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The purpose of this paper is to outline various results regarding the computational

complexity and the algorithms of nonmonotonic entailment in di�erent coherence-

based approaches. Starting from a (non necessarily consistent) belief base E and

a pre-order on E, we �rst remind di�erent mechanisms for selecting preferred con-

sistent subsets. Then we present di�erent entailment principles in order to manage

these multiple subsets. The crossing point of each generation mechanism m and

each entailment principle p de�nes an entailment relation (E;�) j�

p;m

� which we

study from the computational complexity point of view. The results are not very

encouraging since the complexity of all these nonmonotonic entailment relations

is, in most restricted languages, larger than the complexity of monotonic entail-

ment. So, we decided to extend Binary Decision Diagrams techniques, which are

well suited to the task of solving NP-hard logic-based problems. Both theoretical

and experimental results are described along this line in the last sections.

Topic area: Nonmonotonic reasoning, computational complexity, algorithms

and binary decision diagram.

1 Introduction

Formalizing \common sense" reasoning is one of the most important research

topics in arti�cial intelligence. When the available knowledge may be incom-

plete, uncertain or inconsistent, the classical logic is no more relevant (for ex-

ample, anything can be classically inferred from inconsistent knowledge bases).

Nonmonotonic reasoning is needed. Many researchers have proposed new logics

(called nonmonotonic logics) in order to formalize nonmonotonic reasoning, for

instance, Reiter's default logic [33]. Others proposed to keep the classical logic

in integration with numerical or symbolic structures for ordering the beliefs. In

the latter context, we focus on the so-called coherence-based approaches. These
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approaches handle syntactical belief bases, as in [31]: each belief is a distinct piece

of information and only beliefs which are explicitly present in the base are taken

into account. It departs from the logical point of view where a base is identi�ed

with the set of its models. Due to the belief status of its elements, the belief base

is not assumed consistent. Moreover, we assume that the belief base is equipped

with a total pre-order (a priority relation) which, contrarily to [17], is not related

to semantical entailment. It is equivalent to consider that the base is strati�ed in

a collection of subbases of di�erent priority levels.

In this paper, we are concerned with the deductive aspect of reasoning (cf. [4,

31, 9, 1] for works in the same framework). Following Pinkas and Loui's anal-

ysis [32], it is convenient to see coherence-based nonmonotonic entailment as a

two-steps procedure which �rst restores the coherence by generating and selecting

preferred belief states (generation mechanism) and then manages these multiple

states in order to conclude using classical logic (entailment principle). For in-

stance, the following kind of inference is considered in [1]: \The belief base E

infers � i� � is classically inferred by all the preferred consistent subsets of E".

A taxonomy of conict resolution principles, from credulous to skeptical ones,

can be found in [32]. The selection of preferred subsets relies upon the de�nition

of aggregation modes which enable to extend the priority order de�ned on the

initial belief base into a preference relation between subsets (see [1, 9]).

In the framework described above, we propose a comparative study of various

coherence-based entailment relations from the point of view of the computational

complexity

1

. This topic is essential for practical applications. Indeed, as far as we

know, only few papers have been devoted to computational complexity issues for

coherence-based entailment, although there are many works about the complexity

of other parallel problems

2

(Nebel has thoroughly considered the computational

complexity of syntax-based revision procedures [31], Eiter and Gottlob [20, 15]

have also considered the case of default logic and abductive procedures, and in [10]

Cadoli and Schaerf have presented a survey of complexity results concerning dif-

ferent nonmonotonic logics { default logic, autoepistemic logic . . . ).

The paper is organized as follows. First, we present the coherence-based

entailment problems under consideration. Starting from a belief base E and a

pre-order on E, we present three mechanisms for selecting preferred consistent

subsets of E, each one being more selective than the previous one. Then we

present three entailment principles in order to manage these multiple subsets:

the skeptical principle, the argumentative principle and the credulous principle.

The crossing point of each generation mechanism m and each entailment principle

p de�nes an entailment relation (E;�) j�

p;m

�. Secondly, after an informal and

1

The points of view of cautiousness and validity of deduction rules have been considered in [8].

2

As far as possible, we used the existing link between coherence-based entailment and all

these parallel problems in order to re�ne and to complete our own complexity results.
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simpli�ed presentation of the main concepts of the complexity theory, we provide

comparative results in the general propositional case and in three restricted cases

(strictly ordered belief bases, Horn bases and strictly ordered Horn bases). Even in

restricted cases such as strictly ordered belief bases or Horn bases, the results are

quite disappointing since the complexity in the worst case remains greater than the

complexity of classical entailment unless both restrictions apply simultaneously,

an unrealistic restriction. These results inclined us to look for an adapted tool

for solving decision problems above NP. In the last part of the paper, we show

that Binary Decision Diagrams [6] can be extended for solving some classes of

coherence-based entailment problems.

2 Coherence-Based Nonmonotonic Entailment

Throughout the paper, E denotes a non-empty �nite set of propositional formulae

referred to as the \belief base". E is not assumed consistent.

Coherence-based nonmonotonic entailment from a strati�ed belief base can be

described as a two-steps procedure which �rst restores the coherence by selecting

preferred consistent subbases, and then applies classical entailment on some of

these preferred subbases according to a so-called entailment principle.

2.1 Selecting Preferred Belief States

The most usual idea for handling inconsistency is to work with maximal (w.r.t.

set-inclusion) consistent subsets of E, called theses of E in the following.

De�nition 1 (Thesis)

A subset X of E is a thesis of E i� X is consistent and there is no consistent

subset of E which strictly contains X.

Unfortunately, in the worst case, this approach is not selective enough: too

many theses must be taken into account. Now, we assume that E is equipped

with a total pre-order � (a priority relation). It is equivalent to consider that

E is strati�ed in a collection (E

1

; : : : ; E

n

) of belief bases, where E

1

contains the

formulae of highest priority and E

n

those of lowest priority. The pair (E;�)

is called a strati�ed (or equivalently prioritized) belief base. Each E

i

is called a

stratum of E. Di�erent approaches have been proposed to use the priority relation

in order to select \preferred" subsets (see [7] for a survey). For the purpose

of this paper, we concentrate on the approaches which re�ne the set-inclusion

and lead to select preferred subsets among the theses of E. Indeed, the priority

relation on E induces a preference relation on the set of subsets of E. Let us
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�rst briey remind the \inclusion-based" preference, which is the most frequently

encountered, despite di�erent presentations.

De�nition 2 (Inclusion-based preference)

Let E = (E

1

; : : : ; E

n

) be a strati�ed belief base. Z being a subset of E, Z

i

denotes

Z \E

i

. The \inclusion-based" preference is the strict order de�ned on the power

set of E by: X �

Incl

Y i� there exists i, 1 � i � n, such that Y

i

strictly contains

X

i

and for any j, 1 � j < i, X

j

= Y

j

.

Note that �

Incl

-preferred theses are also called preferred sub-theories in [4],

democratic preferred theses in [9], and exactly correspond to strongly maximal-

consistent subbases in [13].

Another way of selecting preferred subsets is to use consistent subsets of max-

imum cardinality. Then, taking into account the strati�cation of E leads to the

de�nition of the so-called \lexicographic" preference (see [1, 28]):

De�nition 3 (Cardinality-maximal-consistent subset)

A subset X of E is a cardinality-maximal-consistent subset of E i� X is consistent

and for each consistent subset Y of E, jY j � jXj (jY j: cardinality of Y ).

De�nition 4 (Lexicographic preference)

Let E = (E

1

; : : : ; E

n

) be a strati�ed belief base. The \lexicographic" preference is

the strict order de�ned on the power set of E by: X �

Lex

Y i� there exists i,

1 � i � n, such that jX

i

j < jY

i

j and for any j, 1 � j < i, jX

j

j = jY

j

j.

It can be shown that the lexicographic preference re�nes the inclusion-based

preference: any�

Lex

-preferred consistent subset of E is an�

Incl

-preferred thesis,

but the converse is false as illustrated at the end of this section. Moreover, the

associated lexicographic pre-order is total.

Example Consider the following propositional variables:

Variable Meaning

r bump when reversing

b bump at the back of the car

nl I am not liable for the damage

np I won't pay the repairs for the car

x I have got a collision damage waiver

ci insurance cost will increase

Consider the strati�ed belief base with the following �ve strata: E

1

= f! r;!

xg, E

2

= fr ! bg, E

3

= fb ! nl; r; nl !g, E

4

= fnl ! np;np ! nl;x ! npg,

E

5

= f! nl; cig. There are three inclusion-based preferred theses:
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Y

1

= f! r;! x; r ! b; r; nl !;nl! np;x! np;! nl; cig,

Y

2

= f! r;! x; r ! b; r; nl !;nl! np;np! nl;! nl; cig,

Y

3

= f! r;! x; r ! b; b! nl;nl! np;np! nl;x! np;! nl; cig.

However, Y

3

is the only one lexicographic preferred thesis (indeed, Y

1

�

Lex

Y

3

and Y

2

�

Lex

Y

3

).

2.2 Three Entailment Principles

In the previous section, we have presented three mechanisms for producing a

set of consistent belief states from the initial strati�ed belief base (E;�). In

the following, we call T the mechanism which produces the set of theses of E

(maximal-consistent subsets), Incl the mechanism which produces the inclusion-

based preferred theses of E and Lex the re�nement which produces the set of

preferred theses for the lexicographic order. A taxonomy of numerous entailment

principles has been established by Pinkas and Loui [32] according to their cau-

tiousness. Here, we are interested in three of them which we now briey present.

We start from a set of consistent subsets of E denoted by m(E) in the following

(for instance, m is one of the generation mechanisms T, Incl, Lex). Let � be a

propositional formula.

De�nition 5 (Skeptical and credulous entailment principles)

� is inferred from m(E) according to the skeptical (resp. credulous) entailment

principle i� � can be classically inferred from each (resp. at least one) element

of m(E). This entailment principle will be denoted by 8 (resp. 9) and referred to

as the Uni (resp. Exi) principle in the following

3

.

These two entailment principles are the most commonly activated in presence

of multiple conicting belief states. Obviously, the Uni principle is more cautious

than the Exi principle, since each conclusion obtained from m(E) by Uni infer-

ence is also obtained by Exi inference. Since the Exi principle leads to unsafe

consequence relations (i.e. pairwise contradictory conclusions may be produced),

an intermediary principle has been considered, which consists in keeping only the

consequences obtained by Exi principle whose negation cannot be inferred (see [2]

for a discussion on the so-called argumentative inference).

De�nition 6 (Argumentative entailment principle)

� is inferred from m(E) according to the argumentative entailment principle i� �

is classically inferred from at least one element of m(E) and no element of m(E)

3

In the literature, the Uni principle is often called strong or universal entailment. In the same

way, the Exi principle is often called weak or existential entailment.
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classically entails :�. This entailment principle will be denoted by A and referred

to as the Arg principle in the following.

We are now ready to give a precise de�nition of the entailment relations and

the associated problems which we will consider from the computational complexity

point of view. Each one appears at the crossing point of a belief state generation

mechanism m and an entailment principle p. Let (E;�) be the initial belief base

and � a propositional formula.

De�nition 7 (T-based problems)

The problem Uni-T (resp. Exi-T, Arg-T) is de�ned by \verify that � is a

consequence of E using the theses of E and the Uni (resp. Exi, Arg) principle".

The T generation mechanism is used.

Notation: E j�

8(resp. 9;A);T

� for Uni-T (resp. Exi-T, Arg-T).

In the above notation, it is su�cient to mention E instead of (E;�) since

producing the theses makes no use of the pre-order on E.

De�nition 8 (Incl-based problems)

The problem Uni-Incl (resp. Exi-Incl, Arg-Incl) is de�ned by \verify that �

is a consequence of E using the inclusion-based preferred theses of E and the Uni

(resp. Exi, Arg) principle". The Incl generation mechanism is used.

Notation: (E;�) j�

8(resp. 9;A);Incl

� for Uni-Incl (resp. Exi-Incl, Arg-Incl).

De�nition 9 (Lex-based problems)

The problem Uni-Lex (resp. Exi-Lex, Arg-Lex) is de�ned by \verify that �

is a consequence of E using the lexicographic preferred theses of E and the Uni

(resp. Exi, Arg) principle". The Lex generation mechanism is used.

Notation: (E;�) j�

8(resp. 9;A);Lex

� for Uni-Lex (resp. Exi-Lex, Arg-Lex).

The inclusion-based preference and the lexicographic preference are induced

by the pre-order � (see respectively Def. 2 and Def. 4).

Example Applying the above principles on the example of the previous sec-

tion produces:

(E;�) j�

8;Incl

b, (E;�) j�

9;Incl

nl and (E;�) j�

A;Incl

ci,

(E;�) j�

8;Lex

np which is equivalent to (E;�) j�

9;Lex

np and which is equiv-

alent to (E;�) j�

A;Lex

np since there is only one �

Lex

-preferred thesis.
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3 Computational Complexity

We consider that the readers have some knowledge about computational complex-

ity (else, see [18]). In this paper, we are interested only by decision problems (each

instance of a decision problem has either a \yes" or a \no" answer), and we denote

the fact that a polynomial transformation exists from Q

0

to Q by Q

0

/ Q (this in-

formally means that Q is at least as hard as Q

0

). In this work, we use classes from

the polynomial hierarchy (called PH), each of them containing supposedly harder

and harder problems. This PH is de�ned inductively using the notion of oracle.

An oracle of complexity X may be viewed as a subroutine which solves any prob-

lem of complexity X. Each call to an oracle is counted as one time unit. So, there

are polynomial problems using an oracle of complexity X and non-deterministic

polynomial problems using an oracle of complexity X. They de�ne respectively the

P

X

and NP

X

classes. PH is de�ned by the set of classes f�

p

k

;�

p

k

;�

p

k

for k � 0g:

�

p

0

= �

p

0

= �

p

0

= P �

p

k+1

= P

�

p

k

�

p

k+1

= NP

�

p

k

�

p

k+1

= co-�

p

k+1

In each of these classes, we also have the notion of completeness (a �

p

k

-complete

problem being harder than any �

p

k

problem). The conjecture NP 6= P is gen-

eralized to the PH with the following stronger conjectures: NP 6= co-NP and

8k;�

p

k

6= �

p

k

. Note that NP = P implies that the PH collapses into P. The prob-

lem stated below, called 2-Qbf also denoted 9a8bH(a; b), is an example of a

�

p

2

-complete problem (see [23, 31]).

Instance: A propositional formula H(a; b) where a and b denote sets

of propositional variables: a = fa

1

; : : : ; a

n

g and b = fb

1

; : : : ; b

m

g.

Question: Is there a truth assignment of the variables in a such that

H(a; b) is true for any truth assignment of the variables in b?

3.1 Complexity of General Entailment Relations

We consider entailment relations of the form (E;�) j�

p;m

� where E, �, p and m

have been de�ned in the previous sections, and where � is a single propositional

formula. The complexity results for the general propositional case are given in

Table 1. For lack of space, we just give sketches of proof. The detailed proofs are

given in [7, 26]. For each problem Q, the complexity proof is done in two steps:

�rst, we exhibit an algorithm which solves Q and whose complexity class is

X (class membership proof which gives an upper bound for the complexity);

then, we prove that Q is X-complete by giving a polynomial transformation

from an X-complete problem to Q (or else give any other lower bound for

the complexity).
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p m Complexity class

Uni T �

p

2

-complete

Exi T �

p

2

-complete

Arg T �

p

3

� (�

p

2

[ �

p

2

) if �

p

2

6= �

p

2

Uni Incl �

p

2

-complete

Exi Incl �

p

2

-complete

Arg Incl �

p

3

� (�

p

2

[ �

p

2

) if �

p

2

6= �

p

2

Uni Lex �

p

2

-complete

Exi Lex �

p

2

-complete

Arg Lex �

p

3

, �

p

2

-hard

Table 1: Complexities in the general propositional case

Proofs for problems de�ned with the Uni principle:

For Uni-T and Uni-Incl, we use the results of Nebel in [31] (the associ-

ated entailment relations correspond to the Sbr and Pbr revision procedures

for which Nebel has proved the �

p

2

-completeness). So, Uni-T and Uni-Incl are

�

p

2

-complete.

For Uni-Lex, we prove the membership to �

p

2

using the following idea: if

we want to verify that � is classically entailed by all the lexicographic preferred

theses of E, we may insert :� alone in a new stratum with the least priority. This

de�nes a new base E

0

. Since all the lexicographic preferred theses have always

the same cardinality at each stratum, � will be entailed by all the lexicographic

preferred theses of E i� any lexicographic preferred thesis of E

0

has the cardinality

zero at the last stratum. The algorithm 1 sophisticates this idea by introducing

�! ` (where ` is new variable) in the stratum which has the highest priority and

:` in a new stratum with the least priority in order to avoid a possible interference

with an already existing occurrence of :� in E.

In this algorithm, we use an oracle Max-Gsat-Array de�ned by:

Instance: A pre-ordered set (Y;�) of propositional formulae, an array

k of dimension n with n=number of strata in Y .

Question: Is there a truth assignment which satis�es at least k[i]

formulae for each stratum i of Y ?

This problem is NP-complete (NP class membership is obvious, completeness is

proved by restriction to Sat). Therefore the previous algorithm (and its di-

chotomic version too) is deterministic polynomial and uses a non-deterministic

polynomial oracle. So, Uni-Lex belongs to the class �

p

2

.

The �

p

2

-completeness for Uni-Lex is proved using a �

p

2

-complete problem

de�ned in [16] and referred to as Alm in the following:
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Algorithm 1: Uni-Lex ((E;�), �)

begin

E

0

 f�! `g [ E [ f:`g

k  < 0; 0; : : : ; 0 > ; k is a n'-vector (n

0

=number of strata in E

0

)

for n

s

= 1 to n

0

do

n

f

 number of formulae in the stratum E

0

n

s

End?  false

while (n

f

� 0) and (not End?) do

k[n

s

] n

f

if Max-Gsat-Array(E

0

; k) then End?  true

else n

f

 n

f

� 1

Verify that k[n

0

] 6= 1

end

Instance: Let C = fC

1

; : : : ; C

m

g be a satis�able set of clauses, let the

set of propositional variables of C be denoted by X = fx

1

; : : : ; x

n

g,

let a prioritization of X be denoted by O(X) =< x

1

; : : : ; x

n

>.

Question: Let V

M

be the truth assignment lexicographically maximal

with respect to O(X) satisfying C, does V

M

ful�ll V

M

(x

n

) = true?

Proofs for problems de�ned with the Exi principle:

We consider the algorithm 2 for the Exi-m problems (8m 2 fT; Incl;Lexg).

Algorithm 2: Exi-m ((E;�), �)

begin

Guess a subset Y of (E;�)

Verify that Y is:

- a thesis (for Exi-T)

- an inclusion-based preferred thesis (for Exi-Incl)

- a lexicographic preferred thesis (for Exi-Lex)

Verify that Y classically entails �

end

First of all, note that \verify that Y classically entails �" is co-NP-complete.

Then, all the oracles \verify that Y is . . . " are non-deterministic polynomial time

oracles. Note that the oracle used for the lexicographic case solves the following

problem (called Max-Gsat-Strict) which is NP-complete:

Instance: A set Y of propositional formulae, an integer k � jY j.

Question: Is there a consistent subset Y

0

of Y such that jY

0

j > k?

Therefore, Exi-m belongs to the class NP

NP

= �

p

2

. Moreover, the completeness

proofs are the following ones:
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For Exi-T, we consider the following polynomial transformation from 2-

Qbf to Exi-T: let \9a8bH(a; b)" be an instance of 2-Qbf, the instance of

Exi-T is de�ned by E = fa

1

; : : : ; a

n

;:a

1

; : : : ;:a

n

g and � = H(a; b)

4

.

For Exi-Incl, the completeness is obvious, since Exi-T is a restriction of

Exi-Incl.

For Exi-Lex, we may use the previous proof for Exi-T since any thesis of

E, when E is of the form fa

1

; : : : ; a

n

;:a

1

; : : : ;:a

n

g is also a lexicographic

preferred thesis of E.

Proof for problems de�ned with the Arg principle:

8m 2 fT; Incl;Lexg, the Arg-m problems can be solved by the algorithm 3.

Algorithm 3: Arg-m ((E;�), �)

begin

Verify that (E;�) j6�

9;m

:�

Verify that (E;�) j�

9;m

�

end

This algorithm is deterministic polynomial and uses a �

p

2

oracle solving Exi-

m. Therefore, we conclude that 8m, Arg-m belongs to the class P

�

p

2

= �

p

3

.

We cannot prove �

p

3

-completeness for any of these problems, but we re�ne the

class membership, as in [31]. Indeed, we prove that most of the Arg-m problems

are in �

p

3

� (�

p

2

[�

p

2

). So, we have the following lower bounds:

For Arg-T, we prove that there is a polynomial transformation from Exi-T

to Arg-T and there is a polynomial transformation from co-Exi-T to Arg-

T. Therefore, both Exi-T and co-Exi-T can be polynomially transformed to

Arg-T. SinceExi-T is �

p

2

-complete and co-Exi-T is �

p

2

-complete, assuming

that Arg-T 2 (�

p

2

[�

p

2

) would lead to �

p

2

= �

p

2

.

For Arg-Incl, we still rely on the fact that Arg-T is a restriction of

Arg-Incl: Arg-T / Arg-Incl. Since Exi-T / Arg-T and co-Exi-T /

Arg-T, we obtain the same conclusion as for Arg-T.

ForArg-Lex, similarly as forArg-T, it is possible to prove that Exi-Lex /

Arg-Lex. However, we haven't found a polynomial transformation from

co-Exi-Lex (or any other �

p

2

-complete problem) to Arg-Lex. We simply

conclude that Arg-Lex is �

p

2

-hard.

3.2 Complexity for Strictly Ordered Bases

4

This result is not surprising. In [16], Eiter and Gottlob de�ne an abductive problem which

is �

p

2

-complete and which can be polynomially transformed to Exi-T.
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p m Strictly strati�ed

bases

Horn bases Strictly strati�ed

Horn bases

Uni T not concerned co-NP-complete not concerned

Exi T not concerned NP-complete not concerned

Arg T not concerned �

p

2

� (NP [ co-NP)

if NP 6= co-NP

not concerned

Uni Incl �

p

2

-complete co-NP-complete P

Exi Incl �

p

2

-complete NP-complete P

Arg Incl �

p

2

-complete �

p

2

� (NP [ co-NP)

if NP 6= co-NP

P

Uni Lex �

p

2

-complete �

p

2

-complete P

Exi Lex �

p

2

-complete �

p

2

P

Arg Lex �

p

2

-complete �

p

2

P

Table 2: Complexities in three restricted cases

We �rst consider the case of a strictly ordered belief base (see results in Ta-

ble 2). In this case E is strati�ed with exactly one formula per stratum. The

complexity of the problems p-T (for p in fUni, Exi, Argg) is not a�ected by

this restriction since the pre-order on the belief base is not taken into account by

the generation mechanism T. We will show that all the other problems become

equivalent to a single problem.

Theorem 1

Let < be a strict total order on E. There is only one �

Incl

-preferred thesis, which

is also the only one �

Lex

-preferred thesis (proof in [7]).

Corollary 1

The problems Uni-Incl (resp. Lex), Exi-Incl (resp. Lex), Arg-Incl (resp.

Lex) are equivalent to a single problem called 1/Stratum.

The class membership is proved by the algorithm 4. This algorithm (and its

Algorithm 4: 1/Stratum ((E;�), �)

begin

X  ?

n

s

 1 (current stratum)

1 if X [ E

n

s

is consistent then X  X [ E

n

s

n

s

 n

s

+ 1

if n

s

= (total number of strata in E) then verify that X ` �

else go to step 1

end
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dichotomic version too) is deterministic polynomial and relies on an NP-complete

oracle. Therefore, 1/Stratum is in �

p

2

. Then, using the same transformation as

in the proof for Uni-Lex, we prove that 1/Stratum is �

p

2

-complete, since the

belief base E considered in that transformation is a strictly ordered base.

3.3 Complexity for Horn Bases

In this section, we assume that the belief base is a �nite set of conjunctions of

propositional Horn clauses

5

and the formula � is also a conjunction of Horn clauses

(see results in Table 2). In this case, we remind the reader that both Sat and

the entailment problem in classical propositional logic become polynomial. Once

again, the Uni-Lex problem is quite speci�c: its complexity seems unchanged in

the case of Horn bases while most other problems shift down by one level in PH

6

.

Proofs for m = T: We can still use the previously stated algorithms. Using the

fact that the complexity of the entailment problem is reduced, we conclude that

Uni-T-Horn is in co-NP, Exi-T-Horn is in NP and Arg-T-Horn is in �

p

2

.

Then, the completeness proofs are the following ones:

For Uni-T-Horn, we use an idea previously proposed in [15]: Sat can

be polynomially transformed to co-Uni-T-Horn (Sat is the satis�ability

problem for any set of clauses). So, Uni-T-Horn is co-NP-complete.

For Exi-T-Horn, the proof is the same as the one for Uni-T-Horn.

For Arg-T-Horn, we cannot keep the Arg-T proof, because our poly-

nomial transformations from Exi-T and from co-Exi-T to Arg-T do not

preserve Horn clauses. So, we consider a new problem Exi-T-Horn-Pos:

Instance: E a Horn base, ` a positive literal.

Question: Is it true that E j�

9;T

`?

It is clear that this problem is NP-complete (see the Exi-T-Horn proof).

Therefore, we may use the polynomial transformations de�ned for Arg-T

to Exi-T-Horn-Pos and co-Exi-T-Horn-Pos. We conclude that Arg-

T-Horn is in �

p

2

� (NP [ co-NP) if NP 6= co-NP.

Proof for m = Incl: We may use the algorithms previously considered in the un-

restricted case. All the polynomial transformations we used preserve Horn clauses

and we conclude that Uni-Incl-Horn is co-NP-complete, Exi-Incl-Horn is NP-

complete and Arg-Incl-Horn is in �

p

2

� (NP [ co-NP) if NP 6= co-NP.

Proof for m = Lex: Obviously, Uni-Lex is still a member of �

p

2

. For Exi-Lex

we prove the membership to �

p

2

by using the following idea: we �rst compute

5

When E and � are CNF formulae (conjunctive normal form), the complexity results remain

unchanged w.r.t. the general case.

6

Many studies have been realized about this well-known restriction (see for example [24]).
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the n-vector k which contains the cardinalities per stratum of a lexicographic

preferred thesis (that uses a polynomial number of calls to the oracleMax-GSat-

Array

7

, see algorithm 1). Then, we may guess a subbase, verify that it is

consistent, lexicographic preferred (using k) and that it entails �. All these tests

are polynomial and that corresponds to one call to an NP oracle: that algorithm

proves �

p

2

membership. Arg-Lex can simply be solved by an Exi-Lex and a

co-Exi-Lex call and is therefore also in �

p

2

.

Then, the completeness proofs are the following ones:

For Uni-Lex-Horn, we prove �

p

2

-completeness using a �

p

2

-complete prob-

lem de�ned in [16] and referred to as Acm in the following:

Instance: C = fC

1

; : : : ; C

m

g a set of clauses, X = fx

1

; : : : ; x

n

g

the variables of C, k 2 f1; : : : ;mg an integer.

Question: Let V be a truth assignment cardinality-maximal of

X, does V ful�ll V (C

k

) = true?

For Exi-Lex-Horn and for Arg-Lex-Horn, we have neither proved com-

pleteness nor re�ned the class membership result.

3.4 Complexity for Strictly Ordered Horn Bases

We can use Theorem 1. So, in the case of a strictly ordered Horn base, the

problems Uni-Incl (resp. Lex), Exi-Incl (resp. Lex), Arg-Incl (resp. Lex)

are equivalent to a single problem called 1/Stratum-Horn, and we can use the

algorithm previously de�ned for 1/Stratum, which used an oracle for Sat. In

the case of a Horn base, this oracle becomes deterministic polynomial. Therefore,

1/Stratum-Horn is in P (see Table 2).

3.5 Conclusion on Complexity

All the previous results, presented in Tables 1 and 2, are very discouraging in

the sense that the few polynomial classes are incredibly restrictive and of poor

practical interest while most other problems are located between �

p

2

and �

p

3

.

One appealing relation is the Uni-Lex relation, which is \only" �

p

2

-complete in

the general case, but its complexity is mostly una�ected by the restrictions we

considered. So, rather than focusing on unrealistic polynomial classes, we have

chosen to directly tackle problems in the PH using adapted algorithms. Local

search algorithms have recently shown promising results on large hard random

instances of sat, but all these algorithms focus on the search of a polynomial

length certi�cate and seem therefore useless for tackling problems which are above

7

Note that Max-Gsat-Array remains NP-complete when restricted to Horn clauses: NP-

membership is obvious, NP-completeness is proved using a polynomial transformation fromMax-

2Sat (see [18]).
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NP, for which no polynomial length certi�cate exists (unless P=NP). In the next

section, we show how Binary Decision Diagrams (which are routinely used in the

�eld of digital-system design and testing, for solving problems above NP) may be

applied to decide some of the previous problems in the general case.

4 Binary Decision Diagrams for Nonmonotonic Logics

We �rst rapidly introduce the main principles of Binary Decision Diagrams (or

BDD). Detailed presentations of BDD can be found in [5, 6]. Given a formula � on

a set of variables V , a BDD [27, 6] represents the formula � using a labeled directed

acyclic graph (DAG). The graph has one source and two sink vertices labeled 0 and

1 representing the boolean constants 0 and 1 respectively. Each non-sink vertex

is labeled with a boolean variable v 2 V and has two out-edges labeled then and

else. The then child corresponds to the case where v = 1 and the else child to the

case where v = 0 and a path from the source to a sink therefore de�nes a truth

assignment. The idea, which extends the coding principle of decision trees, is that

paths from the source to sink 1 (resp. 0) represent truth assignments that satisfy

� (resp. violate �)

8

.

Given an order on the set of the variables V that occur in �, an ordered

BDD is a BDD such that all paths from the source to a sink visit the variables

in an ascending order. Finally, a reduced ordered BDD (or ROBDD for short)

may be de�ned as a compressed decision tree for the formula. The decision tree

may be transformed into the ROBDD by iteratively applying two reduction rules

until quiescence (each rule application lowers the number of vertices by one { see

Figure 1, taken from [6]):

redundant vertices, such that the two out-edges point to the same vertex,

are simply bypassed and deleted;

pairs of vertices that denote the same function i.e., with the same label and

the same then and else children (if any), are merged.

Under a given variable order, the �nal ROBDD R

�

obtained is unique and

canonical in the sense that two equivalent formulae de�ne two identical ROBDDs.

For example, an unsatis�able formula will always reduce to the sink 0 while a

tautology will always reduce to the sink 1. There is no restriction on the formulae

represented (CNF or not).

8

A related but simpler data-structure, called a model tree, has been used to represent a set of

models in disjunctive deductive databases in [30]. The BDD data-structure performs additional

savings by sharing identical subtrees.
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else then

el
se

th
e
n

Figure 1: From left to right: the truth table of the formula �, the associated

decision tree and the reduced ordered BDD. A dotted edge corresponds to an

assignment to 0, a solid edge to 1

Property 1

Let R

�

be the ROBDD that represents � under a given order. Then:

any path P from the source of the ROBDD to the sink 1 de�nes a par-

tial truth assignment !

P

such that all the complete truth assignments that

contain !

P

satisfy �;

for any complete truth assignment ! that satis�es � there exists one and

only one path P from the source of the ROBDD to the sink 1 such that !

P

is included in !.

In Figure 1, there are only two paths from the source to sink 1: x

1

= 0; x

2

=

1; x

3

= 1 and x

1

= 0; x

3

= 1. The �rst path directly de�nes one model of � while

the second implicitly de�nes two models, depending on x

2

assignment.

The main advantage of ROBDDs w.r.t. decision trees is the compression

which is achieved by the two previous reduction rules. Actually, the size of the

ROBDD of a formula is not necessarily exponential in the number of the variables

(whereas the number of vertices in a decision tree is always equal to 2

jV j+1

�1). In

practice, the actual size of a ROBDD largely depends on the order of the variables

used and though the theoretical worst case space complexity remains exponential,

\there has been ample empirical evidence that many functions encountered in real

applications can be represented e�ciently as ROBDDs" [5, 6].

Most operations on ROBDDs rely on a single essential operator: the so-

called if-then-else or ite operator. This operator applies to a boolean variable

x and to two ROBDDs R

f

and R

g

representing the formulae f and g respectively.

ite(x;R

f

; R

g

) returns the ROBDD representing the formula (x^ f)_ (:x^ g) in

constant time [3]. The implementation of ite guarantees that no duplicate vertex

(same label and children) will ever be created and therefore that a ROBDD will

e�ectively be built. In practice, instead of reducing a huge decision tree, this ite

operation is used repeatedly to build ROBDDs incrementally: given the ROBDD
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representations R

�

and R

 

of the two formulae � and  , the ROBDD represen-

tation for the formula (�hopi ), where hopi is any binary boolean operator, can

be computed in time O(S

�

�S

 

), where S

f

denotes the number of vertices in the

BDD R

f

representing f . This again emphasizes the importance of the size of a

ROBDD and therefore of the problem of �nding \good" variable orders.

4.1 Tackling the Uni-Lex Problem

In the following, we show how ROBDDs can be used to solve theUni-Lex decision

problem. Consider a strati�ed belief base E = f�

i

g

i

and V the set of variables

appearing in the formulae �

i

. Since E is supposedly inconsistent, the ROBDD

which represents E will simply reduce to the sink 0, which is not very interesting.

To bypass the inconsistency, we introduce one new \assumption" variable `

�

i

per

formula in E and we consider a new belief base where each formula �

i

from E is

replaced by the formula `

�

i

! �

i

. This process, which is used in the ATMS of De

Kleer (see [25]) and which has also been suggested to solve \Dynamic Constraint

Satisfaction Problems" in [12, 21, 22], yields a belief base which is obviously

consistent.

Let A be the set of all the assumption variables introduced and E

A

= f`

�

i

!

�

i

j �

i

2 Eg. For a given truth assignment ! on (V [A), we note !

V

(resp. !

A

)

the restriction of ! to V (resp. A). Any truth assignment !

A

of A de�nes one

subbase of E, namely the subbase which contains all the formulae �

i

of E such

that !

A

(`

�

i

) = 1. This subbase will be denoted by Base(!

A

). Obviously, a truth

assignment ! of (V [A) is a model of E

A

i� !

V

is a model of the subbase Base(!

A

)

and therefore each model of E

A

corresponds to a consistent subbase of E plus

one of its model, and vice-versa. Therefore, to identify �

Lex

-preferred subbases

among all the consistent subbases, it will be su�cient to identify \preferred"

models of E

A

. To enable us to later use shortest path algorithms in the BDD, we

�rst build a weighting function that encodes the lex preference.

De�nition 10 (Weight of a subbase)

We associate a weight (a positive integer) with each formula �

i

in E. The weight

w(B) of a subbase B of E is de�ned as the sum of the weights of all the formulae

in E n B.

To encode the Lex preference, the weight associated with a formula �

i

will

be related to the stratum in which �

i

appears in E (see in [14]):

the weight of the stratum n which has the least priority is equal to 1;

for other strata, it is inductively de�ned by:

w(i) = 1 +

X

i<j�n

[w(j) � jE

j

j] = w(i + 1)� (jE

i+1

j+ 1)
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which guarantees that the weight of a formula in stratum i is strictly larger

than the sum of all the weights of all the formulae which appear in less

important strata. This inductive de�nition reduces to:

w(i) =

i

Y

j=n�1

h

1 + jE

j+1

j

i

Theorem 2

A subbase B is �

Lex

-preferred to a subbase C i� the weight of B is lower than

the weight of C.

The proof is given in the appendix. We now consider the ROBDD R

E

A

that

represents the conjunction of the formulae in E

A

. For each vertex which is labeled

by an assumption `

�

i

, we weight the else edge of the vertex with the weight

associated with the formula �

i

. As usual, the length of a path is de�ned as the

sum of all the weights of the edges in the path (non weighted edges count for

nothing in that sum).

Theorem 3

A formula � is Uni-Lex entailed by a strati�ed base E i� all the models !

V

represented in a shortest path of the ROBDD representing E satisfy �.

The proof is given in the appendix. This approach is related to [21, 22],

which relates shortest paths in a ROBDD to least cost assignments of constraint

satisfaction problems. As indicated in [21, 22], Bellman's linear time algorithm

(see [11], section 25.4) can then be applied to a ROBDD in order to compute the

length of the shortest path from each vertex in the ROBDD to the sink 1.

We have enhanced this algorithm in order to simultaneously build a new

ROBDD R

0

E

A

that contains only the shortest paths from the source to 1 (all

non shortest paths are simply redirected to sink 0). The ROBDD obtained is

called the \fat-free" version of the initial ROBDD. The modi�ed algorithm re-

mains linear and consists in applying a single procedure called Remove-Fat to

each vertex of the ROBDD, from the sinks to the source, using a topological

order

9

. The procedure applied is described in algorithm 5. Beyond all the usual

data-structures used in ROBDDs and the ite function which is the core of all

ROBDD packages (see [3]), we use two simple data-structures:

we associate an integer variable Length(v) with each vertex v in the ROBDD;

this variable represents the length of the shortest path from the vertex v to

9

In practice, the algorithm implemented uses a depth-�rst post-order search algorithm, inter-

mediate results being cached at each node in Length and Fat-Free to keep a linear time complexity.
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the sink 1; initially, the Length values associated with the sinks 0 and 1 are

set to +1 and 0 respectively;

then, we also associate a pointer variable Fat-Free(v) with each vertex v;

this variable points to the \fat-free" version of the ROBDD rooted at vertex

v; initially, the Fat-Free variables of sinks 0 and 1 point to sinks 0 and 1

respectively.

Algorithm 5: Remove-Fat(R)

; In the algorithm, when a ROBDD is used as an argument instead of a vertex,

; one should understand that the root of the ROBDD is the actual argument.

begin

t Length(then child of R)

e Length(else child of R)

if label of the root of R is an assumption variable ` then r  weight of `

else r  0

e (e+ r)

Length(R) min(t; e)

if t > Length(R) then n

t

 sink vertex 0

else n

t

 Fat-Free(then child of R)

if e > Length(R) then n

e

 sink vertex 0

else n

e

 Fat-Free(else child of R)

Fat-Free(R) ite (the label of the root of R, n

t

, n

e

)

end

The ROBDD R

0

E

A

seems useful to solve all Lex based problems. In the speci�c

case of Uni-Lex, our Theorem 3 shows that we can reduce the problem of Uni-

Lex entailment of a formula � to the problem of classical entailment of � by this

ROBDD. Actually, we can still improve things by noting that all the informations

on assumption variables conserved in R

0

E

A

are now useless. Therefore, we build

from R

0

E

A

, a third ROBDD, denoted R

00

E

A

, which is simply obtained by existential

quanti�cation of all assumption variables: the paths from the source to sink 1

in R

00

E

A

represent all truth assignments !

V

on V such that there exists a truth

assignment !

A

of the assumptions that can extend !

V

to a model represented in

R

0

E

A

i.e., all the models of �

Lex

-preferred subbases. Therefore, (E;�) j�

8;Lex

�

i� the ROBDD R

00

E

A

classically entails �.

4.2 \Good" Variable Orders

Given any order on V , [21, 22] shows that inserting all the assumption variables

after V gives a space complexity for R

E

A

which is guaranteed to be lower than

[2

n

� (m+1)�1] non terminal vertices. This yields a worst case space complexity

in O(2

jV j

� jAj), a much better result than the obvious O(2

jV j+jAj

). We propose

instead, given any initial order on V , to insert the variable `

�

i

2 A just after
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all the variables that appear in �

i

. This order is used in our simple example, at

the end of the section. Let n

`

be the number of non-assumption variables before

assumption ` in the resulting order, we prove the following result:

Theorem 4

The number of non terminal vertices of the BDD R

E

A

using this order is less than

(2

n

� 1) +

P

`2A

2

n

`

The proof is given in the appendix. This new bound is always lower than the

bound given in [21, 22]. The important thing is that this theoretical improvement

is accompanied by large improvements in the actual size of the ROBDD R

E

A

in

practice (see Section 5).

The use of this order and the ROBDDs R

E

A

, R

0

E

A

and R

00

E

A

are illustrated

on a simple version of the penguin problem de�ned by the belief base E with 2

strata and 4 formulae: �

1

= p; �

2

= p ! b; �

3

= p ! :f; �

4

= b ! f , where

�

1

and �

2

are in the most important stratum. The initial order on V is de�ned

by p � b � f . The four assumption variables `

�

1

to `

�

4

are inserted using our

ordering process, yielding the �nal order p � `

�

1

� b � `

�

2

� f � `

�

3

� `

�

4

.

Applying our weighting process, we get w(2) = 1 and w(1) = 3. The Figure 2

successively presents the ROBDD R

E

A

, with bold numbers indicating weight on

dashed else edges and italic number indicating the length of the shortest path

from each vertex to sink 1. The ROBDD R

0

E

A

is obtained from the previous BDD

by applying the algorithm 5, which redirects all non shortest path edges to the

sink 0. Finally, the ROBDD R

00

E

A

is obtained after existential quanti�cation on

the `

�

i

variables. When our variable order or [22]'s order is used, an assumption

is always inserted after all the variables of the associated formula. In this case,

we can prove the Property 2 (see proof of Theorem 4 in the appendix).

Property 2

The then children of all the assumption vertices in R

0

E

A

are the sink vertex 0.

This property makes the existential quanti�cation operation very easy: the

ROBDD algorithms usually perform existential quanti�cation on a variable ` by

replacing any vertex labeled by ` by a ROBDD representing the disjunction of the

two formulae represented by the else and then out-edges of the vertex. Here, since

the then child is always the sink 0, it is su�cient to replace the vertex by its else

child

10

. This can be performed during the application of the modi�ed Bellman's

algorithm 5, without destroying its linear time complexity.

R

0

E

A

shows that the belief base has two �

Lex

-preferred subbases that respec-

10

This is done using the ite operator in order to avoid a possible duplication of vertices with

identical label and children.



Cayrol, Lagasquie-Schiex, Schiex / NMR: Complexity & Algorithms 20

3

1

1 0

b0

0 f

1

1

1

3

p p

f

1 0 01

bb

f0

b1

3

3

1 f

p1

l1

l2

l3

l4 l4

l3

Figure 2: The ROBDD R

E

A

, R

0

E

A

and R

00

E

A

on the penguin problem

tively reject �

3

and �

4

. R

00

E

A

implicitly represents the two models of these two

subbases. Using the Uni principle, we can entail p and b but not f : Uni-Lex is

still quite cautious

11

.

5 Experimentations

We have extended the ROBDD package distributed by Bryant and Brace [3] with

the ability of weighting the else edge of assumption labeled vertices and with

the previously described algorithm that simultaneously computes shortest paths,

redirects non shortest paths to terminal vertex 0 and quanti�es existentially on

assumptions. That allows us to build the ROBDD R

00

E

A

which can then be used

for checking Uni-Lex entailment of any formula. All the tests presented here

have been performed on a SparcServer 1000 using a 50Mhz processor.

5.1 Comparing the Variable Orders

We have �rst applied our algorithm to three simple strati�ed belief bases: a com-

plete version of the previous (in)famous penguin problem and two formalizations

11

Another strati�cation where �

4

is made less important than �

3

enables the entailment of

:f , since the only �

Lex

-preferred subbase remaining rejects the less speci�c formula �

4

.
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of a small real common-sense reasoning problem that respectively involve 31 and

77 formulae, distributed in respectively 7 and 9 strata (the authors can be con-

tacted for the test problems and the code). The aim of the test was mainly

to compare the practical e�ciency of [22]'s order and our new order. Table 3

successively gives:

in number of non-terminal vertices, the size of the BDD R

E

A

using [22]'s

order and our order; in both cases, the same order on V was used;

the CPU time needed to compute R

E

A

for each order;

the size, in number of non-terminal vertices, of the BDD R

00

E

A

; since the

assumptions do not appear anymore in the BDD, the size is identical for the

two orders;

the CPU time needed to compute R

00

E

A

for each order.

Test Sizes CPU (R

E

) Size CPU (R

00

E

)

[22]'s order our order [22]'s order our order R

00

E

[22]'s order our order

Peng. 12 10 � 0 � 0 4 � 0 � 0

31 f. 252 932 62 028 1'07" 4.7" 17 12.8" 3.1"

77 f. 748 461 83 040 4'25" 17.3" 17 38" 4.2"

Table 3: Comparing the orders

A �rst conclusion is that the order we propose yields much smaller ROBDDs.

Better results could possibly be obtained by optimizing the initial order on V

in order to minimize the term

P

`2A

(2

n

`

) which appears in our lower bound on

the BDD size. For the problems considered, the size of the BDD R

E

A

is very

reasonable and yields a �nal BDD R

00

E

A

which is here very small (only one �

Lex

-

preferred subbase for the last 2 tests). Obviously, larger problems could be tackled

but the �eld of nonmonotonic reasoning lacks benchmarks. Therefore, we decided

to use random 3-sat problems as a basis of the next experiments.

5.2 Tests Using Random 3-sat Formulae

The tests have been performed on sets of random 3-clauses (involving three liter-

als), generated using the procedure described in [29]. Two parameters are used:

the number n of variables and the number l of 3-clauses. Each 3-clause is built

by randomly choosing three variables among the n ones et by randomly changing

the sign of each variable with probability 0:5. This model has been intensively

studied in the literature and it is known that a so-called phase transition occurs

at a ratio of

l

n

= 4:25. Instances generated using a lower (resp. higher) ratio will

be consistent (inconsistent) with high probability. Instances generated using the

above ratio of 4:25 are also known to de�ne di�cult instances for the sat problem.

The aim of the tests is to see how ROBDDs can cope with problems of various
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E

A

, R

00

E

A

and verifying the entail-

ment

sizes, to compare the sizes of the ROBDDs R

E

A

and R

00

E

A

, to evaluate the impact

of the ratio

l

n

on the e�ciency of the approach and to verify that the \knowledge

compilation" is e�cient i.e., that once R

00

E

A

is built, we get an e�cient procedure

for checking Uni-Lex entailment. A test consists in generating a random base

using a given value of n and l. The base is then pre-ordered by splitting it into

5 strata, simply by randomly assigning each formula to one stratum. Then the

ROBDD R

E

A

is built using our order, starting from an initial random order on

V . Then the ROBDD R

00

E

A

is computed. Finally an extra random 3-clause is

generated and we check if it is entailed by R

00

E

A

.

These tests have been performed with three di�erent numbers of variables (5,

10 and 20) with a ratio

l

n

going from 2 to 8 by 0:2 step

12

. For each value of n

and l, �fty di�erent bases have been generated and the numbers reported are the

average of the results on each of these �fty bases.

Figure 3 shows the total cpu-time needed to build R

E

A

, to compute R

00

E

A

and

to test the entailment of one random 3-clause. The horizontal axis indicates the

ratio used, the vertical axis gives the cpu-time in seconds using a logarithmic scale.

First, we notice that there is apparently no \phase transition" here: the cpu-time

seems to increase steadily as the ratio increases. One thing that is not visible on

the �gure is the very low variance of the measures: the amount of time needed is

12

We remind the reader that all the bases generated with a ratio larger than 4:25 are incon-

sistent with high probability.
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highly predictable and stable. Then, one can see that problems with more than

150 clauses are entirely solved in less than 15

0

. This amount of time is better

decomposed, in the case of bases with 20 variables, in the Figure 4. Here, we can

see that almost all the cpu-time is spent building the �rst ROBDD R

E

A

. Then

some extra time is spent computing R

00

E

A

. But once this ROBDD is built, checking

the entailment actually takes a negligible time, around

1

1000

th of second, even on

the largest instances. This shows clearly that the approach can be considered as a

\knowledge compilation" approach: some large preprocessing �nally yields a very

e�cient entailment procedure (see [34] for works on the \knowledge compilation"

approaches).

Moreover, if the belief base is modi�ed, the \recompilation" is partly incre-

mental, if the ROBDD R

E

A

has been saved (see [19] for works on \incremental

recompilation"): if a new formula � needs to be inserted in the base, it is su�cient

to introduce a new assumption `

�

, to compute the conjunction of R

E

A

and `

�

! �

and to apply the procedure Remove-fat once again. To delete a formula �, one

can simply compute the conjunction of R

E

A

with the formula :`

�

and then apply

the procedure Remove-fat once again

13

.

The e�ciency of the �nal entailment check is the result of the small size of the

ROBDD R

00

E

A

compared to the size of R

E

A

. The sizes, in number of vertices, of

the two ROBDDs R

E

A

and R

00

E

A

are given in the Figure 5. It appears that if the

compilation becomes more and more di�cult as the ratio increases, this is because

the size of the �rst ROBDD R

E

A

increases too, but the size of the ROBDD R

00

E

A

reduces as the ratio increases, making entailment more and more e�cient. This

can be explained by the fact that the �

Lex

order is extremely selective: for most

bases with a ratio above 6, not only does the �

Lex

preference select one single

preferred subbase, but this subbase has usually only one model. That explains

the size of the ROBDD R

00

E

A

on highly inconsistent bases: the ROBDD contains

only one model and uses therefore 20 vertices (the number of variables).

One could think, from these results, that the �

Lex

preference is actually too

selective to have any practical signi�cance for highly inconsistent bases. But it is

di�cult to conclude from bases entirely composed of 3-sat formulae.

6 Conclusion

We have studied the computational complexity of various coherence-based en-

tailment relations which can be de�ned as: (E;�) j�

p;m

�. E denotes a set of

beliefs, � a priority relation on E, � a propositional formula, and p, m enable to

13

This \incremental recompilation" process can be useful in the context of the revision of the

belief base: the new formula is simply inserted in a new �rst stratum and a \recompilation"

must be performed.
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combine the classical entailment and the selection of preferred consistent subsets.

The results reported in this paper show that most of the nonmonotonic entail-

ment problems have very likely exponential time complexity with respect to the

problem size. Although the complexities observed are limited by the third level

of the PH, they are prohibitive and applications may likely wait for an answer for

hours, days or centuries!

We have considered three restrictions (strictly ordered belief bases, Horn bases,

strictly ordered Horn bases), but only the last one leads to a polynomial problem,

and it is a very restrictive case.

A more complete analysis permits to distinguish the Uni-Lex entailment,

whose complexity never exceeds the �

p

2

class. Note that the computational com-

plexity is not related to cautiousness: thoughArg-m is more cautious than Exi-m

and less cautious than Uni-m, Arg-m is more complex than Exi-m and Uni-m

(see [8] for a study on this point of view).

Considering the strength of the restrictions needed to reach polynomial com-

plexity, we decided to try to tackle one speci�c entailment relation using an al-

gorithmic tool which is dedicated to the resolution of propositional logic based

NP-hard problems: Binary Decision Diagrams.

On the speci�c Uni-Lex relation considered, our BDD-based approach o�ers

some interesting features:

e�ciency via knowledge compilation: after a �rst expensive computation,

the binary decision diagram R

00

E

A

can be used to e�ciently check the entail-

ment of any formula;

a \good" variable order for BDD, with both better theoretical guarantees

and better practical results than [22]'s order;

the recompilation can be incremental as long as the �rst BDD R

E

A

is kept;

even if this BDD may be huge, it may simply be saved on disk.

We feel that this work can still be extended in several directions:

For a given order on the set V , is our order on V [ A optimal? Since our

theoretical bound depends on the initial order on the variables in V , is it

worth considering the optimization of this order in order to minimize the

bound? Is this optimization problem computationally tractable? Finally,

does this optimization lead to better practical results?

Obviously, the BDD approach can be extended to other preference relations

than the lexicographic order. Naturally, this is immediate for cardinality

based preferences, a special case of the lexicographic order, but one could

also consider the Best-Out order, related to possibilistic logic (see de�nitions

in [13], and complexity results in [7]), and for which speci�c optimization

should apply.
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Finally, one should try to use the BDD R

0

E

A

, which represents all preferred

consistent subbases and their models, in order to tackle consequence rela-

tions based on other entailment principles than the Uni principle. This

is especially interesting because of the higher complexity of the problems

de�ned by the Exi or Arg principles.
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A Proofs

Proof of Theorem 2

We �rst suppose that B is �

Lex

-preferred to C. Let

�

B be the complement of B in E and

B

j

= B \ E

j

. The weight of B is de�ned as

P

n

j=1

j

�

B

j

j � w(j). Since B is �

Lex

-preferred

to C, by de�nition there exists a stratum i such that jB

i

j > jC

i

j and therefore j

�

B

i

j < j

�

C

i

j.

Furthermore, for all j < i, jB

j

j = jC

j

j and therefore j

�

B

j

j = j

�

C

j

j. Finally, we know that

8k > i; j

�

B

k

j � j

�

C

k

j � �jE

k

j. The di�erence w(C) � w(B) between the weight of C and the
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weight of B is then equal to:

n

X

j=1

([j

�

C

j

j � j

�

B

j

j] � w(j)) =

n

X

j=i

([j

�

C

j

j � j

�

B

j

j] �w(j)) � w(i) �

n

X

j=i+1

(jE

j

j � w(j))

If we introduce the de�nition of w(j) =

Q

j

k=n�1

[1 + jE

k+1

j] for j > 1, we get:

w(C)� w(B) �

i

Y

k=n�1

[1 + jE

k+1

j] �

jE

i+1

j �

i+1

Y

k=n�1

[1 + jE

k+1

j] �

.

.

.

jE

n�1

j �

n�1

Y

k=n�1

[1 + jE

k+1

j] � jE

n

j � 1 � 1

And therefore, the weight C is strictly larger than the weight of B.

The converse follows from the fact that �

Lex

-preference and weight order are total: if B is

not �

Lex

-preferred to C, C is �

Lex

-preferred to B and therefore the weight of C is lower then

the weight of B or equivalently, the weight of B is not lower than the weight of C. 2

Proof of Theorem 3

This proof relies on two lemmas:

Lemma 1

Each model !

V

of a minimum weight consistent subbase B de�nes a model of E

A

which is

represented in the ROBDD R

E

A

by a path P from the source to the sink 1 whose length is lower

than the minimum weight of a consistent subbase.

Proof: Consider any model !

V

of a minimum weight consistent subbase B. Let ! be the model

of E

A

de�ned by !

V

and this base and P the path representing ! in the ROBDD. The partial

truth assignment !

P

de�ned by the path P being included in !, the set of assumption variables

which are assigned to 0 in the path P is included in the set of assumptions which are assigned

to 0 in the truth assignment !. Therefore, the length of the path is necessarily lower than the

weight of the base B. 2

Lemma 2

Any model !

V

de�ned by a model ! represented by a shortest path P from the source to the sink

1 is a model of a consistent subbase of weight equal to the length of the path.

Proof: Consider a shortest path P from the source to sink 1 representing a partial assignment

!

P

. All the models ! that contain !

P

are models of E

A

which de�ne a consistent subbase

Base(!

A

) and one of its model !

V

. Consider any such !

V

, and an assignment !

0

A

of A such that

!

0

A

(`

�

i

) = 0 i� !

P

(`

�

i

) = 0. Then, by construction, the truth assignment !

0

of V [ A de�ned

by !

V

and !

0

A

is a model of E

A

since it is represented by the path P (since it contains !

P

)

and therefore !

V

is the model of a subbase Base(!

0

A

) whose weight is equal to the length of the

shortest path. 2
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Proof of Theorem 3

(E;�) j�

8;Lex

� means that all �

Lex

-preferred subbases of E classically entail �, or equiv-

alently that each model of each �

Lex

-preferred consistent subbase satis�es �. By Theorem 2,

�

Lex

-preferred consistent subbases are also minimum weight consistent subbases and therefore

it su�ces to show that the set of all the models !

V

represented in shortest paths of the ROBDD is

equal to the set of all the models of minimumweight consistent subbases. According to Lemma 2,

the length of a shortest path (and therefore of any path) cannot be strictly lower than the weight

of a minimum weight base. Since, according to Lemma 1, the length of a path representing a

model of a minimum weight subbase is lower than this weight, we can conclude that the length

of a shortest path is equal to the weight of a minimum weight base. Then, Lemma 1 simply

says that all the models of a minimum weight consistent subbase are represented in a shortest

path, while Lemma 2 says that all the models of E represented in shortest path are models of a

minimum weight base. This concludes the proof. 2

Proof of Theorem 4

We state a more precise form of Theorem 4:

Theorem 5

Let E = f�

i

g

i

be a belief base, and V the set of variables of E (jV j = n). We associate with each

formula �

i

of E a new variable `

�

i

. Let A be the set of these new variables, called assumption

variables (jAj = jEj = m). We de�ne E

A

= f`

�

i

! �

i

; i = 1 : : :mg. Given an order � on V , we

consider an order �

0

on V [A such that:

it extends the order � (8v; v

0

2 V; (v �

0

v

0

), (v � v

0

));

an assumption `

�

is ordered after all the variables of � (8v 2 V that appears in �, v �

0

`

�

);

and before any variable located after all the variables of � (8w 2 V s.t. 8v 2 V that

appears in �, v � w, then `

�

�

0

w).

For each assumption variable `, n

`

denotes the number of variables v 2 V s.t. v �

0

`. In the

corresponding reduced ordered BDD of the base E

A

, the number of non terminal vertices is less

than (2

n

� 1) +

P

`2A

(2

n

`

).

Proof: Let us �rst note that an order such as �

0

always exists and is simply obtained by inserting

each assumption just after all the variables of the associated formula. The proof uses the fact

that a reduced ordered BDD is de�ned as the closure by two reduction rules of the ordered binary

decision tree (cf. Figure 1). Each rule application decreases the number of vertices of the BDD

by one and the reduced BDD is obtained by application of these two rules until quiescence.

We will show that a limited application of these rules on the ordered binary decision tree of

E

A

permits to obtain an ordered and partially reduced BDD whose size is less than (2

n

� 1) +

P

`2A

(2

n

`

). The size of the completely reduced BDD being necessarily less than the size of the

partially reduced BDD, the proof will follow.

We consider the ordered binary decision tree of the base E

A

. Let `

�

i

2 A, the assumption

variable associated with the formula �

i

. Let s

`

�

i

one of the vertices corresponding to this

assumption variable in the decision tree. By de�nition, `

�

i

is greater than all the variables of �

i

according to �

0

. So, we have two cases:

The assignment of the variables of �

i

satis�es �

i

: in this case, the formula `

�

i

! �

i

is

satis�ed for all the values of `

�

i

. As `

�

i

does not appear in other formulae of E

A

, the two

subtrees (left and right) of s

`

�

i

are the same and we may remove the vertex s

`

�

i

(and one

of the subtrees) by application of the reduction rules.
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The assignment of the variables of �

i

does not satisfy �

i

: in this case, if `

�

i

is supposed to

be true, the formula `

�

i

! �

i

is not satis�ed, whatever the values of the variables which

\follow" `

�

i

in the order. So, all the sink vertices of the subtree of s

`

�

i

, corresponding to

the assignment at true of `

�

i

, are the sink vertex 0. Therefore, by several applications of

the two reduction rules, we may replace this subtree by the sink vertex 0.

The proof follows by induction. If m = 0, then the number of non terminal vertices is

obviously less than (2

n

�1). The induction hypothesis will be that Theorem 5 applies on a BDD

representing a set of formulae f`

�

! �g, with an order corresponding to the de�nition, and in

which there are strictly less than m assumption variables.

Consider the binary decision tree associated with the base E

A

, with 2

n+m

� 1 non terminal

vertices. Let � be the lowest assumption variable according to �

0

. Using the previous remarks,

the application of the two reduction rules implies on each vertex s

�

either the removal of the

vertex, or the fact that one of its children becomes the sink vertex 0. So, the number of non

terminal vertices in the partially reduced BDD obtained by this procedure is decomposed into:

(2

n

�

� 1) vertices for the n

�

variables which are not assumption variables and which are

lower then � according to �

0

;

a maximum of 2

n

�

vertices corresponding to the assumption variable �;

2

n

�

subtrees whose roots correspond to the variable which is the successor of � in �

0

.

These 2

n

�

subtrees are ordered binary decision trees. Let ! the partial assignment de�ned

by the path between the root of the tree and the root of one of these subtrees. Whatever subtree

among the 2

n

�

subtrees whose root corresponds to a successor of � in �

0

, it represents the binary

decision tree of the formula E

A

!

obtained by the substitution of the variables assigned by ! in

E

A

by their truth values in !. Because of the order �

0

, E

A

!

contains formulae 0 or 1 and

formulae of the form `

�

! �. The formulae 1 don't a�ect the truth value of E

A

!

, because they

are always satis�ed. So:

either E

A

!

contains a formula 0 and its truth value is always equal to 0: the binary

decision subtree of E

A

!

is reduced to the sink vertex 0 by the use of reduction rules;

or E

A

!

doesn't contain any formula 0 and furthermore satis�es all the conditions of the in-

duction hypothesis: there are m�1 assumption variables and the condition on the order is

satis�ed (an assumption variable is located \after" the variables of the associated formula

in the order). Therefore, we may reduce the subtree to an ordered and partially reduced

BDD whose number of non terminal vertices is less than (2

n�n

�

�1)+

P

`2A�f�g

(2

n

`

�n

�

).

In all the cases, we may reduce each subtree to an ordered partially reduced BDD whose number

of non terminal vertices is less than (2

n�n

�

� 1) +

P

`2A�f�g

(2

n

`

�n

�

).

The set of reductions permits to obtain an ordered and partially reduced BDD whose number

of non terminal vertices is less than:

S =

variables �

0

�

z }| {

[2

n

�

� 1] +

�

z }| {

[2

n

�

] +

subtrees rooted �

0

�

z }| {

[2

n

�

:((2

n�n

�

� 1) +

X

`2A�f�g

(2

n

`

�n

�

))]

= [2

n

�

� 1] + [2

n

�

] + [2

n

� 2

n

�

+

X

`2A�f�g

(2

n

`

)]

= 2

n

�

� 1 + 2

n

+

X

`2A�f�g

(2

n

`

) = (2

n

� 1) +

X

`2A

(2

n

`

)

2


