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The purpose of this paper is to outline various results regarding the computational complexity and the algorithms of nonmonotonic entailment in di erent coherencebased approaches. Starting from a (non necessarily consistent) belief base E and a pre-order on E, we rst remind di erent mechanisms for selecting preferred consistent subsets. Then we present di erent entailment principles in order to manage these multiple subsets. The crossing point of each generation mechanism m and each entailment principle p de nes an entailment relation (E; ) j p;m which we study from the computational complexity point of view. The results are not very encouraging since the complexity of all these nonmonotonic entailment relations is, in most restricted languages, larger than the complexity of monotonic entailment. So, we decided to extend Binary Decision Diagrams techniques, which are well suited to the task of solving NP-hard logic-based problems. Both theoretical and experimental results are described along this line in the last sections.

Introduction

Formalizing \common sense" reasoning is one of the most important research topics in arti cial intelligence. When the available knowledge may be incomplete, uncertain or inconsistent, the classical logic is no more relevant (for example, anything can be classically inferred from inconsistent knowledge bases). Nonmonotonic reasoning is needed. Many researchers have proposed new logics (called nonmonotonic logics) in order to formalize nonmonotonic reasoning, for instance, Reiter's default logic 33]. Others proposed to keep the classical logic in integration with numerical or symbolic structures for ordering the beliefs. In the latter context, we focus on the so-called coherence-based approaches. These approaches handle syntactical belief bases, as in 31]: each belief is a distinct piece of information and only beliefs which are explicitly present in the base are taken into account. It departs from the logical point of view where a base is identi ed with the set of its models. Due to the belief status of its elements, the belief base is not assumed consistent. Moreover, we assume that the belief base is equipped with a total pre-order (a priority relation) which, contrarily to 17], is not related to semantical entailment. It is equivalent to consider that the base is strati ed in a collection of subbases of di erent priority levels.

In this paper, we are concerned with the deductive aspect of reasoning (cf. 4, 31, 9, 1] for works in the same framework). Following Pinkas and Loui's analysis 32], it is convenient to see coherence-based nonmonotonic entailment as a two-steps procedure which rst restores the coherence by generating and selecting preferred belief states (generation mechanism) and then manages these multiple states in order to conclude using classical logic (entailment principle). For instance, the following kind of inference is considered in 1]: \The belief base E infers i is classically inferred by all the preferred consistent subsets of E".

A taxonomy of con ict resolution principles, from credulous to skeptical ones, can be found in 32]. The selection of preferred subsets relies upon the de nition of aggregation modes which enable to extend the priority order de ned on the initial belief base into a preference relation between subsets (see 1, 9]).

In the framework described above, we propose a comparative study of various coherence-based entailment relations from the point of view of the computational complexity1 . This topic is essential for practical applications. Indeed, as far as we know, only few papers have been devoted to computational complexity issues for coherence-based entailment, although there are many works about the complexity of other parallel problems2 (Nebel has thoroughly considered the computational complexity of syntax-based revision procedures 31], Eiter and Gottlob 20,[START_REF] Cyr | Gestion de l'inconsistance dans les bases de connaissances : une approche syntaxique bas ee sur la logique des p enalit es[END_REF] have also considered the case of default logic and abductive procedures, and in 10] Cadoli and Schaerf have presented a survey of complexity results concerning different nonmonotonic logics { default logic, autoepistemic logic . . . ).

The paper is organized as follows. First, we present the coherence-based entailment problems under consideration. Starting from a belief base E and a pre-order on E, we present three mechanisms for selecting preferred consistent subsets of E, each one being more selective than the previous one. Then we present three entailment principles in order to manage these multiple subsets: the skeptical principle, the argumentative principle and the credulous principle.

The crossing point of each generation mechanism m and each entailment principle p de nes an entailment relation (E; ) j p;m . Secondly, after an informal and simpli ed presentation of the main concepts of the complexity theory, we provide comparative results in the general propositional case and in three restricted cases (strictly ordered belief bases, Horn bases and strictly ordered Horn bases). Even in restricted cases such as strictly ordered belief bases or Horn bases, the results are quite disappointing since the complexity in the worst case remains greater than the complexity of classical entailment unless both restrictions apply simultaneously, an unrealistic restriction. These results inclined us to look for an adapted tool for solving decision problems above NP. In the last part of the paper, we show that Binary Decision Diagrams 6] can be extended for solving some classes of coherence-based entailment problems.

2 Coherence-Based Nonmonotonic Entailment

Throughout the paper, E denotes a non-empty nite set of propositional formulae referred to as the \belief base". E is not assumed consistent.

Coherence-based nonmonotonic entailment from a strati ed belief base can be described as a two-steps procedure which rst restores the coherence by selecting preferred consistent subbases, and then applies classical entailment on some of these preferred subbases according to a so-called entailment principle.

Selecting Preferred Belief States

The most usual idea for handling inconsistency is to work with maximal (w.r.t. set-inclusion) consistent subsets of E, called theses of E in the following.

De nition 1 (Thesis)

A subset X of E is a thesis of E i X is consistent and there is no consistent subset of E which strictly contains X.

Unfortunately, in the worst case, this approach is not selective enough: too many theses must be taken into account. Now, we assume that E is equipped with a total pre-order (a priority relation). It is equivalent to consider that E is strati ed in a collection (E 1 ; : : : ; E n ) of belief bases, where E 1 contains the formulae of highest priority and E n those of lowest priority. The pair (E; ) is called a strati ed (or equivalently prioritized) belief base. Each E i is called a stratum of E. Di erent approaches have been proposed to use the priority relation in order to select \preferred" subsets (see 7] for a survey). For the purpose of this paper, we concentrate on the approaches which re ne the set-inclusion and lead to select preferred subsets among the theses of E. Indeed, the priority relation on E induces a preference relation on the set of subsets of E. Let us rst brie y remind the \inclusion-based" preference, which is the most frequently encountered, despite di erent presentations.

De nition 2 (Inclusion-based preference)

Let E = (E 1 ; : : : ; E n ) be a strati ed belief base. Z being a subset of E, Z i denotes Z \ E i . The \inclusion-based" preference is the strict order de ned on the power set of E by: X Incl Y i there exists i, 1 i n, such that Y i strictly contains X i and for any j, 1 j < i, X j = Y j .

Note that Incl -preferred theses are also called preferred sub-theories in 4], democratic preferred theses in 9], and exactly correspond to strongly maximalconsistent subbases in 13].

Another way of selecting preferred subsets is to use consistent subsets of maximum cardinality. Then, taking into account the strati cation of E leads to the de nition of the so-called \lexicographic" preference (see 1, 28]):

De nition 3 (Cardinality-maximal-consistent subset)

A subset X of E is a cardinality-maximal-consistent subset of E i X is consistent and for each consistent subset Y of E, jY j jXj (jY j: cardinality of Y ).

De nition 4 (Lexicographic preference)

Let E = (E 1 ; : : : ; E n ) be a strati ed belief base. The \lexicographic" preference is the strict order de ned on the power set of E by: X Lex Y i there exists i, 1 i n, such that jX i j < jY i j and for any j, 1 j < i, jX j j = jY j j.

It can be shown that the lexicographic preference re nes the inclusion-based preference: any Lex -preferred consistent subset of E is an Incl -preferred thesis, but the converse is false as illustrated at the end of this section. Moreover, the associated lexicographic pre-order is total.

Example Consider the following propositional variables: Consider the strati ed belief base with the following ve strata: E 1 = f! r; ! xg, E 2 = fr ! bg, E 3 = fb ! nl; r; nl !g, E 4 = fnl ! np; np ! nl; x ! npg, E 5 = f! nl; cig. There are three inclusion-based preferred theses: Y 1 = f! r; ! x; r ! b; r; nl !; nl ! np; x ! np; ! nl; cig, Y 2 = f! r; ! x; r ! b; r; nl !; nl ! np; np ! nl; ! nl; cig, Y 3 = f! r; ! x; r ! b; b ! nl; nl ! np; np ! nl; x ! np; ! nl; cig.

However, Y 3 is the only one lexicographic preferred thesis (indeed, Y 1 Lex Y 3 and Y 2 Lex Y 3 ).

Three Entailment Principles

In the previous section, we have presented three mechanisms for producing a set of consistent belief states from the initial strati ed belief base (E; ). In the following, we call T the mechanism which produces the set of theses of E (maximal-consistent subsets), Incl the mechanism which produces the inclusionbased preferred theses of E and Lex the re nement which produces the set of preferred theses for the lexicographic order. A taxonomy of numerous entailment principles has been established by Pinkas and Loui 32] according to their cautiousness. Here, we are interested in three of them which we now brie y present.

We start from a set of consistent subsets of E denoted by m(E) in the following (for instance, m is one of the generation mechanisms T, Incl, Lex). Let be a propositional formula.

De nition 5 (Skeptical and credulous entailment principles)

is inferred from m(E) according to the skeptical (resp. credulous) entailment principle i can be classically inferred from each (resp. at least one) element of m(E). This entailment principle will be denoted by 8 (resp. 9) and referred to as the Uni (resp. Exi) principle in the following 3 .

These two entailment principles are the most commonly activated in presence of multiple con icting belief states. Obviously, the Uni principle is more cautious than the Exi principle, since each conclusion obtained from m(E) by Uni inference is also obtained by Exi inference. Since the Exi principle leads to unsafe consequence relations (i.e. pairwise contradictory conclusions may be produced), an intermediary principle has been considered, which consists in keeping only the consequences obtained by Exi principle whose negation cannot be inferred (see 2] for a discussion on the so-called argumentative inference).

De nition 6 (Argumentative entailment principle)

is inferred from m(E) according to the argumentative entailment principle i is classically inferred from at least one element of m(E) and no element of m(E) classically entails : . This entailment principle will be denoted by A and referred to as the Arg principle in the following.

We are now ready to give a precise de nition of the entailment relations and the associated problems which we will consider from the computational complexity point of view. Each one appears at the crossing point of a belief state generation mechanism m and an entailment principle p. Let (E; ) be the initial belief base and a propositional formula.

De nition 7 (T-based problems)

The problem Uni-T (resp. Exi-T, Arg-T) is de ned by \verify that is a consequence of E using the theses of E and the Uni (resp. Exi, Arg) principle".

The T generation mechanism is used.

Notation: E j 8(resp. 9;A);T for Uni-T (resp. Exi-T, Arg-T).

In the above notation, it is su cient to mention E instead of (E; ) since producing the theses makes no use of the pre-order on E.

De nition 8 (Incl-based problems)

The problem Uni-Incl (resp. Exi-Incl, Arg-Incl) is de ned by \verify that is a consequence of E using the inclusion-based preferred theses of E and the Uni (resp. Exi, Arg) principle". The Incl generation mechanism is used. Notation: (E; ) j 8(resp. 9;A);Incl for Uni-Incl (resp. Exi-Incl, Arg-Incl).

De nition 9 (Lex-based problems)

The problem Uni-Lex (resp. Exi-Lex, Arg-Lex) is de ned by \verify that is a consequence of E using the lexicographic preferred theses of E and the Uni (resp. Exi, Arg) principle". The Lex generation mechanism is used. Notation: (E; ) j 8(resp. 9;A);Lex for Uni-Lex (resp. Exi-Lex, Arg-Lex).

The inclusion-based preference and the lexicographic preference are induced by the pre-order (see respectively Def. 2 and Def. 4).

Example Applying the above principles on the example of the previous section produces: (E; ) j 8;Incl b, (E; ) j 9;Incl nl and (E; ) j A;Incl ci, (E; ) j 8;Lex np which is equivalent to (E; ) j 9;Lex np and which is equivalent to (E; ) j A;Lex np since there is only one Lex -preferred thesis.

Computational Complexity

We consider that the readers have some knowledge about computational complexity (else, see 18]). In this paper, we are interested only by decision problems (each instance of a decision problem has either a \yes" or a \no" answer), and we denote the fact that a polynomial transformation exists from Q 0 to Q by Q 0 / Q (this informally means that Q is at least as hard as Q 0 ). In this work, we use classes from the polynomial hierarchy (called PH), each of them containing supposedly harder and harder problems. This PH is de ned inductively using the notion of oracle. An oracle of complexity X may be viewed as a subroutine which solves any problem of complexity X. Each call to an oracle is counted as one time unit. So, there are polynomial problems using an oracle of complexity X and non-deterministic polynomial problems using an oracle of complexity X. They de ne respectively the P X and NP X classes. PH is de ned by the set of classes f p k ; p k ; p k for k 0g: In each of these classes, we also have the notion of completeness (a p k -complete problem being harder than any p k problem). The conjecture NP 6 = P is generalized to the PH with the following stronger conjectures: NP 6 = co-NP and 8k; p k 6 = p k . Note that NP = P implies that the PH collapses into P. The problem stated below, called 2-Qbf also denoted 9a8bH(a; b), is an example of a p 2 -complete problem (see [START_REF] Philippe | Solving over-constrained CSP using weighted OBDD[END_REF][START_REF] Lobo | Disjunctive deductive databases[END_REF]).

Instance: A propositional formula H(a; b) where a and b denote sets of propositional variables: a = fa 1 ; : : : ; a n g and b = fb 1 ; : : : ; b m g. Question: Is there a truth assignment of the variables in a such that H(a; b) is true for any truth assignment of the variables in b?

Complexity of General Entailment Relations

We consider entailment relations of the form (E; ) j p;m where E, , p and m have been de ned in the previous sections, and where is a single propositional formula. The complexity results for the general propositional case are given in Table 1. For lack of space, we just give sketches of proof. The detailed proofs are given in [START_REF] Bryant | Symbolic boolean manipulation with ordered binary-decision diagrams[END_REF][START_REF] De | An assumption-based TMS[END_REF]. For each problem Q, the complexity proof is done in two steps: rst, we exhibit an algorithm which solves Q and whose complexity class is X (class membership proof which gives an upper bound for the complexity); then, we prove that Q is X-complete by giving a polynomial transformation from an X-complete problem to Q (or else give any other lower bound for the complexity). For Uni-T and Uni-Incl, we use the results of Nebel in 31] (the associated entailment relations correspond to the Sbr and Pbr revision procedures for which Nebel has proved the p 2 -completeness). So, Uni-T and Uni-Incl are p 2 -complete.

For Uni-Lex, we prove the membership to p 2 using the following idea: if we want to verify that is classically entailed by all the lexicographic preferred theses of E, we may insert : alone in a new stratum with the least priority. This de nes a new base E 0 . Since all the lexicographic preferred theses have always the same cardinality at each stratum, will be entailed by all the lexicographic preferred theses of E i any lexicographic preferred thesis of E 0 has the cardinality zero at the last stratum. The algorithm 1 sophisticates this idea by introducing ! `(where `is new variable) in the stratum which has the highest priority and :`in a new stratum with the least priority in order to avoid a possible interference with an already existing occurrence of : in E.

In this algorithm, we use an oracle Max-Gsat-Array de ned by: Instance: A pre-ordered set (Y; ) of propositional formulae, an array k of dimension n with n=number of strata in Y .

Question: Is there a truth assignment which satis es at least k i] formulae for each stratum i of Y ? This problem is NP-complete (NP class membership is obvious, completeness is proved by restriction to Sat). Therefore the previous algorithm (and its dichotomic version too) is deterministic polynomial and uses a non-deterministic polynomial oracle. So, Uni-Lex belongs to the class p 2 . The p 2 -completeness for Uni-Lex is proved using a p 2 -complete problem de ned in 16] and referred to as Alm in the following:

Algorithm 1: Uni-Lex ((E; ), ) begin E 0 f ! `g E f:`g k < 0; 0; : : :; 0 > ; k is a n'-vector (n 0 =number of strata in E 0 )

for n s = 1 to n 0 do n f number of formulae in the stratum E 0 ns End? false while (n f 0) and (not End?) do

k n s ] n f if Max-Gsat-Array(E 0 ; k) then End? true else n f n f 1 Verify that k n 0 ] 6 = 1 end
Instance: Let C = fC 1 ; : : : ; C m g be a satis able set of clauses, let the set of propositional variables of C be denoted by X = fx 1 ; : : : ; x n g, let a prioritization of X be denoted by O(X) =< x 1 ; : : : ; x n >.

Question: Let V M be the truth assignment lexicographically maximal with respect to O(X) satisfying C, does V M ful ll V M (x n ) = true?

Proofs for problems de ned with the Exi principle:

We consider the algorithm 2 for the Exi-m problems (8m 2 fT; Incl; Lexg).

Algorithm 2: Exi-m ((E; ), ) begin

Guess a subset Y of (E; ) Verify that Y is:

-a thesis (for Exi-T) -an inclusion-based preferred thesis (for Exi-Incl) -a lexicographic preferred thesis (for Exi-Lex) Verify that Y classically entails end First of all, note that \verify that Y classically entails " is co-NP-complete. Then, all the oracles \verify that Y is . . . " are non-deterministic polynomial time oracles. Note that the oracle used for the lexicographic case solves the following problem (called Max-Gsat-Strict) which is NP-complete:

Instance: A set Y of propositional formulae, an integer k jY j. Question: Is there a consistent subset Y 0 of Y such that jY 0 j > k?

Therefore, Exi-m belongs to the class NP NP = p 2 . Moreover, the completeness proofs are the following ones:

For Exi-T, we consider the following polynomial transformation from 2-Qbf to Exi-T: let \9a8bH(a; b)" be an instance of 2-Qbf, the instance of Exi-T is de ned by E = fa 1 ; : : : ; a n ; :a 1 ; : : : ; :a n g and = H(a; b) 4 .

For Exi-Incl, the completeness is obvious, since Exi-T is a restriction of Exi-Incl.

For Exi-Lex, we may use the previous proof for Exi-T since any thesis of E, when E is of the form fa 1 ; : : : ; a n ; :a 1 ; : : : ; :a n g is also a lexicographic preferred thesis of E.

Proof for problems de ned with the Arg principle: 8m 2 fT; Incl; Lexg, the Arg-m problems can be solved by the algorithm 3.

Algorithm 3: Arg-m ((E; ), ) begin Verify that (E; ) j 6 9;m : Verify that (E; ) j 9;m end This algorithm is deterministic polynomial and uses a p 2 oracle solving Exim. Therefore, we conclude that 8m, Arg-m belongs to the class P p 2 = p 3 .

We cannot prove p 3 -completeness for any of these problems, but we re ne the class membership, as in 31]. Indeed, we prove that most of the Arg-m problems are in p 3 ( p 2 p 2 ). So, we have the following lower bounds: For Arg-T, we prove that there is a polynomial transformation from Exi-T to Arg-T and there is a polynomial transformation from co-Exi-T to Arg-T. Therefore, both Exi-T and co-Exi-T can be polynomially transformed to Arg-T. Since Exi-T is p 2 -complete and co-Exi-T is p 2 -complete, assuming that Arg-T 2 ( p 2 p 2 ) would lead to p 2 = p 2 .

For Arg-Incl, we still rely on the fact that Arg-T is a restriction of Arg-Incl: Arg-T / Arg-Incl. Since Exi-T / Arg-T and co-Exi-T / Arg-T, we obtain the same conclusion as for Arg-T.

For Arg-Lex, similarly as for Arg-T, it is possible to prove that Exi-Lex / Arg-Lex. However, we haven't found a polynomial transformation from co-Exi-Lex (or any other p 2 -complete problem) to Arg-Lex. We simply conclude that Arg-Lex is p 2 -hard. We rst consider the case of a strictly ordered belief base (see results in Table 2). In this case E is strati ed with exactly one formula per stratum. The complexity of the problems p-T (for p in fUni, Exi, Argg) is not a ected by this restriction since the pre-order on the belief base is not taken into account by the generation mechanism T. We will show that all the other problems become equivalent to a single problem.

Theorem 1

Let < be a strict total order on E. There is only one Incl -preferred thesis, which is also the only one Lex -preferred thesis (proof in 7]).

Corollary 1

The problems Uni-Incl (resp. Lex), Exi-Incl (resp. Lex), Arg-Incl (resp. Lex) are equivalent to a single problem called 1/Stratum.

The class membership is proved by the algorithm 4. This algorithm (and its Algorithm 4: 1/Stratum ((E; ), ) begin X ?

n s 1 (current stratum) 1 if X E ns is consistent then X X E ns n s n s + 1
if n s = (total number of strata in E) then verify that X ` else go to step 1 end dichotomic version too) is deterministic polynomial and relies on an NP-complete oracle. Therefore, 1/Stratum is in p 2 . Then, using the same transformation as in the proof for Uni-Lex, we prove that 1/Stratum is p 2 -complete, since the belief base E considered in that transformation is a strictly ordered base.

Complexity for Horn Bases

In this section, we assume that the belief base is a nite set of conjunctions of propositional Horn clauses 5 and the formula is also a conjunction of Horn clauses (see results in Table 2). In this case, we remind the reader that both Sat and the entailment problem in classical propositional logic become polynomial. Once again, the Uni-Lex problem is quite speci c: its complexity seems unchanged in the case of Horn bases while most other problems shift down by one level in PH 6 .

Proofs for m = T: We can still use the previously stated algorithms. Using the fact that the complexity of the entailment problem is reduced, we conclude that Uni-T-Horn is in co-NP, Exi-T-Horn is in NP and Arg-T-Horn is in p 2 . Then, the completeness proofs are the following ones:

For Uni-T-Horn, we use an idea previously proposed in 15]: Sat can be polynomially transformed to co-Uni-T-Horn (Sat is the satis ability problem for any set of clauses). So, Uni-T-Horn is co-NP-complete.

For Exi-T-Horn, the proof is the same as the one for Uni-T-Horn.

For Arg-T-Horn, we cannot keep the Arg-T proof, because our polynomial transformations from Exi-T and from co-Exi-T to Arg-T do not preserve Horn clauses. So, we consider a new problem Exi-T-Horn-Pos:

Instance: E a Horn base, `a positive literal. Question: Is it true that E j 9;T `?

It is clear that this problem is NP-complete (see the Exi-T-Horn proof). Therefore, we may use the polynomial transformations de ned for Arg-T to Exi-T-Horn-Pos and co-Exi-T-Horn-Pos. We conclude that Arg-T-Horn is in p 2 (NP co-NP) if NP 6 = co-NP.

Proof for m = Incl: We may use the algorithms previously considered in the unrestricted case. All the polynomial transformations we used preserve Horn clauses and we conclude that Uni-Incl-Horn is co-NP-complete, Exi-Incl-Horn is NPcomplete and Arg-Incl-Horn is in p 2 (NP co-NP) if NP 6 = co-NP.

Proof for m = Lex: Obviously, Uni-Lex is still a member of p 2 . For Exi-Lex we prove the membership to p 2 by using the following idea: we rst compute the n-vector k which contains the cardinalities per stratum of a lexicographic preferred thesis (that uses a polynomial number of calls to the oracle Max-GSat-Array 7 , see algorithm 1). Then, we may guess a subbase, verify that it is consistent, lexicographic preferred (using k) and that it entails . All these tests are polynomial and that corresponds to one call to an NP oracle: that algorithm proves p 2 membership. Arg-Lex can simply be solved by an Exi-Lex and a co-Exi-Lex call and is therefore also in p 2 . Then, the completeness proofs are the following ones:

For Uni-Lex-Horn, we prove p 2 -completeness using a p 2 -complete problem de ned in 16] and referred to as Acm in the following:

Instance: C = fC 1 ; : : : ; C m g a set of clauses, X = fx 1 ; : : : ; x n g the variables of C, k 2 f1; : : : ; mg an integer. Question: Let V be a truth assignment cardinality-maximal of X, does V ful ll V (C k ) = true? For Exi-Lex-Horn and for Arg-Lex-Horn, we have neither proved completeness nor re ned the class membership result.

Complexity for Strictly Ordered Horn Bases

We can use Theorem 1. So, in the case of a strictly ordered Horn base, the problems Uni-Incl (resp. Lex), Exi-Incl (resp. Lex), Arg-Incl (resp. Lex) are equivalent to a single problem called 1/Stratum-Horn, and we can use the algorithm previously de ned for 1/Stratum, which used an oracle for Sat. In the case of a Horn base, this oracle becomes deterministic polynomial. Therefore, 1/Stratum-Horn is in P (see Table 2).

Conclusion on Complexity

All the previous results, presented in Tables 1 and2, are very discouraging in the sense that the few polynomial classes are incredibly restrictive and of poor practical interest while most other problems are located between p 2 and p 3 . One appealing relation is the Uni-Lex relation, which is \only" p 2 -complete in the general case, but its complexity is mostly una ected by the restrictions we considered. So, rather than focusing on unrealistic polynomial classes, we have chosen to directly tackle problems in the PH using adapted algorithms. Local search algorithms have recently shown promising results on large hard random instances of sat, but all these algorithms focus on the search of a polynomial length certi cate and seem therefore useless for tackling problems which are above 7 Note that Max-Gsat-Array remains NP-complete when restricted to Horn clauses: NPmembership is obvious, NP-completeness is proved using a polynomial transformation from Max-2Sat (see 18]).

NP, for which no polynomial length certi cate exists (unless P=NP). In the next section, we show how Binary Decision Diagrams (which are routinely used in the eld of digital-system design and testing, for solving problems above NP) may be applied to decide some of the previous problems in the general case.

Binary Decision Diagrams for Nonmonotonic Logics

We rst rapidly introduce the main principles of Binary Decision Diagrams (or BDD). Detailed presentations of BDD can be found in [START_REF] Brewka | Preferred subtheories : An extended logical framework for default reasoning[END_REF][START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF]. Given a formula on a set of variables V , a BDD 27, 6] represents the formula using a labeled directed acyclic graph (DAG). The graph has one source and two sink vertices labeled 0 and 1 representing the boolean constants 0 and 1 respectively. Each non-sink vertex is labeled with a boolean variable v 2 V and has two out-edges labeled then and else. The then child corresponds to the case where v = 1 and the else child to the case where v = 0 and a path from the source to a sink therefore de nes a truth assignment. The idea, which extends the coding principle of decision trees, is that paths from the source to sink 1 (resp. 0) represent truth assignments that satisfy (resp. violate ) 8 .

Given an order on the set of the variables V that occur in , an ordered BDD is a BDD such that all paths from the source to a sink visit the variables in an ascending order. Finally, a reduced ordered BDD (or ROBDD for short) may be de ned as a compressed decision tree for the formula. The decision tree may be transformed into the ROBDD by iteratively applying two reduction rules until quiescence (each rule application lowers the number of vertices by one { see Figure 1, taken from 6]): redundant vertices, such that the two out-edges point to the same vertex, are simply bypassed and deleted; pairs of vertices that denote the same function i.e., with the same label and the same then and else children (if any), are merged.

Under a given variable order, the nal ROBDD R obtained is unique and canonical in the sense that two equivalent formulae de ne two identical ROBDDs. For example, an unsatis able formula will always reduce to the sink 0 while a tautology will always reduce to the sink 1. There is no restriction on the formulae represented (CNF or not). Let R be the ROBDD that represents under a given order. Then: any path P from the source of the ROBDD to the sink 1 de nes a partial truth assignment ! P such that all the complete truth assignments that contain ! P satisfy ; for any complete truth assignment ! that satis es there exists one and only one path P from the source of the ROBDD to the sink 1 such that ! P is included in !.

In Figure 1, there are only two paths from the source to sink 1: x 1 = 0; x 2 = 1; x 3 = 1 and x 1 = 0; x 3 = 1. The rst path directly de nes one model of while the second implicitly de nes two models, depending on x 2 assignment.

The main advantage of ROBDDs w.r.t. decision trees is the compression which is achieved by the two previous reduction rules. Actually, the size of the ROBDD of a formula is not necessarily exponential in the number of the variables (whereas the number of vertices in a decision tree is always equal to 2 jV j+1 1). In practice, the actual size of a ROBDD largely depends on the order of the variables used and though the theoretical worst case space complexity remains exponential, \there has been ample empirical evidence that many functions encountered in real applications can be represented e ciently as ROBDDs " 5, 6].

Most operations on ROBDDs rely on a single essential operator: the socalled if-then-else or ite operator. This operator applies to a boolean variable x and to two ROBDDs R f and R g representing the formulae f and g respectively. ite(x; R f ; R g ) returns the ROBDD representing the formula (x ^f) _ (:x ^g) in constant time 3]. The implementation of ite guarantees that no duplicate vertex (same label and children) will ever be created and therefore that a ROBDD will e ectively be built. In practice, instead of reducing a huge decision tree, this ite operation is used repeatedly to build ROBDDs incrementally: given the ROBDD representations R and R of the two formulae and , the ROBDD representation for the formula ( hopi ), where hopi is any binary boolean operator, can be computed in time O(S S ), where S f denotes the number of vertices in the BDD R f representing f. This again emphasizes the importance of the size of a ROBDD and therefore of the problem of nding \good" variable orders.

Tackling the Uni-Lex Problem

In the following, we show how ROBDDs can be used to solve the Uni-Lex decision problem. Consider a strati ed belief base E = f i g i and V the set of variables appearing in the formulae i . Since E is supposedly inconsistent, the ROBDD which represents E will simply reduce to the sink 0, which is not very interesting. To bypass the inconsistency, we introduce one new \assumption" variable ` i per formula in E and we consider a new belief base where each formula i from E is replaced by the formula ` i ! i . This process, which is used in the ATMS of De Kleer (see 25]) and which has also been suggested to solve \Dynamic Constraint Satisfaction Problems" in 12, 21, 22], yields a belief base which is obviously consistent.

Let A be the set of all the assumption variables introduced and E A = f` i ! i j i 2 Eg. For a given truth assignment ! on (V A), we note ! V (resp. ! A ) the restriction of ! to V (resp. A). Any truth assignment ! A of A de nes one subbase of E, namely the subbase which contains all the formulae i of E such that ! A (` i ) = 1. This subbase will be denoted by Base(! A ). Obviously, a truth assignment ! of (V A) is a model of E A i ! V is a model of the subbase Base(! A ) and therefore each model of E A corresponds to a consistent subbase of E plus one of its model, and vice-versa. Therefore, to identify Lex -preferred subbases among all the consistent subbases, it will be su cient to identify \preferred" models of E A . To enable us to later use shortest path algorithms in the BDD, we rst build a weighting function that encodes the lex preference.

De nition 10 (Weight of a subbase)

We associate a weight (a positive integer) with each formula i in E. The weight w(B) of a subbase B of E is de ned as the sum of the weights of all the formulae in E n B.

To encode the Lex preference, the weight associated with a formula i will be related to the stratum in which i appears in E (see in 14]):

the weight of the stratum n which has the least priority is equal to 1;

for other strata, it is inductively de ned by: w(i) = 1 + X i<j n w(j) jE j j] = w(i + 1) (jE i+1 j + 1) which guarantees that the weight of a formula in stratum i is strictly larger than the sum of all the weights of all the formulae which appear in less important strata. This inductive de nition reduces to:

w(i) = i Y j=n 1 h 1 + jE j+1 j i Theorem 2
A subbase B is Lex -preferred to a subbase C i the weight of B is lower than the weight of C.

The proof is given in the appendix. We now consider the ROBDD R E A that represents the conjunction of the formulae in E A . For each vertex which is labeled by an assumption ` i , we weight the else edge of the vertex with the weight associated with the formula i . As usual, the length of a path is de ned as the sum of all the weights of the edges in the path (non weighted edges count for nothing in that sum).

Theorem 3

A formula is Uni-Lex entailed by a strati ed base E i all the models ! V represented in a shortest path of the ROBDD representing E satisfy .

The proof is given in the appendix. This approach is related to 21, 22], which relates shortest paths in a ROBDD to least cost assignments of constraint satisfaction problems. As indicated in 21, 22], Bellman's linear time algorithm (see 11], section 25.4) can then be applied to a ROBDD in order to compute the length of the shortest path from each vertex in the ROBDD to the sink 1.

We have enhanced this algorithm in order to simultaneously build a new ROBDD R 0 E A that contains only the shortest paths from the source to 1 (all non shortest paths are simply redirected to sink 0). The ROBDD obtained is called the \fat-free" version of the initial ROBDD. The modi ed algorithm remains linear and consists in applying a single procedure called Remove-Fat to each vertex of the ROBDD, from the sinks to the source, using a topological order 9 . The procedure applied is described in algorithm 5. Beyond all the usual data-structures used in ROBDDs and the ite function which is the core of all ROBDD packages (see 3]), we use two simple data-structures:

we associate an integer variable Length(v) with each vertex v in the ROBDD; this variable represents the length of the shortest path from the vertex v to the sink 1; initially, the Length values associated with the sinks 0 and 1 are set to +1 and 0 respectively; then, we also associate a pointer variable Fat-Free(v) with each vertex v; this variable points to the \fat-free" version of the ROBDD rooted at vertex v; initially, the Fat-Free variables of sinks 0 and 1 point to sinks 0 and 1 respectively.

Algorithm 5: Remove-Fat(R) ; In the algorithm, when a ROBDD is used as an argument instead of a vertex, ; one should understand that the root of the ROBDD is the actual argument. begin t Length(then child of R) e Length(else child of R) if label of the root of R is an assumption variable `then r weight of èlse r 0 e (e + r) Length(R) min(t; e) if t > Length(R) then n t sink vertex 0 else n t Fat-Free(then child of R) if e > Length(R) then n e sink vertex 0 else n e Fat-Free(else child of R) Fat-Free(R) ite (the label of the root of R, n t , n e ) end The ROBDD R 0 E A seems useful to solve all Lex based problems. In the speci c case of Uni-Lex, our Theorem 3 shows that we can reduce the problem of Uni-Lex entailment of a formula to the problem of classical entailment of by this ROBDD. Actually, we can still improve things by noting that all the informations on assumption variables conserved in R 0 E A are now useless. Therefore, we build from R 0 E A , a third ROBDD, denoted R 00 E A , which is simply obtained by existential quanti cation of all assumption variables: the paths from the source to sink 1 in R 00 E A represent all truth assignments ! V on V such that there exists a truth assignment ! A of the assumptions that can extend ! V to a model represented in R 0 E A i.e., all the models of Lex -preferred subbases. Therefore, (E; ) j 8;Lex i the ROBDD R 00 E A classically entails .

\Good" Variable Orders

Given any order on V , 21 , 22] shows that inserting all the assumption variables after V gives a space complexity for R E A which is guaranteed to be lower than 2 n (m+1) 1] non terminal vertices. This yields a worst case space complexity in O(2 jV j jAj), a much better result than the obvious O(2 jV j+jAj ). We propose instead, given any initial order on V , to insert the variable ` i 2 A just after all the variables that appear in i . This order is used in our simple example, at the end of the section. Let n `be the number of non-assumption variables before assumption `in the resulting order, we prove the following result: Theorem 4 The number of non terminal vertices of the BDD R E A using this order is less than (2 n 1) + P `2A 2 n The proof is given in the appendix. This new bound is always lower than the bound given in 21 , 22]. The important thing is that this theoretical improvement is accompanied by large improvements in the actual size of the ROBDD R E A in practice (see Section 5).

The use of this order and the ROBDDs R E A , R 0 E A and R 00 1 and 2 are in the most important stratum. The initial order on V is de ned by p b f. The four assumption variables ` 1 to ` 4 are inserted using our ordering process, yielding the nal order p ` 1 b ` 2 f ` 3 ` 4 .

Applying our weighting process, we get w(2) = 1 and w(1) = 3. The Figure 2 successively presents the ROBDD R E A , with bold numbers indicating weight on dashed else edges and italic number indicating the length of the shortest path from each vertex to sink 1. The ROBDD R 0 E A is obtained from the previous BDD by applying the algorithm 5, which redirects all non shortest path edges to the sink 0. Finally, the ROBDD R 00 E A is obtained after existential quanti cation on the ` i variables. When our variable order or 22]'s order is used, an assumption is always inserted after all the variables of the associated formula. In this case, we can prove the Property 2 (see proof of Theorem 4 in the appendix).

Property 2

The then children of all the assumption vertices in R 0 E A are the sink vertex 0. This property makes the existential quanti cation operation very easy: the ROBDD algorithms usually perform existential quanti cation on a variable `by replacing any vertex labeled by `by a ROBDD representing the disjunction of the two formulae represented by the else and then out-edges of the vertex. Here, since the then child is always the sink 0, it is su cient to replace the vertex by its else child 10 . This can be performed during the application of the modi ed Bellman's algorithm 5, without destroying its linear time complexity. R 0 E A shows that the belief base has two Lex -preferred subbases that respec-10 This is done using the ite operator in order to avoid a possible duplication of vertices with identical label and children. 

Experimentations

We have extended the ROBDD package distributed by Bryant and Brace 3] with the ability of weighting the else edge of assumption labeled vertices and with the previously described algorithm that simultaneously computes shortest paths, redirects non shortest paths to terminal vertex 0 and quanti es existentially on assumptions. That allows us to build the ROBDD R 00 E A which can then be used for checking Uni-Lex entailment of any formula. All the tests presented here have been performed on a SparcServer 1000 using a 50Mhz processor.

Comparing the Variable Orders

We have rst applied our algorithm to three simple strati ed belief bases: a complete version of the previous (in)famous penguin problem and two formalizations of a small real common-sense reasoning problem that respectively involve 31 and 77 formulae, distributed in respectively 7 and 9 strata (the authors can be contacted for the test problems and the code). The aim of the test was mainly to compare the practical e ciency of 22]'s order and our new order. Table 3 successively gives: in number of non-terminal vertices, the size of the BDD R E A using 22]'s order and our order; in both cases, the same order on V was used; the CPU time needed to compute R E A for each order; the size, in number of non-terminal vertices, of the BDD R 00 E A ; since the assumptions do not appear anymore in the BDD, the size is identical for the two orders; the CPU time needed to compute R 00 Better results could possibly be obtained by optimizing the initial order on V in order to minimize the term P `2A (2 n `) which appears in our lower bound on the BDD size. For the problems considered, the size of the BDD R E A is very reasonable and yields a nal BDD R 00 E A which is here very small (only one Lexpreferred subbase for the last 2 tests). Obviously, larger problems could be tackled but the eld of nonmonotonic reasoning lacks benchmarks. Therefore, we decided to use random 3-sat problems as a basis of the next experiments.

Tests Using Random 3-sat Formulae

The tests have been performed on sets of random 3-clauses (involving three literals), generated using the procedure described in 29]. Two parameters are used: the number n of variables and the number l of 3-clauses. Each 3-clause is built by randomly choosing three variables among the n ones et by randomly changing the sign of each variable with probability 0:5. This model has been intensively studied in the literature and it is known that a so-called phase transition occurs at a ratio of l n = 4:25. Instances generated using a lower (resp. higher) ratio will be consistent (inconsistent) with high probability. Instances generated using the above ratio of 4:25 are also known to de ne di cult instances for the sat problem.

The aim of the tests is to see how ROBDDs can cope with problems of various E A and verifying the entailment sizes, to compare the sizes of the ROBDDs R E A and R 00 E A , to evaluate the impact of the ratio l n on the e ciency of the approach and to verify that the \knowledge compilation" is e cient i.e., that once R 00 E A is built, we get an e cient procedure for checking Uni-Lex entailment. A test consists in generating a random base using a given value of n and l. The base is then pre-ordered by splitting it into 5 strata, simply by randomly assigning each formula to one stratum. Then the ROBDD R E A is built using our order, starting from an initial random order on V . Then the ROBDD R 00 E A is computed. Finally an extra random 3-clause is generated and we check if it is entailed by R 00 E A . These tests have been performed with three di erent numbers of variables (5, 10 and 20) with a ratio l n going from 2 to 8 by 0:2 step 12 . For each value of n and l, fty di erent bases have been generated and the numbers reported are the average of the results on each of these fty bases.

Figure 3 shows the total cpu-time needed to build R E A , to compute R 00 E A and to test the entailment of one random 3-clause. The horizontal axis indicates the ratio used, the vertical axis gives the cpu-time in seconds using a logarithmic scale. First, we notice that there is apparently no \phase transition" here: the cpu-time seems to increase steadily as the ratio increases. One thing that is not visible on the gure is the very low variance of the measures: the amount of time needed is highly predictable and stable. Then, one can see that problems with more than 150 clauses are entirely solved in less than 15 0 . This amount of time is better decomposed, in the case of bases with 20 variables, in the Figure 4. Here, we can see that almost all the cpu-time is spent building the rst ROBDD R E A . Then some extra time is spent computing R 00 E A . But once this ROBDD is built, checking the entailment actually takes a negligible time, around 1 1000 th of second, even on the largest instances. This shows clearly that the approach can be considered as a \knowledge compilation" approach: some large preprocessing nally yields a very e cient entailment procedure (see 34] for works on the \knowledge compilation" approaches).

Moreover, if the belief base is modi ed, the \recompilation" is partly incremental, if the ROBDD R E A has been saved (see 19] for works on \incremental recompilation"): if a new formula needs to be inserted in the base, it is su cient to introduce a new assumption ` , to compute the conjunction of R E A ` ! and to apply the procedure Remove-fat once again. To delete a formula , one can simply compute the conjunction of R E A with the formula :` and then apply the procedure Remove-fat once again 13 . The e ciency of the nal entailment check is the result of the small size of the ROBDD R 00 E A compared to the size of R E A . The sizes, in number of vertices, of the two ROBDDs R E A and R 00 E A are given in the Figure 5. It appears that if the compilation becomes more and more di cult as the ratio increases, this is because the size of the rst ROBDD R E A increases too, but the size of the ROBDD R 00 E A reduces as the ratio increases, making entailment more and more e cient. This can be explained by the fact that the Lex order is extremely selective: for most bases with a ratio above 6, not only does the Lex preference select one single preferred subbase, but this subbase has usually only one model. That explains the size of the ROBDD R 00 E A on highly inconsistent bases: the ROBDD contains only one model and uses therefore 20 vertices (the number of variables).

One could think, from these results, that the Lex preference is actually too selective to have any practical signi cance for highly inconsistent bases. But it is di cult to conclude from bases entirely composed of 3-sat formulae.

Conclusion

We have studied the computational complexity of various coherence-based entailment relations which can be de ned as: (E; ) j p;m . E denotes a set of beliefs, a priority relation on E, a propositional formula, and p, m enable to combine the classical entailment and the selection of preferred consistent subsets. The results reported in this paper show that most of the nonmonotonic entailment problems have very likely exponential time complexity with respect to the problem size. Although the complexities observed are limited by the third level of the PH, they are prohibitive and applications may likely wait for an answer for hours, days or centuries!

We have considered three restrictions (strictly ordered belief bases, Horn bases, strictly ordered Horn bases), but only the last one leads to a polynomial problem, and it is a very restrictive case.

A more complete analysis permits to distinguish the Uni-Lex entailment, whose complexity never exceeds the p 2 class. Note that the computational complexity is not related to cautiousness: though Arg-m is more cautious than Exi-m and less cautious than Uni-m, Arg-m is more complex than Exi-m and Uni-m (see 8] for a study on this point of view).

Considering the strength of the restrictions needed to reach polynomial complexity, we decided to try to tackle one speci c entailment relation using an algorithmic tool which is dedicated to the resolution of propositional logic based NP-hard problems: Binary Decision Diagrams.

On the speci c Uni-Lex relation considered, our BDD-based approach o ers some interesting features: e ciency via knowledge compilation: after a rst expensive computation, the binary decision diagram R 00 E A can be used to e ciently check the entailment of any formula; a \good" variable order for BDD, with both better theoretical guarantees and better practical results than 22]'s order; the recompilation can be incremental as long as the rst BDD R E A is kept; even if this BDD may be huge, it may simply be saved on disk. We feel that this work can still be extended in several directions: For a given order on the set V , is our order on V A optimal? Since our theoretical bound depends on the initial order on the variables in V , is it worth considering the optimization of this order in order to minimize the bound? Is this optimization problem computationally tractable? Finally, does this optimization lead to better practical results? Obviously, the BDD approach can be extended to other preference relations than the lexicographic order. Naturally, this is immediate for cardinality based preferences, a special case of the lexicographic order, but one could also consider the Best-Out order, related to possibilistic logic (see de nitions in 13], and complexity results in 7]), and for which speci c optimization should apply.

Finally, one should try to use the BDD R 0 E A , which represents all preferred consistent subbases and their models, in order to tackle consequence relations based on other entailment principles than the Uni principle. This is especially interesting because of the higher complexity of the problems de ned by the Exi or Arg principles. The converse follows from the fact that Lex -preference and weight order are total: if B is not Lex -preferred to C, C is Lex -preferred to B and therefore the weight of C is lower then the weight of B or equivalently, the weight of B is not lower than the weight of C. 2

Proof of Theorem 3

This proof relies on two lemmas:

Lemma 1

Each model !V of a minimum weight consistent subbase B de nes a model of EA which is represented in the ROBDD RE A by a path P from the source to the sink 1 whose length is lower than the minimum weight of a consistent subbase.

Proof: Consider any model !V of a minimum weight consistent subbase B. Let ! be the model of EA de ned by !V and this base and P the path representing ! in the ROBDD. The partial truth assignment !P de ned by the path P being included in !, the set of assumption variables which are assigned to 0 in the path P is included in the set of assumptions which are assigned to 0 in the truth assignment !. Therefore, the length of the path is necessarily lower than the weight of the base B. 2

Lemma 2

Any model !V de ned by a model ! represented by a shortest path P from the source to the sink 1 is a model of a consistent subbase of weight equal to the length of the path.

Proof: Consider a shortest path P from the source to sink 1 representing a partial assignment !P . All the models ! that contain !P are models of EA which de ne a consistent subbase Base(!A) and one of its model !V . Consider any such !V , and an assignment ! 0 A of A such that ! 0 A (` i ) = 0 i !P (` i ) = 0. Then, by construction, the truth assignment ! 0 of V A de ned by !V and ! 0 A is a model of EA since it is represented by the path P (since it contains !P) and therefore !V is the model of a subbase Base(! 0 A ) whose weight is equal to the length of the shortest path.
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 1 Figure1: From left to right: the truth table of the formula , the associated decision tree and the reduced ordered BDD. A dotted edge corresponds to an assignment to 0, a solid edge to 1
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  the de nition of w(j) = Q j k=n 1 1 + jE k+1 j] for j > 1, we get: k+1 j] jEnj 1 1 And therefore, the weight C is strictly larger than the weight of B.

Table 1 :

 1 Complexities in the general propositional caseProofs for problems de ned with the Uni principle:

	p Uni Exi Arg T m T T Uni Incl Exi Incl Arg Incl Uni Lex Exi Lex Arg Lex	p 3 p 3	Complexity class p 2 -complete p 2 -complete ( p 2 p 2 ) if p 2 6 = p 2 p 2 -complete p 2 -complete ( p 2 p 2 ) if p 2 6 = p 2 p 2 -complete p 2 -complete p 3 , p 2 -hard

Table 2 :

 2 Complexities in three restricted cases

	3.2 Complexity for Strictly Ordered Bases

  A for each order.

	Test Peng. 31 f. 77 f.	Sizes 22]'s order our order 22]'s order our order R 00 CPU (RE) Size E 12 10 0 0 4 252 932 62 028 1'07" 4.7" 17 748 461 83 040 4'25" 17.3" 17	CPU (R 00 E ) 22]'s order our order 0 0 12.8" 3.1" 38" 4.2"

E

Table 3 :

 3 Comparing the orders A rst conclusion is that the order we propose yields much smaller ROBDDs.

The points of view of cautiousness and validity of deduction rules have been considered in 8].

As far as possible, we used the existing link between coherence-based entailment and all these parallel problems in order to re ne and to complete our own complexity results.

In the literature, the Uni principle is often called strong or universal entailment. In the same way, the Exi principle is often called weak or existential entailment.

This result is not surprising. In 16], Eiter and Gottlob de ne an abductive problem which is p 2 -complete and which can be polynomially transformed to Exi-T.

When E and are CNF formulae (conjunctive normal form), the complexity results remain unchanged w.r.t. the general case.

Many studies have been realized about this well-known restriction (see for example 24]).

A related but simpler data-structure, called a model tree, has been used to represent a set of models in disjunctive deductive databasesin 30]. The BDD data-structure performs additional savings by sharing identical subtrees.

In practice, the algorithm implemented uses a depth-rst post-order search algorithm, intermediate results being cached at each node in Length and Fat-Free to keep a linear time complexity.

Another strati cation where 4 is made less important than 3 enables the entailment of :f, since the only Lex -preferred subbase remaining rejects the less speci c formula 4.

We remind the reader that all the bases generated with a ratio larger than 4:25 are inconsistent with high probability.

This \incremental recompilation" process can be useful in the context of the revision of the belief base: the new formula is simply inserted in a new rst stratum and a \recompilation" must be performed.

Proof of Theorem 3 (E; ) j 8;Lex means that all Lex -preferred subbases of E classically entail , or equivalently that each model of each Lex -preferred consistent subbase satis es . By Theorem 2, Lex -preferred consistent subbases are also minimum weight consistent subbases and therefore it su ces to show that the set of all the models !V represented in shortest paths of the ROBDD is equal to the set of all the models of minimum weight consistent subbases. According to Lemma 2, the length of a shortest path (and therefore of any path) cannot be strictly lower than the weight of a minimum weight base. Since, according to Lemma 1, the length of a path representing a model of a minimum weight subbase is lower than this weight, we can conclude that the length of a shortest path is equal to the weight of a minimum weight base. Then, Lemma 1 simply says that all the models of a minimum weight consistent subbase are represented in a shortest path, while Lemma 2 says that all the models of E represented in shortest path are models of a minimum weight base. This concludes the proof. 2

Proof of Theorem 4

We state a more precise form of Theorem 4:

Theorem 5

Let E = f igi be a belief base, and V the set of variables of E (jV j = n). We associate with each formula i of E a new variable ` i . Let A be the set of these new variables, called assumption variables (jAj = jEj = m). We de ne EA = f` i ! i; i = 1 : : : mg. Given an order on V , we consider an order 0 on V A such that:

it extends the order (8v; v 0 2 V; (v 0 v 0 ) , (v v 0 )); an assumption ` is ordered after all the variables of (8v 2 V that appears in , v 0 ` ); and before any variable located after all the variables of (8w 2 V s.t. 8v 2 V that appears in , v w, then ` 0 w).

For each assumption variable `, n `denotes the number of variables v 2 V s.t. v 0 `. In the corresponding reduced ordered BDD of the base EA, the number of non terminal vertices is less than (2 n 1) + P `2A (2 n `).

Proof: Let us rst note that an order such as 0 always exists and is simply obtained by inserting each assumption just after all the variables of the associated formula. The proof uses the fact that a reduced ordered BDD is de ned as the closure by two reduction rules of the ordered binary decision tree (cf. Figure 1). Each rule application decreases the number of vertices of the BDD by one and the reduced BDD is obtained by application of these two rules until quiescence. We will show that a limited application of these rules on the ordered binary decision tree of EA permits to obtain an ordered and partially reduced BDD whose size is less than (2 n 1) + P `2A (2 n `). The size of the completely reduced BDD being necessarily less than the size of the partially reduced BDD, the proof will follow.

We consider the ordered binary decision tree of the base EA. Let ` i 2 A, the assumption variable associated with the formula i. Let s ` i one of the vertices corresponding to this assumption variable in the decision tree. By de nition, ` i is greater than all the variables of i according to 0 . So, we have two cases:

The assignment of the variables of i satis es i: in this case, the formula ` i ! i is satis ed for all the values of ` i . As ` i does not appear in other formulae of EA, the two subtrees (left and right) of s ` i are the same and we may remove the vertex s ` i (and one of the subtrees) by application of the reduction rules.

The assignment of the variables of i does not satisfy i: in this case, if ` i is supposed to be true, the formula ` i ! i is not satis ed, whatever the values of the variables which \follow" ` i in the order. So, all the sink vertices of the subtree of s ` i , corresponding to the assignment at true of ` i , are the sink vertex 0. Therefore, by several applications of the two reduction rules, we may replace this subtree by the sink vertex 0. The proof follows by induction. If m = 0, then the number of non terminal vertices is obviously less than (2 n 1). The induction hypothesis will be that Theorem 5 applies on a BDD representing a set of formulae f` ! g, with an order corresponding to the de nition, and in which there are strictly less than m assumption variables.

Consider the binary decision tree associated with the base EA, with 2 n+m 1 non terminal vertices. Let be the lowest assumption variable according to 0 . Using the previous remarks, the application of the two reduction rules implies on each vertex s either the removal of the vertex, or the fact that one of its children becomes the sink vertex 0. So, the number of non terminal vertices in the partially reduced BDD obtained by this procedure is decomposed into:

(2 n 1) vertices for the n variables which are not assumption variables and which are lower then according to 0 ; a maximum of 2 n vertices corresponding to the assumption variable ; 2 n subtrees whose roots correspond to the variable which is the successor of in 0 . These 2 n subtrees are ordered binary decision trees. Let ! the partial assignment de ned by the path between the root of the tree and the root of one of these subtrees. Whatever subtree among the 2 n subtrees whose root corresponds to a successor of in 0 , it represents the binary decision tree of the formula EA ! obtained by the substitution of the variables assigned by ! in EA by their truth values in !. Because of the order 0 , EA ! contains formulae 0 or 1 and formulae of the form ` ! . The formulae 1 don't a ect the truth value of EA ! , because they are always satis ed. So: either EA ! contains a formula 0 and its truth value is always equal to 0: the binary decision subtree of EA ! is reduced to the sink vertex 0 by the use of reduction rules; or EA ! doesn't contain any formula 0 and furthermore satis es all the conditions of the in- duction hypothesis: there are m 1 assumption variables and the condition on the order is satis ed (an assumption variable is located \after" the variables of the associated formula in the order). Therefore, we may reduce the subtree to an ordered and partially reduced BDD whose number of non terminal vertices is less than (2 n n 1)+ P `2A f g (2 n ` n ). In all the cases, we may reduce each subtree to an ordered partially reduced BDD whose number of non terminal vertices is less than (2 n n 1) + P `2A f g (2 n ` n ). The set of reductions permits to obtain an ordered and partially reduced BDD whose number of non terminal vertices is less than: (2 n `)