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Abstract: We investigate the use of learning approaches to handle Bayesian inverse problems
in a computationally efficient way when the signals to be inverted are high dimensional and in
large number. We propose a tractable inverse regression approach which has the advantage to
produce full probability distributions as approximations of the target posterior distributions.
In addition to provide confidence indices on the predictions, these distributions allow a better
exploration of inverse problems when multiple equivalent solutions exist. We then show how
these distributions can be used for further refined predictions using importance sampling,
while also providing a way to carry out uncertainty level estimation if necessary. The relevance
of the proposed approach is illustrated both on simulated and real data in the context of a
physical model inversion in planetary remote sensing.

Keywords and phrases: Inverse problems, High dimension, Bayesian analysis, Mixtures of
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1. Introduction

A wide class of problems from medical imaging (Frau-Pascual et al., 2014; Mesejo et al., 2016;
Lemasson et al., 2016; Nataraj et al., 2018) to astrophysics (Chiancone, Forbes and Girard, 2017;
Deleforge et al., 2015; Bernard-Michel et al., 2007; Schmidt and Fernando, 2015) can be formulated
as inverse problems (Tarantola, 2005; Giovannelli and Idier, 2015). An inverse problem refers to a
situation where one aims at determining the causes of a phenomenon from experimental observations
of its effects. The resolution of such a problem generally starts by the so-called direct or forward
modelling of the phenomenon. It theoretically describes how input parameters x ∈ X are translated
into effects y ∈ Y. Then from experimental observations of these effects, the goal is to find the
parameters values that best explain the observed measures.

Typical situations or constraints that can be encountered in practice are that 1) both direct and
inverse relationships are (highly) non-linear, e.g. the direct model is available but is a (complex)
series of ordinary differential equations as in Mesejo et al. (2016); Hovorka et al. (2004); 2) the obser-
vations y are high-dimensional because they represent signals in time or spectra, as in Schmidt and
Fernando (2015); Bernard-Michel et al. (2009); Ma et al. (2013); 3) many such high-dimensional ob-
servations are available and the application requires a very large number of inversions, e.g. Deleforge
et al. (2015); Lemasson et al. (2016); 4) the parameters x to be predicted is itself multi-dimensional
with correlated dimensions so that predicting its components independently is sub-optimal, e.g.
when there are known constraints such as their sum is one like for concentrations or probabilities
(Deleforge et al., 2015; Bernard-Michel et al., 2009).

The most standard resolution approaches are based on optimization techniques, minimizing a
cost function between observed and modelled effects possibly augmented with regularization terms
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(e.g. a priori knowledge). However, such methods cannot generally handle massive inversions of high
dimensional data and quantify uncertainty. Moreover, the choice of the regularization parameter is
not obvious and requires application dependent fine tuning.

Beyond optimization techniques, we propose to investigate learning and regression approaches
which are less commonly used to solve inverse problems. The main principle is to transfer the
cost of individual inversions to the estimation of an inversion operator that once learned provides
multiple predictions at low cost. In addition, to account for uncertainty in a principled manner, we
consider Bayesian inversion techniques. They provide a full posterior probability distribution as the
output of the inversion. However, Bayesian inversion is often impaired by an intractable normalizing
constant in the Bayes formula and requires the use of sampling intensive approaches such as Markov
Chain Monte Carlo (MCMC) techniques (Robert and Casella, 2004) or Approximate Bayesian
Computation (ABC) techniques (Sisson, Fan and Beaumont, 2018). MCMC and ABC procedures
provide samples of x values that follow the posterior distribution. These samples can be used to
compute point estimates of the parameters or more generally to get an empirical approximation of
the posterior probability distribution function (pdf). Despite coming with theoretical guaranties and
being used for example in remote sensing (Schmidt and Fernando, 2015), medical imaging (Bertrand
et al., 2001) or geology (Martin et al., 2012), a limitation of such sampling-based approaches is their
cost. A large number of samples has to be simulated and this for each y to be inverted. This is
problematic when the number and dimension of y increase. Although more and more approaches
address this issue, e.g. Bardenet, Doucet and Holmes (2014); Izbicki, Lee and Pospisil (2019),
sampling techniques do not scale easily to high dimensional settings.

In this work, we develop an approach, referred to as fast Bayesian inversion. Assuming parame-
ters and effects are random variables X ∈ X and Y ∈ Y, we consider a data set D = {(xn,yn), n =
1 : N}, built from the forward model via a data generating model or directly from observed realiza-
tions of X and Y if available. An inversion operator is learned from D via a parametric probability
distribution p(x | y; θ). The model p(x | y; θ̂) that best fits the data is selected in a family of so-
called Gaussian Locally Linear Mapping (GLLiM) models (Deleforge, Forbes and Horaud, 2015).
Indeed the latter have the ability to capture non linear relationships in a tractable manner based
on flexible mixtures of Gaussian distributions. The estimated parameter θ̂ captures the relationship
between X and Y as a whole and does not depend on a specific observed y to be inverted. The
learned model p(x | y; θ̂) can be used as an approximation of the true posterior density denoted
by p0(x | y). Its formulation allows to compute moments, modes etc. straightforwardly so that for
each new y to be inverted we can derive good candidates values for x at low cost. A simple solution
is to estimate x as the posterior mean, that is the mean of p(x | y; θ̂). However, this may not be

a good prediction when there exist several solutions. In this latter case, the modes of p(x | y; θ̂)
are likely to be a better choice. Overall, we propose to choose between candidate solutions using
some reconstruction criterion and to replace a costly continuous search in the parameter space by
a discrete choice among a small finite number of candidates solutions (e.g. the posterior mean and
posterior modes).

We show that such a parametric approximation and the consequent choice of the posterior mean
of p(x | y; θ̂) generally provides satisfying predictions. However, they may not be as accurate as
predictions generated by non parametric MCMC or ABC methods when they are feasible. We
therefore investigate the augmentation of the parametric approximation with some subsequent
importance sampling to get an improved approximation while maintaining tractability. We keep
the principle of proposing a discrete number of candidate solutions for efficiency but each of them
is refined using an additional importance sampling step.
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As for the design of the data set D, we present an Expectation Maximization (EM) algorithm to
estimate the appropriate level of uncertainty to use in the data generating model when this level is
not given by the experts.

The rest of the paper is organized as follows. In Section 2, we briefly review other fast inversion
procedures and justify our Bayesian choice. In Section 3, we recall the main ingredients of the
GLLiM parametric regression model used to learn an approximation of p0(x | y). In Section 4,
we specify different ways to exploit the GLLiM output for prediction using means or modes, while
in section 5, we propose a further improvement using importance sampling in cases where the
likelihood of the forward model is available. The EM algorithm for estimating the uncertainty level
is given in Section 6. Illustrations are given in Section 7 with the proposed approach tested on
synthetic data and on a challenging real inverse problem in planetary remote sensing. A discussion
and conclusion end the paper.

2. Alternative fast inversion procedures

Among alternatives to standard optimization that may provide low cost inversions are grid search
approaches used for example in remote sensing (Darvishzadeh, Matkan and Ahangar, 2012) and
medical imaging (Zhao et al., 2016; Lemasson et al., 2016). The optimization step is replaced by
a simpler look-up or matching operation. A large data set D = {(xn,yn), n = 1 : N} is generated
(stored or computed on the fly) by running the theoretical model for many different parameter values
corresponding to a grid in the full X space. Note that if D is available from direct observation, the
precise knowledge of the theoretical model is not necessary. Inverting the model on an observed y
consists of comparing y to the yn’s in D in order to find the best match (the nearest neighbor)
according to a similarity score. The solution is then set to the parameters xn associated to this
best match. The speed gain is significant in comparison to traditional optimization methods as
retrieving a value from memory is often faster than undergoing an expensive computation. The
sequence {x1, . . . ,xN} is fixed and does not depend on y but for each new y, the matching scores
to all yn’s have to be computed. It follows that grid search approaches are prone both to solution
instability and intractability in high dimensions (Bernard-Michel et al., 2009).

More recently, deep learning methods have been extensively applied to inverse problems (see
Arridge et al. (2019) for a survey). The idea is to replace the theoretical inverse function by an
approximate one, deduced from training samples. The learning strategy has been proposed by several
groups using deep learning tools (Virtue, Yu and Lustig, 2017; Hoppe et al., 2017; Cohen et al.,
2018; Balsiger et al., 2018; Barbieri et al., 2018; Song et al., 2019; Golbabaee et al., 2019). Like with
grid search approaches, the prediction with neural networks is fast, since the heavy computations of
the first step are done offline. Despite recent successes in classification tasks, neural networks still
raise questions. First, the number of parameters of this type of learning machines is so high that
the former are very difficult to interpret. In the case of multiple solutions, the inverse model is not
even a function. Second, it has been shown that neural networks may be highly non robust to noisy
observations. The work in Szegedy et al. (2014) presents striking examples. Third this inversion
technique does not generally estimate uncertainties on the solution. Finally, Adler and Öktem
(2017) points out that the learning step might require a lot of data, especially if the observation
space is high dimensional. Deep learning methods overall require more computational resources.

Other learning or regression methods adapted to high dimensions include inverse regression
methods, i.e. sliced inverse regression (Li, 1991), partial least squares (Cook and Forzani, 2019), ap-
proaches based on mixtures of regressions with different variants, e.g. mixtures of experts (Nguyen,
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Chamroukhi and Forbes, 2019), cluster weighted models (Ingrassia, Minotti and Vittadini, 2012),
and kernel methods (Nataraj et al., 2018). Inverse regression methods are flexible in that they re-
duce the dimension in a way optimal to the subsequent y to x mapping estimation that can itself
be carried out by any kind of standard regression tool. In that sense, inverse regression methods
are said to be non-parametric or semi-parametric. In Nataraj et al. (2018), the authors propose
a regression with an appropriate kernel function to learn the non-linear mapping. The procedure
has the advantage to be semi-parametric but a serious limitation is that the model components are
optimized in each dimension separately.

Thus, the difficulty is that the above methods are either not specifically designed for high dimen-
sional data or are limited to point-wise predictions with no guaranty or indication of the prediction
reliability. In this work, we aim at combining learning and Bayesian approaches to make the best
use of the known forward model while taking into account the inherent uncertainties related to the
model.

3. Fast Bayesian approach to inverse problems

A natural way to account for uncertainties is to adopt a statistical formulation. Our knowledge on
the forward model is encoded in the following Data generating model.

3.1. Data generating model

In our inverse problem setting, we call parameters the input values x that generate the observed
effects y. This denomination should not be confused with parameters defining statistical models that
we denote by θ in most cases. The parameters and observations are therefore assumed to be random
variables X ∈ X ⊂ RL and Y ∈ Y ⊂ RD of dimension L and D respectively where D is usually
much greater than L. The forward model is described by a likelihood function linking parameters
values x to the probability of observing some effects y and denoted by Lx(y) = p0(y | X = x).
We will further assume that the relationship between X and Y is described by a known function
F and that the uncertainties on the theoretical model are independent on the input parameter X.
In other words,

Y = F (X) + ε (1)

where ε is a random variable. For instance, ε is assumed to be a centered Gaussian variable with
covariance matrix Σ, so that Lx(y) = N (y;F (x),Σ), where N ( . ;F (x),Σ) denotes the Gaussian
pdf with mean F (x) and covariance Σ. Firstly we assume that Σ is given but this constraint is
then relaxed with a proposal to estimate Σ in Section 6.

To complete the model, we consider a prior distribution on the possible parameter values denoted
by p0(x). This probabilistic formulation allows, according to the Bayesian theorem, to transform
an a priori probability distribution into a posterior distribution p0(x | y) ∝ Lx(y) p0(x) which
incorporates the physical model and the actual observations with their uncertainties. However,
even with the simplifying Gaussian likelihood function above, in most cases of interest F is non
linear and the Bayesian inversion does not provide an explicit solution for the posterior p0(x | y)
due to an intractable normalizing constant in the Bayes formula.

As an alternative to sampling of the posterior (MCMC or ABC) which does not scale well with
dimension and number of inversions to be carried out, we propose to use the data generating model
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(p0(x),Lx(y)) for the learning phase of the inversion. For reasonable choices of the two model
ingredients, the prior and the likelihood, generating a data set D = {(xn,yn), n = 1 : N} is a
straightforward task. Without further knowledge, a common setting is to use a uniform prior on
the parameter space and a Gaussian likelihood. From this data set, we can then adopt a regression
or learning approach to learn a mapping from the parameter space to the observation space. The
main principle is to transfer the cost of individual heavy simulation-based inversions to the learning
of a global inverse operator which can then be applied at very little cost to a large number of y
values. To perform this task, we propose to use the Gaussian Locally Linear Mapping (GLLiM)
approach described in the next section.

3.2. Parametric posterior approximation with Gaussian mixtures

In the same vein as inverse regression approaches, and in contrast to deep learning approaches
mentioned in Section 2, we propose to use the Gaussian Locally Linear Mapping (GLLiM) model
(Deleforge, Forbes and Horaud, 2015) that provides a probability distribution selected in a family of
mixture of Gaussian distributions {p(x |y; θ),θ ∈ Θ}, where the mixture parameters are denoted
by θ. There have been several extensions and uses of GLLiM, including more robust (Perthame,
Forbes and Deleforge, 2018; Tu et al., 2019) and deep (Lathuiliere et al., 2017) versions. However
in all these contexts, the focus is on using the model for predictions without fully exploiting the
posterior distributions provided by GLLiM.

An attractive approach for modeling non linear data is to use a mixture of linear models. We
assume that each Y is the noisy image of X obtained from a K-component mixture of affine
transformations. This is modeled by introducing a latent variable Z ∈ {1, . . . ,K} such that

Y =

K∑
k=1

1I{Z=k}(AkX + bk + εk) (2)

where 1I is the indicator function, Ak a D × L matrix and bk a vector of RD that define an affine
transformation. Variable εk corresponds to an error term which is assumed to be zero-mean and
not correlated with X capturing both the observation noise and the reconstruction error due to the
affine approximation. To make the affine transformations local, the latent variable Z should also
depend on X.

For the posterior distribution p(x | y) to be easily derived from the likelihood p(y | x), it is
important to control the nature of the joint p(y,x). Once a family of tractable joint distributions is
chosen, we can look for one that is compatible with (2). In Deleforge, Forbes and Horaud (2015) the
GLLiM model is derived assuming that the joint distribution is a mixture of Gaussian distributions.
Using a subscript G to specify the model, it is assumed that εk ∼ N (0,Σk) and that X is distributed
as a mixture of K Gaussian distributions specified by pG(x|Z = k) = N (x; ck,Γk), and pG(Z =
k) = πk . It follows that the model parameters are θ = {πk, ck,Γk,Ak, bk,Σk}k=1:K .

One interesting property of such a parametric model is that the mixture setting provides some
guaranties that when choosing K large enough it is possible to approximate any reasonable relation-
ship (Nguyen, Chamroukhi and Forbes, 2019) and that both conditional distributions are available
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in closed form :

pG(y|X = x,θ) =

K∑
k=1

ηk(x)N (y;Akx + bk,Σk) with ηk(x) =
πkN (x; ck,Γk)∑K
j=1 πjN (x; cj ,Γj)

(3)

pG(x|Y = y,θ∗) =

K∑
k=1

η∗k(y)N (x;A∗ky + b∗k,Σ
∗
k) with η∗k(y) =

πkN (y; c∗k,Γ
∗
k)∑K

j=1 π
∗
jN (y; c∗j ,Γ

∗
j )
. (4)

In (4), a new parametrization θ∗ = {π+k, c∗k,Γ
∗
k,A

∗
k, b
∗
k,Σ

∗
k}k=1:K is used to illustrate the similarity

between the two conditional distributions (3) and (4). The parameter θ∗ is easily deduced from θ
as follows:

c∗k =Akck + bk, Γ∗k = Σk +AkΓkA
>
k

Σ∗k =
(
Γ−1k +A>k Σ−1k Ak

)−1
(5)

A∗k =Σ∗kA
>
k Σ−1k , b∗k = Σ∗k

(
Γ−1k ck −A

>
k Σ−1k bk

)
.

In practice when D is much larger than L, it is more efficient to estimate θ from the available
data D to then deduce θ∗ and subsequently the conditional distribution of interest (4). The size
of θ can be significantly reduced by choosing constraints on matrices Σk without oversimplifying
the target conditional (4). Typically, diagonal covariance matrices can be used with a drastic gain.
To estimate θ a standard Expectation-Maximization (EM) algorithm can be used. All details are
provided in Deleforge, Forbes and Horaud (2015).

Fitting a GLLiM model to D results in an analytical expression denoted by pG(x|y, θ̂
∗
) of the

form (4) which is a mixture of Gaussian distributions and can be seen as a parametric mapping

from y values to the pdfs on x. The parameter θ̂
∗

is the same for all conditional distributions and
does not need to be re-estimated for each new y to be inverted. This is in contrast to sampling
procedures like MCMC which would require a new set of samples for each inversion.

A recent result (Nguyen, Chamroukhi and Forbes, 2019), on the density of multiple output
mixtures of expert models, justifies a somewhat arbitrary choice of K as soon as it is large enough.
Intuitively, highly non-linear F may require a greater K. Automatic model selection procedures can
also be used to select K (see Deleforge, Forbes and Horaud (2015)). Alternatively, the choice of K
can be guided by the quality of the learned direct model, which only requires a learning data set
to be evaluated.

4. Fast inversions and predictions

In applications, the main question is then how to use the approximate posterior pG(x|y,θ∗) to
provide predictions or more general information on the value of x for a given y. We consider mainly
prediction by the means and by the modes and investigate below different ways to approximate
these quantities.
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4.1. Different prediction schemes

4.1.1. Prediction using the posterior mean

The approximate posterior mean EG [X |Y = y,θ∗] minimizes the mean square error and is given
by the mean of (4). For a given y, a first estimator for x is then

x̄G(y) = EG [X |Y = y,θ∗] =

K∑
k=1

η∗k(y) (A∗ky + b∗k) .

Its computation is straightforward once the GLLiM model has been learned. As shown later in
our experiments and various papers (Deleforge, Forbes and Horaud, 2015; Deleforge et al., 2015;
Perthame, Forbes and Deleforge, 2018; Tu et al., 2019), it performs well in several cases. Similarly,
other moments can be easily computed. The variance of distribution (4), which accounts for the
dispersion around the prediction by the mean, admits the following expression:

varG(y) =

K∑
k=1

η∗k(y)
[
Σ∗k + (A∗ky + b∗k)(A∗ky + b∗k)T

]
− x̄G(y) x̄G(y)T .

4.1.2. Prediction with the posterior modes

Prediction by the mean is likely to yield good results when the solution is unique and the posterior
unimodal. However, it is only a limited summary of the posterior whose full shape may be more
informative. When the inverse problem has multiple solutions, the true posterior distribution may
reflect that by exhibiting several modes. It follows that the GLLiM approximation may also be
multimodal and the prediction by the mean, although a good approximation of the true E[X|Y = y],
may provide a low probability solution that is not satisfying for the user. Another problem arises
when F has a low sensitivity to part of its variables. Even if the posterior distribution is unimodal,
its mean may differ quite largely from its mode.

An alternative then is to look at the modes of the mixture (4) provided by GLLiM. Unfortunately,
finding the modes of a Gaussian mixture is not an easy task (Ray and Lindsay, 2005). Heuristics
have been proposed starting from the mixture centroids (Carreira-Perpinan, 2000) but in contrast
to the mean, there is no analytical formula for the modes and they need to be determined for each
new y. The issue of multiple solutions and their localization is highly dependent on y. In practice,
their number is not known. The mixture centroids which correspond to the means of the mixture
components are not usually good candidates for the modes. However, as suggested in Carreira-
Perpinan (2000), they can be good starting points for a fixed-point iterative scheme. When there
are a lot of components in the mixture, the density could be explored starting from the centroids
with the highest weights to locate the main possible modes using this heuristic scheme. We refer to
Carreira-Perpinan (2000) for details. We will not further discuss this issue.

In what follows we propose to address the case of two solutions for x but the same approach
generalizes for more. To account for all mixture components, we consider the following procedure.
For any y of interest, the GLLiM approximation of the posterior pG(x|y;θ∗) will likely exhibit a
majority of low probability components with only a few of them useful for inverting y. Recall that
the weight of component k is given by η∗k(y) = η∗(y)

−1
πkN (y; c∗k,Γ

∗
k), η∗(y) being a normalisation

factor (independent of k). Thus, only components with centroids close to y and high πk are likely to
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matter. For a simplified, exploitable mixture, the initial K-component Gaussian mixture is modified
into a 2-component one. Among the many merging algorithms (see Hennig (2010) for an overview),
the algorithm described in Runnalls (2007) is used. This algorithm relies on two steps :

• given two Gaussian components, merge them into a single Gaussian with same weight, mean
and variance as the original sum;

• at each iteration, select the two components to be merged by minimizing the Kullback-Leibler
divergence between the current mixture and the one that would be obtained by merging these
two components.

It follows a final mixture of 2-components with respective weight, mean and covariance denoted by
(πy1 ,µ

y
1,Σ

y
1) and (πy2 ,µ

y
2,Σ

y
2).

The new centroids are considered as prediction candidates and denoted by x̂centroid,1(y) = µy1
and x̂centroid,2(y) = µy2. It is expected that these centroids are close to the modes of the posterior,
but there is no guaranty in the general case. In addition, the merging cost is cubic in K, which might
be problematic to maintain computational efficiency. However, this step may be strongly speed up
by discarding the none significant Gaussian components. As already pointed out, the posterior is
likely to be composed of a majority of very low weighted components, which are the components far
away from the observed y. In this case, a preliminary step can be added to merge for instance the
50% less significant components with an expected 8 times speed gain. Alternatively, components
can be removed when their weight is below a fixed threshold. A threshold as small as 10e−10 can
already be efficient for this purpose. One important property of the merging algorithm is that the
mean and variance of the initial GLLiM mixture are preserved, that is x̄G(y) = πy1 x̂centroid,1(y) +
πy2 x̂centroid,2(y). Hence, if the mean is close to one of the two final centroids, this means that one of
the weight πyi is close to one while the other one is close to zero, suggesting a unimodal distribution.
In contrast, a mean far from both centroids suggests multimodality.

4.1.3. Comparison and selection of predictions

The analysis of the approximate posterior potentially provides a number of possible predictions for
x. When F is known, a simple criterion to compare them is to compute the residuals, that is the
distance of F (x) to the observed y. The residuals can be compared for each of the three predictions
x̄G, x̂centroid,1 and x̂centroid,2 using the formula, R(x) = ||y − F (x)||2/||y||2. In a multi-solution
scenario, the two centroids should have low residual errors while the mean should have a higher
one. Reversely, a high residual error for one of the centroids, combined with a low weight, indicates
that it should be discarded. The residual error criterion can be used to assess other values of x.

4.2. Accounting for measurement errors

Independently of the chosen prediction scheme, the use of a unique θ∗ parameter for all inversions
provides a great gain when massive inversions are required but it also assumes that the same model
is valid for all observations to be inverted and that the dictionary D is a good representation of
them. Although this is a standard assumption, we can point out another useful feature of GLLiM
which is to efficiently adapt to known measurement errors. This corresponds to the case where
the observed yobs comes with some covariance matrix Σobs indicating that the data provider was
able to measure uncertainty on the observed data. We interpret this additional information as a
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measurement error to be distinguished from Σ in (1) which rather accounts for uncertainty on the
model. It follows that the observation to be inverted should rather be written as y = yobs + εobs
where εobs is following a centered Gaussian distribution with covariance Σobs. This means that the
initial dictionary D is not fully adapted to invert y if the data generating process does not account
for this additional measurement error. Therefore, another training set Dobs should be simulated and
used instead, with a corrected likelihood corresponding to Y = F (X)+ε+εobs. Obviously this may
be too time consuming if this has to be done for each inversion. Fortunately, it is straightforward
to check that the structure of the Gaussian mixture approximation avoid the re-learning of the
GLLiM model. Indeed, it suffices to change the estimated Σk’s into Σk + Σobs and to report this
change when computing θ∗ in (5) and the corresponding pG(x|Y = y,θ∗). It should be noted
that the uncertainty on the model and the measurement errors combine in our inversion scheme.
This is actually a generic characteristic of the Bayesian formalism applied to inversion problems in
geophysics (Tarantola et al. (1982))

5. Exploration of the posterior distribution with important sampling

In the previous section, we indicated how the GLLiM posterior could be used for prediction. In this
section, we leverage our knowledge of the true model F to enhance the predictions using importance
sampling (IS). More specifically, since the real posterior p0(x | y) ∝ Lx(y) p0(x) is only known up
to a constant, we use self-normalized importance sampling (Robert and Casella, 2004).

5.1. Mean prediction with importance sampling

The so called self-normalized importance sampling is based on the observation that, using the
tractable part p̃0(x | y) = Lx(y) p0(x), the posterior mean writes

E[X | Y = y] =

∫
x p̃0(x|y) dx∫
p̃0(x|y) dx

=

∫
x p̃0(x|y)

ν(x) ν(x) dx∫ p̃0(x|y)
ν(x) ν(x) dx

for any distribution ν(x) satisfying ν(x) > 0 where p̃0(x|y) > 0. When ν is easy to compute
and to simulate from, the law of large numbers justifies the approximation of E[X | Y = y] by

x̄IS(y) = (
I∑
i=1

wi)
−1

I∑
i=1

wixi , where the xi’s are I i.i.d. realizations simulated according to ν and

the wi’s are weights computed as wi = p̃0(xi|y)/ν(xi).
A natural candidate for ν is the approximate posterior provided by GLLiM pG(x|y;θ∗) from

which it is easy to simulate. For i = 1 : I, let xGi be simulated from pG with the associated impor-
tance weight wGi = p̃0(xGi |y)/pG(xGi |y;θ∗). Eventually the importance sampling (IS) approximation
of the mean is given by

x̄IS−G(y) =

∑I
i=1 w

G
i xGi∑I

i=1 w
G
i

. (6)

5.2. Centroid-based prediction with importance sampling

Similarly, predictions with the posterior modes as introduced in Section 4 can be refined using again
importance sampling. A general property is that if the prior is chosen as importance distribution,
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the weights are proportional to the likelihood. Thus, one first draws samples from the prior and
then determines their weights by comparing them with the data. The higher the weight, the closer
to the mode provided the drawn samples lie in a region where the posterior probability is high. If
this is the case, the importance sampling mean is likely to provide a solution with higher posterior
probability.

To choose an appropriate prior, we propose to use the knowledge learned from the merged poste-
rior. The prior is set to p(x) = N (x;µy1,Σ

y
1) (resp. N (x;µy2,Σ

y
2)) to estimate the first mode (resp.

the second) in cases where we focus on two modes. A more general case can be easily considered. We
therefore simulate: for i = 1 : I, x1

i ∼ N (µy1,Σ
y
1) and compute the associated importance weights

w1
i = N (F (x1

i ); y,Σ). Eventually the IS approximation of the first mode is given by

x̄IS−centroid,1(y) =

∑I
i=1 w

1
i x

1
i∑I

i=1 w
1
i

. (7)

Finally this approach provides a potential additional refinement for the values of x that can
be checked by calculating the reconstruction error both for a unimodal or multimodal case. More
details are given in the experiments section 7.

6. Estimation of the uncertainty on the model via EM

We propose a procedure which allows to handle the situations where the uncertainty on the model
is not known. This uncertainty may include both deviations from the theoretical model and mea-
surements errors. However, estimation is possible only under the restrictive assumption that this
uncertainty is represented by the same covariance matrix for all observations. In other words, the
observed {ym,m = 1 : Nobs} to be inverted are assumed to be independent realizations of the same
model given by Y = F (X) + ε, with ε ∼ N (0,Σ) and X ∼ p(x). We use the same generic notation
Σ as in Section 3.1 although it may also include a constant Σobs component. The goal is then to es-
timate Σ from the ym’s. If the associated {xm,m = 1 : Nobs} were also observed, a straightforward

maximum likelihood estimation of Σ would be given by, N−1obs
∑Nobs

m=1(ym−F (xm))(ym−F (xm))T .
As in standard missing data settings, the idea is to treat the missing xm as latent variables and to
use an EM algorithm to estimate Σ. Starting from an initial value Σ(0), the EM algorithm consists
of updating at iteration (r),

Σ(r) = arg max
Σ

Nobs∑
m=1

E[log p(ym,Xm; Σ) | ym; Σ(r−1)]

= arg max
Σ

Nobs log |Σ|+
Nobs∑
m=1

E[(ym − F (Xm))TΣ−1(ym − F (Xm)) | ym; Σ(r−1)]

from which we can derive that

Σ(r) =
1

Nobs

Nobs∑
m=1

E[(ym − F (Xm))(ym − F (Xm))T | ym; Σ(r−1)] (8)

The expression above requires expectations with respect to p(x | Y = ym; Σ(r−1)) which we propose

to compute using importance sampling with pG(x | Y = ym;θ(r−1)) as importance distribution.
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But the use of the GLLiM approximation pG requires a dictionary D(r−1) and a learning step of the
GLLiM parameters which is generally different at each iteration. To avoid high computational cost,
we can however make use of the GLLiM model property already mentioned on Section 4.2 to update
pG directly by modifying the Σk parameters from an initial learned GLLiM model corresponding
to θref. The value of Σ used to initialize the EM algorithm is application dependent.

Algorithm 1: EM uncertainty estimation
Result: Estimated Σ.
Generate a training dictionary Dref and learn a GLLiM model θref .
Initialize Σ to Σ(0) (application dependent).
while r ≤ rmax do

Update the GLLiM parameter θ(r−1) using θref and Σ(r−1) as described in Section 4.2.
foreach ym do Importance Sampling

For i = 1 : Im, sample xi from pG(x | Y = ym;θ(r−1));

Compute the weights w
(r)
i = p(xi | Y = ym; Σ(r−1))/pG(xi | Y = ym;θ(r−1))

Compute S
(r)
m := (

∑Im
i=1 w

(r)
i )−1

Im∑
i
w

(r)
i (ym − F (xi))(ym − F (xi))

T

end

update Σ(r−1) according to (8) as Σ(r) = N−1
obs

Nobs∑
m=1

S
(r)
m

end

7. Illustrations

The different prediction schemes introduced earlier are tested on various experiments. The first part
of this section is devoted to toy examples, designed to illustrate potential numerical issues for which
we propose solutions. The second part tackles our main real data application: an inverse problem
in remote sensing. The algorithms are currently implemented in the Julia programming language
(Bezanson et al., 2017), and available online. Computation times are provided in Appendix A. The
notations previously introduced are recalled in Table 1.

Notation Description and dimension
yobs observation (dimension D)
xobs for synthetic experiments, original true parameters (dimension L)
xobs,1 for synthetic multi solution experiments, first original true parameters
xobs,2 for synthetic multi solution experiments, second original true parameters
x̄G mean of the GLLiM posterior density (dimension L)
x̂centroid,1 first centroid of the merged GLLiM density (dimension L)
x̂centroid,2 second centroid of the merged GLLiM density (dimension L)
x̄IS−G Importance Sampling estimator of the mean of the posterior (dimension L)
x̄IS−centroid,1 Importance Sampling estimator of the first mode of the posterior (dimension L)
x̄IS−centroid,2 Importance Sampling estimator of the second mode of the posterior (dimension L)
x̂best best prediction among all estimators (with respect to the reconstruction error)

Table 1
Notations

https://gitlab.inria.fr/bkugler/kernelo/-/tree/master/simulations
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D L K N σ Nobs αobs I
Example 1 1 1 40 50000 0.01 100 1000 10000
Example 2 9 4 30,40,70 50000 0.001 1000 1000 10000
Example 3 10 4 40,70,100 50000 0.0001 1000 1000 50000
Example 4 10 4 50 50000 0.001 100 20 50000
Example 5 11 4 50 50000 0.001 154650 NA 20000

Table 2
Synthetic and real data examples. Training and testing settings.

7.1. Validation on simple models and synthetic examples

7.1.1. Procedure

A similar procedure is adopted for all the tests in this part. In most applications, for a given
forward model F , the training data set is simulated using a range of values for each parameter.
Without loss of generality, the parameter space is then assumed to be P = [0, 1]L after normaliza-
tion of each parameter if necessary. A set of N training parameter vectors is generated randomly
using Sobol quasi-random sequences (Sobol, 1967) to get evenly spaced samples in P. The cor-
responding N training observations (yn’s) are then generated by applying the forward model to
each simulated parameter vector and adding some centered Gaussian noise with covariance matrix
Σ = σ2Id. It follows a set D = {(xn,yn), n = 1 : N} with yn = F (xn) + εn with εn ∼ N (0,Σ).
D is used to learn a GLLiM model with K mixture components as described in Section 3. A
test set T = {(xmobs,ymobs),m = 1 : Nobs} is simulated similarly, with Nobs parameter vectors xmobs
and ymobs = F (xmobs). To mimic standard remote sensing situations, this test set is supposed to
come with additional information on the measurement uncertainty. Each observation ymobs is as-
sumed to be corrupted with a centered Gaussian noise with covariance matrix Σm

obs. Following
common practice in remote sensing (e.g. Schmidt and Fernando (2015)), Σm

obs is generally taken as
Σm
obs = diag(F (xmobs)/αobs)

2 for some positive scalar αobs to be specified representing a percentage
of uncertainty.

For predictions, the different schemes are compared leading to several possible values x for
each observation yobs ∈ T in the test set. More specifically, we consider up to 6 different predic-
tions all based on the initial GLLiM model with K components. As explained in Section 4.2, the
learned GLLiM parameters are adjusted to account for Σn

obs’s. Then the 6 prediction values are:
the GLLiM expectation value (x̄G), the two GLLiM mixture centroids (x̂centroid,1 and x̂centroid,2),
and their counterparts obtained after importance sampling (x̄IS−G, x̄IS−centroid,1, x̄IS−centroid,2).
The importance sampling procedure requires the simulation of I parameter vectors according to
the chosen proposal distribution. The specific values of D,L,K,N, σ,Nobs, αobs, I are specified for
each experiment and recap in Table 2.

The predictions are compared using the (relative) reconstruction error (sometimes also called
residual error) defined as R(x) = ||yobs − F (x)||2/||yobs||2. In the following tables, R̄ will denotes
the reconstruction error averaged over the test dataset. When ground truth values xobs of the
parameters are available, another performance criterion is the prediction error on x denoted by
E(x) = ||x− xobs||∞. Similarly Ē will refer to the error averaged over the test dataset. When the
parameters space is [0, 1]L this quantity belongs to [0, 1] making it comparable from one experience
to another.

In practice, we suggest to retain the value, denoted by xbest, that minimizes the reconstruction
error among all the proposed estimators.
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7.1.2. Example 1: Simple double solution problem

A first example illustrating the multiple solutions case is obtained with F (x) = (x−0.5)2 (L = D =
1), which admits two solutions denoted by xobs,1 and xobs,2 = 1 − xobs,1 for every observation. In
this example, N = 50000, σ = 0.01 and K = 40. For the test set, Nobs = 100 parameter values are
sampled along sinus functions for visualization purpose and observations are generated applying F
with a noise set with αobs = 1000. I = 10000 samples are drawn to perform importance sampling.
Figure 1 shows that predictions based on the mean cannot retrieve the true solutions, while centroid
predictions after mixture merging are accurate. The IS-GLLiM mean is close to the GLLiM mean
showing that the inaccuracy is not coming from the GLLiM approximation.

Fig 1. Double solution case. Mean predictions using GLLiM and refined with importance sampling (red) vs centroid
predictions (blue and yellow) using the two-component mixture obtained by merging the GLLiM mixture components.
The true parameter values xobs,1 and xobs,2, chosen along sinus functions, are in green.

7.1.3. Example 2: Importance sampling for the centroids

In this example, the goal is to illustrate how importance sampling may correct the imprecision due
to the approximation induced by the first GLLiM mapping step. F is designed so as to exhibit
2 solutions with D = 9 and L = 4, F = A ◦ G ◦ H, where A is a D × L injective matrix,
G(x) = (exp(x1), exp(x2), exp(x3), exp(x4)) and H(x) = (x1, x2, 4(x3 − 0.5)2, x4). The resulting
F is therefore non-linear and yields two solutions for each observation, denoted by xobs,1 and
xobs,2 = 1 − xobs,1. In this example, N = 50000, σ = 0.001, Nobs = 1000, αobs = 1000. Three
different values of K = 30, 50, 70 are tested. As in previous simulations, the Nobs xnobs’s are set
along a sinus function. Figure 2 shows that importance sampling significantly improves predictions.
This is confirmed by the reconstruction and prediction errors reported in Table 3. To handle the
double solutions in a meaningful way we compute these errors by comparing the pair (xobs,1,xobs,2)
with the most favorable permutation of the two predicted centroids. In particular, Table 3 shows
that K has not a huge impact on the results and that the quality of the GLLiM approximation is
not the major factor in the IS prediction quality.
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Fig 2. Importance sampling for centroids. IS centroid predictions (yellow) starting from GLLiM with K=30 (blue).
The L= 4 parameters are shown separately with the true centroids in green. Reconstruction errors are in the top
right plot.

Prediction scheme K = 30 K = 50 K = 70
R̄(x̂centroid,1) 0.0956 (0.0654) 0.0821 (0.0699) 0.0776 (0.0767)
R̄(x̂centroid,2) 0.0711 (0.0512) 0.0681 (0.0469) 0.078 (0.0644)
R̄(x̄IS−centroid,1) 0.0079 (0.011) 0.0076 (0.0109) 0.0062 (0.0135)
R̄(x̄IS−centroid,2) 0.0094 (0.0125) 0.006 (0.0088) 0.009 (0.0212)
Ē(x̂centroid,1) 0.1224 (0.1108) 0.1073 (0.0748) 0.1104 (0.0863)
Ē(x̂centroid,2) 0.142 (0.0964) 0.1324 (0.1161) 0.1214 (0.0865)
Ē(x̄IS−centroid,1) 0.0504 (0.1401) 0.058 (0.1375) 0.0488 (0.1436)
Ē(x̄IS−centroid,2) 0.0727 (0.1715) 0.0594 (0.1575) 0.0618 (0.1468)

Table 3
Importance sampling for centroids. Average reconstruction (first 4 lines) and prediction (last 4 lines) errors, for 4
prediction schemes, 1000 tests, 3 GLLiM settings. Standard deviations are in parenthesis and best averages are in

bold.

7.2. A physical model inversion in planetary science

Our real data application comes from the study of the Martian environment, in particular the
morphological, compositional and textural characterization of sites representing various geological
contexts at different periods of the history of Mars. The composition of the materials is estab-
lished on the basis of spectral mixing and physical modelling techniques using images produced by
hyperspectral cameras (Compact Reconnaissance Imaging Spectrometer for Mars (Murchie et al.,
2009) or CRISM@MRO). Information on the microtexture of surface materials such as grain size,
shape, roughness and internal structure can also be used as tracers of geological processes (Fer-
nando, Schmidt and Douté, 2016). This information is accessible under certain conditions thanks
to hyperspectral image sequences acquired from eleven different angles by the CRISM instrument
during a site flyover by MRO. It should be noted that such observations can also be measured in
the laboratory, on known materials in order to validate a model, or on materials of unknown origin,
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such as meteorite fragments (Potin et al., 2019). In both cases, the interpretation of the surface
Bidirectional Reflectance Distribution Factor (BRDF) extracted from these observations, in terms
of composition and microtexture, is based on the inversion of physical models of radiative transfer
linking physical and observable parameters in a non-linear way.

The Hapke model is a semi-empirical photometric model that relates physically meaningful pa-
rameters to the reflectivity of a granular material for a given geometry of illumination and viewing.
Formally, it links a set of parameters x ∈ R4 to a theoretical BRDF denoted by y = Fhapke(x) ∈ RD.
A given experiment defines D geometries of measurement, each parametrized by a triplet (θ0, θ, φ)
of incidence, emergence and azimuth angles. Moreover, x = (ω, θ, b, c) are the sensitive parameters
(respectively single scattering albedo, macroscopic roughness, asymmetry parameter and backscat-
tering fraction). For simplicity, we ignore the angular width h and the amplitude B0 of the opposition
effect. More details on these notations and their photometric meaning may be found for example
in Schmidt and Fernando (2015), alongside the explicit expression of Fhapke.

In the following experiments, we also apply a change of variable γ = 1 −
√

1− ω, in order to
avoid a high non-linearity of Fhapke when ω tends to 1. Indeed Fhapke is equivalent to

√
1− ω when

ω is close to 1. This may lead to infinite derivatives with respect to ω, a challenging situation for a
locally linear model. Better results are observed for some edge case observations while the change
does not impact other cases.

The experiments in this section are all made using similar learning sets for the initial GLLiM
model. The number of parameters is L = 4 with D = 10 or 11 geometries considered. The size of
the training set is N = 50000 and different values of K are considered as summarized in Table 2.
Predictions are obtained following the same procedure as in the previous section.

7.2.1. Example 3: Synthetic data from the Hapke’s model

Prior to real data inversion, a first step is to check the ability of our method to accurately capture
the Hapke’s model main features. To this end, Nobs = 1000 synthetic observations are generated.
The L = 4 parameters above are considered and each of them is simulated along a sinus function
for visualization purpose. For m = 1 : Nobs and l = 1 : L, xm,lobs = 0.5 + 0.4 sin( 2mπ

Nobs
+ lπ

4 ).

The corresponding reflectance curves are generated as ymobs = Fhapke(x
m
obs) corrupted by a noise

defined by αobs = 1000. The dimension of the observed vector (D = 10) and the measurement
geometries used to define Fhapke are borrowed from a real laboratory experiment presented in the
next example. The experimental setting defines geometries at which the measurements are made,
which in turn define Fhapke. The number of geometries thus corresponds to the size D of each
observation. In this experiment D = 10. All the prediction schemes are performed but only the
GLLiM expectation prediction x̄G, its refinement by importance sampling x̄IS−G and the best
prediction in terms of reconstruction error, denoted by x̂best are reported in Figure 3. This example
highlights the interest of the different predictions methods. The GLLiM expectation prediction
x̄G is often good enough, the centroid estimations not giving additional information, apart from
confirming the uni-modality of the posterior. See the estimation of ω in Figure 3 where all predictions
coincide. However, it appears on the other parameters that a better precision can be reached using
importance sampling starting from the GLLiM posterior approximation as proposal distribution.
This is visible in the reconstruction error plot of Figure 3. At last, in some cases, prediction by the
mean can be further improved by considering centroids. This corresponds to the case where the
x̂best estimation significantly differs from the two others. For a more quantitative analysis, Table 4
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provides the reconstruction and prediction errors for these observations. The centroid predictions,
not plotted for clarity, are added in this table.

Prediction scheme K = 40 K = 70 K = 100
R̄(x̄G) 0.0718 (0.0862) 0.0417 (0.0337) 0.0365 (0.0443)
R̄(x̄IS−G) 0.0049 (0.0049) 0.0034 (0.0031) 0.0037 (0.0045)
R̄(x̄IS−centroid,1) 0.0087 (0.0188) 0.0073 (0.0109) 0.006 (0.0101)
R̄(x̄IS−centroid,2) 0.0103 (0.0128) 0.0078 (0.01) 0.0057 (0.0093)
R̄(x̂best) 0.0026 (0.0022) 0.0019 (0.0015) 0.0018 (0.0016)
Ē(x̄G) 0.1557 (0.127) 0.1245 (0.1051) 0.1175 (0.1001)
Ē(x̄IS−G) 0.0753 (0.091) 0.0519 (0.0698) 0.0607 (0.0807)
Ē(x̄IS−centroid,1) 0.0699 (0.0868) 0.0629 (0.0795) 0.0698 (0.1065)
Ē(x̄IS−centroid,2) 0.1243 (0.1544) 0.102 (0.1359) 0.0662 (0.0837)
Ē(x̂best) 0.0398 (0.0457) 0.031 (0.0367) 0.033 (0.0411)

Table 4
Synthetic data from the Hapke’s model. Average reconstruction (first 4 lines) and prediction (last 4 lines) errors,
for 4 prediction schemes, 1000 tests, 3 GLLiM settings. Standard deviations are in parenthesis and best averages

are in bold.

7.2.2. Example 4: Laboratory observations

Reflectance measurements in the laboratory on crushed minerals are now considered (see Pilorget
et al. (2016) for more details). We focus on three experiments (Olivine, Nontronite and Basalt),
each of them measured at 100 wavelengths in the spectral range 400-2800 nm, seen as independent
observations. For our test we select the Nontronite dataset since it presents the largest spectral
variations. It corresponds therefore to a number of Nobs = 100 observations ymobs (m = 1 : Nobs) to
invert. As before, the experimental setting defines geometries at which the measurements are made,
which in turn define Fhapke. The size D of each observation is D = 10 and the corresponding angles
are such that the incidence and azimuth angles are fixed to θ0 = 45 and Φ = 0. In Figures 4 and 5,
our results are compared to that obtained with MCMC techniques, used for example in Schmidt and
Fernando (2015). For the MCMC procedure, a Metropolis-Hasting algorithm was used, generating
for each of the 100 observations to be inverted 107 samples with a burnin period of 5×106 samples.
For a comparison with Schmidt and Fernando (2015), the noise added to the observations ymobs’s is,
in this example, Σm

obs = diag(max(ymobs/20, 0.01)2). This corresponds most of the time to a relative
error of 5%. For very dark material, the reflectance ymobs is low. The above formula therefore ensures
a minimum noise of 0.01 unit of reflectance in all cases. Figure 4 provides the inversion results for
the Nontronite measurements for each wavelength, in the form of spectra for each parameter and for
the reconstruction error. The parameter ω is accurately retrieved. The three other parameters show
abrupt variations between successive observations. This is not physically satisfying and probably
results from the relative low sensitivity of the direct model to these parameters, yielding posterior
distributions with no clear peaks, responsible in turn for rather unstable predictions in the X
space. Figure 5 compares the observation to reconstructions from predictions. For this last figure,
the results are shown via polar plots, the angle being the emergence angle and the radius the level of
reflectance. The yellow line indicates the illumination direction. Three different wavelengths among
the ymobs’s are chosen to fall on specific spectral features. The plots show then 10 points which

coordinates are (ym,dobs , θd) or (Fhapke(x)d, θd) for d = 1 : D and for different predictions x. The
MCMC prediction targets the mean and is therefore closer to our mean predictions while it appears
that our x̂best predictions provide better reconstructions.
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Fig 3. Inversion of synthetic data from the Hapke’s model. A GLLiM model is learned from training data with
K = 70. The GLLiM mean prediction x̄G (plain, red), its refined version with importance sampling x̄IS−G (circle,
red) and the reconstruction best prediction x̂best (circle, blue), among all prediction schemes including the centroids,
are compared. The values to be recovered xobs are in green.

7.2.3. Uncertainty level estimation

In this section, the algorithm 1 described in Section 6 to assess the uncertainty in the model is
tested. Synthetic data are first considered with the same setting, Fhapke, D = 10, L = 4, as in the
inversion of Nontronite observations. Observations are simulated with Σ = σ2ID and σ = 0.2 (high
uncertainty level, Figure 6 (a)) or σ = 0.03 (low uncertainty level, Figure 6 (b)), satisfying the
assumptions made in Section 6 and Algorithm 1. To simplify the notation, we will denote by σD
the diagonal matrix containing the D standard deviations here all equal to σ. The EM algorithm is
constrained to provide diagonal covariances. It is initialized with Σ(0) = 0.5ID. The choice of Σ(0)

is application dependent and should be of the magnitude of the observations.

Figure 6 shows the evolution of the distance between the estimated diagonal σ
(r)
D at iteration r

and the true σD. For comparison, the distance between the true σD and the maximum likelihood
estimator σestD defined in Section 6 and calculated with the true x’s is also provided. The figures

show in addition the final value for σ
(r)
D denoted by σlastD . These simulations illustrate that the

algorithm performs satisfactorily with moderate to high uncertainty levels, but is relatively less
efficient with low levels because of a lack of sensitivity to such levels.

We then consider three real datasets (Nontronite, Basalt and Olivine), again from the laboratory
experiment described in Example 5. Recall that for each dataset, diagonal Σm

obs’s accounting for
measurement uncertainty are considered in addition to the measurements themselves. This infor-
mation is provided by experts and can be used as a reference to assess the quality of our estimation.
In this case the assumptions of Section 6 and Algorithm 1 do not hold as the uncertainty cannot
be represented as a constant Σ across observations. Our estimations are then compared to σobsD
set to the average over Nobs of the square roots of the Σm

obs’s which are themselves of the order of
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Fig 4. Inversion of Nontronite laboratory observations. A GLLiM model is learned from training data with K = 100.
The GLLiM mean prediction refined with importance sampling x̄IS−G (red), the reconstruction best prediction x̂best

(blue) and the MCMC prediction (green) are compared. Standard deviations are also shown.

Fig 5. Nontronite observation reconstructions. Comparison between original (black) and reconstructed observations
(green, red and blue) along the emergence angle, for three wavelengths : 540, 1260 and 1900 nm. The incidence and
azimuth angles are equal to 45 and 0 respectively.

Σm
obs = diag(ymobs/20)2. In addition, it is usually expected that the standard deviation is not too

much dependent on the geometry. Following this expectation, the EM algorithm is run with an
isotropic constraint on Σ.

Figure 7 shows the estimated uncertainty level (more specifically, the standard deviations for
each geometry) using polar plots. It appears that the estimated standard deviations are of the same
order as those given by the experts in particular for Olivine and Nontronite data sets. When expert
references are considered as reliable, the observed deviations may be interpreted as an indication of
the lesser ability of the theoretical model Fhapke to provide a good modelling of the observations.
However, for the Basalt results, the deviation is more likely to come from an underestimation of
the expert measurement error due to the darkness of the material.
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Fig 6. Noise estimation on synthetic data. True value is σ = 0.2 (a) and σ = 0.03 (b). Left: evolution of ||σ(r)
D −σD||2

(blue) and ||σest
D − σD||2 (orange). Right: comparison between final value σlast

D (blue), σest
D (red) and σD (black).

Fig 7. Noise level estimation on laboratory data. Comparison between the given σobs
D (black) and the estimated σlast

D
provided by the EM algorithm (isotropic constraint, in orange), along geometries of measurements.

7.2.4. Example 5: Massive inversion of spatial and spectral Mars data

We conclude our experiments with a large scale inversion. The dataset comes from a multi-angular
observation of the South Pole of Mars by the Compact Reconnaissance Imaging Spectrometer for
Mars (CRISM) (Murchie et al., 2009). The targeted scene presents spatially segregated C02 ice,
H2O frost, and mineral dust (Douté and Pilorget, 2017). After fusion and atmospheric correction of
eleven hyperspectral images (Ceamanos et al., 2013), the dataset provides both spatial and spectral
dimensions, totaling Nobs = 154650 = 3093× 50 measurements vectors ymobs, which makes MCMC
approaches unacceptably slow. Each ymobs is provided with an additional diagonal Σm

obs accounting
for measurement uncertainty. Maps of Hapke’s parameter values are generated from the results of
our inversion and superposed with transparency onto the full resolution CRISM nadir image, which
serves as a geological control background image. The maps are shown in Figure 8 for ω and θ̄ and
in Appendix B for b and c. The methods with and without taking into account the centroids (x̂best
and x̄IS−G respectively) are compared. The results are satisfying from the application point of
view. The colour composition of Figure 8 first line reflects the variation of ω at three wavelengths
and corresponds well with the spatial distribution of the three previous materials and their known
spectral optical properties. The map of θ̄ averaged over the spectral dimension is color coded by
intervals of values whose spatial variations are correlated with the composition and the structures
of the terrains. In general (see also maps b and c in Appendix B), all predicted parameters preserve
some spatial regularity and show meaningful correlations with the composition and the geology.
Moreover, the prediction including centroids (x̂best) brings some improvement in the experiment: it
mostly agrees with the mean prediction (x̄IS−G) while increasing the inversion success rate and the
spatial regularity. For example, the first line of Figure 8 shows color artefacts that partly disappear



/Fast Bayesian Inversion for high dimensional inverse problems 20

with x̂best.

Fig 8. Mars South Pole dataset. Parameter ω in synthetic colors coding 3 wavelengths (top) and parameter θ̄
averaged over spectral dimension (bottom), predicted using x̄IS−G (left) or x̂best (right). The darkest (top) or
colorless (bottom) patches correspond to missing data or failed inversion by GLLiM.

8. Conclusion and future work

This paper introduced a new statistical approach to inverse problems that we referred to as fast
Bayesian inversion. The originality comes from the preliminary estimation of a global inversion op-
erator in place of successive individual inversions. This operator is obtained via a so-called GLLiM
inverse regression model and takes a simple parametric form, which once learned, provides at low
cost approximations to the target posterior distributions. These approximate posteriors are sub-
sequently refined using importance sampling. We showed the ability of the method to carry out
Bayesian inversion in a computationally efficient way that allows to handle massive inversions while
maintaining the advantages of a Bayesian analysis. It improves prediction accuracy, reduces the esti-
mation time, while providing a rich information on parameter estimates via posterior distributions.
This later information is essential in complex inverse problems when multiple equivalent solutions
can exist. Using a physical model inversion issue in planetary remote sensing, we illustrated that
we could obtain very satisfying results in situations where traditional MCMC approaches are not
tractable.
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The flexibility of the proposed approach opens the way to further improvements. Importance
sampling was used only in its simplest version. There is a vast literature on importance sampling that
could certainly be exploited. Sampling re-sampling or more elaborate forms of importance sampling
via sequential Monte Carlo techniques could certainly lead to even more efficient procedures. Overall,
importance sampling can be seen as a way to enhance GLLiM predictions but in a symmetric
manner, the GLLiM posteriors can also be seen as good candidates for an informed importance
proposal distribution, especially when dealing with multi-modal posteriors. Future work should
also include the adaptation and optimization of the learning set with respect to the targeted range
of parameters. In other words, the possibility to use more informative priors on the parameter space
could be explored to take even more benefits from the Bayesian approach.

Appendix A: Computation times

The simulations ran on a laptop with 4 cores (at 2.5 Ghz). Table 5 shows computation times. For
each experiment, the time is divided in two parts, the time for the learning step (GLLiM inference)
and the time for the prediction step, which consists either of mixture merging, mode-finding and
importance sampling (Examples 1 to 5) or of noise level estimation via the EM algorithm. Most
experiments run in few minutes. The complexity of the forward model and the way it is implemented
can take an important part in the resulting running time. This appears in the comparison of
examples 2 and 3 which mainly differ in the choice of F . The Hapke model (Example 3) benefits from
a more efficient implementation which explains running time twice smaller for similar settings. For
equivalent forward model implementations, the time depends mainly on the size and dimensionality
of the learning set and on the number of inversions to be performed. Learning sets have equivalent
complexity in our experiments. Higher computation times are observed in case of massive inversions.
In particular, Example 5 with 154,650 inversions takes few hours. We believe it is the first time that
such spatial and spectral parametric maps are obtained due to the intractability of other methods
in this setting.

Appendix B: Massive inversion of spatial and spectral Mars data

Figure 9 shows the maps for parameters b and c after inversion of the real Mars data described in
Section 7.2.4.
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