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BRANCHED PROJECTIVE STRUCTURES, BRANCHED SO(3,C)-OPERS
AND LOGARITHMIC CONNECTIONS ON JET BUNDLE

INDRANIL BISWAS AND SORIN DUMITRESCU

Abstract. We study the branched holomorphic projective structures on a compact Rie-

mann surface X with a fixed branching divisor S =
∑d

i=1 xi, where xi ∈ X are distinct
points. After defining branched SO(3,C)–opers, we show that the branched holomorphic
projective structures on X are in a natural bijection with the branched SO(3,C)–opers sin-
gular at S. It is deduced that the branched holomorphic projective structures on X are also
identified with a subset of the space of all logarithmic connections on J2((TX) ⊗ OX(S))
singular over S, satisfying certain natural geometric conditions.
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1. Introduction

The role of the space of holomorphic projective structures in the understanding of the
uniformization theorem of Riemann surfaces was emphasized by many authors (see, for
instance, [Gu, St] and references therein). Recall that a holomorphic projective structure on
a Riemann surface X is given by (the equivalence class of) an atlas {(Ui, φi)}i∈I with local

charts X ⊃ Ui
φi−→ CP1, i ∈ I, such that all the transition maps φj ◦φ−1

i are restrictions of
elements in the Möbius group PGL(2,C) of complex projective transformations (see Section
2.1 for more details).

Historically, the idea of using holomorphic projective structures to prove uniformization
theorem for Riemann surfaces came from the study of second-order linear differential equa-
tions (see, [St, Chapter VIII]). The modern point of view summarizes this equivalence
between holomorphic projective connections and second-order linear differential equations
as an identification of the space of holomorphic projective connections with the space of
PGL(2,C)–opers (see [De, Section I.5] and [BeDr]).

A more general notion is that of a branched holomorphic projective structure which was
introduced and studied by Mandelbaum in [Ma1, Ma2]; more recently, a general notion of
(non necessarily flat) branched Cartan geometry on complex manifolds was introduced and
studied in [BiDu]. A branched holomorphic projective structure is defined by (the equiva-
lence class of) a holomorphic atlas with the local charts being finite branched coverings of
open subsets in CP1, while the transition maps are restrictions of elements in the Möbius
group PGL(2,C) (see Section 5.1 for details). The branching divisor S of a branched pro-
jective structure on X is the union of points in X where the local projective charts admit a
ramification point. The Riemann surface X \ S inherits a holomorphic projective structure
in the classical sense. Branched holomorphic projective structures play an important role
in the study of hyperbolic metrics with conical singularities on Riemann surfaces or in the
study of codimension one transversally projective holomorphic foliations (see, for example,
[CDF]).

From a global geometric point of view, a holomorphic projective structure over a Riemann
surface X is known to give a flat CP1-bundle over X together with a holomorphic section
which is transverse to the horizontal distribution defining the flat connection on the bundle.
For a branched holomorphic projective structure with branching divisor S, we have a similar
description, but the section of the projective bundle fails to be transverse to the horizontal
distribution (defining the flat structure) precisely at points in S (see, for example, [BDG,
CDF, GKM, LM] or Section 5.1 here).
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In this article we study the branched holomorphic projective structures on a Riemann
surface X with fixed branching divisor S. Throughout, we assume that S is reduced, meaning
that S :=

∑d
i=1 xi, with xi ∈ X, distinct points.

The presentation is organized in the following way. Sections 2, 3 and 4 deal with the
geometry of classical holomorphic projective connections and Sections 5, 6 and 7 are about
branched holomorphic projective connections. More precisely, Section 2 presents the geomet-
rical setting of a holomorphic projective structure on a Riemann surface X and proves that
a projective structure induces a holomorphic connection on the rank three holomorphic 2-jet
bundle J2(TX). Moreover this connection has a natural geometric behavior: it is an oper
connection (see Definition 3.2) with respect to the canonical filtration of J2(TX) induced
by the kernels of the natural forgetful projections of jet bundles J2(TX) −→ J1(TX) and
J2(TX) −→ TX. In Section 3 we identify the space of holomorphic projective structures
on the Riemann surface X with the space of oper connections on J2(TX) satisfying some
extra natural geometrical properties (see Corollary 3.6). Section 4 translates the previous
equivalence as an identification of the space of holomorphic projective connections with the
space of SO(3,C)–opers.

Section 5 starts the study of branched holomorphic projective structures. It is shown that
a branched projective structure on a Riemann surface X with branching divisor S gives rise
to a logarithmic connection on the rank two 2-jet bundle J2((TX) ⊗ OX(S)) singular over
S, with residues at S satisfying certain natural geometric conditions with respect to the
canonical filtration of J2((TX)⊗OX(S)) (see Proposition 5.1).

The main results proved here are obtained in Section 6 and in Section 7.

In Section 6.1 we introduce the notion of a branched SO(3,C)–oper singular at the divisor
S. We show that the space PS of branched holomorphic projective structures with fixed
branching divisor S is naturally identified with the space of branched SO(3,C)–opers singular
at S (see Theorem 6.7).

We deduce that this space PS also coincides with a subset of the set of all logarithmic
connections with singular locus S, satisfying certain natural geometric conditions, on the
rank three holomorphic 2-jet bundle J2((TX)⊗OX(S)) (see Proposition 6.8 and Theorem
7.1).

The above mentioned Theorem 7.1 generalizes the main result in [BDG] (Theorem 5.1)
where, under the additional assumption that the degree d of S is even and such that d 6=
2g − 2 (with g the genus of X), it was proved that PS coincides with a subset of the set of
all logarithmic connections with singular locus S, satisfying certain geometric conditions, on
the rank two holomorphic jet bundle J1(Q), where Q is a fixed holomorphic line bundle on
X such that Q⊗2 = TX ⊗ OX(S). It may be mentioned that for a branching divisor S of
general degree d, the bundle Q considered in [BDG] does not exist.

Let us clarify an important improvement in the methods developed in this work with
respect to those in [BDG]. The PSL(2,C)-monodromy of a (unbranched) holomorphic pro-
jective structure on a compact Riemann surface X always admits a lift to SL(2,C) (see
[GKM, Lemma 1.3.1]). Geometrically this means that the associated flat CP1-bundle over
X is the projectivization of a rank two vector bundle over X; hence one can work in the
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set-up of rank two vector bundles. This is not true anymore for branched holomorphic pro-
jective structures if the degree of the branching divisor is odd; for this reason the results
and methods in [BDG] cannot be extended to the case where the branching divisor of the
branched holomorphic projective structure is of odd degree.

Here we consider SO(3,C)–opers instead of the equivalent PSL(2,C)-opers and we develop
the notion of branched SO(3,C)–opers. This enables us to investigate branched holomor-
phic projective structure in the framework of rank three holomorphic (2-jet) vector bundles
instead of the projective bundles.

2. Projective structure and second jet of tangent bundle

2.1. Projective structure. The multiplicative group of nonzero complex numbers will be
denoted by C∗. Let V be a complex vector space of dimension two. Let P(V) denote the
projective line that parametrizes all one-dimensional subspaces of V. Consider the projective
linear group PGL(V) := GL(V)/(C∗ · IdV) = SL(V)/(±IdV). The action of GL(V) on V
produces an action of PGL(V) on P(V). This way PGL(V) gets identified with the group of
all holomorphic automorphisms of P(V).

Let X be a connected Riemann surface. A holomorphic coordinate function on X is a pair
(U, φ), where U ⊂ X is an open subset and

φ : U −→ P(V)

is a holomorphic embedding. A holomorphic coordinate atlas on X is a family of holomorphic
coordinate functions {(Ui, φi)}i∈I such that

⋃
i∈I Ui = X. So φj ◦ φ−1

i : φi(Ui ∩ Uj) −→
φj(Ui ∩ Uj) is a biholomorphic map for every i, j ∈ I with Ui ∩ Uj 6= ∅.

A projective structure on X is given by a holomorphic coordinate atlas {(Ui, φi)}i∈I such
that for all ordered pairs i, j ∈ I, with Ui ∩ Uj 6= ∅, and every connected component U ⊂
Ui ∩Uj, there is an element GU

j,i ∈ PGL(V) satisfying the condition that the biholomorphic
map

φj ◦ φ−1
i : φi(U) −→ φj(U)

is the restriction, to φi(U), of the automorphism of P(V) given by of GU
j,i. Note that GU

j,i is

uniquely determined by φj ◦ φ−1
i .

Two holomorphic coordinate atlases {(Ui, φi)}i∈I and {(U ′i , φ′i)}i∈J satisfying the above
condition are called equivalent if their union {(Ui, φi)}i∈I

⋃
{(U ′i , φ′i)}i∈J also satisfies the

above condition. A projective structure on X is an equivalence class of atlases satisfying the
above condition; see [Gu], [He], [GKM] for projective structures.

Let γ : P −→ X be a holomorphic CP1–bundle over X. In other words, γ is a surjective
holomorphic submersion such that each fiber of it is holomorphically isomorphic to the
complex projective line CP1. Let

Tγ := kernel(dγ) ⊂ TP (2.1)

be the relative holomorphic tangent bundle, where TP is the holomorphic tangent bundle
of P. A holomorphic connection on P is a holomorphic line subbundle H ⊂ TP such that
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the natural homomorphism

Tγ ⊕H −→ TP (2.2)

is an isomorphism; see [At].

Let H ⊂ TP be a holomorphic connection on P. Let s : X −→ P be a holomorphic
section of γ, meaning γ ◦ s = IdX. Consider the differential ds of s

TX −→ s∗TP = (s∗Tγ)⊕ (s∗H) ,

where the decomposition is the pullback of the decomposition in (2.2). Let

d̂s : TX −→ s∗Tγ (2.3)

be the homomorphism obtained by composing it with the natural projection (s∗Tγ) ⊕
(s∗H) −→ s∗Tγ.

Giving a projective structure on X is equivalent to giving a triple (γ, H, s), where

• γ : P −→ X is a holomorphic CP1–bundle,
• H ⊂ TP is a holomorphic connection, and
• s : X −→ P is a holomorphic section of γ,

such that the homomorphism d̂s in (2.3) is an isomorphism. More details on this can be
found in [Gu].

2.2. Jet bundles. We briefly recall the definition of a jet bundle of a holomorphic vector
bundle on X. Let

pj : X× X −→ X , j = 1, 2 ,

be the natural projection to the j–th factor. Let

∆ := {(x, x) ∈ X× X | x ∈ X} ⊂ X× X

be the reduced diagonal divisor. For a holomorphic vector bundle W on X, and any integer
k ≥ 0, define the k–th order jet bundle

Jk(W ) := p1∗ ((p∗2W )/(p∗2W ⊗OX×X(−(k + 1)∆))) −→ X .

The natural inclusion of OX×X(−(k + 1)∆) in OX×X(−k∆) produces a surjective homomor-
phism Jk(W ) −→ Jk−1(W ). This way we obtain a short exact sequence of holomorphic
vector bundles on X

0 −→ K⊗kX ⊗W −→ Jk(W ) −→ Jk−1(W ) −→ 0 , (2.4)

where KX is the holomorphic cotangent bundle of X.

For holomorphic vector bundles W and W ′ on X, any OX–linear homomorphism W −→
W ′ induces a homomorphism

J i(W ) −→ J i(W ′) (2.5)

for every i ≥ 0.

For holomorphic vector bundles W and W ′ on X, any any integer m ≥ 0, define the sheaf
of differential operators of order m from W to W ′

DiffmX (W, W ′) := Hom(Jm(W ), W ′) −→ X . (2.6)
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Using the exact sequence in (2.4) we have the short exact sequence

0 −→ Diffm−1
X (W, W ′) −→ DiffmX (W, W ′)

σ−→ (TX)⊗m ⊗ Hom(W, W ′) −→ 0 , (2.7)

where TX is the holomorphic tangent bundle of X. The homomorphism σ in (2.7) is called
the symbol map.

Remark 2.1. Consider the short exact sequences

0 −→ KX ⊗ TX = OX −→ J1(TX) −→ TX −→ 0

and

0 −→ K⊗2
X ⊗ TX = KX −→ J2(TX) −→ J1(TX) −→ 0

as in (2.4). These two together imply that
∧3 J2(TX) = KX ⊗

∧2 J1(TX) = OX. It is
straight-forward to check that any for biholomorphism β : X −→ Y, the homomorphism
J2(TX) −→ β∗J2(TY) corresponding to β takes the section of

∧3 J2(TX) = OX given
by the constant function 1 on X to the section of

∧3 J2(TY) = OY given by the constant
function 1 on Y.

2.3. A third order differential operator. We continue with the set-up of Section 2.1.
Let

T := P(V)×H0(P(V), TP(V)) −→ P(V)

be the trivial holomorphic vector bundle of rank three over P(V) with fiber H0(P(V), TP(V)).
For any integer j ≥ 1, let

ψj : T −→ J j(TP(V)) (2.8)

be the holomorphic OP(V)–linear map that sends any (x, s) ∈ P(V) ×H0(P(V), TP(V)) to
the restriction of the section s to the j–th order infinitesimal neighborhood of the point
x ∈ P(V).

Lemma 2.2. The homomorphism ψ2 in (2.8) is an isomorphism.

Proof. If (x, s) ∈ kernel(ψ2(x)), then

s ∈ H0(P(V), OP(V)(−3x)⊗ TP(V)) .

But H0(P(V), OP(V)(−3x)⊗TP(V)) = 0, because degree(OP(V)(−3x)⊗TP(V)) < 0. So the
homomorphism ψ2 is fiberwise injective. This implies that ψ2 is an isomorphism, because
we have rank(T ) = rank(J2(TP(V)). �

Lemma 2.3. There is a canonical holomorphic differential operator δ0 of order three from
TP(V)) to K⊗2

P(V). The symbol of δ0 is the section of

(TP(V))⊗3 ⊗ Hom
(
TP(V), K⊗2

P(V)

)
= OP(V)

given by the constant function 1 on P(V).

Proof. Consider the short exact sequence

0 −→ K⊗3
P(V) ⊗ TP(V) = K⊗2

P(V)

ι0−→ J3(TP(V)) −→ J2(TP(V)) −→ 0 (2.9)
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in (2.4). Using Lemma 2.2, define the homomorphism

ψ3 ◦ (ψ2)−1 : J2(TP(V)) −→ J3(TP(V)) ,

where the homomorphisms ψj are constructed in (2.8). This homomorphism ψ3 ◦ (ψ2)−1 is
a holomorphic splitting of the exact sequence in (2.9). In other words, there is a unique
surjective homomorphism

δ0 : J3(TP(V)) −→ K⊗2
P(V)

such that kernel(δ0) = image(ψ3 ◦ (ψ2)−1) and

δ0 ◦ ι0 = IdK⊗2
P(V)

, (2.10)

where ι0 is the homomorphism in (2.9).

From the definition in (2.6) it follows that

δ0 ∈ H0(P(V), Diff3
P(V)(TP(V), K⊗2

P(V))) .

Also, from (2.10) it follows immediately that σ(δ0) = 1, where σ is the symbol homomor-
phism in (2.7). �

The trivialization of J2(TP(V)) given by Lemma 2.2 produces a holomorphic connection
on J2(TP(V)); let

D0 : J2(TP(V)) −→ J2(TP(V))⊗KP(V) (2.11)

be this holomorphic connection on J2(TP(V)). Note that any holomorphic connection on a
Riemann surface is automatically flat (see [At] for holomorphic connections).

Remark 2.4. Let U ⊂ P(V) be an open subset and

s ∈ H0(U, J2(TP(V))|U) = H0(U, J2(TU))

a flat section for the connection D0 in (2.11). Since ψ2 is an isomorphism (see Lemma
2.2), it follows that the section s′ ∈ H0(U, TU) given by s using the natural projection
J2(TP(V)) −→ TP(V) (see (2.4)) has the property that the section of J2(TP(V))|U corre-
sponding to s′ coincides with s. If U is connected, then s′ extends to a holomorphic section
of TP(V) over P(V).

Let sl(V) be the Lie algebra of PGL(V); it consists of endomorphisms of V of trace zero.
Using the action of PGL(V) on P(V) we get a homomorphism

α0 : sl(V) −→ H0(P(V), TP(V)) . (2.12)

This α0 is an isomorphism, because it is injective and dim sl(V) = dimH0(P(V), TP(V)).
Note that H0(P(V), TP(V)) has the structure of a Lie algebra given by the Lie bracket
operation of vector fields. The homomorphism α0 in (2.12) is in fact an isomorphism of Lie
algebras. Therefore, from Lemma 2.2 it follows that the fibers of J2(TP(V)) are identified
with the Lie algebra sl(V). In particular, the fibers of J2(TP(V)) are Lie algebras. For any
x ∈ P(V)), and v, w ∈ J2(TP(V))x, let

[v, w]′ ∈ J2(TP(V))x (2.13)

be the Lie bracket operation on the fiber J2(TP(V))x.



8 I. BISWAS AND S. DUMITRESCU

Remark 2.5. Let s and t be two holomorphic vector fields on an open subset U ⊂ P(V).
The holomorphic section of J2(TP(V))|U defined by s and t will be denoted by ŝ and t̂

respectively. It should be clarified that the holomorphic section [̂s, t] of J2(TP(V))|U given
by the Lie bracket [s, t] of vector fields does not in general coincide with the section [ŝ, t̂]′

defined by (2.13). The reason for it is that the operation in (2.13) is constructed using
the finite dimensional space consisting of global holomorphic sections of TP(V), while the
operation of Lie bracket of vector fields is constructed locally. However if s and t are such
that ŝ and t̂ are flat sections for the holomorphic connection D0 on J2(TP(V)) in (2.11),

then the holomorphic section [̂s, t] of J2(TP(V))|U given by the Lie bracket of vector fields
[s, t] does coincide with the section [ŝ, t̂]′ defined by (2.13). Indeed, this follows from the
fact that these s and t are restrictions of global vector fields on P(V), if U is connected; see
Remark 2.4.

Remark 2.6. The holomorphic connection D0 in (2.11) on J2(TP(V)) preserves the Lie
algebra structure on the fibers of J2(TP(V)) given in (2.13). This means that

iuD0([s, t]′) = [iuD0(s), t]′ + [s, iuD0(t)]′

for locally defined holomorphic sections s, t and u of J2(TP(V)), where iu is the contraction
of 1–forms by u. In particular, the local system on P(V) given by the flat sections for
the connection D0 is closed under the Lie bracket operation in (2.13). Note that using
Remark 2.4 we may construct a Lie algebra structure on the fibers of J2(TP(V)). Indeed,
for v, w ∈ J2(TP(V))x, let ṽ, w̃ be the flat sections of J2(TP(V)), for the connection D0,
defined around x such that ṽ(x) = v and w̃(x) = w. Let ṽ′ (respectively, w̃′) be the
holomorphic sections of TP(V) defined around x given by ṽ (respectively, w̃) using the
natural projection J2(TP(V)) −→ TP(V) (see (2.4) and Remark 2.4). Now define [v, w] to
be the element of J2(TP(V))x given by the locally defined section [ṽ′, w̃′] of TP(V). From
Remark 2.5 it follows that this Lie algebra structure on the fibers of J2(TP(V)) coincides
with the one in (2.13).

Remark 2.7. Let L0 be the complex local system on P(V) given by the sheaf of solutions of
the differential operator δ0 in Lemma 2.3. From the construction of δ0 it is straight-forward
to deduce that L0 is identified with the local system given by the sheaf of flat sections of
J2(TP(V)) for the connection D0 in (2.11). Therefore, from Remark 2.6 we conclude that the
stalks of the complex local system L0 are closed under the Lie bracket operation of vector
fields. Moreover, the stalks of the local system L0 are identified with the Lie algebra sl(V).

Proposition 2.8.

(1) Let X be a connected Riemann surface equipped with a projective structure P. Then
P produces a holomorphic connection, which will be called D(P), on J2(TX). For any
open subset U ⊂ X, and any section s ∈ H0(U, J2(TX)|U) = H0(U, J2(TU)) flat
for the connection D(P), there is a unique holomorphic section of TU that produces
s. The space of section of TU given by the flat sections of J2(U) is closed under the
usual Lie bracket operation of vector fields. The stalks for the local system on X given
by the sheaf of flat sections for D(P) are closed under the usual Lie bracket operation
of vector fields, and moreover the stalks are isomorphic to the Lie algebra sl(V).
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(2) The projective structure P also produces a canonical holomorphic differential operator
δ(P) ∈ H0(X, Diff3

X(TX, K⊗2
X )) whose symbol is the constant function 1 on X.

(3) The local system on X gives by the sheaf of flat sections for D(P) is identified with
the local system given by the sheaf of solutions of δ(P). This sheaf of solutions of
δ(P) is closed under the Lie bracket operation of vector fields.

(4) The connection on
∧3 J2(TX) = OX (see Remark 2.1) induced by D(P) coincides

with the trivial connection on OX given by the de Rham differential d.

Proof. The action of PGL(V) on P(V) produces actions of PGL(V) on J j(TP(V)), j ≥ 0,
and H0(P(V), TP(V)). The homomorphism ψj in (2.8) is clearly equivariant for the actions
of PGL(V), with PGL(V) acting diagonally on P(V) × H0(P(V), TP(V)). Therefore, from
Lemma 2.2 we get a holomorphic connection on J2(TX). To explain this with more details,
take a holomorphic coordinate atlas {(Ui, φi)}i∈I in the equivalence class defining P . Using
φi, the holomorphic connection D0|φi(Ui) in (2.11) on J2(TP(V))|φi(Ui) produces a holomorphic
connection on J2(TX)|Ui

. Using the above PGL(V)–equivariance property, these locally
defined connections on J2(TX)|Ui

, i ∈ I, patch together compatibly on the intersections of
the open subsets to produce a holomorphic connection D(P) on J2(TX).

Take any flat section s ∈ H0(U, J2(TX)|U) = H0(U, J2(TU)) as in the first statement of
the proposition. From Remark 2.4 we conclude that the section of TU given by s, using the
natural projection J2(TU) −→ TU , actually produces s. From Remark 2.5 it follows that
the space of section of TU given by the flat sections of J2(TU) is closed under the usual Lie
bracket operation of vector fields. Consequently, the stalks for the local system on X given
by the sheaf of flat sections for D(P) are closed under the Lie bracket operation, and they
are isomorphic to the Lie algebra sl(V), because the connection D0 has these properties; see
Remark 2.6.

Similarly, the second statement of the proposition follows from the fact that the differential
operator δ0 in Lemma 2.3 is PGL(V)–equivariant. Indeed, given a holomorphic coordinate
atlas {(Ui, φi)}i∈I as above, we have a differential operator on each Ui given by δ0 using the
coordinate function φi. These differential operator patch together compatibly to produce a
differential operator

δ(P) ∈ H0(X, Diff3
X(TX, K⊗2

X )) .

The third statement follows from Remark 2.7 and the first statement of the proposition.
For any s ∈ H0(U, TU), where U ⊂ X is an open subset, with δ(P)(s) = 0, the section
of J2(TX)|U given by s is flat with respect to the connection D(P). Conversely, given a flat
section s1 of J2(TX)|U , the section s2 ∈ H0(U, TU), given by s1 using the natural projection
J2(TX) −→ TX (see (2.4)), satisfies the equation δ(P)(s2) = 0.

From Remark 2.1 we know that if φ : U1 −→ U2 is a biholomorphism between two open
subsets of P(V), then the isomorphism

∧3 J2(TU1) −→
∧3 J2(TU2) induced by φ takes the

section of
∧3 J2(TU1) given by the constant function 1 on U1 to the section of

∧3 J2(TU2)
given by the constant function 1 on U2. In particular, this holds for φ ∈ PGL(V) =
Aut(P(V)). The connection on

∧3 J2(TP(V)) induced by the connection D0 on J2(TP(V))
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coincides with the trivial connection on
∧3 J2(TP(V)), because P(V) is simply connected.

The fourth statement of the proposition follows from these. �

2.4. Killing form and holomorphic connection. Recall that the homomorphism α0 in
(2.12) is a Lie algebra isomorphism between H0(P(V), TP(V)) and sl(V). Consider the

Killing form B̂ on the Lie algebra H0(P(V), TP(V)). Using the isomorphism ψ2 in Lemma

2.2, this symmetric bilinear form B̂ produces a fiberwise nondegenerate symmetric bilinear
form

B0 ∈ H0(P(V), Sym2(J2(TP(V)))∗) = Sym2(H0(P(V), TP(V)))∗ . (2.14)

Recall that each fiber of J2(TP(V)) is the Lie algebra sl(V); the form B0 in (2.14) is the
fiberwise Killing form. The symmetric form B0 is preserved by the holomorphic connection
D0 on J2(TP(V)) constructed in (2.11). Indeed, this follows immediately from the fact that
both D0 and B0 are constants with respect to the trivialization of J2(TP(V)) given by ψ2 in
Lemma 2.2.

The vector bundle J2(TP(V)) has a filtration of holomorphic subbundles

F P
1 := KP(V) ⊂ F P

2 ⊂ J2(TP(V)) , (2.15)

where F P
2 is the kernel of the composition

J2(TP(V)) −→ J1(TP(V)) −→ TP(V)

of the two projections in the two short exact sequences in Remark 2.1; the subbundle KP(V) ⊂
J2(TP(V)) in (2.15) is the one in the second of the two short exact sequences in Remark
2.1. In particular, we have rank(F P

j ) = j. For any point x ∈ P(V), the fiber (F P
1 )x is a

nilpotent subalgebra of the Lie algebra J2(TP(V))x = sl(V). Moreover, the fiber (F P
2 )x is

the unique Borel subalgebra of J2(TP(V))x containing (F P
1 )x. Consequently, we have

B0(F P
1 ⊗ F P

1 ) = 0 and (F P
1 )⊥ = F P

2 , (2.16)

where (F P
1 )⊥ denotes the orthogonal bundle for F P

1 with respect to the form B0 in (2.14).

Given a holomorphic vector bundle W on a Riemann surface X, a holomorphic connection
D on W , and a holomorphic subbundle W ′ ⊂ W , the composition of homomorphisms

W
D−→ W ⊗KX

qW ′⊗Id−→ (W/W ′)⊗KX ,

where qW ′ : W −→ W/W ′ is the natural quotient map, defines a holomorphic section of
Hom(W ′, (W/W ′)) ⊗ KX. This element of H0(X, Hom(W ′, (W/W ′)) ⊗ KX) is called the
second fundamental form of W ′ for the connection D. If D(W ′) ⊂ W ′′ ⊗KX, where W ′′ is
a holomorphic subbundle of W containing W ′, then the second fundamental form of W ′ for
D is clearly given by a holomorphic section

ζ1 ∈ H0(X, Hom(W ′, W ′′/W ′)⊗KX) (2.17)

using the natural inclusion of Hom(W ′, W ′′/W ′)⊗KX in Hom(W ′, W/W ′)⊗KX. Also, in
this case, the second fundamental form of W ′′ for D is given by a holomorphic section

ζ2 ∈ H0(X, Hom(W ′′/W ′, W/W ′′)⊗KX) (2.18)
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through the natural inclusion map

H0(X, Hom(W ′′/W ′, W/W ′′)⊗KX) ↪→ H0(X, Hom(W ′′, W/W ′′)⊗KX) .

For the filtration in (2.15) of J2(TP(V)) equipped with the holomorphic connection D0 in
(2.11), we have

D0(F P
1 ) = F P

2 ⊗KP(V) and D0(F P
2 ) = J2(TP(V))⊗KP(V) .

These follow from a straight-forward computation.

Let

S(F P
1 ,D0) ∈ H0(P(V), Hom(F P

1 , F
P
2 /F

P
1 )⊗KP(V)) = H0(P(V), OP(V))

be the second fundamental form of F P
1 for the connection D0 (see (2.17)). Similarly, let

S(F P
2 ,D0) ∈ H0(P(V), Hom(F P

2 /F
P
1 , J

2(TP(V))/F P
2 )⊗KP(V)) = H0(P(V), OP(V))

be the section that gives the second fundamental form of F P
2 for the connection D0 (see

(2.18)). It is straight-forward to check that both S(F P
1 ,D0) and S(F P

2 ,D0) coincide with the
element of H0(P(V), OP(V)) given by the constant function 1 on P(V).

3. Differential operators, connections and projective structures

3.1. Differential operators and connections. For a holomorphic vector bundle W on a
Riemann surface X, there is a tautological fiberwise injective holomorphic homomorphism

J i+j(W ) −→ J i(J j(W )) (3.1)

for every i, j ≥ 0. On X, we have the commutative diagram of holomorphic homomorphisms

0 0y y
0 −→ K⊗2

X
ι−→ J3(TX)

q−→ J2(TX) −→ 0yl yλ ‖

0 −→ J2(TX)⊗KX
ι′−→ J1(J2(TX))

q′−→ J2(TX) −→ 0y yµ
J1(TX)⊗KX

=−→ J1(TX)⊗KXy y
0 0

(3.2)

where the horizontal short exact sequences are as in (2.4), the vertical short exact sequence
in the left is the short exact sequence in (2.4) tensored with KX, and λ is the homomorphism
in (3.1); the homomorphism µ in (3.2) is described below.

The projection J2(TX) −→ J1(TX) in (2.4) induces a homomorphism

f1 : J1(J2(TX)) −→ J1(J1(TX)) (3.3)

(see (2.5)); set W and W ′ in (2.5) to be J2(TX) and J1(TX) respectively to get f1. On the
other hand, let

f ′2 : J1(J2(TX)) −→ J2(TX)
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be the projection in (2.4). Composing f ′2 with the homomorphism J2(TX) −→ J1(J1(TX))
in (3.1) we obtain a homomorphism

f2 : J1(J2(TX)) −→ J1(J1(TX)) .

The composition of homomorphisms

J1(J2(TX))
f2−→ J1(J1(TX))

f3−→ J1(TX) ,

where f3 is projection in (2.4), coincides with the composition of homomorphisms

J1(J2(TX))
f1−→ J1(J1(TX))

f3−→ J1(TX) ,

where f1 is the homomorphism in (3.3). Therefore, from (2.4) we have the homomorphism

µ := f1 − f2 : J1(J2(TX)) −→ J1(TX)⊗KX ,

where f1 and f2 are constructed above. This homomorphism µ is the one in (3.2).

Let

η ∈ H0(X, Diff3
X(TX, K⊗2

X )) = H0(X, K⊗2
X ⊗ J

3(TX)∗) (3.4)

be a differential operator whose symbol is the constant function 1 on X. This means that η
gives a holomorphic splitting of the top horizontal exact sequence in (3.2). Let

η̂ : J2(TX) −→ J3(TX) (3.5)

be the corresponding splitting homomorphism, meaning

• η̂(J2(TX)) = kernel(J3(TX)
η→ K⊗2

X ), and
• q ◦ η̂ = IdJ2(TX), where q is the projection in (3.2).

From the commutativity of (3.2) we conclude that the homomorphism

λ ◦ η̂ : J2(TX) −→ J1(J2(TX)) , (3.6)

where λ is the homomorphism in (3.2), satisfies the equation

q′ ◦ (λ ◦ η̂) = IdJ2(TX) ,

where q′ is the projection in (3.2). Consequently, the homomorphism λ ◦ η̂ defines a holo-
morphic connection on J2(TX) (see [At]).

Let Conn(J2(TX)) denote the space of all holomorphic connections on J2(TX).

We summarize the above construction in the following lemma.

Lemma 3.1. Consider the subset

H0(X, Diff3
X(TX, K⊗2

X ))0 ⊂ H0(X, Diff3
X(TX, K⊗2

X ))

defined by the differential operators whose symbol is the constant function 1 on X. There is
a natural map

$ : H0(X, Diff3
X(TX, K⊗2

X ))0 −→ Conn(J2(TX))

that sends any η as in (3.4) to the connection λ ◦ η̂ in (3.6).
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We shall describe the image of the map $ in Lemma 3.1.

Consider the two short exact sequences in Remark 2.1. Let

KX := kernel(µ0) ⊂ F2 := µ−1
0 (OX) ⊂ J2(TX) (3.7)

be the filtration of holomorphic subbundles given by them, where µ0 : J2(TX) −→ J1(TX)
is the projection in (2.4); see (2.15).

As before, Conn(J2(TX)) denotes the space of all holomorphic connections on J2(TX).

Definition 3.2. A holomorphic connection D ∈ Conn(J2(TX)) will be called an oper
connection if the following three conditions hold:

• D(KX) = F2 ⊗KX (see (3.7)),
• the second fundamental form of KX for D, which, by the first condition, is a holomor-

phic section of Hom(KX, OX) ⊗KX = OX (see (2.17)), coincides with the constant
function 1 on X, and
• the holomorphic section of Hom(F2/KX, J

2(TX)/F2) ⊗ KX = OX that gives the
second fundamental form of F2 for D — see (2.18) — coincides with the constant
function 1 on X.

See [BeDr] for general opers; the oper connections in Definition 3.2 are GL(3,C)–opers on
X.

Lemma 3.3. Take any η ∈ H0(X, Diff3
X(TX, K⊗2

X ))0 (see Lemma 3.1), and let

$(η) ∈ Conn(J2(TX))

be the holomorphic connection on J2(TX) given by η in Lemma 3.1. Then $(η) is an oper
connection.

Proof. Take a projective structure P on X. Let

δ(P) ∈ H0(X, Diff3
X(TX, K⊗2

X ))0

be the differential operator corresponding to P in Proposition 2.8(2). Let

D(P) ∈ Conn(J2(TX))

be the connection in Proposition 2.8(1) corresponding to P . It can be shown that

• $(δ(P)) = D(P), and
• D(P) is an oper connection.

Indeed, from the proof of Proposition 2.8 we know that it suffices to prove this for the
(unique) standard projective structure on P(V). Now, both these statements are straight-
forward for the unique projective structure on P(V).

Next note that H0(X, Diff3
X(TX, K⊗2

X ))0 is an affine space for the complex vector space
H0(X, Hom(J2(TX), K⊗2

X )). So η in the statement of the lemma is of the form

η = δ(P) + θ , (3.8)
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where θ ∈ H0(X, Hom(J2(TX), K⊗2
X )). The composition of homomorphisms

J2(TX)
θ−→ K⊗2

X
l−→ J2(TX)⊗KX ,

where l is the homomorphism in (3.2), will be denoted by θ̃. From (3.8) we have

$(η)−$(δ(P)) = $(η)− D(P) = θ̃ . (3.9)

Since D(P) is an oper connection, from (3.9) it is straight-forward to deduce that $(η) is
also an oper connection. �

Take any D ∈ Conn(J2(TX)). Using D we shall construct an endomorphism of the vector
bundle J2(TX). For that, let

p0 : J2(TX) −→ TX (3.10)

be the composition J2(TX) −→ J1(TX) −→ TX of the projections in the two short exact
sequences in Remark 2.1. For any x ∈ X, and v ∈ J2(TX)x, let ṽ be the unique section of
J2(TX) defined on a simply connected open neighborhood of x such that

• ṽ is flat for the connection D, and
• ṽ(x) = v.

Now we have a holomorphic homomorphism

FD : J2(TX) −→ J2(TX) (3.11)

that sends any v ∈ J2(TX)x, x ∈ X, to the element of J2(TX)x defined by the section
p0(ṽ), where p0 is the projection in (3.10), and ṽ is constructed as above using v and D.

Lemma 3.4. A holomorphic connection D ∈ Conn(J2(TX)) lies in image($) (see Lemma
3.1) if and only if

• D is an oper connection, and
• FD = IdJ2(TX), where FD is constructed in (3.11).

Proof. As in the proof of Lemma 3.3, first take a projective structure P on X. Let δ(P)
(respectively, D(P)) be the differential operator (respectively, holomorphic connection) cor-
responding to P as in the proof of Lemma 3.3. We saw that $(δ(P)) = D(P) and D(P) is
an oper connection. It can be shown that FD(P) = IdJ2(TX), where FD(P) is constructed as
in (3.11). Indeed, it suffices to prove this for the unique projective structure on P(V), which
is actually straight-forward.

Now take η = δ(P) + θ as in (3.8). Since $(δ(P)) = D(P) is an oper connection, and
FD(P) = IdJ2(TX), from (3.9) it follows that F$(η) = IdJ2(TX), where F$(η) is constructed as in
(3.11) for the connection $(η); it was shown in Lemma 3.3 that $(η) is an oper connection.

To prove the converse, take any D ∈ Conn(J2(TX)). Then

D = D(P) + β , (3.12)

where β ∈ H0(X, End(J2(TX))⊗KX).

Now assume that

• D is an oper connection, and
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• FD = IdJ2(TX), where FD is constructed in (3.11).

Since D(P) also satisfies these two conditions, it follows that there is a unique section

β̃ ∈ H0(X, Hom(J2(TX), K⊗2
X ))

such that β in (3.12) coincides with the composition of homomorphisms

J2(TX)
β̃−→ K⊗2

X
l−→ J2(TX)⊗KX ,

where l is the homomorphism in (3.2). Consequently, we have

$(δ(P) + β̃) = D .

This proves the lemma. �

3.2. Differential operator given by projective structures. Given a projective structure
P on a Riemann surface X, recall that in Proposition 2.8(2) we constructed an element of
H0(X, Diff3

X(TX, K⊗2
X ))0.

Proposition 3.5. The space of all projective structures on X is in a natural bijection with
the subspace of H0(X, Diff3

X(TX, K⊗2
X ))0 consisting all differential operators δ satisfying the

following two conditions:

(1) The connection on
∧3 J2(TX) induced by the connection $(δ) on J2(TX) (see Lemma

3.1) coincides with the trivial connection on
∧3 J2(TX) (see Remark 2.1).

(2) If s and t are locally defined holomorphic sections of TX such that δ(s) = 0 = δ(t),
then δ([s, t]) = 0, where [s, t] is the usual Lie bracket of the vector fields s and t.

Proof. Let P(X) denote the space of all projective structures on X. Let

D(X) ⊂ H0(X, Diff3
X(TX, K⊗2

X ))0

be the subset consisting of all differential operators δ satisfying the following conditions:

(1) The connection on
∧3 J2(TX) induced by the connection $(δ) on J2(TX) coincides

with the trivial connection on
∧3 J2(TX).

(2) If s and t are locally defined holomorphic sections of TX such that δ(s) = 0 = δ(t),
then δ([s, t]) = 0.

Let P ∈ P(X) be a projective structure on X. Let

δ ∈ H0(X, Diff3
X(TX, K⊗2

X ))0

be the differential operator given by P (see Proposition 2.8(2)). In view of Proposition
2.8(4), the first one of the above two conditions on δ is satisfied; also, the second condition
is satisfied because of Proposition 2.8(3). Therefore, we get a map

Θ : P(X) −→ D(X) (3.13)

that sends any P to the corresponding differential operator δ.

There is a natural map

Ψ : D(X) −→ P(X) (3.14)
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(see [Bi, p. 14, (3.7)]). To clarify, set n = 2 in the definition of B in [Bi, p. 13]. Then B0 in
[Bi, p. 13] coincides with the subset of H0(X, Diff3

X(TX, K⊗2
X )) consisting of all δ′ such that

• the symbol of δ′ is the constant function 1, and
• the holomorphic connection on

∧3 J2(TX) induced by the connection$(δ′) on J2(TX)
coincides with the trivial connection on

∧3 J2(TX) = OX.

For the maps Θ and Ψ constructed in (3.13) and (3.14) respectively, we have

Ψ ◦Θ = IdP(X) ; (3.15)

this follows from the combination of the facts that

• the map F in [Bi, p. 19, (5.4)] is a bijection,
• the map Ψ in (3.14) coincides with the composition of the map F in [Bi, p. 19, (5.4)]

with the natural projection P(X)×H0(X, K⊗3
X ) −→ H0(X, K⊗3

X ), and
• F−1(P , 0) = Θ(P) for all P ∈ P(X), where Θ is the map in (3.13).

From (3.15) we conclude that the map Θ in (3.13) is injective. We will prove that the
map Θ is surjective as well.

Let

H0(X, Diff3
X(TX, K⊗2

X ))1 ⊂ H0(X, Diff3
X(TX, K⊗2

X ))0

be the subset consisting of all η ∈ H0(X, Diff3
X(TX, K⊗2

X ))0 such that the connection on∧3 J2(TX) induced by the connection $(η) on J2(TX) (see Lemma 3.1) coincides with the
trivial connection on

∧3 J2(TX) (see Remark 2.1). Let

Ψ′ : H0(X, Diff3
X(TX, K⊗2

X ))1 −→ P(X) (3.16)

be the map in [Bi, p. 14, (3.7)]; recall that the map Ψ in (3.14) is the restriction of this map
Ψ′ to the subset D(X) of H0(X, Diff3

X(TX, K⊗2
X ))1.

Take any

η ∈ H0(X, Diff3
X(TX, K⊗2

X ))1 . (3.17)

From the isomorphism F in [Bi, p. 19, (5.4)] we know that there is a holomorphic section

ξ ∈ H0(X, K⊗3
X )

such that

η = Θ(Ψ′(η)) + ξ , (3.18)

where Ψ′ and Θ are the maps in (3.16) and (3.13) respectively.

We now impose the following condition on η in (3.17):

If s and t are locally defined holomorphic sections of TX such that η(s) = 0 = η(t), then
η([s, t]) = 0.

Since Θ(Ψ′(η)) ∈ D(X), in particular, Θ(Ψ′(η)) satisfies the above condition, from the
above condition on η it follows that the section ξ in (3.18) vanishes identically. So, we have
η = Θ(Ψ′(η)). This implies that the map Θ is surjective. �

As before, Conn(J2(TX)) denotes the space of all holomorphic connections on J2(TX).
Lemma 3.4 and Proposition 3.5 combine together to give the following:
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Corollary 3.6. The space of all projective structures on X is in a natural bijection with the
subset of Conn(J2(TX)) defined by all connections D satisfying the following four conditions:

(1) D is an oper connection,
(2) FD = IdJ2(TX), where FD is constructed in (3.11),

(3) the connection on
∧3 J2(TX) induced by D, coincides with the trivial connection on∧3 J2(TX), and

(4) if s and t are locally defined holomorphic sections of TX such that the sections of
J2(TX) corresponding to s and t are flat with respect to D, then the section of J2(TX)
corresponding to [s, t] is also flat with respect to D.

Proof. In Proposition 2.8 we constructed a map from the projective structures on X to the
holomorphic connections on J2(TX). The holomorphic connections on J2(TX) obtained this
way satisfy all the four conditions in the statement of the corollary. See Proposition 2.8 for
conditions (3) and (4); see the proof of Lemma 3.3 for condition (1); see the proof of Lemma
3.4 for (2).

Conversely, let D be a holomorphic connection on J2(TX) satisfying the four conditions.
In view of Lemma 3.4, from the first two conditions we conclude that D = $(δ) for some δ ∈
H0(X, Diff3

X(TX, K⊗2
X ))0. In view of Proposition 3.5, from the third and fourth conditions

we conclude that D corresponds to a projective structures on X. �

4. Projective structures and orthogonal opers

Projective structures on a Riemann surface X are precisely the PSL(2,C)–opers on X.
On the other hand, we have the isomorphism PSL(2,C) = SO(3,C). This isomorphism is
obtained by identifying C3 equipped with the standard nondegenerate symmetric form and
Sym2(C2) equipped with the nondegenerate symmetric form constructed using the standard
anti-symmetric form on C2; this identification produces a homomorphism from SL(2,C) to
SO(3,C), which factors through PSL(2,C), producing an isomorphism of PSL(2,C) with
SO(3,C). Therefore, projective structures on X are precisely the SO(3,C)–opers on X. In
this subsection we shall elaborate this point of view.

A holomorphic SO(3,C)–bundle on a Riemann surface X consists of a holomorphic vector
bundle W of rank three on X together with a holomorphic section BW ∈ H0(X, Sym2(W ∗)),
such that

•
∧3W is identified with OX by a given isomorphism,
• BW is fiberwise nondegenerate, and
• the given isomorphism of

∧3W with OX takes the bilinear form on
∧3W induced

by BW to the standard constant bilinear form on OX (the corresponding quadratic
form takes the section of OX given by the constant function 1 on X to the function
1).

A filtered SO(3,C)–bundle on X is a holomorphic SO(3,C)–bundle (W, BW ) together with
a filtration of holomorphic subbundles

FW
1 ⊂ FW

2 ⊂ W
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such that

(1) FW
1 is holomorphically identified with KX by a given isomorphism,

(2) BW (FW
1 ⊗ FW

1 ) = 0,
(3) FW

2 /FW
1 is holomorphically identified with OX by a given isomorphism,

(4) BW (FW
1 ⊗ FW

2 ) = 0; in other words, (FW
1 )⊥ = FW

2 .

Note that the first and third conditions together imply that W/FW
2 is holomorphically

identified with
∧3W ⊗ (KX)∗ = TX.

A holomorphic connection on a filtered SO(3,C)–bundle (W, BW , {FW
i }2

i=1) is a holomor-
phic connection DW on W such that

• the holomorphic connection DW preserves the bilinear form BW on W ,
• the holomorphic connection on

∧3W = OX induced by DW coincides with the
holomorphic connection on OX given by the de Rham differential d,
• DW (FW

1 ) = FW
2 ⊗KX, and

• the second fundamental form of FW
1 for DW , which is a holomorphic section of

Hom(KX, OX) ⊗ KX = OX (see (2.17)), coincides with the section of OX given by
the constant function 1 on X.

An SO(3,C)–oper on X is a filtered SO(3,C)–bundle (W, BW , {FW
i }2

i=1) equipped with a
holomorphic connection DW .

The above conditions imply that the holomorphic section of Hom(OX, TX) ⊗KX = OX
that gives the second fundamental form of FW

2 for DW — see (2.18) — coincides with the
one given by the constant function 1. See [BeDr] for more on SO(3,C)–opers.

Recall from (2.14) that J2(TP(V)) is equipped with the bilinear form B0, and it has the
filtration {F P

i }2
i=1 constructed in (2.15). From Section 2.4 we conclude that

(J2(TP(V)), B0, {F P
i }2

i=1, D0)

is an SO(3,C)–oper on P(V), where D0 is the holomorphic connection on J2(TP(V)) con-
structed in (2.11). Consider the action of PGL(V) on J2(TP(V)) given by the action of
PGL(V) on P(V). Both B0 and the filtration {F P

i }2
i=1 are clearly preserved by this action

of PGL(V) on J2(TP(V)). As noted in the proof of Proposition 2.8(1), the connection D0 is
preserved by the action of PGL(V) on J2(TP(V)).

Let (W, BW , {FW
i }2

i=1, DW ) be an SO(3,C)–oper on X. Denote by P (W ) the projective
bundle on X that parametrizes the lines in the fibers of W . Let

PW ⊂ P (W ) (4.1)

be the CP1–bundle on X that parametrizes the isotropic lines for BW (the lines on which the
corresponding quadratic form vanishes). So the given condition BW (FW

1 ⊗FW
1 ) = 0 implies

that the line subbundle FW
1 ⊂ W produces a holomorphic section

sW : X −→ PW

of the CP1–bundle in (4.1). The connection DW produces a holomorphic connection on
P (W ), which, in turn, induces a holomorphic connection on PW ; this holomorphic connection
on PW will be denoted by HW . It is straight-forward to check that the triple (PW , HW , sW )
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defines a projective structure on X (the condition for the triple to define a projective structure
is recalled in Section 2.1).

Conversely, let P be a projective structure on X. Take a holomorphic coordinate atlas
{(Ui, φi)}i∈I in the equivalence class defining P . Using φi,

• the bilinear form B0 on J2(TP(V))|φi(Ui) constructed in (2.14) produces a bilinear
form BP(i) on J2(TX)|Ui

,
• the filtration {F P

j }2
j=1 of J2(TP(V))|φi(Ui) constructed in (2.15) produces a filtration

{FPj (i)}2
j=1 of J2(TX)|Ui

, and

• the holomorphic connection D0|φi(Ui) in (2.11) on J2(TP(V))|φi(Ui) produces a holo-
morphic connection DP(i) on J2(TX)|Ui

.

Since B0, {F P
j }2

j=1 and D0 are all PGL(V)–equivariant, each of the locally defined structures

{BP(i)}i∈I , {{FPj (i)}2
j=1}i∈I and {DP(i)}i∈I patch together compatibly to define

• a holomorphic nondegenerate symmetric bilinear form BP on J2(TX),
• a filtration {FPj }2

j=1 of holomorphic subbundles of J2(TX), and

• a holomorphic connection DP on J2(TX).

Since (J2(TP(V)), B0, {F P
i }2

i=1, D0) is an SO(3,C)–oper on P(V), we conclude that

(J2(TX), BP , {FPj }2
j=1, DP)

is an SO(3,C)–oper on X.

It is straight-forward to check that the above two constructions, namely from SO(3,C)–
opers on X to projective structures on X and vice versa, are inverses of each other.

The above construction of an SO(3,C)–oper on X from P has the following alternative
description.

Let γ : PP −→ X be a holomorphic CP1–bundle, HP a holomorphic connection on PP
and sP a holomorphic section of γ, such that the triple

(γ, HP , sP)

gives the projective structure P (see Section 2.1). Let

W := γ∗Tγ −→ X

be the direct image, where Tγ is defined in (2.1). For any x ∈ X, the fiber Wx is identified
with H0(γ−1(x), T (γ−1(x))), so Wx is a Lie algebra isomorphic to sl(2,C); the Lie algebra
structure is given by the Lie bracket of vector fields. Let BW denote the Killing form on W .

If V is a rank two holomorphic vector bundle on X such that P(V) = PP , then W =
ad(V) ⊂ End(V) (the subalgebra bundle of trace zero endomorphisms). It should be
clarified, that although V is not uniquely determined by PP , any two choices of V with
P(V) = PP differ by tensoring with a holomorphic line bundle on X. As a consequence,
End(V) and ad(V) are uniquely determined by PP . The bilinear form BW coincides with
the bilinear form on ad(V) defined by the Killing bilinear form of the endomorphism algebra
(defined from the trace).
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Since the image sP(X) ⊂ PP of the section sP is a divisor, the holomorphic vector bundle
W has a filtration of holomorphic subbundles

F P
1 := γ∗(Tγ ⊗OPP (−2sP(X))) ⊂ F P

2 := γ∗(Tγ ⊗OPP (−sP(X))) ⊂ γ∗Tγ =: W . (4.2)

Recall from Section 2.1 that the homomorphism d̂sP : TX −→ (sP)∗Tγ (see (2.3)) is an

isomorphism. Therefore, d̂sP gives a holomorphic isomorphism between TX and the normal
bundle N = NsP (X) of the divisor sP(X) ⊂ PP . On the other hand, by the Poincaré ad-
junction formula, N∗ is identified with the restriction OPP (−sP(X))|sP (X) of the holomorphic
line bundle OPP (−sP(X)) to the divisor sP(X); see [GH, p. 146] for the Poincaré adjunction
formula. Therefore, the pulled back holomorphic line bundle

(sP)∗(Tγ ⊗OPP (−2sP(X))) (4.3)

is identified with TX⊗K⊗2
X = KX.

Since the line bundle in (4.3) is canonically identified with F P
1 in (4.2), we conclude that

F P
1 is identified with KX.

The quotient line bundle F P
2 /F

P
1 in (4.2) is identified with

(sP)∗(Tγ ⊗OPP (−sP(X))) .

Since (sP)∗(OPP (−sP(X))) is identified with KX, it follows that F P
2 /F

P
1 is identified with

OX.

For any x ∈ X, the subspace (F P
1 )x ⊂ Wx is a nilpotent subalgebra, and (F P

2 )x ⊂ Wx

is the unique Borel subalgebra containing (F P
1 )x. Hence we have BW (F P

1 ⊗ F P
1 ) = 0 and

(F P
1 )⊥ = F P

2 .

Consequently, (W, BW , {F P
i }2

i=1) is a filtered SO(3,C)–bundle on X. The holomorphic
connection HP on PP produces a holomorphic connection

DP (4.4)

on W . Indeed, from the fact that Aut(CP1) = PSL(2,C) it follows that the CP1–bundle PP
gives a holomorphic principal PSL(2,C)–bundle PP(PSL(2,C)) on X, and HP produces a
holomorphic connection on PP(PSL(2,C)). This holomorphic connection on PP(PSL(2,C))
produces a holomorphic connection on the vector bundle W associated to PP(PSL(2,C)) for
the adjoint action of PSL(2,C) on its Lie algebra sl(2,C); this connection on W is denoted
by DP .

The connection DP in (4.4) is in fact a holomorphic connection on the filtered SO(3,C)–
bundle (W, BW , {F P

i }2
i=1). The resulting SO(3,C)–oper (W, BW , {F P

i }2
i=1, DP) coincides

with the one constructed earlier from P .

5. Branched projective structures and logarithmic connections

5.1. Branched projective structure. Let X be a connected Riemann surface. Fix a
nonempty finite subset

S := {x1, · · · , xd} ⊂ X (5.1)
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of d distinct points. For each xi, 1 ≤ i ≤ d, fix an integer ni ≥ 1. Let

S :=
d∑
i=1

ni · xi (5.2)

be the effective divisor on X.

The group of all holomorphic automorphisms of CP1 is the Möbius group PGL(2,C). Any(
a b
c d

)
∈ SL(2,C)

acts on CP1 = C ∪ {∞} as z 7−→ az+b
cz+d

; the center Z/2Z of SL(2,C) acts trivially, thus

producing an action of PGL(2,C) = SL(2,C)/(Z/2Z) on CP1.

A branched projective structure on X with branching type S (defined in (5.2)) is given
by data

{(Uj, φj)}j∈J , (5.3)

where

(1) Uj ⊂ X is a connected open subset with #(Uj
⋂
S0) ≤ 1 such that

⋃
j∈J Uj = X,

(2) φj : Uj −→ CP1 is a holomorphic map which is an immersion on the complement
Uj \ (Uj

⋂
S0),

(3) if Uj
⋂
S0 = xi, then φj is of degree ni + 1 and totally ramified at xi, while φj is an

embedding if Uj
⋂
S0 = ∅, and

(4) for every j, j′ ∈ J with Uj
⋂
Uj′ 6= ∅, and every connected component U ⊂

Uj
⋂
Uj′ , there is an element fUj,j′ ∈ PGL(2,C), such that φj = fUj,j′ ◦ φj′ on U .

Two such data {(Uj, φj)}j∈J and {(U ′j, φ′j)}j∈J ′ satisfying the above conditions are called
equivalent if their union {(Uj, φj)}j∈J

⋃
{(U ′j, φ′j)}j∈J ′ also satisfies the above conditions.

A branched projective structure on X with branching type S is an equivalence class of
data {(Uj, φj)}j∈J satisfying the above conditions. This definition was introduced in [Ma1],
[Ma2] (see also [BiDu] for the more general notion of a branched Cartan geometry).

We will now describe an equivalent formulation of the definition of a branched projective
structure.

Consider a triple (γ, H, s), where

• γ : P −→ X is a holomorphic CP1–bundle,
• H ⊂ TP is a holomorphic connection (as before, TP is the holomorphic tangent

bundle and H⊕ kernel(dγ) = TP), and
• s : X −→ P is a holomorphic section of γ,

such that the divisor for the homomorphism d̂s in (2.3) coincides with S in (5.2). This triple
(γ, H, s) gives a branched projective structure on X with branching type S.

Two such triples (γ1, H1, s1) and (γ2, H2, s2) are called equivalent if there is a holomorphic
isomorphism

I : P1 −→ P2

such that
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• γ1 = γ2 ◦ I,
• dI(H1) = I∗H2, where dI : TP1 −→ I∗TP2 is the differential of the map I, and
• I ◦ s1 = s2.

Two equivalent triples produce the same branched projective structure on X. More pre-
cisely, this map from the equivalence classes of triples to the branched projective structures
on X with branching type S is both injective and surjective. More details on this can be
found in [BDG, Section 2.1].

For the convenience of the exposition, we would assume that we are in the generic situation
where the divisor S in (5.2) is reduced. In other words, ni = 1 for all 1 ≤ i ≤ d, and

S =
d∑
i=1

xi . (5.4)

5.2. Logarithmic connections. Let Y be a connected Riemann surface and S =
∑m

i=1 yi
be an effective divisor on Y , where y1, · · · , ym are m distinct points of Y . The holomorphic
cotangent bundle of Y will be denoted by KY . For any point y ∈ S, the fiber (KY ⊗OY (S))y
is identified with C by sending any meromorphic 1-form defined around y to its residue at
y. In other words, for any holomorphic coordinate function z on Y defined around the point
y, with z(y) = 0, consider the isomorphism

Ry : (KY ⊗OY (S))y −→ C , c · dz
z
7−→ c . (5.5)

This isomorphism is in fact independent of the choice of the above coordinate function z.

Let W be a holomorphic vector bundle on Y .

A logarithmic connection on W singular over S is a holomorphic differential operator of
order one

D : W −→ W ⊗KY ⊗OY (S)

such that D(fs) = fD(s) + s⊗ df for all locally defined holomorphic function f on Y and
all locally defined holomorphic section s of W . This means that

D ∈ H0(Y, Diff1
Y (W, W ⊗KY ⊗OY (S)))

such that the symbol of D is the holomorphic section of End(W )⊗OY (S) given by IdW ⊗ 1,
where 1 is the constant function 1 on Y .

Note that a logarithmic connection D defines a holomorphic connection on the restriction
of W to the complement Y \ S. The logarithmic connection D is called an extension of this
holomorphic connection on W |Y \S.

For a logarithmic connection D0 on W singular over S, and a point y ∈ S, consider the
composition of homomorphisms

W
D0−→ W ⊗KY ⊗OY (S)

IdW⊗Ry−→ Wy ⊗ C = Wy ,

where Ry is the homomorphism in (5.5). This composition of homomorphism vanishes on
the subsheaf W ⊗OY (−y) ⊂ W , and hence it produces a homomorphism

Res(D0, y) : W/(W ⊗OY (−y)) = Wy −→ Wy .
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This endomorphism Res(D0, y) of Wy is called the residue of the logarithmic connection D0

at the point y; see [De, p. 53].

The notion of second fundamental form in Section 2.4 extends to the set-up of logarithmic
connections.

Let W be a holomorphic vector bundle on Y equipped with a logarithmic connection
D singular over S. Let W ′ ⊂ W be a holomorphic subbundle. Then the composition of
homomorphisms

W
D−→ W ⊗KY ⊗OY (S)

qW ′⊗Id−→ (W/W ′)⊗KY ⊗OY (S) ,

where qW ′ : W −→ W/W ′ is the natural quotient map, defines a holomorphic section of
Hom(W ′, (W/W ′)) ⊗KY ⊗ OY (S), which is called the second fundamental form of W ′ for
D. If W ′′ ⊂ W is a holomorphic subbundle containing W ′ such that D(W ′) ⊂ W ′′⊗KY ⊗
OY (S), then the second fundamental form of W ′ for D is given by a section

ζ1 ∈ H0(Y, Hom(W ′, W ′′/W ′)⊗KY ⊗OY (S)) (5.6)

using the natural inclusion map

H0(Y, Hom(W ′, W ′′/W ′)⊗KY ⊗OY (S)) ↪→ H0(Y, Hom(W ′, W/W ′)⊗KY ⊗OY (S)) .

The second fundamental form of this subbundle W ′′ for D is given by a section

ζ2 ∈ H0(Y, Hom(W ′′/W ′, W/W ′′)⊗KY ⊗OY (S)) (5.7)

through the natural inclusion map

H0(Y, Hom(W ′′/W ′, W/W ′′)⊗KY ⊗OY (S)) ↪→ H0(Y, Hom(W ′′, W/W ′′)⊗KY ⊗OY (S)) .

5.3. Logarithmic connection from a branched projective structure. We now use the
notation of Section 5.1.

Let

T := (TX)⊗OX(S) (5.8)

be the holomorphic line bundle on X, where S is the divisor in (5.4). From the isomorphism
in (5.5) it follows that the fiber OX(S)y is identified with TyX for every y ∈ S in (5.1). For
any point y ∈ S, let

F 1
y := (TX)⊗OX(S)⊗ (T ∗X)⊗2)y = C ⊂ F 2

y ⊂ J2(T)y (5.9)

be the filtration of subspaces of the fiber J2(T)y over y constructed as in (3.7); more precisely,
F 1
y is the kernel of the projection αy : J2(T)y −→ J1(T)y (see (2.4)), and

F 2
y = α−1

y (Ty ⊗ (KX)y) = α−1
y (O(S)y)

(see (2.4)). In other words, F 2
y is the kernel of the composition of homomorphisms

J2(T)y
αy−→ J1(T)y −→ Ty

(see (2.4)). Note that (TX)⊗OX(S)⊗ (T ∗X)⊗2)y = C, because OX(S)y = TyX.

The complement X \ S will be denoted by X, where S is the subset in (5.1).

Let P be a branched projective structure on X of branching type S, where S is the divisor
in (5.4). So P gives a projective structure on X := X \ S; this projective structure on X
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will be denoted by P . As shown in Proposition 2.8(1), the projective structure P produces
a holomorphic connection D(P) on the vector bundle J2(TX).

Proposition 5.1. The above holomorphic connection D(P) on J2(TX) extends to a loga-
rithmic connection D(P ) on J2(T), where T is the holomorphic line bundle in (5.8).

For any xi ∈ S in (5.1), the eigenvalues of the residue Res(D(P ), xi) are {−2, −1, 0}.
The eigenspace for the eigenvalue −2 of Res(D(P ), xi) is the line F 1

xi
in (5.9). The

eigenspace for the eigenvalue −1 of Res(D(P ), xi) is contained in the subspace F 2
xi

in (5.9).

Proof. This proposition follows from some general properties of logarithmic connections
which we shall explain first.

Let Y be a Riemann surface and y0 ∈ Y a point; let ι : y0 ↪→ Y be the inclusion map.
Take a holomorphic vector bundle W on Y , and let Wy0 −→ Q −→ 0 be a quotient of the
fiber of W over the point y0. Let

0 −→ V
β−→ W −→ Q := i∗Q −→ 0 (5.10)

be a short exact sequence of coherent analytic sheaves on Y ; so the sheaf Q is supported on
the reduced point y0. Let

0 −→ kernel(β(y0)) −→ Vy0
β(y0)−→ Wy0 −→ cokernel(β(y0)) = Q −→ 0 (5.11)

be the exact sequence of vector spaces obtained by restricting the exact sequence in (5.10)
to the point y0. It can be shown that there is a canonical isomorphism

kernel(β(y0))
∼−→ Q⊗ (Ty0Y )∗ . (5.12)

To prove this, take any v ∈ kernel(β(y0)), and let ṽ be a holomorphic section of V defined
around y0 such that ṽ(y0) = v. The locally defined section β(ṽ) of W vanishes at y0, so its
1-jet at y0 gives an element ofWy0⊗(Ty0Y )∗; this element ofWy0⊗(Ty0Y )∗ will be denoted by
v1. Let v′ ∈ Q⊗ (Ty0Y )∗ denote the image of v1 under the homomorphism β(y0)× Id(Ty0Y )∗ .
It is straightforward to check that v′ does not depend on the choice of the above extension
ṽ of v. Consequently, we get a homomorphism as in (5.12). This homomorphism is in fact
an isomorphism.

Let ∇W be a logarithmic connection on W singular over y0. Then ∇W induces a loga-
rithmic connection on the subsheaf V in (5.10) if and only if the residue Res(∇W , y0) ∈
End(Wy0) preserves the subspace β(y0)(Vy0) ⊂ Wy0 in (5.11).

Now assume that ∇W induces a logarithmic connection ∇1 on V . Then Res(∇1, y0)
preserves the subspace kernel(β(y0)) ⊂ Vy0 in (5.11), and the endomorphism of

Vy0/kernel(β(y0)) = β(y0)(Vy0)

induced by Res(∇1, y0) coincides with the restriction of Res(∇W , y0) to β(y0)(Vy0). Let
Res(∇W , y0)Q ∈ End(Q) be the endomorphism induced by Res(∇W , y0). The restriction of
Res(∇1, y0) to kernel(β(y0)) ⊂ Vy0 coincides with Id + Res(∇W , y0)Q; from (5.12) it follows
that

End(kernel(β(y0))) = End(Q) ,

so Res(∇W , y0)Q gives an endomorphism of kernel(β(y0)).
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Conversely, let ∇V be a logarithmic connection on V singular over y0. Then ∇V induces
a logarithmic connection on the holomorphic vector bundle W in (5.10) if and only if the
residue Res(∇V , y0) ∈ End(Vy0) preserves the subspace kernel(β(y0)) ⊂ Vy0 in (5.11).

Now assume that ∇V induces a logarithmic connection ∇′ on W . Then ∇′ gives the
logarithmic connection ∇V on V . Consequently, the residues of ∇V and ∇′ are related in
the fashion described above.

Take a point xi ∈ S (see (5.1)). Let xi ∈ U ⊂ X be a sufficiently small contractible
open neighborhood of xi in X, in particular, U

⋂
S = xi. Let

D1 := {z ∈ C | |z| < 1} ⊂ C

be the unit disk. Fix a biholomorphism

γ̃ : D1 −→ U

such that γ̃(0) = xi. Let

γ : U −→ D1 , x 7−→ (γ̃−1(x))2 (5.13)

be the branched covering map. Then using γ, the branched projective structure on U ,
given by the branched projective structure P on X of branching type S, produces an usual
(unbranched) projective structure on D1; this projective structure on D1 will be denoted by
P1.

Now substituting (D1, P1) in place of (X, P) in Proposition 2.8(1), we get a holomorphic
connection D(P1) on J2(TD1). The holomorphic vector bundle γ∗J2(TD1) over U , where γ
is the map in (5.13), is equipped with the holomorphic connection γ∗D(P1).

The differential dγ : TU −→ γ∗TD1 induces an isomorphism T|U
∼−→ γ∗TD1, where T

is the line bundle in (5.8). This, in turn, produces an isomorphism

J2(T)|U
∼−→ J2(γ∗TD1) . (5.14)

On the other hand, there is a natural homomorphism γ∗J2(TD1) −→ J2(γ∗TD1). Combin-
ing this with the inverse of the isomorphism in (5.14) we get a homomorphism

γ∗J2(TD1) −→ J2(T)|U . (5.15)

This homomorphism is an isomorphism over U \ {xi}.
Apply the above mentioned criterion, for the extension of a logarithmic connection on

the vector bundle V in (5.10) to a logarithmic connection on the vector bundle W , to
the homomorphism in (5.15) and the holomorphic connection γ∗D(P1) on γ∗J2(TD1). We
conclude that γ∗D(P1) induces a logarithmic connection on J2(T)|U . The first statement of
the proposition follows from this.

The other two statements of the proposition follow from the earlier mentioned properties
of residues of the logarithmic connections on the vector bundles V and W in (5.10) that are
induced by each other. �
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6. Branched projective structures and branched SO(3,C)-opers

6.1. Branched SO(3,C)-opers. We shall now use the terminology in Section 4.

Definition 6.1. Let (W, BW ) be a holomorphic SO(3,C)–bundle on a connected Riemann
surface X. A branched filtration on (W, BW ), of type S (see (5.4)), is a filtration of holo-
morphic subbundles

FW
1 ⊂ FW

2 ⊂ W (6.1)

such that

• FW
1 is holomorphically identified with KX ⊗OX(−S) by a given isomorphism,

• BW (FW
1 ⊗ FW

1 ) = 0,
• FW

2 /FW
1 is holomorphically identified with OX by a given isomorphism,

• BW (FW
1 ⊗ FW

2 ) = 0 (equivalently, (FW
1 )⊥ = FW

2 ).

Compare the above definition with the definition of a filtration of (W, BW ) given in Section
4. They differ only at the first condition.

The above conditions imply that

W/FW
2 = (

∧3
W )⊗ (KX ⊗OX(−S))∗ = TX ⊗OX(S) . (6.2)

A branched filtered SO(3,C)–bundle, of type S, is a holomorphic SO(3,C)–bundle (W, BW )
equipped with a branched filtration {FW

i }2
i=1 of type S as in (6.1).

Definition 6.2. A branched holomorphic connection on a branched filtered SO(3,C)–bundle
(W, BW , {FW

i }2
i=1), of type S, is a holomorphic connection DW on W such that

• the holomorphic connection DW preserves the bilinear form BW on W ,
• the holomorphic connection on

∧3W = OX induced by DW coincides with the
holomorphic connection on OX given by the de Rham differential d,
• DW (FW

1 ) ⊂ FW
2 ⊗KX , and

• the second fundamental form of FW
1 for DW , which is a holomorphic section of

Hom(KX ⊗OX(−S), OX)⊗KX = OX(S)

(see (2.17)), coincides with the section of OX(S) given by the constant function 1 on
X.

Definition 6.3. A branched SO(3,C)–oper, of type S, on X is a branched filtered SO(3,C)–
bundle

(W, BW , {FW
i }2

i=1) ,

of type S, equipped with a branched holomorphic connection DW .

Since the divisor S is fixed, we would drop mentioning it explicitly.

The above conditions imply that the holomorphic section of

Hom(OX , TX ⊗OX(S))⊗KX = OX(S)

that gives the second fundamental form of FW
2 for DW — see (2.18) — coincides with the

section of OX(S) given by the constant function 1 on X.
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6.2. Branched projective structures are branched SO(3,C)-opers. Take a branched
SO(3,C)–oper (W, BW , {FW

i }2
i=1, DW ) on X of type S. Let P (W ) be the projective bundle

on X that parametrizes the lines in the fibers of W . As in (4.1),

P (W ) ⊃ PW
γ−→ X

is the CP1–bundle on X that parametrizes the isotropic lines for BW . The line subbundle
FW

1 ⊂ W , being isotropic, produces a holomorphic section

sW : X −→ PW (6.3)

of the projection γ. The connection DW produces a holomorphic connection on P (W ), and
this connection on P (W ) induces a holomorphic connection on PW ; recall that a holomorphic
connection on PW is a holomorphic line subbundle of TPW transversal to the relative tangent
bundle Tγ for the projection γ. Let

HW ⊂ TPW (6.4)

be the holomorphic connection on PW given by DW .

Lemma 6.4. The triple (PW , HW , sW ) (see (6.3) and (6.4)) defines a branched projective
structure on X of branching type S.

Proof. Recall that the last condition in the definition of a branched holomorphic connection
on (W, BW , {FW

i }2
i=1) (see Definition 6.2) says that the second fundamental form of FW

1 for
DW is the holomorphic section of

Hom(KX ⊗OX(−S), OX)⊗KX = OX(S)

given by the constant function 1 on X. On the other hand, the divisor for the second
fundamental form of FW

1 for DW coincides with the divisor for the homomorphism

d̂sW : TX −→ (sW )∗Tγ

(see (2.3)). Consequently, the divisor for the homomorphism d̂sW is S. Hence (PW , HW , sW )
defines a branched projective structure on X of branching type S; see Section 5.1. �

Now let P be a branched projective structure on X of branching type S. Let

γ : PP −→ X

be a holomorphic CP1–bundle, HP a holomorphic connection on PP and sP a holomorphic
section of γ, such that the triple

(γ, HP , sP) (6.5)

gives the branched projective structure P ; see Section 5.1. Define the holomorphic vector
bundle of rank three on X

W := γ∗Tγ −→ X , (6.6)

where Tγ ⊂ TPP is the relative holomorphic tangent for the projection γ (as in (2.1)). If
s and t are locally defined holomorphic sections of Tγ ⊂ TPP , then the Lie bracket [s, t] is
also a section of Tγ. Consequently, each fiber of W = γ∗Tγ is a Lie algebra isomorphic to
sl(2,C). Let

BW ∈ H0(X, Sym2(W ∗)) (6.7)
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be the holomorphic section given by the fiberwise Killing form on W .

As shown in Section 4, the pair (W, BW ) can also be constructed by choosing a rank two
holomorphic vector bundle V on X such that P(V) = PP ; then W = ad(V) ⊂ End(V)
(the subalgebra bundle of trace zero endomorphisms) and BW is constructed using the trace
map of endomorphisms.

Exactly as in (4.2), construct the filtration

F P
1 := γ∗(Tγ ⊗OPP (−2sP(X))) ⊂ F P

2 := γ∗(Tγ ⊗OPP (−sP(X))) ⊂ γ∗Tγ =: W (6.8)

of W .

Lemma 6.5. The triple (W, BW , {F P
i }2

i=1) constructed in (6.6), (6.7), (6.8) is a branched
filtered SO(3,C)–bundle of type S (see (5.4)).

Proof. The holomorphic line bundle F P
1 in (6.8) admits a canonical isomorphism

F P
1

∼−→ (sP)∗(Tγ ⊗OPP (−2sP(X))) , (6.9)

because the restriction of Tγ ⊗ OPP (−2sP(X)) to any fiber of γ is holomorphically trivi-
alizable, and the evaluation, at a given point, of the global sections of a holomorphically
trivializable bundle is an isomorphism. The quotient bundle F P

2 /F
P
1 admits a canonical

isomorphism

F P
2 /F

P
1

∼−→ (sP)∗(Tγ ⊗OPP (−sP(X))) , (6.10)

which is again constructed by evaluating the holomorphic sections of Tγ⊗OPP (−sP(X))|γ−1(x)

at the point sP(x) for every x ∈ X.

Now, by the Poincaré adjunction formula, (sP)∗OPP (−sP(X)) is identified with the dual
bundle (sP)∗N∗, where N = NsP (X) is the normal bundle of the divisor sP(X) ⊂ PP . On
the other hand, N is canonically identified with the restriction Tγ|sP (X), because the divisor
sP(X) is transversal to the fibration γ. Consequently, (sP)∗OPP (−sP(X)) is identified with
(sP)∗T ∗γ .

Recall from Section 5.1 that the divisor for the homomorphism d̂sP : TX −→ (sP)∗Tγ
(see (2.3)) coincides with S. Consequently, d̂sP identifies (TX) ⊗ OX(S) with (sP)∗Tγ.
Therefore, the line bundle (sP)∗(Tγ ⊗ OPP (−2sP(X))) in (6.9) is identified with KX ⊗
OX(−S), and the line bundle (sP)∗(Tγ ⊗OPP (−sP(X))) in (6.10) is identified with OX .

From the above descriptions of F P
1 and F P

2 it follows that for each point x ∈ X, the
fiber (F P

1 )x ⊂ Wx is a nilpotent subalgebra of the Lie algebra Wx, and (F P
2 )x ⊂ Wx is the

unique Borel subalgebra of Wx containing (F P
1 )x. These imply that BW (F P

1 ⊗F P
1 ) = 0, and

(F P
1 )⊥ = F P

2 . Hence (W, BW , {F P
i }2

i=1) is branched filtered SO(3,C)–bundle of type S. �

Consider the holomorphic connection HP in (6.5) on the holomorphic CP1–bundle PP .
It produces a holomorphic connection on the direct image W = γ∗Tγ; see (4.4). This
holomorphic connection on W will be denoted by DP .

Lemma 6.6. The above connection DP on W is a branched holomorphic connection on the
branched filtered SO(3,C)–bundle (W, BW , {F P

i }2
i=1) in Lemma 6.5. In other words,

(W, BW , {F P
i }2

i=1, DP)
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is a SO(3,C)–oper.

Proof. The connection DP preserves the bilinear form BW on W , because the action of
PSL(2,C) on Sym2(C2) preserves the symmetric bilinear form on Sym2(C2) given by the
standard symplectic form on C2. Also, the holomorphic connection on

∧3W induced by
DP coincides with the holomorphic connection on OX given by the de Rham differential d,
because the action of PSL(2,C) on

∧3 Sym2(C2) is the trivial action.

Since any holomorphic connection on a holomorphic bundle over a Riemann surface is
automatically integrable, the CP1–bundle PP is locally isomorphic the trivial holomorphic
CP1–bundle, and HP in (6.5) is locally holomorphically isomorphic to the trivial connection
on the trivial holomorphic CP1–bundle. So W is locally holomorphically isomorphic to the
trivial vector bundle whose fibers are quadratic polynomials in one variable, and DP is the
trivial connection on this locally defined trivial holomorphic vector bundle. With respect
to these trivialization, and a suitable pair (U, φ) as in (5.3) compatible with the projective
structure P , the section sP in (6.5) around any point xi ∈ S is of the form z 7−→ (z, z2),
where z is a holomorphic function around xi with z(xi) = 0.

In view of the above observations, from a straight-forward computation it follows that

• DP(F P
1 ) ⊂ F P

2 ⊗KX , and
• the second fundamental form of F P

1 for DP , which is a holomorphic section of

Hom(KX ⊗OX(−S), OX)⊗KX = OX(S) ,

coincides with the section of OX(S) given by the constant function 1 on X.

This completes the proof. �

The above construction of a branched projective structure on X from a branched SO(3,C)–
oper (see Lemma 6.4), and the construction of a branched SO(3,C)–oper from a branched
projective structure (see Lemma 6.6), are clearly inverses of each other.

We summarize the constructions done in this subsection in the following theorem.

Theorem 6.7. There is a natural bijective correspondence between the branched projective
structures on X with branching type S and the branched SO(3,C)–opers on X of type S.

6.3. Logarithmic connection from branched SO(3,C)-opers. In Proposition 5.1 we
constructed a logarithmic connection on J2(T) from a branched projective structure on X,
where T = (TX)⊗OX(S) (see (5.8)). On the other hand, Theorem 6.7 identifies branched
projective structure on X with branched SO(3,C)–opers on X. Thus a branched SO(3,C)–
oper gives a logarithmic connection on J2(T). Now we shall give a direct construction of the
logarithmic connection on J2(T) associated to a branched SO(3,C)–oper on X.

Let

F 1
T ⊂ F 2

T ⊂ J2(T) (6.11)

be the filtration of holomorphic subbundles constructed as in (3.7); so, F 1
T is the kernel of

the natural projection

c1 : J2(T) −→ J1(T) (6.12)
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(see (2.4)), and F 2
T is the kernel of the homomorphism

c2 : J2(T) −→ T (6.13)

obtained by composing J2(T)
c1−→ J1(T) with the natural homomorphism J1(T) −→ T in

(2.4). Note that the restriction of the filtration in (6.11) to any point y ∈ S coincides with
the filtration in (5.9). We have

F 1
T = T⊗K2

X = KX ⊗OX(S) , F 2
T/F

1
T = T⊗KX = OX(S) , J2(T)/F 2

T = T . (6.14)

Let

(W, BW , {FW
i }2

i=1, DW ) (6.15)

be a branched SO(3,C)–oper on X of type S. Recall from (6.2) and (5.8) that W/FW
2 =

TX ⊗OX(S) = T. Let

q0 : W −→ T = W/FW
2 (6.16)

be the quotient map.

Take any point x ∈ X and any w ∈ Wx. Let w̃ be the unique holomorphic section of W ,
defined on a simply connected open neighborhood of x, such that w̃ is flat with respect to
the holomorphic connection DW in (6.15), and

w̃(x) = w . (6.17)

Let

Φ : W −→ J2(T) (6.18)

be the homomorphism that sends any w ∈ Wx, x ∈ X, to the element of J2(T)x given by
the restriction of the section q0(w̃) to the second order infinitesimal neighborhood of x, where
q0 is the homomorphism in (6.16) and w̃ is constructed as above from w. This construction
is similar to the construction of the homomorphisms ψj in (2.8).

Proposition 6.8.

(1) For the homomorphism Φ in (6.18),

Φ(FW
1 ) ⊂ F 1

T and Φ(FW
2 ) ⊂ F 2

T

where {F i
T}2

i=1 and {FW
i }2

i=1 are the filtrations in (6.11) and (6.15) respectively.
(2) The homomorphism Φ takes the holomorphic connection DW in (6.15) to a loga-

rithmic connection on J2(T) whose singular locus is S in (5.1). The logarithmic
connection on J2(T) induced by DW will be denoted by DJ .

(3) For any xi ∈ S (see (5.1)), the residue Res(DJ , xi) of DJ at xi has eigenvalues
{−2, −1, 0}.

(4) The eigenspace of Res(DJ , xi) for the eigenvalue −2 is the line (F 1
T)xi ⊂ J2(T)xi

in (6.11). The eigenspace of Res(DJ , xi) for the eigenvalue −1 is contained in the
subspace (F 2

T)xi ⊂ J2(T)xi in (6.11).

Proof. To prove statement (1), first take any x ∈ X and any w ∈ (FW
2 )x. Since q0(w) = 0,

where q0 is the projection in (6.16), from (6.17) it follows immediately that c2 ◦ Φ(w) = 0,
where c2 is the homomorphism in (6.13). This implies that Φ(FW

2 ) ⊂ F 2
T . To prove

statement (1), we need to show that Φ(FW
1 ) ⊂ F 1

T .
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Take any x ∈ X and any w ∈ (FW
1 )x. From the given condition that DW (FW

1 ) ⊂
FW

2 ⊗ KX it follows that c1 ◦ Φ(w) = 0, where c1 is the homomorphism in (6.12). More
precisely, the restriction Φ|FW

1
coincides with the natural inclusion homomorphism

FW
1 = KX ⊗OX(−S) ↪→ KX ⊗OX(S) = F 1

T ;

see (6.14) for KX⊗OX(S) = F 1
T and Definition 6.1 for FW

1 = KX⊗OX(−S). Consequently,
we have Φ(FW

1 ) ⊂ F 1
T . This proves (1).

Denote X \ S by X. We note that the restriction

Φ|X : W |X −→ J2(T)|X = J2(TX)

is a holomorphic isomorphism.

From Theorem 6.7 we know that the branched SO(3,C)–oper (W, BW , {FW
i }2

i=1, DW ) in
(6.15) defines a branched projective structure on X of type S. Let P denote the projective
structure on X = X \S given by this branched projective structure on X. Using Proposition
2.8(1), the projective structure P yields a holomorphic connection D(P) on J2(TX). This
holomorphic connection D(P) evidently coincides with the holomorphic connection DJ |X on
J2(T)|X = J2(TX) given by the connection DW using the isomorphism Φ|X. Consequently,
the statements (2), (3) and (4) in the proposition follow from Proposition 5.1 and statement
(1). �

Proposition 6.8 yields the following:

Corollary 6.9. For the logarithmic connection DJ on J2(T) in Proposition 6.8(2),

DJ(F 1
T) = F 2

T ⊗KX ⊗OX(S) ,

and
DJ(F 2

T) = J2(T)⊗KX ⊗OX(S) ,

where {F i
T}2

i=1 is the filtration in (6.11).

Proof. From Proposition 6.8(2) we know that the logarithmic connection DJ is given by
the connection DW using Φ. Consequently, the corollary follows from Proposition 6.8(1)
and the properties, given in Proposition 6.8(3) and Proposition 6.8(4), of the residue of the
logarithmic connection DJ . �

Recall the second fundamental form for a logarithmic connection defined in Section 5.2.
Consider the logarithmic connection DJ on J2(T) in Proposition 6.8(2) and the subbundles
F 1
T , F

2
T in (6.11). Let

S(DJ , F
1
T) and S(DJ , F

1
T)

be the second fundamental forms of F 1
T and F 2

T respectively for DJ .

From Corollary 6.9 and (5.6) we know that

S(DJ , F
1
T) ∈ H0(X, Hom(F 1

T , F
2
T/F

1
T)⊗KX ⊗OX(S)) = H0(X, OX(S)) ; (6.19)

see (6.14). From Corollary 6.9 and (5.7) we have

S(DJ , F
2
T) ∈ H0(X, Hom(F 2

T/F
1
T , J

2(T)/F 2
T)⊗KX ⊗OX(S)) = H0(X, OX(S)) ; (6.20)

see (6.14).
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Lemma 6.10. The second fundamental forms S(DJ , F
1
T) and S(DJ , F

2
T), in (6.19) and (6.20)

respectively, coincide with the section of OX(S) given by the constant function 1 on X.

Proof. As in the proof of Proposition 6.8, consider the branched projective structure on X

of type S given by the SO(3,C)–oper (W, BW , {FW
i }2

i=1, DW ) in (6.15) using Theorem 6.7.
It defines a projective structure on X = X \S. Now from the statement (1) in Corollary 3.6
we conclude that the restrictions to X of both S(DJ , F

1
T) and S(DJ , F

2
T) coincide with the

section of OX given by the constant function 1 on X. Hence the second fundamental forms
S(DJ , F

1
T) and S(DJ , F

2
T) coincide with the section of OX(S) given by the constant function

1 on X, because X is a dense open subset of X. �

6.4. A twisted symmetric form. We continue with the set-up of Section 6.3.

Using the homomorphism Φ in (6.18), the nondegenerate symmetric form BW on W in
(6.15) produces a nondegenerate symmetric form

BJ ∈ H0(X, Sym2(J2(T)∗)⊗OX(2S)) . (6.21)

This follows from the fact that the image of the following composition of homomorphisms

J2(T)∗
Φ∗−→ W ∗ ∼−→ W

Φ−→ J2(T)

coincides with the subsheaf J2(T)⊗OX(−2S) ⊂ J2(T); the above isomorphism W ∗ ∼−→ W
is given by the nondegenerate symmetric form BW .

The logarithmic connection DJ on J2(T) in Proposition 6.8(2), and the canonical logarith-
mic connection on OX(2S) defined by the de Rham differential, together define a logarithmic
connection on the vector bundle Sym2(J2(T)∗) ⊗ OX(2S). This logarithmic connection on
Sym2(J2(T)∗)⊗OX(2S) will be denoted by Sym2(DJ)′.

Proposition 6.11.

(1) The form BJ in (6.21) is covariant constant with respect to the above logarithmic
connection Sym2(DJ)′ on the vector bundle Sym2(J2(T)∗)⊗OX(2S).

(2) For the subbundles F 1
T , F

2
T in (6.11),

BJ(F 1
T ⊗ F 1

T) = 0 and (F 1
T)⊥ = F 2

T ,

where (F 1
T)⊥ ⊂ J2(T) is the subbundle orthogonal to F 1

T with respect to BJ .

Proof. This proposition can be proved exactly as Lemma 6.10 is proved. Indeed, from the
statement (1) in Corollary 3.6 we know that both the statements in the proposition holds
over X = X \ S. Hence the proposition follows. �

Consider the logarithmic connection DJ in Proposition 6.8(2) and the twisted holomor-
phic symmetric bilinear form BJ in (6.21) on the vector bundle J2(T) constructed from
the branched SO(3,C)–oper (W, BW , {FW

i }2
i=1, DW ) in (6.15). We will now show that

(W, BW , {FW
i }2

i=1, DW ) can be reconstructed back from this pair

(BJ , DJ) . (6.22)
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For each point xi ∈ S (see (5.1)), let Li ⊂ J2(T)xi be the eigenspace for the eigenvalue
0 of the residue Res(DJ , xi). Let F be the holomorphic vector bundle on X that fits in the
short exact sequence

0 −→ F −→ J2(T) −→
d⊕
i=1

J2(T)xi/Li −→ 0 (6.23)

of coherent analytic sheaves on X. Recall the criterion for a logarithmic connection on the
vector bundle W in (5.10) to induce a logarithmic connection on the vector bundle V in
(5.10). Applying this criterion to (6.23) it follows that DJ induces a logarithmic connection
D′J on F . Moreover, the eigenvalues of the residue Res(D′J , xi) at xi ∈ S are (−1, 0, 0); this
again follows from the expression of the residue, of the logarithmic connection on the vector
bundle V in (5.10) induced by a logarithmic connection onW , in terms of the residue of the
logarithmic connection on W .

For each point xi ∈ S, let Mi ⊂ Fxi be the eigenspace for the eigenvalue 0 of the residue
Res(D′J , xi). Let E be the holomorphic vector bundle on X that fits in the short exact
sequence

0 −→ E −→ F −→
d⊕
i=1

Fxi/Mi −→ 0 (6.24)

of coherent analytic sheaves on X. From the above mentioned criterion it follows that
the logarithmic connection D′J induces a logarithmic connection D′′J on E . Moreover, the
eigenvalues of the residue Res(D′′J , xi) at any xi ∈ S are (0, 0, 0).

Using the homomorphism Φ in (6.18), consider W as a subsheaf of J2(T). On the other
hand, from (6.23) and (6.24) we have E ⊂ F ⊂ J2(T), using which E will be considered
as a subsheaf of J2(T). It is straightforward to check that E ⊂ J2(T) coincides with the
subsheaf W of J2(T). This identification between E and W takes D′′J to the holomorphic con-
nection DW in (6.15). In particular, the logarithmic connection D′′J is actually a nonsingular
connection on E .

The nondegenerate twisted symmetric form BJ on J2(T) in (6.21) produces a twisted
symmetric form on the subsheaf E ⊂ J2(T). The above identification between E and W

takes this twisted symmetric form on E given by BJ toBW in (6.15). In particular, the twisted
symmetric form on E given by BJ is nondegenerate and there is no nontrivial twisting.

The filtration {FW
i }2

i=1 of W = E in (6.15) is given by the filtration {F i
T}2

i=1 of J2(T) in
(6.11). In other words, FW

i is the unique holomorphic subbundle of E such that the space
of holomorphic sections of FW

i over any open subset U ⊂ X is the space of holomorphic
sections s of E|U such that s|U∩(X\S) is a section of F i

T over U ∩ (X \ S).

This way we recover the branched SO(3,C)–oper (W, BW , {FW
i }2

i=1, DW ) in (6.15) from
the pair (BJ , DJ) in (6.22) constructed from it.

7. A characterization of branched SO(3,C)-opers

Let g = Lie(SO(3,C)) be the Lie algebra of SO(3,C). We will need a property of g which
is formulated below.
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Up to conjugacy, there is only one nonzero nilpotent element in g. Indeed, this follows
immediately from the fact that g = sl(2,C). Let

A ∈ g = Lie(SO(3,C))

be a nonzero nilpotent element. From the above observation we know that dimA(C3) = 2.
Therefore, if B ∈ g is a nilpotent element such that B(V0) = 0, where V0 ⊂ C3 is some
subspace of dimension two, then

B = 0 . (7.1)

Take a pair

(B, D) , (7.2)

where

• B ∈ H0(X, Sym2(J2(T)∗) ⊗ OX(2S)) is fiberwise nondegenerate bilinear form on
J2(T) with values in OX(2S), and
• D is a logarithmic connection on J2(T) singular over S,

such that the following five conditions hold:

(1) For the subbundles F 1
T , F

2
T in (6.11),

B(F 1
T ⊗ F 1

T) = 0 and (F 1
T)⊥ = F 2

T ,

where (F 1
T)⊥ ⊂ J2(T) is the subbundle orthogonal to F 1

T with respect to B.
(2) The section B is covariant constant with respect to the logarithmic connection on the

vector bundle Sym2(J2(T)∗)⊗OX(2S) induced by D and the logarithmic connection
on OX(2S) given by the de Rham differential d.

(3) D(F 1
T) = F 2

T ⊗KX ⊗OX(S) and D(F 2
T) = J2(T)⊗KX ⊗OX(S).

(4) For any xi ∈ S (see (5.1)), the residue Res(D, xi) of D at xi has eigenvalues
{−2, −1, 0}.

(5) The eigenspace of Res(D, xi) for the eigenvalue −2 is the line (F 1
T)xi ⊂ J2(T)xi

in (6.11). The eigenspace of Res(D, xi) for the eigenvalue −1 is contained in the
subspace (F 2

T)xi ⊂ J2(T)xi .

In other words, the pair (B, D) satisfies all properties obtained in Proposition 6.8, Corol-
lary 6.9, Lemma 6.10 and Proposition 6.11 for the pair in (6.22) corresponding to the
branched SO(3,C)–oper (W, BW , {FW

i }2
i=1, DW ) in (6.15). However this does not ensure

that (B, D) defines a branched SO(3,C)–oper. The reason for this is that the logarithmic
connection D might possess local monodromy around some points of the subset S in (5.1).
On the other hand, if the local monodromy of D around every point of S is trivial, then it
can be shown that (B, D) defines a branched SO(3,C)–oper (see Remark 7.2).

Take a point xi ∈ S. Since the eigenvalues of Res(D, xi) are {−2, −1, 0} (the fourth one
of the five conditions above), the local monodromy of D around xi is unipotent (meaning 1
is the only eigenvalue). Let

Li2, L
i
1, L

i
0 ⊂ J2(T)xi (7.3)

be the eigenspaces of Res(D, xi) for the eigenvalues −2, −1, 0 respectively, so

Li2 ⊕ Li1 ⊕ Li0 = J2(T)xi . (7.4)
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Using the logarithmic connection D, we will construct a homomorphism

ϕi ∈ Hom(Li1 ⊗ (KX)xi , L
i
2 ⊗ (K⊗2

X )xi) = Hom(Li1, L
i
2 ⊗ (KX)xi) . (7.5)

Take any

v ∈ Li1 ⊗ (KX)xi ⊂ (J2(T)⊗KX)xi
(see (7.3)). Note that OX(−xi)xi = (KX)xi (see (5.5)). Let ṽ be a holomorphic section of
J2(T)⊗OX(−xi) defined on some open neighborhood U of xi such that

ṽ(xi) = v ; (7.6)

here the identification OX(−xi)xi = (KX)xi is used. Fix the open subset U such that
U
⋂

S = xi.

In particular ṽ is a holomorphic section of J2(T) over U and we have

D(ṽ) ∈ H0(U, J2(T)⊗KX ⊗OX(S)) = H0(U, J2(T)⊗KX ⊗OX(xi)) .

We will show that D(ṽ) lies in the image of the natural inclusion map

H0(U, J2(T)⊗KX ⊗OX(−xi)) ↪→ H0(U, J2(T)⊗KX ⊗OX(xi)) .

For that, first note that the section ṽ can be expressed as

ṽ = f · s1 + s2 ,

where

• f is a holomorphic function on U with f(xi) = 0,
• s1 ∈ H0(U, J2(T)) with s1(xi) ∈ Li1 (see (7.3)), and
• s2 ∈ H0(U, J2(T)), and it vanishes at xi of order at least two.

Now consider the section

D(ṽ) = D(fs1) + D(s2) .

Since s2 vanishes at xi of order at least two, it follows that

D(s2) ∈ H0(U, J2(T)⊗KX ⊗OX(−xi)) .
Consequently, to prove that

D(ṽ) ∈ H0(U, J2(T)⊗KX ⊗OX(−xi)) ↪→ H0(U, J2(T)⊗KX ⊗OX(xi)) , (7.7)

it suffices to show that D(fs1) ∈ H0(U, J2(T)⊗KX ⊗OX(−xi)).
The Leibniz rule for D says that

D(fs1) = fD(s1) + df ⊗ s1 . (7.8)

Since s1(xi) ∈ Li1, and Li1 is the eigenspace of Res(D, xi) for the eigenvalue −1, from (7.8)
it follows that

D(fs1) ∈ H0(U, J2(T)⊗KX ⊗OX(−xi)) .
Indeed, if we consider fD(s1) and df ⊗ s1 as sections of (J2(T)⊗KX)|U , then fD(s1)(xi) =
−v by the residue condition, and (df ⊗ s1)(xi) = v by (7.6). These imply that the section

D(fs1) ∈ H0(U, J2(T)⊗KX)

vanishes at xi, making it a section of (J2(T)⊗KX ⊗OX(−xi))|U .
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Since D(fs1) ∈ H0(U, J2(T)⊗KX ⊗OX(−xi)), we conclude that (7.7) holds.

Using the decomposition in (7.4), the fiber (J2(T)⊗KX ⊗OX(−S))xi decomposes as

(J2(T)⊗KX ⊗OX(−S))xi

= ((Li2⊗KX ⊗OX(−S))xi)⊕ ((Li1⊗KX ⊗OX(−S))xi)⊕ ((Li0⊗KX ⊗OX(−S))xi) . (7.9)

For the section D(ṽ) in (7.7), let

D(ṽ)i2 ∈ (Li2 ⊗KX ⊗OX(−S))xi = Li2 ⊗ (K⊗2
X )xi (7.10)

be the component of D(ṽ)(xi) for the decomposition in (7.9); recall from (5.5) that we have
OX(−S)xi = (KX)xi .

We will now show that the element D(ṽ)i2 ∈ Li2⊗ (K⊗2
X )xi in (7.10) is independent of the

choice of the section ṽ in (7.6) that extends v. To prove this, take any

v̂ ∈ H0(U, J2(T)⊗OX(−xi))

such that v̂(xi) = v. So the section ṽ − v̂ of J2(T)|U vanishes at xi of order at least two.
Therefore, we can write

ṽ − v̂ = f2s2 + f1s1 + f0s0 ,

where f0, f1, f2 are holomorphic functions on U vanishing at xi of order at least two, and
s2(xi) ∈ Li2, s1(xi) ∈ Li1, s0(xi) ∈ Li0.

It is straightforward to check that D(f1s1) and D(f0s0) do not contribute to the component
Li2 ⊗ (K⊗2

X )xi in (7.9); as before, OX(−S)xi is identified with (KX)xi . Therefore, to prove
that D(ṽ)i2 in (7.10) is independent of the choice of the section ṽ, it suffices to show that
D(f2s2) also does not contribute to the component Li2 ⊗ (K⊗2

X )xi in (7.9). But this follows
from the facts that s2(xi) ∈ Li2, and Li2 is the eigenspace of Res(D, xi) for the eigenvalue
−2. Hence we conclude that D(ṽ)i2 is independent of the choice of ṽ.

Now we construct the homomorphism in ϕi in (7.5) by sending any v ∈ Li1 ⊗ (KX)xi (as
in (7.6)) to D(ṽ)i2 in (7.10) constructed from v.

Theorem 7.1. The pair (B, D) in (7.2) defines a branched SO(3,C)–oper if and only if
ϕi = 0 for every xi ∈ S, where ϕi is the homomorphism in (7.5).

Proof. We first invoke the algorithm, described at the end of Section 6.4, to recover a
branched SO(3,C)–oper from the corresponding logarithmic connection and the twisted bi-
linear form on J2(T).

Let F be the holomorphic vector bundle on X that fits in the short exact sequence of
coherent analytic sheaves on X

0 −→ F −→ J2(T) −→
d⊕
i=1

J2(T)xi/L
i
0 −→ 0 , (7.11)

where Li0 is the eigenspace in (7.3). Applying the criterion for a logarithmic connection on
the vector bundle W in (5.10) to induce a logarithmic connection on the vector bundle V in
(5.10), the logarithmic connection D on J2(T) induces a logarithmic connection D′ on F ;
the eigenvalues of the residue Res(D′, xi) of D′ at any xi ∈ S are (−1, 0, 0). For each point
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xi ∈ S, let Mi ⊂ Fxi be the eigenspace for the eigenvalue 0 of the residue Res(D′, xi). Let
E be the holomorphic vector bundle on X that fits in the short exact sequence

0 −→ E −→ F −→
d⊕
i=1

Fxi/Mi −→ 0 (7.12)

of coherent analytic sheaves on X. Applying the above mentioned criterion we conclude that
the logarithmic connection D′ induces a logarithmic connection D′′ on E ; the eigenvalues of
the residue Res(D′′, xi) of D′′ at xi ∈ S are (0, 0, 0).

Although all the eigenvalues of Res(D′′, xi) are zero, the residue Res(D′′, xi) need not
vanish in general; it can be a nilpotent endomorphism. We shall investigate the residue
Res(D′′, xi).

Let

ι : E ↪→ J2(T)

be the inclusion map obtained from the injective homomorphisms in (7.11) and (7.12). Since
ι is an isomorphism over X = X \ S, any holomorphic subbundle V of J2(T) generates a

holomorphic subbundle Ṽ of E . This Ṽ is uniquely determined by the condition that the

space of holomorphic sections of Ṽ over any open subset U ⊂ X is the space of holomorphic
sections s of E|U such that s|U∩(X\S) is a section of V over U ∩ (X \ S).

Let F̃ 1
T and F̃ 2

T be the holomorphic subbundles of E corresponding to the holomorphic
subbundles F 1

T and F 2
T of J2(T) in (6.11).

It is straightforward to check that for any point x ∈ S,

Res(D′′, xi)((F̃
1
T)xi) = 0 and Res(D′′, xi)((F̃

2
T)xi) ⊆ (F̃ 1

T)xi . (7.13)

Moreover, the homomorphism (F̃ 2
T)xi/(F̃

1
T)xi −→ (F̃ 1

T)xi induced by Res(D′′, xi) coincides
with the homomorphism ϕi in (7.5).

If (B, D) in (7.2) defines a branched SO(3,C)–oper, then D′′ is a nonsingular connection,
meaning Res(D′′, xi) = 0 for every xi ∈ S, and consequently, ϕi = 0 for all xi ∈ S.

Conversely, if ϕi = 0 for all xi ∈ S, then using (7.13) it follows that Res(D′′, xi)((F̃
2
T)xi) =

0. Now from (7.1) we conclude that Res(D′′, xi) = 0. Hence the logarithmic connection
D′′ is nonsingular. Therefore, (B, D) defines a branched SO(3,C)–oper. This completes the
proof. �

Remark 7.2. Assume that the local monodromy of the logarithmic connection D around
every point of S is trivial. Then the local monodromy of the logarithmic connection D′′

around every point of S is trivial, because the monodromies of D and D′′ coincide. Consider
the following four facts:

(1) For every point xi ∈ S, the eigenvalues of Res(D′′, xi) are (0, 0, 0).
(2) The local monodromy of D′′ around every xi ∈ S is trivial.
(3) The local monodromy, around xi ∈ S, of any logarithmic connection D0 lies in the

conjugacy class of exp(−2π
√
−1Res(D0, xi)).

(4) exp(−2π
√
−1A) 6= I for any nonzero nilpotent complex matrix A.
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These together imply that Res(D′′, xi) = 0 for every point xi ∈ S. Hence D′′ is a nonsin-
gular connection, and (B, D) in (7.2) defines a branched SO(3,C)–oper.
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