22. Golbabaee, M., Chen, D., Gómez, P.A., Menzel, M.I., Davies, M.: Geometry of Deep Learning for Magnetic Resonance Fingerprint-
ing. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019, 7825–7829 (2019)

23. Hapke, B.: Bidirectional reflectance spectroscopy. I - theory. J. Geophys. Res. 86, 3039–3054 (1981)
24. Hapke, B.: Bidirectional reflectance spectroscopy. III - Correction for macroscopic roughness. Icarus 59, 41–59 (1984)
25. Hapke, B.: Bidirectional reflectance spectroscopy : 4. The extinction coefficient and the opposition effect. Icarus 67(2), 264–280

(1986)
26. Hennig, C.: Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification 4(1), 3–34 (2010)
27. Hoffman, M.D., Gelman, A.: The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.

arXiv:1111.4246 [cs, stat] (2011)
28. Hoppe, E., Körzdörfer, G., Würfl, T., Wetzl, J., Lugauer, F., Pfeuffer, J., Maier, A.: Deep Learning for Magnetic Resonance Fin-

gerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series. Studies in Health Technology and
Informatics 243, 202–206 (2017)



Fast Bayesian Inversion for high dimensional inverse problems 23

Fig. 11 Mars South pole dataset. Parameters b (top) and c (bottom) averaged over spectral dimension, predicted using x̄IMIS−G (left)
or x̂best (right).

29. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L.,
Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological
Measurement 25(4), 905–920 (2004)

30. Ingrassia, S., Minotti, S.C., Vittadini, G.: Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions.
Journal of classification 29(3), 363–401 (2012)

31. Izbicki, R., Lee, A.B., Pospisil, T.: ABC–CDE: Toward approximate bayesian computation with complex high-dimensional data and
limited simulations. Journal of Computational and Graphical Statistics 28(3), 481–492 (2019)

32. Lathuiliere, S., Juge, R., Mesejo, P., Munoz-Salinas, R., Horaud, R.: Deep Mixture of Linear Inverse Regressions Applied to Head-
Pose Estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4817–4825 (2017)

33. Lemasson, B., Pannetier, N., Coquery, N., Boisserand, L.S.B., Collomb, N., Schuff, N., Moseley, M., Zaharchuk, G., Barbier, E.L.,
Christen, T.: MR Vascular Fingerprinting in Stroke and Brain Tumors Models. Scientific Reports 6, 37071 (2016)

34. Li, K.C.: Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Association 86(414), 316–327
(1991)

35. Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J.L., Duerk, J.L., Griswold, M.A.: Magnetic resonance fingerprinting. Nature
495(7440), 187–192 (2013)

36. Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems
with Application to Seismic Inversion. SIAM Journal on Scientific Computing 34(3), A1460–A1487 (2012)

37. Mesejo, P., Saillet, S., David, O., Bénar, C., Warnking, J.M., Forbes, F.: A differential evolution-based approach for fitting a nonlinear
biophysical model to fMRI BOLD data. IEEE Journal of Selected Topics in Signal Processing 10(2), 416–427 (2016)

38. Murchie, S.L., Seelos, F.P., Hash, C.D., Humm, D.C., Malaret, E., McGovern, J.A., Choo, T.H., Seelos, K.D., Buczkowski, D.L.,
Morgan, M.F., Barnouin-Jha, O.S., Nair, H., Taylor, H.W., Patterson, G.W., Harvel, C.A., Mustard, J.F., Arvidson, R.E., McGuire, P.,
Smith, M.D., Wolff, M.J., Titus, T.N., Bibring, J.P., Poulet, F.: Compact Reconnaissance Imaging Spectrometer for Mars investigation
and data set from the Mars Reconnaissance Orbiter’s primary science phase. Journal of Geophysical Research: Planets 114(E2),
E00D07 (2009)

39. Nataraj, G., Nielsen, J.F., Scott, C., Fessler, J.A.: Dictionary-Free MRI PERK: Parameter Estimation via Regression with Kernels.
IEEE Transactions on Medical Imaging 37(9), 2103–2114 (2018)

40. Nguyen, H.D., Chamroukhi, F., Forbes, F.: Approximation results regarding the multiple-output Gaussian gated mixture of linear
experts model. Neurocomputing 366, 208–214 (2019)

41. Perthame, E., Forbes, F., Deleforge, A.: Inverse regression approach to robust nonlinear high-to-low dimensional mapping. Journal of
Multivariate Analysis 163, 1–14 (2018)

42. Pilorget, C., Fernando, J., Ehlmann, B.L., Schmidt, F., Hiroi, T.: Wavelength dependence of scattering properties in the VIS–NIR and
links with grain-scale physical and compositional properties. Icarus 267, 296–314 (2016)



24 Benoit Kugler et al.

43. Potin, S., Beck, P., Schmitt, B., Moynier, F.: Some things special about NEAs: Geometric and environmental effects on the optical
signatures of hydration. Icarus 333, 415–428 (2019)

44. Raftery, A.E., Bao, L.: Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance
Sampling. Biometrics 66(4), 1162–1173 (2010)

45. Ray, S., Lindsay, B.G.: The topography of multivariate normal mixtures. The Annals of Statistics 33(5), 2042–2065 (2005)
46. Robert, C., Casella, G.: Monte Carlo Statistical Methods, second edn. Springer Texts in Statistics. Springer-Verlag, New York (2004)
47. Runnalls, A.: Kullback-Leibler Approach to Gaussian Mixture Reduction. Aerospace and Electronic Systems, IEEE Transactions on

43, 989–999 (2007)
48. Schmidt, F., Fernando, J.: Realistic uncertainties on Hapke model parameters from photometric measurement. Icarus 260, 73–93

(2015)
49. Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Computation. CRC Press (2018)
50. Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics

and Mathematical Physics 7(4), 86–112 (1967)
51. Song, P., Eldar, Y.C., Mazor, G., Rodrigues, M.R.D.: HYDRA: Hybrid deep magnetic resonance fingerprinting. Medical Physics

46(11), 4951–4969 (2019)
52. Steele, R.J., Raftery, A.E., Emond, M.J.: Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture

Importance Sampling (IMIS). Journal of Computational and Graphical Statistics 15(3), 712–734 (2006)
53. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In:

2nd International Conference on Learning Representations, ICLR 2014 (2014)
54. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Other Titles in Applied Mathematics. Society

for Industrial and Applied Mathematics (2005)
55. Tarantola, A., Valette, B., et al.: Inverse problems= quest for information. Journal of Geophysics| IF 32.18 50(1), 159–170 (1982)
56. Tu, C.C., Forbes, F., Lemasson, B., Wang, N.: Prediction with high dimensional regression via hierarchically structured Gaussian

mixtures and latent variables. Journal of the Royal Statistical Society: Series C Applied Statistics 68(5), 1485–1507 (2019)
57. Virtue, P., Yu, S.X., Lustig, M.: Better than real: Complex-valued neural nets for MRI fingerprinting. In: 2017 IEEE International

Conference on Image Processing (ICIP), pp. 3953–3957 (2017)
58. Zhao, B., Setsompop, K., Ye, H., Cauley, S.F., Wald, L.L.: Maximum likelihood reconstruction for magnetic resonance fingerprinting.

IEEE transactions on medical imaging 35(8), 1812–1823 (2016)


	Introduction
	Alternative fast inversion procedures
	Fast Bayesian approach to inverse problems
	Fast inversions and predictions
	Exploration of the posterior distribution with important sampling
	Estimation of the uncertainty on the model via EM
	Illustrations
	Conclusion and future work
	Appendix

