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Abstract

In this paper, we propose two models to describe the spatial dynamic of vole populations together with their fi-

nite volumes discretization. The models are based on age-structured transport equations set on a graph. The local

evolution of the population occurs at the nodes, while transmission between nodes represents spatial dynamics and

is a gradual process in the first model, an instantaneous one in the second. The parameters in the reproduction and

mortality rates allows to reproduce the characteristics of different landscapes.
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1 Introduction

Small rodents, as voles, are cornerstone species in most temperate ecosystems as their presence is necessary to the

survival of a variety of predators. At the same time, rodents can be vectors of serious disease transmissible to humans,

and cause significant loss in agricultural production and storage.

Direct observations performed in several different countries suggest that the populations dynamics of voles is

characterized by large density fluctuations related to dispersal, i.e. a collective movement in which a significant part of

the juveniles in the colony leave to initiate new settlements. A huge literature is devoted to the mathematical modeling

of such populations, with no hope to be exhaustive we defer the interested reader to [16, 20] and the references therein.

Most of the literature only focus on a two variables dynamics (time and age or time and space) but the observations

suggest that the evolution depend on the three of them. The papers [4] and [2], and the monograph [21] use different

PDE techniques to deal with three variables models. In the present paper we follow a partially different idea, inspired

from [13]. In [13], Marilleaux, Lang and Giraudoux reproduced the first colonization dynamics observed from 1998 to

2010 in the Romanche Valley (Hautes Alpes, France) by an hybrid ODE-Multi Agents model structured as follows : the

valley area is decomposed into squared cells of side length 100m, so that at a first approximation the evolution of the

population inside each of the cells can be described by an ODE (no spatial dynamics). As soon as the total population

in a cell reaches a fixed threshold value, which is a fraction of the cell capacity, dispersal occurs, i.e. some of the

juvenile voles “leave” the cell, and aggregate into a migrating vole agent with a specific dynamics also depending on
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the topography and landscape characteristics of the neighbouring cell agents. In the following we refer to this model

as MLG.

The advantage of this approach over the purely PDE one is that simulations are fast and their results are visualized

in a format which is accessible to a non specialized audience. At the same time, the description of the population

dynamics inside cells is relatively rough, and the set of parameters for which computational results match empirical

observations is not organized in a continuum, which makes it difficult to predict the behaviour of the model under

perturbations.

In the present paper we exploit the idea of decoupling the local population evolution from its spatial dynam-

ics to construct a simple but effective PDE model structured on a graph whose nodes correspond to the cells in the

MLG model. Together with the abstract model, we propose its discretization in the form of a suitable finite volumes

numerical scheme. Then we run several simulations showing that our model captures many of the features of voles

population dynamics as they have been observed in real life. Finally, in view of the construction of an enhanced hybrid

model combining a refined PDE description of the evolution in the cells and the Multi Agent approach to represent

dispersal, we also consider a model in which the dynamics inside the nodes is splitted from the dynamics on the graph

by using different time scales (instantaneous dispersal).

The paper is organized as follows: in Section 2 we describe the models and motivate our assumptions on the basis

of observed population characteristics; In Section 3 we present the corresponding finite volumes numerical schemes

and validate them by comparison to explicitely computed exact solutions. Section 4 collects some numerical simula-

tions on simple graphs, which show that the models reproduce the qualitative features of the population dynamics,

while Section 5 contains a short summary and the perspective directions of this project.

2 Description of our models

In this section we propose two models to describe the spatial dynamics of a voles population structured in age. Both

models write as transport equations on graph.

Voles’ sex ratio at birth is 1-1, [3, 15], so that it is enough to model the female population, which is structured

into three age classes: young voles, whose age a varies between 0 and A1, juveniles, a ∈ [A1, A2], and adults, a > A2.

The same observations suggest that A1 ≈ 18 days and A2 ≈ 56 days, but for simplicity we assume the normalization

A2 = 3A1. Since most voles die out of predation, disease or starvation, at a first approximation we could neglect

aging when describing the adult population: in particular it is not necessary to consider a decline of fertility over age.

Nevertheless, to avoid non realistic results when performing simulations on a large time horizon (e.g. 4 years), we

define A3 as the maximal age that a vole individual can attain (different values will be taken into account) and we set

our model so that individuals of age larger than A3, if any, do not participate any more in the evolution of the system.

As numerical values for age transitions, we fix A1 = 1, A2 = 3 and A3 = 20.

We partition the natural space into squared cells of side length 100 m, Vi , i = 1, . . . ,nv . We measure the distances

between cells centers and, based on observations, we estimate the average time needed by a vole to cover such dis-

tances. Then we define a finite weighted graph Γ = (E ,V ), whose set of nodes V = {V1, . . . ,Vnv } represents the cells,

while the set of its edges E consists of the triples (Vi ,V j ,`i j ) where Vi 6= V j belong to V (no loops are allowed) and

`i j > 0 is the travel time between the two vertices. For simplicity we will always assume that Γ is not directed, there-

fore `i j = ` j i . In general it is possible to assume that the graph is complete, i.e. that there exists an edge joining any

given pair of nodes. From the modeling point of view this is compatible with the fact that some individuals (long range

dispersers) can be recaptured at observation sites more than 5 Km apart from each other.
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Each node Vi is endowed with an initial boundary value problem representing the evolution of the density of voles

in Vi , ρi , with respect to the time and age variables t and a,

ρi : R+×R+ → R+

(t , a) 7→ ρi (t , a).
(2.1)

The total number of voles in Vi at time t is given by the integral

Φi (t ) =
∫ A3

0
ρi (t , a)da. (2.2)

The spatial dynamics of the population is represented by transmissions of density from one node to the others. The

local spatial dynamics, related to foraging activities is neglected. While most individuals spend almost all of their lives

in burrows, where they also breed, some of the juveniles have a significant spatial dynamics during dispersals. The

mechanism triggering dispersal is still not completely understood and it is most probably related to the interaction of

several factors (see for instance [1, 2, 3, 5, 7, 9, 10, 18, 19] and references therein). However, for modeling purposes,

it is reasonable to link stress conditions to overcrowding, and say that dispersal begins when the total number of

individuals in a colony reaches a threshold value, fixed as a fraction of the carrying capacity of the environment, R.

New colonies most often appear in a radius of a few hundreds meters around the original one, but individuals might

disperse over more than 5 Km. Topography, in particular relief, drives the dispersal direction, and during this phase

voles’ mortality is very high.

We define a stochastic matrix K of size nv ×nv . Its coefficients ki j fix which fraction of voles leaving the node Vi

would head toward V j . Since no loops are allowed, we set ki i = 0 for any i ∈ {1, . . . ,nv }. At a modeling level we can

imagine that ki j depends, for example, on the height or the landscapes in Vi and V j , therefore in general ki j 6= k j i .

From the modeling point of view it makes sense to consider a time dependent matrix K. An example in this direction

is given in Section 4.2.2, but for the simplicity of the presentation, we keep K constant for the moment.

Assume that at time t̄ some of the voles initially at Vi disperse. Since voles age and die during dispersal but cannot

reproduce, the evolution of voles leaving Vi at time t̄ and age a and heading toward V j , is described by the ODE

problem ∂s u(s) =−ddi s u(s),

u(0) = ki jρi (t̄ , a)
(2.3)

where ddi s represents mortality during dispersal. The estimated travel time from Vi to V j is the weight `i j , therefore

the density of voles of age a +`i j reaching V j at time t̄ +`i j is

ki jρi (t̄ , a)exp(−`i jddi s ) = Ki jρi (t̄ , a).

Remark that the matrix K = (Ki j ) ∈Rnv×nv is not stochastic, not symmetric and depends on time if and only if K does.

2.1 A model with gradual dispersal (GD model)

We always assume that a dispersal begins from the node Vi whenever its total population Φi reaches the threshold

Ri . In the first model, the dispersal lasts for a time η > 0 after the moment at which Φi passes again below Ri and

the departure rate of juveniles during dispersal is c/η, where c > 0 is a parameter to be chosen. Notice that Ri is not

the capacity of the node Vi but a fraction of it, which means that voles are uncomfortable for Φi = Ri but they are not

missing resources.

To introduce the initial boundary value problem at the node Vi we consider the balance law
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∂tρi +∂aρi =−di (t , a)ρi +Pi (t , a), (2.4)

where t and a are respectively the time and age variables, di is the mortality rate at Vi , depending on time and age,

and Pi (t , a) is a source term which accounts for the possible departure/arrival of voles due to dispersal. The exact

form of Pi is given below.

Together with (2.4) we consider the initial condition

ρi (0, a) = ρ0,i (a), (2.5)

and the boundary condition

ρi (t ,0) =Ai (Φi (t ))
∫ A3

0
bi (t , a)ρi (t , a)da, (2.6)

where bi is the reproduction rate of the node Vi and the coefficient Ai (Φi ) reproduces Allee’s effect, see [14]. This

means that if the total population of a colony falls below a certain threshold, reproduction rate also diminishes and

might become too small to compensate for mortality. The experimental observations suggest that this situation rarely

occurs for voles, so that Ai ≡ 1 is a reasonable choice in our simulations. However from the numerical point of view

no additional difficulty comes from considering non constant Ai , see also the Appendix A for a short additional dis-

cussion.

For t > 0 given and i ∈ {
1, . . . ,nv

}
, we call Ti (t ) =

{
τi

1, . . . ,τi
mi (t )

}
the (possibly empty) set of times τi

r < t at which a

dispersal outbreak took place from Vi . Then the term Pi (t , a) in equation (2.4) takes the form

Pi (t , a) =− c

η
χ[Ri ,+∞)( sup

z∈[(t−η)+,t ]
Φi (z))χ[A1,A2)(a)ρi (t , a)

+ c

η

∑
j=1,...,nv

j 6=i

m j (t )∑
r=1

δ
τ

j
r
(t −` j i )χ[A1,A2)(a −` j i )K j iρ j (t −` j i , a −` j i ),

(2.7)

where χ[Ri ,+∞) and χ[A1,A2) are the characteristic functions of the intervals [Ri ,+∞) and [A1, A2) respectively, t 7→ δτ(t )

is the Kronecker delta centered at τ and we use the notation x+ = max(x,0).

2.2 A model with instantaneous dispersal (ID model)

The model with gradual dispersal introduced above is very solid as it is based on classical PDE’s for which a complete

well-posedness theory is available. Moreover, the examples in the next section show that it reproduces the main

features of the voles’ population dynamics. Nevertheless, in order to bring the model to full size, on a graph counting

several hundreds of nodes, one should overcome a number of technical difficulties in parallelization and, especially

data storage. For this reason and in view of the possible construction of an hybrid PDE-Multi Agent model similar

to the MLG, we propose here a second model which leads to a slightly less precise description of the dynamics, but

should be easier to implement on large graphs.

Roughly speaking, we modify the previous model so that whenever the total population at a node Vi reaches the

threshold value Ri , the departure of dispersers takes place instantaneously. As a consequence, all the voles who left

Vi heading for V j will reach the node V j at the same time. These “instantaneous” departures/arrivals are easier to

implement in a finite volume scheme and are not too demanding in term of data storage.

In order to write the model for the node Vi , we introduce Fi =
{
σi

0,σi
1, . . . ,σi

mi

}
, where σi

0 = 0 and σi
mi

= T , be the

(possibly reduced to {0,T }) set of all the times between 0 and the final time T at which, either a dispersal outbreak, or

an arrival of voles, took place for the node Vi .
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Then between two times σi
K and σi

K+1, where K = 0, . . . ,mi −1, the model can be written as follows

∂tρi +∂aρi =−d(t , a)ρi ,

ρi (t ,0) =A (Φi (t ))
∫ A3

0
bi (t , a)ρi (t , a)da,

ρi (σi
K +, a) =χ[0,A1)∪[A2,A3](a)ρi (σi

K −, a)+ (
1−χ[Ri ,+∞)(Φi (σi

K −))
)
χ[A1,A2)(a)ρi (σi

K −, a)

+
∑
j 6=i

j=1,...,nv

m j −1∑
r=1

δ
σ

j
r
(σi

K −` j i )χ[R j ,+∞)(Φ j (σi
K −` j i ))χ[A1,A2)(a −` j i )K j iρ j (σi

K −` j i , a −` j i ).

(2.8)

2.3 Reproduction and mortality rates

Voles’ reproduction season lasts typically from April to October, but variations are possible due to weather conditions

and, of course, depending on the landscape characteristics. The ideal environment for fossorial voles is grassland

where both food and shelter are easily available, but they can also settle in woodlands and farmlands. Mortality also

depends on landscape characteristics as it is strongly related to the density and the kind of predators, but is everywhere

higher during the winter season as food becomes scarce.

Based on [17, 11], the basic reproduction number R0 of a voles’ population is 0.0165 females per female and per

day during the reproduction season and only juvenile and adult individuals reproduce. In the time scale of our models

this correspond to 0.3 per juvenile/adult vole per unit time. In Section 3.1, to validate our numerical schemes, we use

as reproduction rate the piecewise constant function b(a) = 0.3χ[A1,A3](a). Everywhere else in the paper we consider a

smooth approximation of b, namely

b1(a) =α ·
0.15exp(K (a − A1 −ε)) if 0 ≤ a ≤ A1 +ε,

0.3−0.15exp(−K (a − A1 −ε)) if a > A1 +ε,
(2.9)

where we set K = 10 and ε= 0.2. The parameter α ∈ (0,1] allows to adapt the average rate to specific situations, as we

do in Sections 4.1 and 4.2.2.

Observations reported in [11] suggest that the average mortality rate during the reproduction season varies be-

tween 0.04 and 0.6 per 2 weeks, but the mortality rate for juvenile and newborn individuals is 1 to 3 times larger than

for adults. Translated to our setting the value of mortality rate is between 0.05 and 0.77 per unit time. These informa-

tions lead us to define a mortality rate function of the following form

d1(a) = δ ·
0.1−0.025exp(K (a − A2 −ε)) if 0 ≤ a ≤ A2 +ε,

0.05+0.025exp(−K (a − A2 −ε)) if a > A2 +ε,
(2.10)

where δ> 1 is a parameter to be tuned.The graphs of b1 and d1 for α= δ= 1 appear in Figure 1.

To validate our schemes it is enough to run simulations over a short interval of time, t ∈ [0,1.3], which corresponds

to less than one month in real time. In general however we wish to simulate the population dynamics over one or more

years, so that we have to take into account the difference between the reproduction season, lasting from April to Oc-

tober, and the cold season where the reproduction stops and the mortality rate is more important, see for instance [8].

In our context, one year starting from April 1st corresponds to the period [0,T ], where T = 20, and the reproduction

season is [0,T ∗], where T ∗ = 12. Given κ> 1 we take

Kb(t ) =
 1 if 0 ≤ t ≤ T ∗,

0 if T ∗ < t ≤ T,
and Kd(t ) =

 1 if 0 ≤ t ≤ T ∗,

κ if T ∗ < t ≤ T,
(2.11)
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Figure 1: The reproduction and mortality rates as functions of age.

and we compute the reproduction and mortality rates as functions of two variables defined on [0,T ]× [0, A3] as

bK (t , a) = Kb(t )b1(a) and dK (t , a) = Kd(t )d1(a). (2.12)

The values of α, δ and κ will be specified for each of our examples.

To give a first, basic example of the evolution induced from the parameter functions above we consider the evolu-

tion internal to one single node over one year computed by the two models. The initial condition at t = 0 consists of 70

adults equidistributed over their age class. We set α= 1, κ= 1.5 and observe that if we choose δ= 1 several dispersals

take place in both models starting at time t ' 8.1. After T ∗ = 12, the total populations decreases and the only voles

remaining at t = T are the adult ones. Their total number is larger than the initial condition (' 90 for the GD model

and ' 80 for the ID model), so we say that the colony persists. On the other hand, if the mortality rate is higher, with

δ= 5.5, the population declines, no dispersal occurs and the colony disappears before the end of the simulation.

The models coincide in this latter case, while in the first one we can observe several differences. Essentially, some

of the juvenile voles do not leave the node during dispersal in the GD model, therefore the total population remains

higher and we see more dispersals for the GD model than for the ID one.
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(a) GD model, persistence.
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(b) ID model, persistence.
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Figure 2: With reference to Section 2.3: the evolution of the vole population at one node. Left and center: low mortality

in the GD and ID models respectively. Right : high mortality.
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3 Finite volumes approximations of the models

In this section, we propose finite volumes numerical schemes for the models described above and we validate them by

comparison with exact solutions, for which analytical expressions exist and can be computed via the classical method

of characteristics, [6, 16]. As the models rely on transport equations, the schemes are based on upwind schemes, [12].

Given a finite time horizon T > 0 and a suitable maximal age A3, we consider the computational domain [0,T ]×
[0, A3] and let ∆t and ∆a be respectively the constant time and age steps. We set NT = bT /∆tc, N1 = bA1/∆ac, N2 =
bA2/∆ac and NA = bA3/∆ac, where bsc stands for the integer part of s. Then for any 1 ≤ h ≤ NA , we introduce the cells

Kh = [ah−1/2, ah+1/2), the cells centers ah = (h −1/2)∆a and, for 0 ≤ n ≤ NT , we define the times t n = n∆t . For any

given i , j ∈ {1, . . . ,nv }, i 6= j , we approximate the edge (Vi ,V j ,`i j ) by (Vi ,V j ,Li j∆t ), where Li j = b`i j /∆tc. Analogously,

we approximate the age increase during dispersal by L∗
i j∆a where L∗

i j = b`i j /∆ac.

Given a node Vi , 1 ≤ i ≤ nv , we denote by bn
i ,h , dn

i ,h and ρn
i ,h , for 1 ≤ h ≤ NA and 0 ≤ n ≤ NT , the approximation of

the averages of bi (t n , ·), di (t n , ·) and ρi (t n , ·) on the cell Kh , namely

bn
i ,h = 1

∆a

∫
Kh

bi (t n , a)da , dn
i ,h = 1

∆a

∫
Kh

di (t n , a)da,

ρ0
i ,h = 1

∆a

∫
Kh

ρi ,0(a)da and ρn
i ,h ' 1

∆a

∫
Kh

ρ(t n , a)da if n > 0.

(3.13)

For each i ∈ {1, . . . ,nv } and n ∈ {0, . . . , NT } the total population of voles in Vi at time t n is

Φn
i =∆a

NA∑
h=1

ρn
i ,h .

The numerical scheme for the GD model For any given value of the parameter η > 0, minimal time span of any

dispersal in our model, we introduce the number of time steps Nη = bη/∆tc and we fix to Nη∆t the minimal duration

of a dispersal in the numerical scheme. For n ∈N fixed and τi
K in Ti (t n) =

{
τi

1, . . . ,τi
mi (t n )

}
, the set of outbreak times

taking place from Vi before t n , we introduce Nτi
K
= bτi

K /∆tc. We next define

Φ̃n
i = sup

(n−Nη)+≤m≤n
Φm

i , N i j
K = Nτi

K
+Li j and δn

N
i j
K

=
 1 if n = N i j

K ,

0 otherwise.

We finally set

d n+1
i ,h = 1+∆t

(
dn+1

i ,h + c

η
χ[Ri ,+∞)

(
Φ̃n

i

)
χ[N1,N1+N2)(h)

)
,

which comes from the implicit treatment of the mortality term in (2.4) and the semi-implicit treatment of the dispersal

term in (2.7). Then, writing a standard upwind scheme for the transport part of (2.4) and using an explicit treatment

of the last term of (2.7) we obtain the following scheme

ρn+1
i ,h = 1

d n+1
i ,h

(
1− ∆t

∆a

)
ρn

i ,h + ∆t

∆a
ρn

i ,h−1 + c
∆t

η

∑
j 6=i

j=1,...,nv

m j (t n )∑
K=1

δn

N
j i

K

χ[N1,N1+N2](h −L∗
j i )K j iρ

n−L j i

j ,h−L∗
j i

 ,

for 1 ≤ i ≤ nv , 1 ≤ h ≤ NA , 0 ≤ n ≤ NT −1,

ρn
i ,0 =Ai (Φn

i )∆a
NA∑

h=1
bn

i ,hρ
n
i ,h , 1 ≤ i ≤ nv , 0 ≤ n ≤ NT −1.

(3.14)
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The numerical scheme for the ID model For n ∈N, let σi
K be in the set Fi =

{
σi

1, . . . ,σi
mi

}
of times at which either a

dispersal or an arrival took place in the node Vi before t n . We introduce Nσi
K
= bσi

K /∆tc.

Writing again a standard upwind scheme for (2.8), we get for each i ∈ {1, . . . ,nv },

ρn+1
i ,h = 1

1+∆tdn+1
i ,h

((
1− ∆t

∆a

)
ρn

i ,h + ∆t

∆a
ρn

i ,h−1

)
, 1 ≤ h ≤ NA , Nσi

K
≤ n < Nσi

K+1
,

ρn
i ,0 =Ai (Φn

i )∆a
NA∑

h=1
bn

i ,hρ
n
i ,h , Nσi

K
≤ n < Nσi

K+1

ρ
N
σi

K
i ,h = ρ

N
σi

K
−

i ,h −χ[Ri ,+∞)(Φ
N
σi

K
−

i )χ[N1,N1+N2)(h)ρ
N
σi

K
−

i ,h

+
∑
j 6=i

j=1,...,nv

m j −1∑
r=1

δ
N
σi

K
−L j i

N
σ

j
r

χ[R j ,+∞)(Φ
N
σi

K
−L j i

j )χ[N1,N1+N2)(h −L∗
j i )K j iρ

N
σi

K
−L j i

j ,h−L∗
j i

, 1 ≤ h ≤ NA .

(3.15)

3.1 Validation

In this part, we validate the implementation of the numerical schemes described above by comparison to exact solu-

tions for which an analytical expression exists.

We consider a simple graph consisting of two nodes V1 and V2 and, denoting by L the matrix of the travel times

and K the distribution matrix, we set

L =
(

0 0.5

0.5 0

)
and K =

(
0 1

1 0

)
, (3.16)

which means that, during a dispersal in the node V1, all the juvenile voles will move to the node V2 and vice versa. The

initial conditions at the nodes are the following

• At V1, we consider 50 juveniles and 170 adults. Individuals are equidistributed over their age class.

ρ1(0, a) = 50

A2 − A1
χ[A1,A2)(a)+ 170

A3 − A2
χ[A2,A3](a). (3.17)

• At V2, we consider 120 adults. Individuals are equidistributed over this age class.

ρ2(0, a) = 120

A3 − A2
χ[A2,A3](a). (3.18)

For simplicity we assume all the other parameters of our models to be piecewise constant and identical on the two

nodes

• Reproduction rate: b(a) = bχ[A1,A3](a) = 0.3χ[A1,A3](a) ;

• Mortality rate: d(a) = db jχ[0,A2)(a)+dadχ[A2,A3](a) = 0.2χ[0,A2)(a)+0.1χ[A2,A3](a) ;

• Dispersal threshold: R = 200 ;

• Mortality rate during dispersal: ddi s (a) = 0.5.

For the GD model we set c = 1 and we also have to fix the value of the minimal time span of dispersal and we set

η= 0.25.
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3.1.1 The exact solution for the GD model

In this section we provide a detailed description of the explicit solution in the time interval [0,1.3] for the GD model

with the settings and initial conditions introduced in Section 3.1. The travel time between the two nodes is `= 0.5.

Solution at V1 during the first dispersal, t ∈ [0, t1]. The given initial condition makes the total population in V1 at

t = 0 larger than the dispersal threshold R and triggers a first dispersal. The density of voles in V1 is a function of time

and age, defined piecewise with respect to age

ρ1(t , a) =



babies1(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t ),

0, a ∈ [t , A1 + t ),

juv1(t , a) = 50
A2−A1

e−(db j +1/η)t = 25e−4.2t , a ∈ [A1 + t , A2),

newad1(t , a) = 50
A2−A1

e−(db j +1/η)(t−(a−A2))−dad (a−A2) = 25e−4.2(t−(a−A2))−0.1(a−A2), a ∈ [A2, A2 + t ),

adults1(t , a) = 170
A3−A2

e−dad t = 10e−0.1t , a ∈ [A2 + t , A3].

(3.19)

We observe that the total density of juvenile voles of age a who have left V1 at time t is given by

50

A2 − A1
e−db j t − juv1(t , a),

so that the density of voles of age a leaving V1 at time t is

disp(t , a) = 50

A2 − A1
e−db j t

(
−db j +

(
db j +

1

η

)
e−t/η

)
. (3.20)

The value of the total population in V1, Φ1, equals the threshold R at t0 ' 0.18755. From this moment the dispersal

continues for a time η more, and we denote by t1 = t0 +η' 0.43755 the instant at which it ends.

Solution at V1 between two dispersals, t ∈ [t1, t2]. The function ρ1 is still piecewise defined with respect to the

age variable, but its components are different. The evolution of the component juv1 is juv12. The new components

correspond to the babies born at t > t1, babies2, and to the voles passing from juveniles to adults at t > t1, newad2.

ρ1(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − t1),

juv12(t , a) = juv1(t1, a − (t − t1))e−db j (t−t1), a ∈ [A1 + t , A2),

newad2(t , a) = juv1(t1, a − (t − t1))e−db j (t−t1−(a−A2))−dad (a−A2), a ∈ [A2, A2 + (t − t1)),

ρ1(t1, a − (t − t1))e−d(a)(t−t1), otherwise.

(3.21)

The total population at V1, Φ1, increases up to reach again the value R at t = t2 ' 0.84818. This triggers a second

dispersal.

Solution at V1 for t ∈ [t2, A1]. The second dispersal modifies the dynamics of the juveniles, so that the functions

giving the density of newborns and the density of new adults also need to be updated. The evolution of the component

juv12 is juv123.

ρ1(t , a) =



babies3(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − t2),

juv123(t , a) = juv12(t2, a − (t − t2))e−(db j +1/η)(t−t2), a ∈ [A1 + t , A2),

newad3(t , a) = juv12(t2, a − (t − t2))e−db j (t−t2−(a−A2))−dad (a−A2), a ∈ [A2, A2 + (t − t2)),

ρ1(t2, a − (t − t2))e−d(a)(t−t1), otherwise.

(3.22)
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It should be noticed that the total population in V1 reaches again the value R at time t3 ' 0.94675. This does not

produce an immediate change in the dynamics because the difference t3− t2 is less that η, but tells us that the second

dispersal will last up to time t4 = t3 +η' 1.44675.

Solution at V1 for t ∈ [A1,1.3]. For t > A1 we have to consider two additional age classes : some of the babies becomes

juvenile and start to reproduce, we denote them by newjuv4, and babies born after time t = A1, babies4.

ρ1(t , a) =



babies4(t , a) = be−d(a)a
∫ A3

A1
ρ1(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t − t1, A1),

newjuv4(t , a) = babies1(A1, a − (t − A1))e−db j (t−a)−(db j +1/η)(a−A1) a ∈ [A1, t ),

ρ1(A1, a − (t − A1))e−d(a)(t−A1), otherwise.

(3.23)

Solution at V2 before the arrival of voles from V1, t ∈ [0,`]. At time t = 0 the total population at V2 is 120. We will

see that no dispersal takes place from this node for t = [0,1.3]. We use a different font to distinguish the age groups

appearing in the solution at node V2, while the indices are given in the same way.

ρ2(t , a) =


babies1(t , a) = be−db j a ∫ A3

A1
ρ2(t −a,c)dc, a ∈ [0, t ),

0 a ∈ [t , A2 + t ),

adults1(t , a) = 120
A3−A2

e−dad t = 12
17 e−0.1t , a ∈ [A2 + t , A3].

(3.24)

Solution at V2 during the arrival of the first group of dispersers, t ∈ [`,`+ t1]. We have to take into account several

new groups of individuals. The new components correspond to the babies born at t > `, babies2, and to the voles

arriving from the node V1. Some of them arrive as juveniles, juv2, some as adults, adults2. Some of the juveniles

become adults after their arrival, we call them newad2. The voles whose age is in (A2 +`, A2 + t ) originated from V1,

but when they arrived they were jounger than A2+`, we call this group adultsevol2. We compute their density using

(3.20) and the fact that while travelling from V1 to V2 the dispersers solve the ODE y ′ =−ddi s y .

ρ2(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t −`),

juv2(t , a) = ∫ t
` e−db j (t−s)e−ddi s`disp(s −`, a − (t − s +`))ds, a ∈ [A1 + t , A2),

newad2(t , a)+adults2(t , a) = juv2(t − (a − A2), A2)e−dad (a−A2)

+∫ t
t−(a−A2) e−dad (t−s)e−ddi s`disp(s −`, a − (t − s +`))ds, a ∈ [A2, A2 + (t −`)),

adults2(t , a) = ∫ t
` e−dad (t−s)e−ddi s`disp(s −`, a − (t − s +`))ds, a ∈ [A2 + (t −`), A2 +`),

adultsevol2(t , a) = adults2(t − (a − (A2 +`)), A2 +`)e−dad (a−(A2+`)), a ∈ [A2 +`, A2 + t ),

ρ2(`, a − (t −`))e−d(a)(t−`), otherwise.

(3.25)

Solution at V2 for t ∈ [`+ t1,1.3]. In the interval of time [`+ t1,`+ t2] no more voles arrive from V1 and the total

population of V2 does not attain the threshold value R. For our validation we only compute the solution up to time

t = 1.3 < `+ t2. The age groups already present in the dynamics just evolve following the prescribed mortality rates,

until time t = A1 when some on the individuals in babies1 become juvenile. Therefore for t ∈ [`+ t1, A1] the function
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ρ2 takes the form

ρ2(t , a) =


babies3(t , a) = be−db j a ∫ A3

A1
ρ2(t −a,c)dc, a ∈ [0, t − (`+ t1)),

newad3(t , a) = juv2(`+ t1, a − (t −`− t1))e−db j (t−(`+t1)−(a−A2))−dad (a−A2), a ∈ [A2, A2 + t − (`+ t1)),

ρ2(`+ t1, a − (t −`− t1))e−d(a)(t−(`+t1)), otherwise.

(3.26)

While for t ∈ [A1,1.3] ρ2 becomes

ρ2(t , a) =



babies4(t , a) = be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t − A1, A1),

newjuv4(t , a) = babies1(A1, a − (t − A1))e−db j (t−A1), a ∈ [A1, t ),

newad4(t , a) = juv2(A1, a − (t − A1))e−db j (t−A1−(a−A2))−dad (a−A2), a ∈ [A2, A2 + t − A1),

ρ2(A1, a − (t − A1))e−d(a)(t−A1), otherwise.

(3.27)

Figure 3 shows the comparison between the exact and the numerical solutions at the two nodes for the GD model

at the final time T = 1.3. We observe a perfect matching between the two solutions where the numerical one was

computed with ∆a =∆t = 0.00625.

3.1.2 The exact solution for the ID model

In this section we provide a detailed description of the explicit solution in the time interval [0,1.3] for the ID model

with the settings and initial conditions introduced in Section 3.1. The travel time between the two nodes is `= 0.5.

Solution at V1 for t ∈ [0, A1]. The given initial condition makes the total population in V1 at t = 0 higher than the

dispersal threshold R, therefore the juvenile individuals immediately leave the node. The density of voles in V1 is a

function of time and age, defined piecewise with respect to age

ρ1(t , a) =


babies1(t , a) = be−db j a ∫ A3

A1
ρ1(t −a,c)dc, a ∈ [0, t ),

0, a ∈ [t , A2 + t ),

adults1(t , a) = 170
A3−A2

e−dad t = 10e−0.1t , a ∈ [A2 + t , A3].

(3.28)

Solution at V1 for t ∈ [A1,1.3]. Starting from time t = A1 a fraction of the babies will become juveniles and their

reproductive process has to be taken into account. This leads to the formation of two more age groups: the babies

born after time t = A1, babies2, and the individuals passing from the babies to juveniles, newjuv2.

ρ1(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t − A1, A1),

newjuv2(t , a) = babies1(A1, a − (t − A1))e−db j (t−A1), a ∈ [A1, t ),

0, a ∈ [t , A2 + t ),

adults1(t , a) = adults1(A1, a − (t − A1))e−dad (t−A1), a ∈ [A2 + t , A3].

(3.29)

Solution at V2 before the arrival of voles from V1, t ∈ [0,`]. The dynamics is the same in the two models. The explicit

form of the solution is given in (3.24).
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(a) Exact solution for GD model for node V1
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(b) Exact solution for GD model for node V2
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(c) Computed solution for GD model for node V1
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(d) Computed solution for GD model for node V2

Figure 3: With reference to Section 3.1.1: the comparison between the population of voles in the exact solution and

the GD model for η= 0.25.

Solution at V2 for t ∈ [`, A1]. The density of voles reaching V2 at t = ` = 0.5 are 50
A2−A1

χ[A1+`,A2+`](a)e−`ddi s , then

some of them are juveniles, juv2, some are adults, adults2. Some of the juveniles become adults after their arrival,

we call them newad2. We call babies2, the babies born for t > `.

ρ2(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t −`),

juv2(t , a) = 50
A2−A1

e−`ddi s−db j (t−`), a ∈ [A1 + t , A2),

newad2(t , a) = juv2(t − (a − A2), A2)e−dad (a−A2), a ∈ [A2, A2 + (t −`)),

adults2(t , a) = 50
A2−A1

e−`ddi s−dad (t−`), a ∈ [A2 + (t −`), A2 + t ),

ρ2(`, a − (t −`))e−d(a)(t−`), otherwise.

(3.30)

Solution at V2 for t ∈ [A1,1.3]. Starting from time t = A1 a fraction of the babies will become juveniles and their

reproductive process has to be taken into account. This leads to the formation of two more age groups : the babies

born after time t = A1, babies3, and the individuals passing from the babies to juveniles, newjuv3.
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ρ2(t , a) =



babies3(t , a) = be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t −`, A1),

newjuv3(t , a) = babies1(A1, a − (t − A1))e−db j (t−A1), a ∈ [A1, t ),

ρ2(A1, A1 − (t −`))e−d(a)(t−`), otherwise.

(3.31)

Figure 4 illustrates the comparison between the explicit solution and its numerical solution at the two nodes for the

ID model at the final time T = 1.3. We again observe a perfect agreement between the two solutions. The numerical

solutions was computed with ∆a =∆t = 0.00625.
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(c) Node V1
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(d) Node V2

Figure 4: With reference to Section 3.1.1: the comparison between the population of voles in the exact solution and in

the ID model.

3.2 Numerical convergence

We introduce here the following relative L1-discrete error for the density in the node Vi , i = 1, 2, at a given time t n

en
i =

∑
1≤h≤Na

|ρi (t n , ah)−ρn
i ,h |∑

1≤h≤Na

|ρi (t n , ah)| ,

where ρ(t n , ah) is an exact solution evaluated at the point ah and at time t n .
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In tables 1 and 2, we have reported the relative L1-discrete errors for both models in the two nodes V1 and V2, com-

puted for different values of age and times steps at two times T = 0.6 and T = 1.2. The results suggest the convergence

of the numerical schemes. Moreover, figures 5 and 6 suggest that the order of convergence of the scheme for the GD

model is between 0.71 and 1, and the one for the ID model is 1. We can also observe that the loss of accuracy of the

scheme for the GD model is mainly due to the approximation of the arrival term in (2.7).

∆t ∆a eNT
1 , T = 0.6 eNT

2 , T = 0.6 eNT
1 , T = 1.2 eNT

2 , T = 1.2

0.1 0.1 7.51×10−2 6.×10−2 5.42×10−2 1.13×10−1

0.05 0.05 4.2×10−2 3.1×10−2 2.8×10−2 5.89×10−2

0.025 0.025 2.07×10−2 1.66×10−2 1.39×10−2 3.53×10−2

0.0125 0.0125 1.13×10−2 8.8×10−3 7.1×10−3 2.16×10−2

0.00625 0.00625 5.7×10−3 4.9×10−3 3.7×10−3 1.55×10−2

Table 1: L1-discrete relative errors for the GD model

∆t ∆a eNT
1 , T = 0.6 eNT

2 , T = 0.6 eNT
1 , T = 1.2 eNT

2 , T = 1.2

0.1 0.1 4.33×10−4 1.22×10−2 1.2×10−3 1.38×10−2

0.05 0.05 2.19×10−4 6.13×10−3 6.05×10−4 6.93×10−3

0.025 0.025 1.1×10−4 3.07×10−3 3.03×10−4 3.47×10−3

0.0125 0.0125 5.56×10−5 1.53×10−3 1.52×10−4 1.73×10−3

0.00625 0.00625 2.76×10−5 7.66×10−4 7.63×10−5 8.67×10−4

Table 2: L1-discrete relative errors for the ID model
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Figure 5: L1-discrete relative errors for the GD Model in log/log scale at T = 0.6 and T = 1.2

14



−6 −5 −4 −3 −2
−11

−10

−9

−8

−7

−6

∆a

eN
T

1

eNT
1

Slope 1

(a) V1 at T = 0.6

−6 −5 −4 −3 −2

−7

−6

−5

−4

−3

∆a

eN
T

2

eNT
2

Slope 1

(b) V2 at T = 0.6

−6 −5 −4 −3 −2
−10

−9

−8

−7

−6

−5

∆a

eN
T

1

eNT
1

Slope 1

(c) V1 at T = 1.2

−6 −5 −4 −3 −2

−7

−6

−5

−4

−3

∆a

eN
T

2

eNT
2

Slope 1

(d) V2 at T = 1.2

Figure 6: L1-discrete relative errors for the ID model in log/log scale at T = 0.6 and T = 1.2

3.3 A first comparison between the two models

In this section we consider once again the initial conditions (3.17), (3.18) and we compute the evolution of the vole

populations in the two nodes by the GD model when the parameter of minimal time span for a dispersal is reduced to

η= 3×10−3, c = 1 and the final time is T = 1.3. The result obtained for ∆a =∆t = 3×10−4 is in Figures 7.

We can observe that the profile of the solution is, at a first approximation, similar to the solution obtained from

the same initial condition by the ID model, see Figure 4. In particular we observe that the two dispersals occurring in

the fist cell for t > 1 concerne a so small number of juveniles that none of them reaches the second cell, so that the

dynamics of the second cell is almost identical in the two simulations.

This means that, even if the ID model is necessarily less precise, it suffices to capture the dynamics we would

observe in the GD model for small values of η.
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Figure 7: The voles populations of the two nodes computed with GD model for η= 3×10−3

4 Numerical simulations

In this section, we perform numerical simulations on the two models, in order to show their ability to reproduce the

qualitative behavior of vole populations and in particular their spatial dynamics. In this paper we limit our attention

to simple toy models as the implementation of the schemes on graph representing large regions would require a large

effort in optimization and in parallelization of the codes, which we defer to future investigation.
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Everywhere in the following we assume, in the GD model, that c = 1 and that the minimal duration of a dispersal

is η= 7/18 that corresponds to one week in real time.

4.1 Two-nodes dynamics

In this section, we investigate the evolution of a population of voles on a graph consisting of two nodes assumed to

represent two different types of landscapes and the edge linking them. The landscapes we consider are described

below:

• The first node represents a crop field, which is a source of abundant food and shelter for voles during sum-

mer and spring. This traduces into high reproduction rate and low mortality rate in the warm season. On the

contrary mortality becomes high at harvesting time and remains so up to the end of one year cycle.

To reproduce such properties, we consider the reproduction and mortality rate functions defined by (2.9), (2.10)

and (2.12) where we assume α= 1, δ= 1 and κ= 2.6.

• The second node represents a forest, where the population of voles is almost stable over several years. The

reproduction rate is lower than in the crop field, but the mortality varies less dramatically from warm to cold

season.

To reproduce such properties, we consider the reproduction and mortality rate functions defined by (2.9), (2.10)

and (2.12) where we assume α= 0.656, δ= 1 and κ= 1.5.

We assume that the travel time from one node to the other is `= 0.5. Then we consider the travel time matrix and

the distribution matrix as

L =
(

0 0.5

0.5 0

)
and K =

(
0 1

1 0

)
respectively. The initial conditions are of 70 adult individuals in each node, equidistributed over their age class. The

simulations, performed with ∆a =∆t = 0.00625, are depicted in Figures 8.

Both models reproduce the cyclic behavior of the population. A characteristic feature of the ID model is the ap-

pearance of sharp peaks, as in Figure 8(d). This is due to the fact that voles coming from the node representing the

crop field reach their destination at moments where the total population in the node representing forest is close to

the dispersal threshold. This sudden population increase, sufficient to trigger dispersal, lasts only one time step. On

the contrary, no peaks arise in Figure 8(c) as in the GD model, dispersals and arrivals happen progressively. Moreover,

since not all of the juveniles leave, the variation in the total population is lower, see Figures 8(a) and 8(c).

4.2 Three-nodes dynamics

In this section we run our models on a complete graph with three nodes, Vi , i = 1,2,3. This allows us to use a more

interesting distribution matrix to reproduce, for example, the fact that voles prefer to move downhill rather than uphill,

and that they are more likely to stop at places where resources are more abundant. Since the availability of food may

change in time, we consider a time dependent distribution matrix in our second example.

The simulations of this section are performed with ∆a =∆t = 0.0125.
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(a) Crop field, GD model
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(b) Crop field, ID model
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(c) Forest, GD model
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(d) Forest, ID model

Figure 8: With reference to subsection 4.1: the evolution of the population over 4 years for the two models.

4.2.1 Scenario 1: Three nodes located at different heights

We assume here that the node V1 is located at the highest spot and V3 at the lowest one. For all the nodes, we use the

mortality and the reproduction rates defined by (2.9), (2.10) and (2.12) withα= δ= 1 and κ= 1.5. As initial conditions

we take φ1(0) = 100, φ2(0) = 50 equidistributed over the adult age class, and φ3(0) = 0, that means that the third node

is initially empty. It has been observed that when dispersal occur, voles move more frequently downhill (2 times out

of 3), see for instance [5, 13]. In other to take into account this characteristic, we consider the following distribution

matrix

K =


0 1 0

1/3 0 2/3

0 1 0

 .
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In particular, this means that all the dispersals taking place from V1 or V3 head toward V2, while 2 out of 3 voles leaving

V2 would go to V3. We fix the travel times matrix as

L =


0 1 1.5

1 0 0.5

1.5 0.5 0

 . (4.32)

Figures 9 show the evolution of the population for both models over three years. We can observe numerous outbreaks

from V2, which are due to the fact that all the voles that disperse from V1 and V3 arrive in this node. Moreover from

Figure 9(c), we can see that, due to the relatively long duration of dispersal, the total population in V2 largely exceeds

the threshold 200 in the second and third year.

We can also notice that a persistent colony appears in V3 thanks to the individuals arriving from the other nodes.

4.2.2 Scenario 2: Time dependent distribution matrix

We consider a domain partitioned into three cells. The first one, V1, is located at a higher elevation than the two others,

which are on the same level. We make the following choice of parameters :

• In V1, α= δ= 1, κ= 1.5 and the initial condition consists of 100 adults individuals equidistributed over their age

class.

• In V2, we imagine to have a crop field. as in Section 4.1. Then we set α= δ= 1, κ= 2.6 and the initial condition

consists of 70 adults individuals equidistributed over their age class.

• In V3, we have a forest as in Section 4.1. Then we set α= 0.656, δ= 1, κ= 1.5 and take the same initial condition

as in V2.

We assume now that during spring and summer, i.e. for t ∈ [0,10], eventual dispersers tend to move to the second

colony because of the abundance of food source in a crop landscape. While in autumn and winter, i.e. for t ∈ [10,20],

they rather move downhill to the third cell, as we mentioned in Section 4.1. Therefore we consider the dispersal ratio

matrix K1 for t ∈ [0,10] and K2 for t ∈ [10,20],

K1 =


0 0.7 0.3

0.3 0 0.7

0.2 0.8 0

 , K2 =


0 0.3 0.7

0.3 0 0.7

0.3 0.7 0

 . (4.33)

We assume that the travel time between any two nodes is 0.5, so that

L =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 . (4.34)

In Figures 10 we present the evolution of the populations of voles in the three nodes for both models during three

years. We can observe several dispersals occuring every year from each node. As we already noticed in previous

simulations, the arrivals of voles increase the frequency of outbreaks. Moreover, we can see that in V2, that is the

crop field landscape, the population of voles increases over the reproduction season with the appearance of peaks for

the second model in Figure 10(d). However, due to the high mortality rate after harvesting, the increase of the total

population each year is slow and contained, in particular its minimal value in a one year period is almost constant. On
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(a) V1, GD model
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(b) V1, ID model
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(c) V2, GD model
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(d) V2, ID model
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(e) V3, GD model
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(f) V3, ID model

Figure 9: With reference to Section 4.2.1: The population of voles over 3 years in V1, V2 and V3 for both models.

the contrary, in V3, the minimal value of the total population increases over one year, which means that there are more

and more adults. At the end of the third year, we have approximatively 110 and 96 adult individuals in Figure 10(e)
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and Figure 10(f) respectively. As a consequence of the increment of the adult population, we can see in the two figures

that there are more and more dispersal outbreaks. Figure 10(f) also shows more peaks than in Figure 10(d).
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(a) V1, GD model
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(b) V1, ID model
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(c) V2, GD model
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(d) V2, ID model
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(e) V3, GD model
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Figure 10: With reference to Section 4.2.2: the population of voles over 3 years on three nodes representing different

landscapes.
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5 Conclusions

In this paper, we propose two models to describe the spatial dynamic of voles populations. The models are based

on age-structured transport equations set on a graph. The nodes of the graph represent uniform landscape areas of

relatively small size, where voles can settle. Edges are used to model the main feature of voles’ macroscopic spatial

dynamics, which is the dispersal of juvenile individuals whenever the total population at one node reaches a thresh-

old number. This is supposed to be a gradual process in the first model while it takes place instantaneously in the

second model. The parameters in the reproduction and mortality rates allows to reproduce the evolution in different

landscapes.

The numerical simulations that we presented show the ability of the models to reproduce cycles of dispersals in

the populations of voles, as well as persistence or extinction of a colony. The results that we obtained in this paper

allow us to pursue the work with the construction of a hybrid model combining the ID model to describe the voles

population dynamics at the nodes and the agents-based model developed in [13] to reproduce the spatial dynamics

on large graphs. In a different direction it is also possible to enhance the two models by considering a distribution

matrix which is not given a priori, but depends on the current state of the system. For example, one could imagine

that dispersers would avoid an already overcrowded node.

Appendices

A Allee’s effect : survival number of a colony

We investigate in this part the minimal number of juvenile or adult individuals needed to maintain the existence of a

colony when we consider the reproduction and the mortality rates defined by (2.9), (2.10) and (2.12) with α = δ = 1

and κ= 1.5. To that end, in the boundary condition at a = 0, (2.6), we consider a non constant function A of the form

A (φ) = βφγ

(B +φ)γ
.

so that the model can reproduce the Allee’s effect. For simplicity, we just consider case in which β= 1, γ ∈N, and

B =
(
γ+1

γ−1

)
φ
γ
∗, (A.35)

where φ∗ is a given value. As an example, if we take γ= 8 and φ∗ = 20 we obtain

A (φ) = φ8(
9.208

7 +φ8
) , φ≥ 0. (A.36)

This function has an inflection point at φ= 20 whose value is A (20) = 7/16 = 0.4375, see Figure 11. This factor makes

the reproduction rate almost insignificant when the total population is less than 20. Considering one node and using

the mortality and the reproduction rates defined by (2.9), (2.10) and (2.12) with α= δ= 1 and κ= 1.5, that is the same

parameters as in Figures 2(a) and 2(b), we can see in Figures 12, that we need at least 19 juvenile individuals or 20 adult

individuals in the initial condition for the colony to persist over several years without any external support. Figures 13

show the evolution of the populations of voles inside a colony during two years when we start from 18 juvenile and 19

adult individuals respectively. As we can see, the colony disappears in less than two years. We can calibrate the model

to obtain a realistic survival number by changing the inflection point of the function A .
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Figure 11: The function defined in (A.36).
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Figure 12: Populations of voles in a colony starting with 19 juvenile (left) or 20 adult (right) individuals.
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Figure 13: Populations of voles in a colony starting with 18 juvenile (left) or 19 adult (right) individuals.
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